JP7429344B2 - Collection method of halophilic microalgae - Google Patents

Collection method of halophilic microalgae Download PDF

Info

Publication number
JP7429344B2
JP7429344B2 JP2019204446A JP2019204446A JP7429344B2 JP 7429344 B2 JP7429344 B2 JP 7429344B2 JP 2019204446 A JP2019204446 A JP 2019204446A JP 2019204446 A JP2019204446 A JP 2019204446A JP 7429344 B2 JP7429344 B2 JP 7429344B2
Authority
JP
Japan
Prior art keywords
microalgae
halophilic
container
halophilic microalgae
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019204446A
Other languages
Japanese (ja)
Other versions
JP2021073931A (en
Inventor
智郎 和辻
みどり 倉橋
アンヘリカ ナカ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMAGAWA ACADEMY & UNIVERSITY
Original Assignee
TAMAGAWA ACADEMY & UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMAGAWA ACADEMY & UNIVERSITY filed Critical TAMAGAWA ACADEMY & UNIVERSITY
Priority to JP2019204446A priority Critical patent/JP7429344B2/en
Publication of JP2021073931A publication Critical patent/JP2021073931A/en
Application granted granted Critical
Publication of JP7429344B2 publication Critical patent/JP7429344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、好塩性微細藻類の回収方法、及び、回収された好塩性微細藻類から有用有機物を得る方法に関する。 The present invention relates to a method for collecting halophilic microalgae and a method for obtaining useful organic substances from the collected halophilic microalgae.

太陽エネルギーや風力エネルギー等の再生可能エネルギーによってエネルギー需要の多くを賄うことが求められているが、再生可能エネルギーはエネルギー密度が低く、化石エネルギーからの早急な転換はハードルが高い。
そこで、微細藻類による燃料油生産によって、該ハードルを下げることが期待されている。
Renewable energy such as solar energy and wind energy is required to meet much of the energy demand, but renewable energy has a low energy density, making it difficult to quickly switch away from fossil energy.
Therefore, fuel oil production using microalgae is expected to lower this hurdle.

微細藻類による燃料油生産というアイデアは、既に提案されている(例えば、特許文献1、2)。しかし、現状を鑑みると、一部を除き実用化に関しては、多くの問題点が解決できていない。 The idea of producing fuel oil using microalgae has already been proposed (for example, Patent Documents 1 and 2). However, considering the current situation, many problems have not been solved in terms of practical application, with some exceptions.

また、培養・増殖した微細藻類から有用有機物を得ることも提案され、糖、ポリペプチド、ビタミン等、種々の有用物に関し、具体的な検討もなされている(例えば、特許文献3、4)。
特許文献3には、好塩性藍藻を、高塩濃度で定常期まで培養した後、低塩濃度で数時間~数日間培養して多糖類を生産させ、該多糖類を分離精製する方法が記載されている。
また、特許文献4には、水性藻類バイオマス懸濁液から、β-カロテンを溶媒抽出する方法が記載されている。
It has also been proposed to obtain useful organic substances from cultured and proliferated microalgae, and specific studies have been made regarding various useful substances such as sugars, polypeptides, and vitamins (for example, Patent Documents 3 and 4).
Patent Document 3 describes a method of culturing halophilic blue-green algae to a stationary phase at a high salt concentration, then culturing them at a low salt concentration for several hours to several days to produce polysaccharides, and separating and purifying the polysaccharides. Are listed.
Further, Patent Document 4 describes a method for solvent extraction of β-carotene from an aqueous algal biomass suspension.

一方、培養・増殖させた微細藻類を効率よく水中から回収する方法も検討されている(例えば、特許文献5~9)。 On the other hand, methods for efficiently recovering cultured and proliferated microalgae from water are also being studied (for example, Patent Documents 5 to 9).

特許文献5には、微細藻類が凝集しやすい表面ゼータ電位となるように、原水の塩類濃度を調整し、原水に無機凝集剤を添加して凝集反応を行わせる凝集工程と、該凝集工程で生成した凝集フロックを固液分離する加圧浮上分離工程とを有する、微細藻類の水からの分離回収方法が記載されている。
また、特許文献6には、原水に難溶性水酸化物を生成する金属塩を添加した後、該原水を難溶解性水酸化物が生成するpHに調整する水酸化物生成工程と、該難溶解性水酸化物によって微細藻類を凝集させる凝集工程と、生成した凝集フロックを固液分離する固液分離工程とを有する微細藻類の回収方法が記載されている。
Patent Document 5 describes a flocculation step in which the salt concentration of raw water is adjusted so that the surface zeta potential is such that microalgae can easily flocculate, and an inorganic flocculant is added to the raw water to cause a flocculation reaction, and in the flocculation step. A method for separating and recovering microalgae from water is described, which includes a pressure flotation separation step for solid-liquid separation of generated flocs.
Further, Patent Document 6 describes a hydroxide generation step of adding a metal salt that generates a hardly soluble hydroxide to raw water, and then adjusting the raw water to a pH at which the hardly soluble hydroxide is generated; A method for collecting microalgae is described that includes a flocculation step of flocculating microalgae with soluble hydroxide, and a solid-liquid separation step of solid-liquid separation of the generated flocs.

特許文献7には、微細藻類を透過させない分離膜を備えた多孔質フィルターを使用して、微細藻類を含む培養液から、濾過セル内に微細藻類を回収し、該微細藻類の成形体を作製し、逆洗を行って該成形体を排出させる微細藻類の回収・成形方法が記載されている。
また、特許文献8には、微細藻類の培養液の上方に気層が存在するようにしながら、該培養液で微細藻類を培養し、該培養液の液量を減らし、培養物を回収する、微細藻類の培養及び回収方法が記載されている。
Patent Document 7 discloses that microalgae are collected in a filtration cell from a culture solution containing microalgae using a porous filter equipped with a separation membrane that does not allow microalgae to pass through, and a molded body of the microalgae is produced. However, a method for collecting and molding microalgae is described in which the molded bodies are discharged by backwashing.
Further, Patent Document 8 discloses that microalgae are cultured in a culture solution while an air layer is present above the culture solution of microalgae, the volume of the culture solution is reduced, and the culture is recovered. A method for culturing and collecting microalgae is described.

また、特許文献9には、好塩性微細藻類に属する藻類の藻体を、タンパク質の変性による沈殿を利用して取得する好塩性微細藻類の回収方法が記載され、培養液中に、タンパク質を含む有機物溶液を添加して混合して静置し、沈殿物と上澄みとに分離し、該沈殿物に含まれる藻体を回収する好塩性微細藻類の回収方法が記載されている。 Further, Patent Document 9 describes a method for collecting halophilic microalgae, in which algal bodies of algae belonging to halophilic microalgae are obtained using precipitation due to protein denaturation. A method for collecting halophilic microalgae is described, in which an organic matter solution containing .

しかしながら、これらの技術は、化学的・物理学的に、培養液(微細藻類を有する原水)から、物体としての微細藻類を回収する方法であり、微細藻類が有する生物としての性質を利用して生物学的に濃縮する方法ではなかった。
また、後述するように、従来知られている濃縮・回収技術では、微細藻類を有する原水中から微細藻類を濃縮する回収率や効率(コストパフォーマンス)が悪かったり、濃縮・回収に要するエネルギーが多過ぎたりして、実用化までには、程遠いものであった(表1参照)。
However, these techniques are methods for chemically and physically recovering microalgae as objects from a culture solution (raw water containing microalgae), and utilize the properties of microalgae as living organisms. It was not a biologically concentrated method.
Furthermore, as will be discussed later, conventionally known concentration/recovery technologies have poor recovery rates and efficiency (cost performance) for concentrating microalgae from raw water containing microalgae, and require a large amount of energy for concentration/recovery. However, it was still far from being put into practical use (see Table 1).

そこで、石油や天然ガスに代わって、「微細藻類に含まれる燃料油を獲得すること」に関しては、コスト面、効率面等で十分ではなく、更なる改良が求められている。
また、「微細藻類から有用有機物を獲得すること」に関しても、消費必要エネルギー量の減少、微細藻類の回収率の向上等、コスト面(効率面)等から更なる改良が求められている。
Therefore, "obtaining fuel oil contained in microalgae" instead of oil or natural gas is not sufficient in terms of cost and efficiency, and further improvements are required.
Furthermore, with regard to "obtaining useful organic substances from microalgae," further improvements are required from a cost perspective (efficiency perspective), such as a reduction in the amount of energy required to be consumed and an improvement in the recovery rate of microalgae.

特開2015-231363号公報Japanese Patent Application Publication No. 2015-231363 特開2015-146785号公報Japanese Patent Application Publication No. 2015-146785 特開平5-049491号公報Japanese Patent Application Publication No. 5-049491 特開平7-002761号公報Japanese Patent Application Publication No. 7-002761 特開2012-179586号公報Japanese Patent Application Publication No. 2012-179586 国際公開第2013/024816号International Publication No. 2013/024816 特開2014-150768号公報Japanese Patent Application Publication No. 2014-150768 特開2016-208972号公報Japanese Patent Application Publication No. 2016-208972 特開2018-102158号公報JP 2018-102158 Publication

Nyomi Uduman et al, Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, Journal of Renewable and Sustainable Energy 2, Vol 2 (1), 2010Nyomi Uduman et al, Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, Journal of Renewable and Sustainable Energy 2, Vol 2 (1), 2010

本発明は上記背景技術に鑑みてなされたものであり、その課題は、前記問題点を解決し、回収に必要なエネルギーが低く、回収率が高く、全体として効率の良い好塩性微細藻類の回収方法を提供することである。 The present invention has been made in view of the above-mentioned background art, and its object is to solve the above-mentioned problems and to produce halophilic microalgae that requires less energy for recovery, has a high recovery rate, and is highly efficient overall. The objective is to provide a collection method.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、池の水の中で好塩性微細藻類を培養し、該水を一旦回収容器に移し、その後、光を遮断することによって、該好塩性微細藻類が該容器の下に沈降することを見出して、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has developed a method of culturing halophilic microalgae in pond water, temporarily transferring the water to a collection container, and then blocking light. The inventors discovered that the halophilic microalgae settle under the container and completed the present invention.

