JP7428113B2 - Steel product manufacturing method and steel product manufacturing equipment - Google Patents

Steel product manufacturing method and steel product manufacturing equipment Download PDF

Info

Publication number
JP7428113B2
JP7428113B2 JP2020179748A JP2020179748A JP7428113B2 JP 7428113 B2 JP7428113 B2 JP 7428113B2 JP 2020179748 A JP2020179748 A JP 2020179748A JP 2020179748 A JP2020179748 A JP 2020179748A JP 7428113 B2 JP7428113 B2 JP 7428113B2
Authority
JP
Japan
Prior art keywords
tempering
tough
cooling
steel
steel member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020179748A
Other languages
Japanese (ja)
Other versions
JP2022070602A (en
Inventor
伸崇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020179748A priority Critical patent/JP7428113B2/en
Priority to CN202110834451.5A priority patent/CN114480790A/en
Publication of JP2022070602A publication Critical patent/JP2022070602A/en
Application granted granted Critical
Publication of JP7428113B2 publication Critical patent/JP7428113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、鋼製品の製造方法および鋼製品の製造装置に関する。 The present invention relates to a steel product manufacturing method and a steel product manufacturing apparatus.

鋼製品の強度を高めるために、浸炭された鋼部材を焼入れ及び焼戻しする方法が広く用いられている。ここで、高い硬度を有する硬質部と、高い靭性を有する靭性部とを備える鋼製品では、これらの性質を付与するために、各部分に対して異なった処理が必要となる。 In order to increase the strength of steel products, a method of quenching and tempering carburized steel members is widely used. Here, in a steel product that includes a hard part with high hardness and a tough part with high toughness, different treatments are required for each part in order to impart these properties.

特許文献1には、硬度を必要とする部分と、靭性を必要とする部分とを備えた鋼製品に対する焼き入れ方法が開示されている。 Patent Document 1 discloses a hardening method for a steel product that includes a portion that requires hardness and a portion that requires toughness.

特開2011-140697号公報Japanese Patent Application Publication No. 2011-140697

特許文献1のように硬質部と靭性部とを備えた鋼製品を製造する際の焼入れ及び焼戻しでは、通常、以下のような手順を取る。すなわち、まず、浸炭された鋼部材全体に焼入れ処理を施し、鋼部材の表面全体を硬化させ、浸炭焼入れ部品を得る。その後、靭性部となる部分(例えば、ネジ部分)に対してのみ、例えば、コイルによる高周波加熱(誘導加熱)を行い、部分焼戻し処理を行う。 In quenching and tempering when manufacturing a steel product having a hard part and a tough part as in Patent Document 1, the following steps are usually taken. That is, first, the entire carburized steel member is subjected to a quenching treatment to harden the entire surface of the steel member to obtain a carburized and quenched part. Thereafter, high-frequency heating (induction heating) using a coil is performed, for example, only on the portion that will become the tough portion (for example, the screw portion), and a partial tempering treatment is performed.

しかしながら、例えば、図1(a)及び(b)に示す靭性部2としてネジ部を有する鋼製品1では、高い硬度を求められる硬質部3と、高い靭性を求められる靭性部2とが非常に近い位置、例えば、両者の間の距離Dが数mm(より具体的には7mm)の位置に配置されている。このため、焼戻し処理の際に、靭性部2となる部分へ与えられた熱が、伝導により硬質部3となる部分へと伝わってしまい、硬質部3となる部分が間接的に焼戻し処理されてしまい、硬質部3の硬度が低下してしまう可能性がある。さらに、硬質部3の硬度低下を抑制するために、焼戻し処理の際に、靭性部2となる部分への入熱を少なくすると、靭性部2となる部分が所定の硬さまで十分に軟化せず(焼戻しできず)に、靭性部2に高い靭性を付与できない可能性がある。一方、靭性部2となる部分への入熱が多すぎると、再焼組織となり硬化してしまう可能性がある。 However, for example, in a steel product 1 having a threaded part as the tough part 2 shown in FIGS. 1(a) and (b), the hard part 3 required to have high hardness and the tough part 2 required to have high toughness are very They are arranged at a close position, for example, at a position where the distance D between them is several mm (more specifically, 7 mm). Therefore, during tempering, the heat applied to the part that will become the tough part 2 is transferred to the part that will become the hard part 3 by conduction, and the part that will become the hard part 3 is indirectly tempered. As a result, the hardness of the hard portion 3 may decrease. Furthermore, in order to suppress a decrease in the hardness of the hard part 3, if the heat input to the part that will become the tough part 2 is reduced during the tempering process, the part that will become the tough part 2 will not be sufficiently softened to a predetermined hardness. There is a possibility that high toughness cannot be imparted to the tough portion 2 (because it cannot be tempered). On the other hand, if too much heat is input to the part that will become the tough part 2, there is a possibility that it will become a reheated structure and harden.