すなわち、本発明は、以下の工程(1)(3)(4)(5)の全てをこの順に有することを特徴とする好塩性微細藻類の回収方法を提供するものである。
(1)池の水の中で好塩性微細藻類を培養する工程
(3)工程(1)で培養された好塩性微細藻類を、該池の水と共に回収して回収液を得る工程
(4)工程(3)で得られた回収液を容器に入れ、該容器内を遮光して、該好塩性微細藻類を該容器の底に沈降させる工程
(5)工程(4)で沈降させた好塩性微細藻類を回収する工程
That is, the present invention provides a method for collecting halophilic microalgae, which is characterized by having all of the following steps (1), (3), (4), and (5) in this order.
(1) A step of cultivating halophilic microalgae in pond water (3) A step of collecting the halophilic microalgae cultured in step (1) together with the pond water to obtain a recovered liquid ( 4) Put the collected liquid obtained in step (3) into a container, block the inside of the container from light, and let the halophilic microalgae settle to the bottom of the container (5) Step (4) Process of collecting halophilic microalgae

また、本発明は、上記容器の高さを上記池の深さより大きく設定し、該容器の水深を該池の水深より大きくして、好塩性微細藻類を該容器の底に沈降させる上記の好塩性微細藻類の回収方法を提供するものである。 The present invention also provides the above-mentioned method in which the height of the container is set larger than the depth of the pond, the water depth of the container is made larger than the water depth of the pond, and the halophilic microalgae settle to the bottom of the container. A method for collecting halophilic microalgae is provided.

また、本発明は、上記の「好塩性微細藻類の回収方法」を使用して回収した好塩性微細藻類から有用有機物を獲得することを特徴とする有用有機物の製造方法を提供するものである。 The present invention also provides a method for producing useful organic matter, which comprises obtaining useful organic matter from halophilic microalgae collected using the above-mentioned "method for collecting halophilic microalgae." be.

本発明によれば、前記問題点や解決し、好塩性微細藻類を培養・増殖させた原水中での濃縮や、培養・増殖された該好塩性微細藻類の回収に際し、該回収に必要なエネルギー量が低く、回収率が高く、消耗品を必要としないので変動費が低く抑えられ、全体として効率・コストパフォーマンスの良い回収方法を提供できる。 According to the present invention, the above-mentioned problems are solved, and when the halophilic microalgae are concentrated in the raw water in which they are cultured and propagated, and the halophilic microalgae are recovered, the halophilic microalgae are collected. The amount of energy required is low, the recovery rate is high, and variable costs are kept low because no consumables are required, making it possible to provide a recovery method with good overall efficiency and cost performance.

また、本発明によれば、濃縮・回収に際して、凝集剤、pH調整剤等の化学物質を必須とはせず、遠心分離、濾過(フィルター)、蒸発乾固、電圧印加等の物理的・機械的な操作や専用の装置も必須とはしないので、作業が簡便であり、種々の部材の交換が不要であるため変動費が抑制され、全体として極めて効率の良い好塩性微細藻類の回収方法を提供できる。 Furthermore, according to the present invention, during concentration and recovery, chemical substances such as flocculants and pH adjusters are not required, and physical and mechanical methods such as centrifugation, filtration (filter), evaporation to dryness, and voltage application are required. This is a method for collecting halophilic microalgae that is easy to operate as it does not require manual operations or dedicated equipment, and reduces variable costs as there is no need to replace various parts, and is extremely efficient overall. can be provided.

本発明は、「培養された微細藻類を含有する原水」から、化学的・物理学的に、物体としての微細藻類を濃縮するのではなく、回収しようとする微細藻類が有する生物としての性質を利用して生物学的に濃縮をする。従って、濃縮に要するエネルギーが低く、大規模な装置も部材の交換作業も必要とせず、また、添加した化学物質による雑菌混入等のコンタミネーションのおそれもない。 The present invention does not chemically and physically concentrate the microalgae as an object, but rather collects the biological properties of the microalgae to be recovered from "raw water containing cultured microalgae." It is used to biologically concentrate. Therefore, the energy required for concentration is low, there is no need for large-scale equipment or replacement work of parts, and there is no fear of contamination such as contamination by germs due to added chemical substances.

一般に、好塩性微細藻類を用いて、採算がとれるように、油脂(燃料)や有用有機物を得るためには、ある程度以上の生産規模が必要である。
本発明によれば、微細藻類を凝集させるための電力、遠心分離や濾過のための装置、浮上油回収装置等、生産規模が大きくなればなるほど大掛かりになる「エネルギーや装置」を必須とはせず、また、規模に比例して大量に必要になる凝集剤、pH調整剤等の化学物質の添加も必須としないので、コストパフォーマンスに優れ、公害を生じさせるおそれもない。また、初期投資も多くはかからないので、固定費も抑制される。
Generally, in order to obtain oils and fats (fuel) and useful organic substances using halophilic microalgae in a profitable manner, a production scale of at least a certain level is required.
According to the present invention, "energy and equipment" such as electric power for flocculating microalgae, equipment for centrifugal separation and filtration, and floating oil recovery equipment, which become larger as the scale of production increases, are not required. Moreover, since it is not necessary to add chemical substances such as flocculants and pH adjusters, which are required in large quantities in proportion to the scale, it is excellent in cost performance and there is no risk of causing pollution. In addition, since the initial investment is not large, fixed costs are also suppressed.

従って、それら長所があることによって、低コストで大規模化でき、その結果、本発明によって初めて、商業的に採算がとれるようになる可能性がある。 Therefore, due to these advantages, it is possible to increase the scale at low cost, and as a result, the present invention may become commercially profitable for the first time.

表1に、非特許文献1を参考にして(引用して)、従来技術に関し相互の比較を示す。
表1中、「TSS」は、総浮遊物質(total suspended solids)を示す。
Table 1 shows a mutual comparison regarding the prior art, with reference to (quoting) Non-Patent Document 1.
In Table 1, "TSS" indicates total suspended solids.

Figure 0007429344000001
Figure 0007429344000001

従来技術は、何れも重大な短所がある。
それに対し、本発明は、従来技術と比較して、必要エネルギーが少なく;化学物質が混入せず;静置による単なる重力沈降に比べて遥かにプロセスが速く;電極を必要とする方法に比べて、必要エネルギーが低く、電極のメンテナンスや交換の必要もない。
All of the prior art techniques have significant shortcomings.
In contrast, the present invention requires less energy than conventional techniques; no chemicals are mixed; the process is much faster than simple gravitational sedimentation by standing still; and compared to methods requiring electrodes. , low energy requirements and no need for electrode maintenance or replacement.

本発明によれば、微細藻類に含まれる燃料油の獲得に関しては、コスト面、効率面等の点で十分である。
また、微細藻類から有用有機物の獲得に関しても、消費必要エネルギー量、微細藻類の回収率、コスト面、効率面等から十分である。
好塩性微細藻類から、採算がとれるように有用有機物や油脂(燃料)を得るためには、ある程度以上の生産規模が必要であるが、本発明によれば、大規模生産に好適に対応可能である(大規模生産にマッチングしている)。
According to the present invention, fuel oil contained in microalgae can be obtained in terms of cost and efficiency.
Furthermore, the acquisition of useful organic substances from microalgae is sufficient in terms of required energy consumption, recovery rate of microalgae, cost, efficiency, etc.
In order to profitably obtain useful organic substances and oils and fats (fuel) from halophilic microalgae, a production scale of at least a certain level is required, but according to the present invention, large-scale production can be suitably supported. (matching large-scale production).

デュナリエラ(Dunaliella)属に属する好塩性微細藻類の沈降状態を示す写真である(実施例1)。 (左)静置前(遮光前) (右)遮光して7日間静置後1 is a photograph showing the sedimentation state of halophilic microalgae belonging to the genus Dunaliella (Example 1). (Left) Before standing (before light shielding) (Right) After standing still for 7 days with light shielding 遮光ありと遮光なしのデュナリエラの沈降速度の相違を示すグラフである(実施例2、比較例1)It is a graph showing the difference in sedimentation speed of Dunaliella with and without shading (Example 2, Comparative Example 1) 「培養液」及び「沈降させる容器中の液」の塩分濃度を12.5%と17.5%に振ったときの、デュナリエラの沈降程度の温度依存性を示すグラフである(実施例3)。It is a graph showing the temperature dependence of the degree of sedimentation of Dunaliella when the salt concentration of the “culture solution” and “liquid in the container to be sedimented” is varied to 12.5% and 17.5% (Example 3) . 窒素(N)を遮断したとき、「培養液」及び「沈降させる容器中の液」の塩分濃度を12.5%と17.5%に振ったときの、デュナリエラの沈降程度の温度依存性を示すグラフである(実施例4)。Temperature dependence of the degree of sedimentation of Dunaliella when nitrogen (N 2 ) is cut off and the salt concentration of the ``culture medium'' and ``liquid in the sedimentation container'' is varied to 12.5% and 17.5%. (Example 4).

以下、本発明について説明するが、本発明は、以下の具体的形態に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。 The present invention will be described below, but the present invention is not limited to the following specific forms, and can be arbitrarily modified within the scope of the technical idea.

本発明は、以下の工程1、3、4及び5の全てをこの順に有することを特徴とする好塩性微細藻類の回収方法である。
(1)池の水の中で好塩性微細藻類を培養する工程
(3)工程(1)で培養された好塩性微細藻類を、該池の水と共に回収して回収液を得る工程
(4)工程(3)で得られた回収液を容器に入れ、該容器内を遮光して、該好塩性微細藻類を該容器の底に沈降させる工程
(5)工程(4)で沈降させた好塩性微細藻類を回収する工程
The present invention is a method for collecting halophilic microalgae, which is characterized by having all of the following steps 1, 3, 4, and 5 in this order.
(1) A step of cultivating halophilic microalgae in pond water (3) A step of collecting the halophilic microalgae cultured in step (1) together with the pond water to obtain a recovered liquid ( 4) Put the collected liquid obtained in step (3) into a container, block the inside of the container from light, and let the halophilic microalgae settle to the bottom of the container (5) Step (4) Process of collecting halophilic microalgae

<工程1>
<<池>>
工程1は、池の水の中で好塩性微細藻類を培養する工程である。
ここで、「池」とは、「狭い定義による池」には限定されず、自然界にあるもの若しくはそれを専用に加工・変更・手直し・区切り・補強等したもの、又は、人工的に作ったもの若しくは人工的に作ってあったものを専用に加工・変更・手直し・区切り・補強等したもの、等の何れでもよい。
<Step 1>
<<Pond>>
Step 1 is a step of culturing halophilic microalgae in pond water.
Here, the term "pond" is not limited to "ponds defined narrowly," but refers to things that exist in the natural world or those that have been specially processed, modified, reworked, divided, reinforced, etc., or those that are artificially created. It can be anything that has been specially processed, changed, reworked, divided, reinforced, etc. from a product or an artificially made product.

上記「自然界にあるもの若しくはそれを専用に加工等したもの」としては、例えば、海、川、湖沼、池等、又は、それらを専用に加工等したものが挙げられる。ここで、加工等(加工・変更・手直し・区切り・補強等)とは、具体的には、例えば、水を通さない仕切り等で小さく区切ったり、堰き止めたり、土手・縁等を補強したり、好塩性微細藻類を培養する際の好適な深さに埋め立てたり、内面を遮水加工したりすること等が挙げられる。 Examples of the above-mentioned "things found in the natural world or those that have been specially processed etc." include oceans, rivers, lakes, ponds, etc., and those that have been specially processed. Here, processing, etc. (processing, alteration, rework, division, reinforcement, etc.) specifically includes, for example, dividing into small sections with partitions that do not allow water to pass through, damming, reinforcing banks, edges, etc. , reclamation at a suitable depth for culturing halophilic microalgae, and water-proofing the inner surface.

上記「人工的に作ったもの若しくは人工的に作ってあったものを専用に加工・変更・手直し・区切り・補強等したもの」としては、具体的には、例えば、人工貯水池、プール、専用の培養容器、田圃・養殖池・人工池等;又は;それらを加工等(加工・変更・手直し・区切り・補強等)したもの等が挙げられる。ここでの「加工等」としては、具体的には、例えば、前記したもの等が挙げられる。以下、「加工等」と略記することがある。
日本では、休耕田が多いので、田圃等を加工等したものが、初期投資が抑制され、大きさ、深さ等が、本発明の「池」の条件にマッチングしている等の点から特に好ましい。
The above-mentioned "artificially made or artificially made objects that have been specially processed, modified, reworked, divided, reinforced, etc." include, for example, artificial reservoirs, pools, Examples include culture containers, rice fields, aquaculture ponds, artificial ponds, etc.; or; those that have been processed (processed, changed, modified, divided, reinforced, etc.). Here, "processing, etc." specifically includes, for example, those described above. Hereinafter, it may be abbreviated as "processing, etc."
In Japan, there are many fallow fields, so it is particularly preferable to use rice fields that have been processed, etc., because the initial investment is suppressed, and the size, depth, etc. match the conditions for the "pond" of the present invention. .

工程1における1つの「池」の面積は、該池が人工的に作ったものの場合には、1m以上1×10以下であることが好ましく、100m以上2.5×10以下であることがより好ましい。
また、「池」が「自然界にあるもの若しくはそれを専用に加工等したもの」又は「人工的に作ってあったものを人工的に専用に加工等したもの」の場合には、10m以上10000m以下であることが好ましく、30m以上3000m以下であることがより好ましく、100m以上1000m以下であることが特に好ましい。
The area of one “pond” in Step 1 is preferably 1 m 2 or more and 1 × 10 6 m 2 or less, and 100 m 2 or more and 2.5 × 10 5 if the pond is artificially created. It is more preferable that it is less than m2 .
In addition, if the "pond" is "something that exists in the natural world or something that has been specially processed, etc." or "a pond that has been artificially created and has been artificially processed for exclusive use," the pond must be 10 m2 or more. It is preferably 10000 m 2 or less, more preferably 30 m 2 or more and 3000 m 2 or less, and particularly preferably 100 m 2 or more and 1000 m 2 or less.

1つの「池」の面積が上記下限以上であると、スケールメリットが得られる、作業性に優れる等の効果がある。
一方、1つの「池」の面積が上記上限以下であると、設備投資がかかり過ぎない、作業性が良い、無駄に広くない等の効果がある。
When the area of one "pond" is equal to or larger than the above-mentioned lower limit, there are effects such as obtaining economies of scale and excellent workability.
On the other hand, when the area of one "pond" is below the above upper limit, there are effects such as not requiring too much capital investment, good workability, and not being unnecessarily large.

「池」の水の体積又は/及び「池」の容積は、1m以上であることが好ましく、より好ましくは3m以上10000m以下であり、更に好ましくは10m以上3000m以下であり、特に好ましくは30m以上1000m以下である。
1つの「池」の体積が上記下限以上であったり、上記上限以下であったりすると、前記した「池」の面積の場合と同様の理由で望ましい。
The volume of water in the "pond" and/or the volume of the "pond" is preferably 1 m 3 or more, more preferably 3 m 3 or more and 10,000 m 3 or less, even more preferably 10 m 3 or more and 3,000 m 3 or less, Particularly preferably, the area is 30 m 3 or more and 1000 m 3 or less.
It is desirable for the volume of one "pond" to be greater than or equal to the above lower limit or less than or equal to the above upper limit for the same reason as the area of the "pond" described above.

「池」の平均深さは、0.05m以上1.5m以下が好ましく、0.10m以上1m以下がより好ましい。
上記範囲であると、太陽光が好塩性微細藻類に当たり易い、干上がる恐れがない等の効果がある。
The average depth of the "pond" is preferably 0.05 m or more and 1.5 m or less, more preferably 0.10 m or more and 1 m or less.
Within the above range, the halophilic microalgae are easily exposed to sunlight and there is no risk of drying up.

<<水(培養のための原水)>>
培養は池の水の中で行われる。該水としては、好塩性微細藻類が増殖するようなものであれば、特に限定はないが、海水、海洋深層水、人工海水、又は、人工海洋深層水であることが好ましい。
海水は、平均的には塩分濃度が約3.5質量%であり、主に、ナトリウムイオン、マグネシウムイオン、カリウムイオン、カルシウムイオン等の陽イオン;塩素イオン、硫酸イオン等の陰イオンを含む。
<<Water (raw water for culture)>>
Cultivation takes place in pond water. The water is not particularly limited as long as it allows halophilic microalgae to proliferate, but seawater, deep ocean water, artificial seawater, or artificial deep ocean water is preferable.
Seawater has an average salt concentration of about 3.5% by mass, and mainly contains cations such as sodium ions, magnesium ions, potassium ions, and calcium ions; and anions such as chloride ions and sulfate ions.

海洋深層水は、人工的な汚染がなく、低温であったため雑菌が少なく、太陽光が当たらなかったために生存植物性プランクトンの混入がない等の好塩性微細藻類を培養する上で好適な条件が整っている。更に、それらに加え、硝酸塩等での窒素(N)やリン酸塩等でのリン(P)やケイ酸塩等でのケイ素(Si)等が豊富である。また、塩濃度が高いので、好塩性微細藻類の培養に障害となる菌等が生存し難い(少ない)。
そのため、海洋深層水は、本発明における好塩性微細藻類の培養のための水として特に好ましい。
Deep sea water has favorable conditions for culturing halophilic microalgae, such as no artificial pollution, low temperatures, so there are few bacteria, and lack of sunlight, so there is no contamination by living phytoplankton. are in place. Furthermore, in addition to these, it is rich in nitrogen (N) in nitrates, phosphorus (P) in phosphates, and silicon (Si) in silicates. In addition, since the salt concentration is high, it is difficult (few) for bacteria and the like that would interfere with the culture of halophilic microalgae to survive.
Therefore, deep ocean water is particularly preferred as water for culturing halophilic microalgae in the present invention.

海水及び/又は海洋深層水は、太陽熱等を利用して水を蒸発させて濃縮させることによって、好塩性微細藻類の培養に必要な窒素(N)源やリン(P)源の濃度を上げることができる。水の蒸発と共に(同時に)、海水や海洋深層水の食塩(塩化ナトリウム)濃度も(例えば約15質量%まで)上がってしまうが、例えば、デュナリエラ(Dunaliella)属に属する微細藻類等の多くの(高度)好塩性微細藻類は、高い食塩(塩化ナトリウム)濃度(例えば約15質量%)でも培養可能である。
その点からも、太陽熱を利用して、窒素(N)源やリン(P)源の濃度を上げることは好ましい。
また、高い食塩(塩化ナトリウム)濃度(例えば約15質量%)になると、雑菌が繁殖し難くなり、コンタミネーション(汚染)が少なくなるので、好塩性微細藻類の増殖に好都合である。
By evaporating and concentrating seawater and/or deep ocean water using solar heat, etc., the concentration of nitrogen (N) and phosphorus (P) sources necessary for culturing halophilic microalgae is increased. be able to. As water evaporates (at the same time), the concentration of salt (sodium chloride) in seawater and deep ocean water also increases (for example, to about 15% by mass). Highly halophilic microalgae can be cultured even at high salt (sodium chloride) concentrations (for example, about 15% by mass).
From this point of view as well, it is preferable to use solar heat to increase the concentration of nitrogen (N) sources and phosphorus (P) sources.
Furthermore, a high salt (sodium chloride) concentration (for example, about 15% by mass) makes it difficult for bacteria to propagate and reduces contamination, which is favorable for the proliferation of halophilic microalgae.