従って、硬質部と靭性部とを備えた鋼製品を製造する際の焼戻し処理において、靭性部となる部分に適切な量の熱量を与えつつ、硬質部となる部分への伝熱を抑制できる方法の開発が求められていた。 Therefore, in tempering treatment when manufacturing steel products with hard parts and tough parts, there is a method that can suppress heat transfer to the parts that will become hard parts while giving an appropriate amount of heat to the parts that will become tough parts. development was required.

本発明は、このような状況を鑑みて成されたものであり、靭性部の靭性を確保したまま、硬質部の硬度が低下することを防ぐことができる鋼製品の製造方法及び鋼製品の製造装置を提供することを目的とする。 The present invention has been made in view of this situation, and provides a method for manufacturing a steel product and a method for manufacturing a steel product that can prevent the hardness of the hard part from decreasing while ensuring the toughness of the tough part. The purpose is to provide equipment.

本発明に係る鋼製品の製造方法は、硬質部と、靭性部とを備えた鋼製品の製造方法であって、焼入れ処理された鋼部材の前記靭性部となる部分を、焼戻し温度まで加熱した直後に、冷却する焼戻し処理を行うことを特徴とする。 A method for producing a steel product according to the present invention is a method for producing a steel product having a hard part and a tough part, in which a part of a quenched steel member that becomes the tough part is heated to a tempering temperature. Immediately thereafter, a tempering treatment for cooling is performed.

本発明に係る鋼製品の製造方法では、焼戻し処理において、焼入れ処理された鋼部材の靭性部となる部分を焼戻し温度まで加熱した後、直ちに冷却し、均熱保持しないため、靭性部となる部分以外への入熱を抑制できる。従って、靭性部に求められる焼戻し硬さ(例えば、440HV以下)を得やすくなり、さらに、再焼きのリスクを減らすことができる。このように、本発明では、従来と比較して、焼戻し処理において、靭性部となる部分に対して適切な量の熱量を容易に与えることができ、靭性部のロバスト性を向上させるとともに、硬質部となる部分への伝熱を抑制でき、硬質部において高い硬度を確保できる。 In the method for manufacturing a steel product according to the present invention, in the tempering process, the part that becomes the tough part of the hardened steel member is heated to the tempering temperature and then immediately cooled and is not kept soaked, so that the part that becomes the tough part Heat input to other parts can be suppressed. Therefore, it becomes easier to obtain the tempering hardness (for example, 440 HV or less) required for the tough part, and furthermore, the risk of reheating can be reduced. As described above, in the present invention, compared to the conventional method, it is possible to easily apply an appropriate amount of heat to the part that becomes the tough part during the tempering process, improve the robustness of the tough part, and improve the hardness. It is possible to suppress heat transfer to the parts that become parts, and ensure high hardness in the hard parts.

ここで、前記焼戻し処理において、前記靭性部となる部分に対して、焼戻し温度まで加熱した直後に冷却する操作を複数回連続して行うことが好ましい。 Here, in the tempering treatment, it is preferable that the portion that becomes the tough portion is heated to the tempering temperature and then immediately cooled several times in succession.

また、前記焼戻し温度は、690℃以上、725℃以下であることが好ましい。 Moreover, it is preferable that the said tempering temperature is 690 degreeC or more and 725 degreeC or less.

さらに、前記靭性部となる部分を、焼戻し温度まで加熱した直後に、冷却する温度は、100℃以下であることが好ましい。 Furthermore, the temperature at which the tough portion is cooled immediately after being heated to the tempering temperature is preferably 100° C. or lower.

また、前記靭性部となる部分に対して、焼戻し温度まで加熱した直後に冷却する1回の操作は、30秒以内で行われることが好ましい。 Further, it is preferable that the portion that becomes the tough portion is heated to the tempering temperature and then immediately cooled once, within 30 seconds.