海水や海洋深層水、及び、それらを、太陽熱等を利用して水を蒸発させて濃縮させた培養のための原水は、コスト的に安価であり、本発明にスケールメリットがある場合には、それを生かすためには特に好適である。 Seawater, deep ocean water, and raw water for cultivation that is made by evaporating water using solar heat or the like and concentrating it are inexpensive, and if the present invention has merits of scale, It is particularly suitable for taking advantage of this.

前記「人工海水や人工海洋深層水」は、最初から栄養分(必須元素等を含む)や塩(海水中の塩分を含む)を、全て人工的に加えて調製してもよいし、天然の海水や海洋深層水に、かかる栄養分や塩等を、人工的に追加配合して調製してもよい。 The above-mentioned "artificial seawater and artificial deep sea water" may be prepared by artificially adding nutrients (including essential elements, etc.) and salts (including salt in seawater) from the beginning, or may be prepared by adding all nutrients (including essential elements, etc.) and salt (including salt in seawater) artificially, or may be prepared by adding all nutrients (including essential elements, etc.) and salt (including salt in seawater) from the beginning, or may be prepared by adding natural seawater. It may also be prepared by artificially adding such nutrients, salts, etc. to water or deep ocean water.

<<好塩性微細藻類>>
本発明における好塩性微細藻類として、具体的には、例えば、デュナリエラ(Dunaliella)属に属する微細藻類等が挙げられる。1種又は2種以上の好塩性微細藻類を培養することができる。好塩性微細藻類としては、所謂「高度好塩性微細藻類」と言われているものも特に好ましい。
<<Halophilic microalgae>>
Specific examples of the halophilic microalgae in the present invention include microalgae belonging to the genus Dunaliella. One or more types of halophilic microalgae can be cultured. As the halophilic microalgae, so-called "highly halophilic microalgae" are also particularly preferred.

好塩性微細藻類を、特に高塩分濃度の海水中で培養することで、コンタミネーション(雑菌混入)のリクス低減を低コストによって実現することが可能となる。 By culturing halophilic microalgae, especially in seawater with high salinity, it is possible to reduce the risk of contamination (mixture of bacteria) at low cost.

培養の対象を「好塩性微細藻類」にする特徴としては、具体的には、例えば、以下が挙げられる。
好塩性微細藻類からは、炭水化物若しくは糖;オリゴペプチド、ポリペプチド若しくはタンパク質;ビタミン若しくはビタミン前駆体;又は;油脂、糖脂質、リン脂質、リポタンパク質若しくは炭化水素等の有用有機物を獲得できる;二酸化炭素以外の炭素源でも利用可能である;高度好塩性藻類(海洋性微細藻類)が多い;適応生育温度範囲が広い;強光阻害を受けない;等が挙げられる。また、好塩性微細藻類によって、大気中の二酸化炭素が資源化できる。
中でも、特に好ましい好塩性微細藻類として、上記の点等から、デュナリエラ(Dunaliella)属に属する微細藻類が挙げられる。
Specific examples of characteristics that make "halophilic microalgae" to be cultured include the following.
From halophilic microalgae, carbohydrates or sugars; oligopeptides, polypeptides, or proteins; vitamins or vitamin precursors; or; useful organic substances such as fats and oils, glycolipids, phospholipids, lipoproteins, or hydrocarbons; dioxide; Carbon sources other than carbon can also be used; there are many highly halophilic algae (marine microalgae); the adaptive growth temperature range is wide; and they are not subject to strong photoinhibition. In addition, halophilic microalgae can turn atmospheric carbon dioxide into a resource.
Among these, particularly preferable halophilic microalgae include microalgae belonging to the genus Dunaliella in view of the above points.

デュナリエラ(Dunaliella)属は、細胞壁をもたないので、油の抽出が容易である。
また、デュナリエラ(Dunaliella)属は、グリセリンを浸透圧調整のために細胞中に貯蔵しているため、該グリセリンを回収して有効利用することができる。なお、該グリセリンは溶媒や触媒等を含まない純粋なグリセリンであるため、化粧品や飲食品への使用から発酵基質としての使用にも利用価値が高い。
The Dunaliella genus does not have a cell wall, so oil can be extracted easily.
Furthermore, since the genus Dunaliella stores glycerin in its cells for adjusting osmotic pressure, the glycerin can be recovered and used effectively. In addition, since the glycerin is pure glycerin containing no solvent or catalyst, it has high utility value not only for use in cosmetics and food and drink products but also for use as a fermentation substrate.

また、デュナリエラ(Dunaliella)属は、バブリング(二酸化炭素のエアレーション)が不要であり、培養コストを抑えることができる。
また、デュナリエラ(Dunaliella)属は、増殖しながら脂質蓄積が可能な数少ない微細藻類である。
また、β-カロテンを蓄積することで、強光阻害を起こさずに培養可能である。
また、適応生育温度範囲が広いため、人為的な温度コントロールを行わずに培養可能なため、大幅に培養コストを低減することが可能となる。
In addition, the Dunaliella genus does not require bubbling (aeration of carbon dioxide), and culture costs can be reduced.
Additionally, the genus Dunaliella is one of the few microalgae that can accumulate lipids while proliferating.
Furthermore, by accumulating β-carotene, it is possible to culture without strong photoinhibition.
In addition, since the adaptive growth temperature range is wide, culture can be performed without artificial temperature control, making it possible to significantly reduce culture costs.

デュナリエラ(Dunaliella)属に属する微細藻類として、例えば、Dunaliella salina、Dunaliella viridis、Dunaliella bioculata、Dunaliella primolecta、Dunaliella tertiolecta、Dunaliella bardawil等が挙げられる。
生存可能温度範囲が4~60℃と低温でも高温でも生存・生育することができる点、高浸透圧状況下で高温に耐えることができる点等から、デュナリエラ・サリナ(Dunaliella salina)を培養することが特に好ましい。本発明では、1種又は2種以上のデュナリエラ(Dunaliella)属に属する好塩性微細藻類を培養することができる。
Examples of microalgae belonging to the genus Dunaliella include Dunaliella salina, Dunaliella viridis, Dunaliella bioculata, Dunaliella primolecta, Dunaliella tertiolecta, Dunaliella bardawil, and the like.
Dunaliella salina is cultivated because it can survive and grow in both low and high temperatures, with a viable temperature range of 4 to 60 degrees Celsius, and can withstand high temperatures under high osmotic pressure conditions. is particularly preferred. In the present invention, one or more types of halophilic microalgae belonging to the genus Dunaliella can be cultured.

<工程2>
工程2は、本発明において、必須ではないが、上記工程(1)と下記工程(3)の間に行うことも好ましい。
工程2は、もし池の水が撹拌されていれば、該撹拌を停止して経時させ、上記好塩性微細藻類が、上記池の水の深さ方向の全体に亘って存在するか、又は、池の水の中の深さ方向の上側、中間若しくは下側の何れか1か所又は2か所に存在するかを確認する工程である。
<Step 2>
Although step 2 is not essential in the present invention, it is also preferable to perform it between the above step (1) and the following step (3).
In step 2, if the water in the pond is being stirred, the stirring is stopped and allowed to pass, and the halophilic microalgae are present throughout the depth of the water in the pond, or , is present in one or two locations at the top, middle, or bottom in the depth direction of the pond water.

例えば、好塩性微細藻類が上層だけに多く存在すれば、上層だけを回収すればよいし、下層だけに多く存在すれば、上層だけを回収すればよいし、上層と下層に多く存在すれば、上層と下層だけを回収してもよいし、全部の層(全部の水)を回収してもよい。
そうすることによって、培養のための池にあった大量の水を減らして、すなわち、好塩性微細藻類の濃度を濃くした状態で容器に回収して回収液とすることができ、その後の回収コストを削減することができる。
For example, if halophilic microalgae are abundant only in the upper layer, you only need to collect the upper layer; if they are abundant only in the lower layer, you only need to collect the upper layer; , only the upper and lower layers may be collected, or all layers (all water) may be collected.
By doing so, it is possible to reduce the large amount of water that was in the culture pond and collect the halophilic microalgae in a container with a higher concentration as a recovery liquid, which can be used for subsequent recovery. Costs can be reduced.

ただ、下記する工程3と工程4の主たる目的(効果)は、遮光し易くすることや;深さの大きい容器に回収して、沈降させ易くする、又は、沈降物だけを回収し易くすることなので、その目的を達成するためには、池の水は全部回収することが好ましい。 However, the main purpose (effect) of Steps 3 and 4 below is to make it easier to block light; to collect it in a deep container and make it easier to settle, or to make it easier to collect only the sediment. Therefore, in order to achieve this purpose, it is preferable to recover all the water in the pond.

<工程3>
工程3は、上記工程1で培養された好塩性微細藻類を、該池の水と共に回収して回収液を得る工程である。
好塩性微細藻類を池の水と共に回収する方法としては、特に限定はないが、汲み出し、ポンプによる吸引、重力を利用しての流し出し、浮上油回収装置等の専用の装置による回収、デカンテーション、サイホンの原理(大気圧の利用)による抜き出し等が挙げられる。
工程2で、池から取り出す部分(深さ等)を確認して、池の水の一部又は実質的に全量を回収するかどうかを決めることもできる。
<Step 3>
Step 3 is a step in which the halophilic microalgae cultured in step 1 is collected together with the water in the pond to obtain a recovered liquid.
Methods for collecting halophilic microalgae along with pond water are not particularly limited, but include pumping, suction with a pump, draining using gravity, collection using a dedicated device such as a floating oil recovery device, and decanting. Examples include extraction using the siphon principle (using atmospheric pressure).
In step 2, the portion (depth, etc.) to be removed from the pond may also be determined to determine whether a portion or substantially all of the pond water is to be recovered.

全量回収すれば、回収液中の好塩性微細藻類の含有割合は、培養液中の(「池」の水中の)含有割合と同一になるし、濃度の高い場所だけを回収すれば、含有割合は高くなるが、工程3で得られる回収液中の好塩性微細藻類の含有割合は、10cell/mL以上1010cell/mL以下であることが好ましい。すなわち、このようになるまで培養することが好ましく、結果として、回収液中の好塩性微細藻類の濃度が、このような範囲になるように回収することが好ましい。 If the entire amount is collected, the content ratio of halophilic microalgae in the collected solution will be the same as the content ratio in the culture solution (in the "pond" water), and if only the areas with high concentrations are collected, the content of halophilic microalgae will be Although the proportion is high, the content of halophilic microalgae in the recovered liquid obtained in step 3 is preferably 10 3 cells/mL or more and 10 10 cells/mL or less. That is, it is preferable to culture until such a state is reached, and as a result, it is preferable to collect the halophilic microalgae so that the concentration of the halophilic microalgae in the collected liquid falls within this range.

<工程4>
工程4は、上記工程3で得られた回収液を容器に入れ、該容器内を遮光して、該好塩性微細藻類を該容器の底に沈降させる工程である。
工程4以降で用いる上記容器としては、特に限定はなく、「人工的に作ったもの若しくは人工的に作ってあったものを加工等したもの」、「自然界にあるもの若しくはそれを専用に加工等したもの」等が挙げられる。
<Step 4>
Step 4 is a step in which the collected liquid obtained in Step 3 is placed in a container, the inside of the container is shielded from light, and the halophilic microalgae are allowed to settle to the bottom of the container.
The containers used in Step 4 and beyond are not particularly limited, and may include "artificially made or processed artificially made" containers, "products found in the natural world or specially processed etc." Examples include "things that have been done".

工程4では、上記容器内を遮光して好塩性微細藻類を該容器の底に沈降させるので、該容器としては遮光し易いものが好ましい。
「容器内の遮光」は、容器を遮光材料で作るか、遮光材料で容器を覆うか、土中に掘られた穴若しくは空間を利用するか、トンネル若しくは洞窟を利用するか、遮光された屋内を利用することによってなされることが好ましい。
In step 4, the inside of the container is shielded from light and the halophilic microalgae are allowed to settle to the bottom of the container, so it is preferable that the container is easily shielded from light.
"Shading inside the container" means making the container with a light-blocking material, covering the container with a light-blocking material, using a hole or space dug in the soil, using a tunnel or cave, or using a light-blocking indoor space. Preferably, this is done by using.

大きなスケールで培養を行ったときには、上記容器も大きいものになるので、自然界のもの(又はそれを加工したもの)で遮光し易いものが好ましい。
一方、該容器に大きさを必要としないときは、容器を遮光材料で作るか、遮光材料で容器を覆うか、容器を遮光された屋内に収納すること等が好ましい。
When culturing is carried out on a large scale, the container is also large, so it is preferable to use a natural container (or one processed from it) that can easily block light.
On the other hand, when the size of the container is not required, it is preferable to make the container of a light-shielding material, cover the container with a light-shielding material, or store the container indoors where it is shielded from light.

上記容器の高さを上記池の深さより大きく設定し、該容器の水深を該池の水深より大きくして、好塩性微細藻類を該容器の底に沈降させることが、好塩性微細藻類が多く存在する液(深さ方向の場所)と殆ど存在しない液(深さ方向の場所)とに分け易い、特に濃度の高い底に近い場所から回収できる、遮光し易い、再撹拌され難い、光が届き難い等の点から好ましい。 Setting the height of the container to be larger than the depth of the pond, making the water depth of the container larger than the water depth of the pond, and causing the halophilic microalgae to settle to the bottom of the container, It is easy to separate the liquid into liquids where there is a lot of it (places in the depth direction) and liquids where there is little (places in the depth direction), it can be collected from places near the bottom where the concentration is particularly high, it is easy to shield from light, it is difficult to be stirred again, This is preferable because it is difficult for light to reach.

好ましい容器の深さ(高さ)は、池の深さ(高さ)の3倍以上300倍以下が好ましく、7倍以上120倍以下がより好ましく、20倍以上50倍以下が特に好ましい。
具体的には、0.5m以上20m以下が好ましく、1m以上10m以下が特に好ましい。
なお、「池」の平均深さは、前記した通り、好塩性微細藻類の好適な培養を第一に考えて決められ、0.05m~1.5mが好ましく、0.10m~1mがより好ましい。従って、回収液の高さは、それに比べて、上記倍数の範囲で高いことが、底に近い場所の濃度を高くできてそこから回収できる、深さ方向の濃度差が深さ方向に拡大される、過度に平たくないので遮光し易い、その他上記した点等から好ましい。
The depth (height) of the container is preferably 3 to 300 times the depth (height) of the pond, more preferably 7 to 120 times, particularly preferably 20 to 50 times.
Specifically, the distance is preferably 0.5 m or more and 20 m or less, particularly preferably 1 m or more and 10 m or less.
In addition, as mentioned above, the average depth of the "pond" is determined by first considering the suitable culture of halophilic microalgae, and is preferably 0.05 m to 1.5 m, more preferably 0.10 m to 1 m. preferable. Therefore, if the height of the recovered liquid is higher than that in the above multiple range, the concentration near the bottom can be increased and the concentration can be recovered from there, and the concentration difference in the depth direction will be expanded in the depth direction. It is preferable because it is easy to block light because it is not excessively flat, and from the other points mentioned above.

工程4において、容器内を遮光して、好塩性微細藻類を容器に沈降させるための時間(以下、「静置時間」と略記することがある)は、30分以上1か月以下が好ましく、4時間以上20日以下がより好ましく、1日以上15日以下が更に好ましく、5日以上10日以下が特に好ましい。
静置時間が短過ぎると、沈降が十分でない、上層と下層で好塩性微細藻類の濃度に差が出ない、塩分濃度やpHによっては沈降の程度が水温に依存する等の場合がある。一方、静置時間が長過ぎると、単位時間当たりの好塩性微細藻類や有用有機物の生産効率が落ちる等の場合がある。
In step 4, the time for shading the inside of the container and allowing the halophilic microalgae to settle in the container (hereinafter sometimes abbreviated as "standing time") is preferably 30 minutes or more and 1 month or less. , more preferably 4 hours or more and 20 days or less, still more preferably 1 day or more and 15 days or less, particularly preferably 5 days or more and 10 days or less.
If the standing time is too short, sedimentation may not be sufficient, there may be no difference in the concentration of halophilic microalgae between the upper and lower layers, and depending on the salinity and pH, the degree of sedimentation may depend on water temperature. On the other hand, if the standing time is too long, the production efficiency of halophilic microalgae and useful organic matter per unit time may decrease.

すなわち、本発明は、上記工程4において、容器内を遮光してから、好塩性微細藻類を該容器の底に沈降させ、後記工程5において好塩性微細藻類を回収するまでの沈降時間が、30分以上1か月以下である上記の好塩性微細藻類の回収方法でもある。 That is, in the present invention, the sedimentation time from shielding the inside of the container from light in step 4 to settling the halophilic microalgae to the bottom of the container and collecting the halophilic microalgae in step 5 described below is shortened. It is also the above-mentioned method for collecting halophilic microalgae, which takes 30 minutes or more and one month or less.

工程4では、沈降させた部分の水中の好塩性微細藻類の濃度は、沈降させる前の回収液の平均濃度の、10倍以上10000倍以下にすることが好ましく、100倍以上3000倍以下にすることが特に好ましい。
濃度の絶対値で言うと、前記した通り、工程3で得られる回収液中の好塩性微細藻類の含有割合は、10cell/mL以上1010cell/mL以下であることが好ましいので、それぞれ、その濃度に、上記倍率を掛け合わせた濃度になるまで沈降させて、濃縮することが望ましい。
In step 4, the concentration of halophilic microalgae in the water in the sedimented portion is preferably 10 times or more and 10,000 times or less, and 100 times or more and 3,000 times or less, than the average concentration of the recovered liquid before sedimentation. It is particularly preferable to do so.
In terms of the absolute value of concentration, as mentioned above, the content ratio of halophilic microalgae in the collected liquid obtained in step 3 is preferably 10 3 cells/mL or more and 10 10 cells/mL or less, It is desirable to precipitate and concentrate until the respective concentration reaches a concentration obtained by multiplying the concentration by the above-mentioned magnification.

本発明は、好塩性微細藻類は、遮光することによって、すなわち、少なくとも太陽光を当てないことによって、容器の底に好適に沈降することを見出してなされたものである。
従って、工程4では、遮光が必須であるが、更に該遮光に加えて、pH調節、酸素(空気)の遮断、窒素(空気)の遮断等を行ってもよい。
The present invention was made based on the discovery that halophilic microalgae settle to the bottom of a container by shielding them from light, that is, by at least not exposing them to sunlight.
Therefore, in step 4, light shielding is essential, but in addition to the light shielding, pH adjustment, oxygen (air) blocking, nitrogen (air) blocking, etc. may be performed.