本発明に係る鋼製品の製造装置は、硬質部と、靭性部とを備えた鋼製品の製造装置であって、鋼部材を加熱する加熱処理部と、前記鋼部材を冷却する冷却処理部と、前記鋼部材を各処理部へと移動可能な移動機構とを備え、前記移動機構は、前記鋼部材に対する焼戻し処理において、前記加熱処理部で前記鋼部材の靭性部となる部分が焼戻し温度まで加熱された直後に、前記鋼部材を前記冷却処理部へと移動させることを特徴とする。 A steel product manufacturing apparatus according to the present invention is a steel product manufacturing apparatus including a hard part and a tough part, and includes a heat treatment part that heats a steel member, and a cooling treatment part that cools the steel member. , a moving mechanism capable of moving the steel member to each processing section, and the moving mechanism is configured to heat a portion of the steel member that will become a tough part in the heat processing section up to a tempering temperature in the tempering process for the steel member. The method is characterized in that the steel member is moved to the cooling treatment section immediately after being heated.

本発明に係る鋼製品の製造装置では、焼戻し処理において、移動機構により加熱処理部で靭性部となる部分が焼戻し温度まで加熱された直後に、鋼部材を冷却処理部へと移動させることができる。このため、焼入れ処理された鋼部材の靭性部となる部分を焼戻し温度まで加熱した後、直ちに冷却し、均熱保持しないため、靭性部となる部分以外への入熱を抑制できる。従って、靭性部に求められる焼戻し硬さを得やすくなり、さらに、再焼きのリスクを減らすとともに、硬質部において高い硬度を確保できる。 In the steel product manufacturing apparatus according to the present invention, in the tempering process, the steel member can be moved to the cooling process section immediately after the portion that becomes the tough part in the heat process section is heated to the tempering temperature by the moving mechanism. . For this reason, after heating the tough part of the hardened steel member to the tempering temperature, it is immediately cooled and is not kept uniformly heated, so that heat input to areas other than the tough part can be suppressed. Therefore, it becomes easier to obtain the tempering hardness required for the tough part, and furthermore, the risk of reheating can be reduced and high hardness can be ensured in the hard part.

ここで、前記移動機構は、各鋼部材に対する焼戻し処理において、前記加熱処理部から前記冷却処理部への移動を複数回行うことが好ましい。 Here, it is preferable that the moving mechanism moves from the heat treatment section to the cooling treatment section a plurality of times in the tempering treatment for each steel member.

本発明によれば、靭性部の靭性を確保したまま、硬質部の硬度が低下することを防ぐことができる鋼製品の製造方法及び鋼製品の製造装置を提供できる。 According to the present invention, it is possible to provide a steel product manufacturing method and a steel product manufacturing apparatus that can prevent the hardness of the hard portion from decreasing while ensuring the toughness of the tough portion.

本発明に係る製造方法の一実施形態より得られる硬質部と靭性部とを備えた鋼製品の一例を説明するための概略図であり、(a)はその概略斜視図であり、(b)はその概略部分断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for explaining an example of a steel product having a hard part and a tough part obtained by an embodiment of the manufacturing method according to the present invention, (a) is a schematic perspective view thereof, and (b) is a schematic partial sectional view thereof. 従来の一例の焼戻し処理における靭性部となる部分の温度推移(ヒートパターン)の一例を示すグラフである。It is a graph which shows an example of the temperature transition (heat pattern) of the part which becomes a tough part in an example of conventional tempering processing. 本発明に係る製造方法の一実施形態の焼戻し処理における靭性部となる部分の温度推移(ヒートパターン)の一例を示すグラフである。It is a graph which shows an example of the temperature transition (heat pattern) of the part which becomes a tough part in the tempering process of one embodiment of the manufacturing method based on this invention. 従来の一例の焼戻し処理における、(a)は加熱時の鋼部材中のε-炭化物の析出を説明するための概略図であり、(b)は均熱時の発生したε-炭化物の成長を説明するための概略図である。In an example of conventional tempering treatment, (a) is a schematic diagram for explaining the precipitation of ε-carbide in a steel member during heating, and (b) is a schematic diagram showing the growth of ε-carbide generated during soaking. It is a schematic diagram for explanation. (a)~(c)はそれぞれ、本発明に係る製造方法の一実施形態における焼戻し処理において、1~3回の焼戻し操作(加熱直後に冷却する操作)を行った際の鋼部材中のε-炭化物の析出を説明するための概略図である。(a) to (c) respectively show ε in the steel member when the tempering operation (cooling operation immediately after heating) is performed 1 to 3 times in the tempering treatment in one embodiment of the manufacturing method according to the present invention. - A schematic diagram for explaining the precipitation of carbides. 従来の一例の焼戻し処理における焼戻し温度と、靭性部の硬度との関係を示すグラフである。It is a graph which shows the relationship between the tempering temperature and the hardness of a tough part in an example of conventional tempering treatment. 従来の一例の焼戻し処理と、本発明に係る製造方法の一実施形態における焼戻し処理(焼戻し操作回数:1~3回)とにおける靭性部の硬度分布を示すグラフである。7 is a graph showing the hardness distribution of a tough portion in a conventional tempering process and a tempering process in an embodiment of the manufacturing method according to the present invention (number of tempering operations: 1 to 3 times). 本発明に係る製造装置の一実施形態を説明するための概略図である。1 is a schematic diagram for explaining an embodiment of a manufacturing apparatus according to the present invention.