本発明は、上記工程4まで、好塩性微細藻類の回収に、遠心分離を用いない上記の好塩性微細藻類の回収方法でもある。遠心分離は、最も一般的な好塩性微細藻類の回収であるが、莫大なエネルギーを要する。本発明は、大量にある回収液に対して極めて不利な遠心分離法で好塩性微細藻類の回収を行わず、単に遮光するだけで好塩性微細藻類を濃縮できることを見出してなされたものである。 The present invention is also a method for collecting halophilic microalgae that does not use centrifugation in the recovery of halophilic microalgae up to step 4. Centrifugation is the most common method of recovering halophilic microalgae, but it requires a large amount of energy. The present invention was made based on the discovery that halophilic microalgae can be concentrated simply by blocking light, without collecting halophilic microalgae using centrifugation, which is extremely disadvantageous for large amounts of recovered liquid. be.

従って、本発明は、更に好ましくは、少なくとも上記工程4までは、好塩性微細藻類の回収に、実質的に、凝集剤を使用しないことであり、濾過をしないことであり、電解をかけることをしないことである。 Therefore, it is more preferable in the present invention that, at least up to step 4, the halophilic microalgae are collected without substantially using a flocculant, without filtration, and without applying electrolysis. It is important not to do this.

本発明をするに当たっては、静置中の種々の条件を振って検討したところ、驚くべきことに遮光が最も効果があった。かかる条件とは、遮光、酸素の遮断、窒素の遮断、温度変化、pH変化等である。 When carrying out the present invention, various conditions during standing were examined, and surprisingly, light shielding was the most effective. Such conditions include light shielding, oxygen shielding, nitrogen shielding, temperature change, pH change, and the like.

<工程5>
工程5は、上記工程4で沈降させた好塩性微細藻類を回収する工程である。
該回収の方法は、特に限定はされず、濾過;加熱、減圧、風乾等による水の蒸発乾固;遠心分離;凝集剤による凝集分離;容器下からの抜き取り;等が挙げられる。容器下から抜き取る場合は、工程4で使用する容器として、予め容器下方に抜取装置が具備されたものを使用することも好ましい。
<Step 5>
Step 5 is a step of recovering the halophilic microalgae sedimented in Step 4 above.
The method of recovery is not particularly limited, and examples include filtration; evaporation of water to dryness by heating, reduced pressure, air drying, etc.; centrifugation; flocculation separation using a flocculant; extraction from the bottom of the container; and the like. When extracting from the bottom of the container, it is also preferable to use a container that is previously equipped with a extraction device below the container as the container used in step 4.

また、沈降させた部分(好塩性微細藻類を高濃度で含む水)は、脱塩を行ってもよいし、真水を加えてもよいし、加熱をしてもよいし、好塩性微細藻類を殺してもよい。
また、コスト的に問題なければ、別容器を使用する等して、工程4と工程5を繰り返してもよい。繰り返す場合は、繰り返す度に、好塩性微細藻類の濃度等に応じて容器や上記の回収方法を変えてもよい。
In addition, the sedimented part (water containing a high concentration of halophilic microalgae) may be desalinated, fresh water may be added, heating may be performed, or the halophilic microalgae may be May kill algae.
Further, if there is no problem in terms of cost, steps 4 and 5 may be repeated by using a separate container. When repeating, the container and the above collection method may be changed each time depending on the concentration of halophilic microalgae.

表1等を含め前記した通り、濾過は消耗品であるフィルター(交換)の必要性、遠心分離はエネルギー大でコスト高、凝集剤使用は不純物の混入等から、容積の大きい工程4までは好ましくない。すなわち、本発明の工程1ないし4においては、必須ではないことは勿論のこと、むしろ好ましくない。
しかし、本発明によって工程4まで行って、容積が極めて少なくなった工程5の時点では、上記のような公知の回収方法を用いることもできる。処理体積が小さくなっているので、上記のような公知の回収方法の短所が重要ではなくなる。
As mentioned above, including Table 1, filtration requires a consumable filter (replacement), centrifugation requires a lot of energy and is expensive, and the use of a flocculant is preferable up to step 4, which involves large volumes, because of the contamination of impurities, etc. do not have. That is, in steps 1 to 4 of the present invention, it goes without saying that this is not essential, but is rather undesirable.
However, according to the present invention, at step 5, when the volume has become extremely small after reaching step 4, the above-mentioned known recovery method can also be used. Due to the smaller processing volume, the disadvantages of known recovery methods such as those mentioned above become less important.

工程5で回収された好塩性微細藻類は、そこから有用物を獲得したり、燃料として使用したりできる。 The halophilic microalgae collected in step 5 can be used to obtain useful substances or used as fuel.

<回収した好塩性微細藻類の用途>
本発明は、上記の好塩性微細藻類の回収方法を使用して回収した好塩性微細藻類から有用有機物を獲得することを特徴とする有用有機物の製造方法でもある。
該有用有機物として、具体的には、例えば、炭水化物若しくは糖;オリゴペプチド、ポリペプチド若しくはタンパク質;ビタミン若しくはビタミン前駆体;油脂、糖脂質、リン脂質若しくはリポタンパク質;又は;炭化水素;等が挙げられる。
<Uses of collected halophilic microalgae>
The present invention is also a method for producing useful organic matter, characterized in that useful organic matter is obtained from halophilic microalgae collected using the above-described method for collecting halophilic microalgae.
Specific examples of the useful organic substances include carbohydrates or sugars; oligopeptides, polypeptides, or proteins; vitamins or vitamin precursors; oils and fats, glycolipids, phospholipids, or lipoproteins; or; hydrocarbons; .

β-カロテン等のカロテノイド等を含むビタミン前駆体、グルタチオン等のオリゴペプチド、グリセリン等が、例えば、デュナリエラ(Dunaliella)属等の好塩性微細藻類から好適に獲得できる。 Vitamin precursors containing carotenoids such as β-carotene, oligopeptides such as glutathione, glycerin, etc. can be suitably obtained, for example, from halophilic microalgae such as the genus Dunaliella.

β-カロテンは、高い抗酸化作用を有し、例えば、医薬品、食品、食品添加物、サプリメント等に利用することができる。
グルタチオンは、高い抗酸化作用を有し、例えば、医薬品、食品、サプリメント、肥料、飼料等に利用することができる。
また、グリセリンは、例えば、化粧品、医薬品等の原料としても、燃料としても、好適に利用することができる。
油脂は、例えば、食料用油、飼料用油、燃料油等に利用することができる。
好塩性微細藻類には、良質なタンパク質が含まれているので、例えば、飼料、醗酵原料等として利用することができる。
β-carotene has a high antioxidant effect and can be used, for example, in medicines, foods, food additives, supplements, and the like.
Glutathione has a high antioxidant effect and can be used, for example, in medicines, foods, supplements, fertilizers, feeds, and the like.
Furthermore, glycerin can be suitably used, for example, as a raw material for cosmetics, medicines, etc., and as a fuel.
The fats and oils can be used, for example, as food oil, feed oil, fuel oil, and the like.
Since halophilic microalgae contain high-quality proteins, they can be used, for example, as feed, fermentation raw materials, and the like.

以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

実施例1
図1(左)に示すように、高さ9cm、底面積10cm、容積70cmの容器に、海水を入れ、デュナリエラ(Dunaliella)属に属する好塩性微細藻類を、1.3×10 cells/mLとなるように入れた。
なお、通常、広大な池の中で培養されたデュナリエラは、該池の海水をデュナリエラごと全て回収したとして(又は均一になるように撹拌してから回収したとして)、平均で、約1.3×10 cells/mL程度となるので、それを勘案して、上記初期濃度に設定した。
Example 1
As shown in Figure 1 (left), a container with a height of 9 cm, a bottom area of 10 cm 2 , and a volume of 70 cm 3 is filled with seawater, and 1.3 × 10 6 of halophilic microalgae belonging to the genus Dunaliella are added to the container. cells/mL.
Generally, Dunaliella cultivated in a vast pond has an average yield of about 1.3 ml, assuming that all of the seawater in the pond is collected together with Dunaliella (or that it is collected after stirring to make it uniform). Since the concentration was approximately 10 6 cells/mL, the above initial concentration was set in consideration of this.

その後、容器の周囲を遮光して、7日間静置した。7日後の写真を図1(右)に示す。
次いで、容器の真ん中から、ピペットで、測定サンプルを抜き出して、濃度を測定したところ、2.1×10 cells/mLであった。容器の真ん中のデュナリエラの濃度は、約2桁下がったことになり、十分なデュナリエラの沈降が見られた。
Thereafter, the surroundings of the container were shielded from light and allowed to stand for 7 days. A photograph after 7 days is shown in Figure 1 (right).
Next, the measurement sample was extracted from the center of the container with a pipette, and the concentration was measured, and it was found to be 2.1×10 4 cells/mL. The concentration of Dunaliella in the middle of the container decreased by about two orders of magnitude, indicating that sufficient sedimentation of Dunaliella was observed.

その後、容器の下から体積で(すなわち高さで)、1/30だけを残して、デカンテーションで上澄みを除去した。7日間、全く外からエネルギーを加えることなく、全体積を1/30にできた。
すなわち、海水中のデュナリエラの濃度を30倍にすることができたので、その後のデュナリエラのみの回収が極めて容易になった。
The supernatant was then removed by decantation, leaving only 1/30 of the volume (ie, height) from the bottom of the container. For 7 days, we were able to reduce the total volume to 1/30 without applying any external energy.
That is, since the concentration of Dunaliella in seawater could be increased 30 times, subsequent recovery of only Dunaliella became extremely easy.

デュナリエラを含め、殆ど全ての属の微細藻類が光合成を行うが、光合成には二酸化炭素と水と光が必要である。
デュナリエラは、遮光することで、光合成ができなくなり動かなった。そのことによって、沈降したと考えられた。
デュナリエラのような好塩性微細藻類の場合、暗くすることは、沈降、その後の微細藻類のみの回収等にとって極めて効果的であることが分かった。
Almost all genera of microalgae, including Dunaliella, perform photosynthesis, which requires carbon dioxide, water, and light.
By blocking light, Dunaliella became unable to photosynthesize and became motionless. This is thought to have caused the sedimentation.
In the case of halophilic microalgae such as Dunaliella, it was found that darkness is extremely effective for sedimentation and subsequent recovery of only the microalgae.

比較例1
実施例1と同様に、1.3×10 cells/mLの濃度の均一分散のデュナリエラ含有海水を用い、遮光はせず、酸素(O)を遮断して(空気を遮断して)、72日間(約2か月)静置した。
図2にその結果を示す。なお、図2の縦軸の「1.00E+05」等は、「1.00×10」等を示す。
Comparative example 1
As in Example 1, uniformly dispersed Dunaliella-containing seawater with a concentration of 1.3 x 10 6 cells/mL was used, and oxygen (O 2 ) was blocked (air was blocked) without shielding light. It was left standing for 72 days (about 2 months).
Figure 2 shows the results. Note that "1.00E+05" and the like on the vertical axis in FIG. 2 indicate "1.00×10 5 " and the like.

容器の真ん中でサンプリングし、その濃度が、6.7×10 cells/mLに下がったが、それには、72日間(約2か月)も要した(図2参照)。 When sampled in the middle of the container, the concentration decreased to 6.7×10 4 cells/mL, but this took 72 days (about 2 months) (see FIG. 2).

実施例2
比較例1において、酸素(O)を遮断して(空気を遮断して)、更に、遮光もして、静置した。図2に、その結果を比較例1と合わせて示す。
7日間、遮光して静置することで、2.0×10 cells/mLにまで下がったことが確認できた(図2参照)。
また、沈降には、酸素(O)の遮断より、遮光の方が有効であることが分かった。
Example 2
In Comparative Example 1, the sample was allowed to stand still while blocking oxygen (O 2 ) (blocking air) and further blocking light. FIG. 2 shows the results together with Comparative Example 1.
By allowing the cells to stand still in the dark for 7 days, it was confirmed that the concentration had dropped to 2.0×10 4 cells/mL (see FIG. 2).
It was also found that blocking light is more effective for sedimentation than blocking oxygen (O 2 ).

実施例3
海水の塩分濃度を、すなわち、培養液の塩分濃度及び回収液の塩分濃度を、共に、12.5質量%、及び、17.5質量%と振って、沈降の程度を観察した。
上記2種類の塩分濃度で、1週間、デュナリエラを培養した。その後、遮光して、沈降実験(4時間と18時間後)を行った。結果を図3に示す。
Example 3
The degree of sedimentation was observed while changing the salt concentration of the seawater, that is, the salt concentration of the culture solution and the salt concentration of the recovered solution, to 12.5% by mass and 17.5% by mass.
Dunaliella was cultured for one week at the above two types of salt concentrations. Thereafter, a sedimentation experiment (4 hours and 18 hours later) was conducted while shielding from light. The results are shown in Figure 3.

遮光したので、遮光したことによって、塩分濃度によらずデュナリエラが沈降した(図3)。
ただし、12.5質量%の塩分濃度の場合、全ての温度(4℃~50℃)で同じように沈降したが(図3(上の棒グラフ))、塩分濃度が17.5質量%の場合は、「20℃~30℃、及び、40℃以上」では同じように沈降したが、それ以外の温度では沈降速度が遅くなった(図3(下の棒グラフ))。
なお、図3、4における「沈殿率(Deposition percentage)」は、最初と最後の濃度を常法に従って測定して、100×[final cell count]/[initial cell count] を計算して求めた。
Since light was blocked, Dunaliella sedimented regardless of the salinity concentration (Figure 3).
However, when the salinity concentration was 12.5% by mass, sedimentation occurred in the same way at all temperatures (4°C to 50°C) (Figure 3 (upper bar graph)), but when the salinity concentration was 17.5% by mass sedimented in the same way at ``20°C to 30°C and 40°C or higher,'' but the sedimentation rate became slower at other temperatures (Figure 3 (bottom bar graph)).
The "deposition percentage" in FIGS. 3 and 4 was determined by measuring the initial and final concentrations according to a conventional method and calculating 100×[final cell count]/[initial cell count].

実施例4
デュナリエラから獲得できる有用有機物であるカロテノイドは、窒素(N)を遮断してデュナリエラを培養すると、デュナリエラ内に高い濃度で貯まることが知られている。
そこで、窒素(N)を遮断して、実施例3と同様にして、デュナリエラを培養し、遮光して静置させ、沈降の仕方を観察した。結果を図4に示す。
Example 4
Carotenoids, which are useful organic substances that can be obtained from Dunaliella, are known to accumulate at a high concentration in Dunaliella when Dunaliella is cultured with nitrogen (N 2 ) cut off.
Therefore, Dunaliella was cultured in the same manner as in Example 3 with nitrogen (N 2 ) cut off, allowed to stand still in the dark, and the manner of sedimentation was observed. The results are shown in Figure 4.

窒素(N)を遮断していない、実施例3とほぼ同様の結果が得られた(図4)。
すなわち、遮光したことによって、塩分濃度によらず、デュナリエラが沈降した(図4)。
ただし、12.5質量%の塩分濃度の場合、全ての温度(4℃~50℃)で同じように沈降したが(図4(上の棒グラフ)、塩分濃度が17.5質量%の場合は、「20℃~30℃、及び、40℃以上」では同じように沈降したが、それ以外の温度では、沈降速度が遅くなった(図4(下の棒グラフ)。
Almost the same results as in Example 3, in which nitrogen (N 2 ) was not blocked, were obtained (FIG. 4).
That is, by blocking light, Dunaliella sedimented regardless of the salinity concentration (Figure 4).
However, when the salinity concentration was 12.5% by mass, sedimentation occurred in the same way at all temperatures (4°C to 50°C) (Fig. 4 (upper bar graph)), but when the salinity concentration was 17.5% by mass, , "20°C to 30°C and 40°C or higher", the sedimentation rate was the same, but at other temperatures, the sedimentation rate became slower (Figure 4 (bottom bar graph)).

実施例5
縦20m、横20m、深さ0.20m(20cm)の屋外の田圃を利用した池に、海洋深層水(塩分濃度3.5質量%)を入れ、約15℃~約25℃に保ちつつ、デュナリエラ(Dunaliella)属に属する好塩性微細藻類を2週間培養する。
一般に、上層と下層の濃度が高くなり、中層の濃度が低くなるが、撹拌後に全体の濃度を測定すると、1.0×10 cells/mLとなる。又は、ほぼ該濃度となるように、培養日数等を調整して培養する。
Example 5
Deep ocean water (salt concentration 3.5% by mass) is poured into an outdoor pond measuring 20m long, 20m wide, and 0.20m (20cm) deep, and kept at a temperature of about 15°C to about 25°C. Halophilic microalgae belonging to the genus Dunaliella are cultured for two weeks.
Generally, the concentrations of the upper and lower layers are high and the concentrations of the middle layer are low, but when the overall concentration is measured after stirring, it is 1.0×10 6 cells/mL. Alternatively, culture is performed by adjusting the number of culture days etc. so that the concentration is approximately the same.

1.0×10 cells/mLでデュナリエラを含む海洋深層水60mを、縦4m、横4m、深さ4mの容器に移し替える。深さは、培養池の27倍(4m/0.20m≒20)になったことになる。 60 m 3 of deep ocean water containing Dunaliella at 1.0×10 6 cells/mL is transferred to a container measuring 4 m long, 4 m wide, and 4 m deep. The depth was 27 times that of the culture pond (4m/0.20m≒20).

3日間、酸素(O)(空気)あり、窒素(N)ありの通常の大気の状態で静置した。静置の間、該容器は完全に遮光する。
静置して、3日後、デュナリエラが沈降したので、上澄みを除去し、沈降したデュナリエラを回収する。
It was left standing for 3 days in a normal atmospheric condition with oxygen (O 2 ) (air) and nitrogen (N 2 ). During standing, the container is completely protected from light.
After 3 days of standing, the Dunaliella sedimented, so the supernatant was removed and the sedimented Dunaliella was collected.

回収したデュナリエラからは、β-カロテン等のカロテノイド、グルタチオン等の(オリゴ)ペプチド、グリセリン等の有用有機物が得られる。
また、油脂も獲得でき、燃料としても使用できる。
この方法では、得られる有用有機物や油脂に関し、従来法に比べて、回収率、必要エネルギー、それらの比(すなわち、コストパフォーマンス(効率))が、表1に示した従来法の何れに比べても優れている。
Useful organic substances such as carotenoids such as β-carotene, (oligo)peptides such as glutathione, and glycerin can be obtained from the recovered Dunaliella.
Oils and fats can also be obtained and used as fuel.
With this method, the recovery rate, required energy, and their ratio (i.e., cost performance (efficiency)) of the useful organic substances and fats and oils obtained are lower than those of the conventional methods shown in Table 1. is also excellent.

実施例6
「従来法をまとめた前記表1」と同様の尺度(測定方法、基準)で、本発明の「好塩性微細藻類の回収方法」を比較した。結果を以下の表2に示す。
Example 6
The "Method for collecting halophilic microalgae" of the present invention was compared using the same scale (measurement method, standard) as in "Table 1 summarizing conventional methods". The results are shown in Table 2 below.

Figure 0007429344000002
Figure 0007429344000002

本発明の好塩性微細藻類の回収方法は、回収に必要なエネルギーが低く、回収率が高く、全体として低コストで、効率が良いので、本発明で回収された好塩性微細藻類から獲得された有用有機物や燃料等は、化学品製造分野、化学品使用分野、エネルギー産生分野等に広く利用されるものである。

The method for collecting halophilic microalgae of the present invention requires low energy for collection, has a high recovery rate, is low in cost overall, and is efficient, so it is possible to obtain The useful organic substances and fuels produced are widely used in the fields of chemical production, chemical use, energy production, etc.

Claims (10)

以下の工程1、3、4及び5の全てを、この順に有し、好塩性微細藻類がデュナリエラ(Dunaliella)属に属する好塩性微細藻類である好塩性微細藻類の回収方法。
(1)池の水の中で好塩性微細藻類を培養する工程
(3)上記工程1で培養された好塩性微細藻類を、該池の水と共に回収して回収液を得る工程
(4)上記工程3で得られた回収液を容器に入れ、該容器の高さを該池の深さより大きく設定し、該容器の水深を該池の水深より大きくして、該容器内を遮光して、該好塩性微細藻類を該容器の底に沈降させる工程
(5)上記工程4で沈降させた好塩性微細藻類を回収する工程
A method for collecting halophilic microalgae, comprising all of the following steps 1, 3, 4, and 5 in this order, wherein the halophilic microalgae belong to the genus Dunaliella .
(1) A step of cultivating the halophilic microalgae in pond water (3) A step of collecting the halophilic microalgae cultured in step 1 above together with the pond water to obtain a recovered liquid ( 4) Put the collected liquid obtained in step 3 above into a container, set the height of the container to be greater than the depth of the pond, make the water depth of the container greater than the depth of the pond, and shield the inside of the container from light. and settling the halophilic microalgae to the bottom of the container (5) collecting the halophilic microalgae sedimented in step 4 above.
上記工程1の池の水の体積が1m以上である請求項1に記載の好塩性微細藻類の回収方法。 The method for collecting halophilic microalgae according to claim 1, wherein the volume of water in the pond in step 1 is 1 m 3 or more. 上記工程1の池の面積が10m以上である請求項1又は請求項2に記載の好塩性微細藻類の回収方法。 The method for collecting halophilic microalgae according to claim 1 or 2, wherein the area of the pond in step 1 is 10 m 2 or more. 上記工程1の水が、海水、海洋深層水、人工海水、又は、人工海洋深層水である請求項1ないし請求項の何れかの請求項に記載の好塩性微細藻類の回収方法。 The method for collecting halophilic microalgae according to any one of claims 1 to 3 , wherein the water in step 1 is seawater, deep ocean water, artificial seawater, or artificial deep ocean water. 上記工程3で得られる回収液中の好塩性微細藻類の含有割合が、10cell/mL以上1010cell/mL以下である請求項1ないし請求項の何れかの請求項に記載の好塩性微細藻類の回収方法。 The method according to any one of claims 1 to 4 , wherein the content of halophilic microalgae in the recovered liquid obtained in step 3 is 10 3 cells/mL or more and 10 10 cells/mL or less. Method for collecting halophilic microalgae. 上記工程4における「容器内を遮光」が、容器を遮光材料で作るか、遮光材料で容器を覆うか、土中に掘られた穴若しくは空間を利用するか、トンネル若しくは洞窟を利用するか、遮光された屋内を利用することによってなされる請求項1ないし請求項の何れかの請求項に記載の好塩性微細藻類の回収方法。 Whether "shading the inside of the container" in step 4 above involves making the container with a light-blocking material, covering the container with a light-blocking material, using a hole or space dug in the soil, or using a tunnel or cave; 6. The method for collecting halophilic microalgae according to any one of claims 1 to 5 , which is carried out by utilizing a light-shielded indoor space. 上記工程4において、容器内を遮光してから、好塩性微細藻類を該容器の底に沈降させ、上記工程5において好塩性微細藻類を回収するまでの沈降時間が、30分以上1か月以下である請求項1ないし請求項の何れかの請求項に記載の好塩性微細藻類の回収方法。 In step 4, the settling time from blocking the inside of the container to settling the halophilic microalgae to the bottom of the container and collecting the halophilic microalgae in step 5 is 30 minutes or more. 7. The method for collecting halophilic microalgae according to any one of claims 1 to 6 , wherein the collection time is less than 1 month. 上記工程4まで、好塩性微細藻類の回収に、遠心分離を用いない請求項1ないし請求項の何れかの請求項に記載の好塩性微細藻類の回収方法。 8. The method for collecting halophilic microalgae according to any one of claims 1 to 7 , wherein centrifugation is not used in the collection of halophilic microalgae up to step 4. 請求項1ないし請求項の何れかの請求項に記載の好塩性微細藻類の回収方法を使用して好塩性微細藻類を回収し、該好塩性微細藻類から有用有機物を獲得することを特徴とする有用有機物の製造方法。 Collecting halophilic microalgae using the method for collecting halophilic microalgae according to any one of claims 1 to 8 , and obtaining useful organic substances from the halophilic microalgae. A method for producing a useful organic substance, characterized by: 上記有用有機物が、炭水化物若しくは糖;オリゴペプチド、ポリペプチド若しくはタンパク質;ビタミン若しくはビタミン前駆体;油脂、糖脂質、リン脂質若しくはリポタンパク質;又は;炭化水素である請求項に記載の有用有機物の製造方法。
The production of a useful organic substance according to claim 9 , wherein the useful organic substance is a carbohydrate or sugar; an oligopeptide, a polypeptide, or a protein; a vitamin or a vitamin precursor; an oil or fat, a glycolipid, a phospholipid, or a lipoprotein; or a hydrocarbon. Method.
JP2019204446A 2019-11-12 2019-11-12 Collection method of halophilic microalgae Active JP7429344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204446A JP7429344B2 (en) 2019-11-12 2019-11-12 Collection method of halophilic microalgae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204446A JP7429344B2 (en) 2019-11-12 2019-11-12 Collection method of halophilic microalgae

Publications (2)

Publication Number Publication Date
JP2021073931A JP2021073931A (en) 2021-05-20
JP7429344B2 true JP7429344B2 (en) 2024-02-08

Family

ID=75898627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204446A Active JP7429344B2 (en) 2019-11-12 2019-11-12 Collection method of halophilic microalgae

Country Status (1)

Country Link
JP (1) JP7429344B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003325165A (en) 2002-05-09 2003-11-18 Microalgae Corporation Method for culturing and producing dunaliella and agent which used for thalassotherapy containing dunaliella obtained by the culturing and producing method as main ingredient
JP2004521647A (en) 1999-11-11 2004-07-22 プロアルゲン バイオテック リミテッド Novel medium for the production of β-carotene and other carotenoids from Donariella salina (ARL5) and strains of Donaliella salina for the production of carotene using the novel medium
CN104232489A (en) 2013-06-09 2014-12-24 中国石油化工股份有限公司 Microalgae culturing and harvesting method
KR20150014801A (en) 2013-07-30 2015-02-09 공석태 ccc
JP2015053863A (en) 2013-09-10 2015-03-23 株式会社日立製作所 Separation system of photosynthetic microorganisms, and separation method of photosynthetic microorganisms
CN104593262A (en) 2015-01-06 2015-05-06 临沂大学 Series cultivation and rapid collection method for marine microalgae

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521647A (en) 1999-11-11 2004-07-22 プロアルゲン バイオテック リミテッド Novel medium for the production of β-carotene and other carotenoids from Donariella salina (ARL5) and strains of Donaliella salina for the production of carotene using the novel medium
JP2003325165A (en) 2002-05-09 2003-11-18 Microalgae Corporation Method for culturing and producing dunaliella and agent which used for thalassotherapy containing dunaliella obtained by the culturing and producing method as main ingredient
CN104232489A (en) 2013-06-09 2014-12-24 中国石油化工股份有限公司 Microalgae culturing and harvesting method
KR20150014801A (en) 2013-07-30 2015-02-09 공석태 ccc
JP2015053863A (en) 2013-09-10 2015-03-23 株式会社日立製作所 Separation system of photosynthetic microorganisms, and separation method of photosynthetic microorganisms
CN104593262A (en) 2015-01-06 2015-05-06 临沂大学 Series cultivation and rapid collection method for marine microalgae

Also Published As

Publication number Publication date
JP2021073931A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
Udayan et al. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives
US4115949A (en) Production of glycerol from algae
Besson et al. High-pH-induced flocculation–flotation of the hypersaline microalga Dunaliella salina
Arbib et al. Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater
Milledge et al. A review of the harvesting of micro-algae for biofuel production
Uduman et al. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels
Chen et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review
Saeid et al. Toward production of microalgae in photobioreactors under temperate climate
Zhu et al. Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce β-carotene
JP5815931B2 (en) Useful substance production system by culturing algae
Japar et al. Application of different techniques to harvest microalgae
Das et al. The effect of culture salinity on the harvesting of microalgae biomass using pilot-scale tangential-flow-filter membrane
Das et al. Long-term semi-continuous cultivation of a halo-tolerant Tetraselmis sp. using recycled growth media
Shirazi et al. Simultaneous biomass production and water desalination concentrate treatment by using microalgae
Mohan et al. A sustainable process train for a marine microalga-mediated biomass production and CO2 capture: A pilot-scale cultivation of Nannochloropsis salina in open raceway ponds and harvesting through electropreciflocculation
WO2010046777A2 (en) Method for the efficient and continuous growth and harvesting of nutrient-rich phytoplankton and methods of using the same
Chatsungnoen et al. Continuous flocculation-sedimentation for harvesting Nannochloropsis salina biomass
Mixson et al. pH-induced flocculation, indirect electrocoagulation, and hollow fiber filtration techniques for harvesting the saltwater microalga Dunaliella
Sreekumar et al. Lipid enhancement in microalgae by temporal phase separation: Use of indigenous sources of nutrients
Gautam et al. Application of halophilic algae for water desalination
CN103103133A (en) Method for harvesting dunaliella salina
JP7429344B2 (en) Collection method of halophilic microalgae
JP5569874B2 (en) Microalgae culture method
Satpati et al. Recent development in microalgal cultivation and biomass harvesting methods
Joy et al. Microalgal Biomass: Introduction and Production Methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231214

R150 Certificate of patent or registration of utility model

Ref document number: 7429344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150