高い硬度が求められる部分(硬質部)と、高い靭性が求められる部分(靭性部)とを備える鋼製品として、例えば、図1に示す靭性部2としてネジ部を有する鋼製品(ネジ部付き浸炭部品)を挙げることができる。なお、図1は、本発明より得られる硬質部と靭性部とを備えた鋼製品の一例を説明するための概略図であり、(a)はその概略斜視図であり、(b)は、(a)の点線部分を拡大した概略部分断面図である。 For example, a steel product having a threaded part (carburized threaded part) as the toughness part 2 shown in FIG. parts). In addition, FIG. 1 is a schematic diagram for explaining an example of a steel product provided with a hard part and a tough part obtained by the present invention, (a) is a schematic perspective view thereof, and (b) is a It is a schematic partial sectional view which expanded the dotted line part of (a).

ここで、靭性部2を備える鋼製品1は、浸炭された鋼部材を焼入れ処理した後、そのまま(例えば、ネジ部を締結して)使用すると、遅れ破壊等により破損する恐れがある。これを防止するために、通常、靭性部となる部分(以降、プレ靭性部と称することがある)に対して、誘導加熱による部分焼戻し処理を行い、所望の硬さ(例えば、440HV以下)に軟化させ、硬度の調節を行うことで、高い靭性を確保している。 Here, if the steel product 1 including the tough portion 2 is used as it is (for example, with the threaded portion fastened) after a carburized steel member is quenched, there is a risk of damage due to delayed fracture or the like. To prevent this, the part that will become the tough part (hereinafter sometimes referred to as the pre-tough part) is usually partially tempered by induction heating to achieve the desired hardness (for example, 440 HV or less). High toughness is ensured by softening and adjusting hardness.

なお、従来の焼戻し処理では、図2に示すように、まず、鋼部材のプレ靭性部(ネジ部)を、高周波コイル等で焼戻し温度まで、加熱時間Hの間(例えば、数秒間)、加熱(誘導加熱)する。続いて、プレ靭性部は、高温(例えば、700℃前後)の状態で、均熱時間Uの間(例えば、約10秒間)、保持(均熱:連続加熱)される。その後、プレ靭性部は、冷却時間Cの間(例えば、数秒間)、冷却(例えば、水冷)される。
この際、従来の焼戻し処理では、図4(a)に示すように、第1段階において、すなわち、加熱時間Hの間に、鋼部材中にε-炭化物8が析出する。ついで、図4(b)に示すように、第2段階において、すなわち、均熱時間Uの間に、鋼部材中に発生したε-炭化物8が成長する。その結果、焼戻し処理を施されたプレ靭性部が、所望の硬度まで軟化する。
なお、図2は、従来の焼戻し処理における靭性部となる部分の温度推移(ヒートパターン、温度プロファイル)の一例を示すグラフである。図4(a)は、従来の一例の焼戻し処理における、加熱時の鋼部材中のε-炭化物の析出を説明するための概略図であり、図4(b)は、均熱時の発生したε-炭化物の成長を説明するための概略図である。
In the conventional tempering process, as shown in FIG. 2, the pre-toughened part (threaded part) of the steel member is first heated to the tempering temperature using a high-frequency coil or the like for a heating time H (for example, several seconds). (induction heating). Subsequently, the pre-toughened part is held (soaked: continuous heating) at a high temperature (for example, around 700° C.) for a soaking time U (for example, about 10 seconds). The pre-toughened section is then cooled (eg, water cooled) for a cooling time C (eg, several seconds).
At this time, in the conventional tempering treatment, ε-carbide 8 is precipitated in the steel member during the first stage, that is, during the heating time H, as shown in FIG. 4(a). Then, as shown in FIG. 4(b), in the second stage, that is, during the soaking time U, the ε-carbide 8 generated in the steel member grows. As a result, the pre-toughened portion subjected to the tempering treatment is softened to a desired hardness.
Note that FIG. 2 is a graph showing an example of the temperature transition (heat pattern, temperature profile) of a portion that becomes a tough portion in a conventional tempering process. FIG. 4(a) is a schematic diagram for explaining the precipitation of ε-carbide in a steel member during heating in a conventional example of tempering treatment, and FIG. 4(b) is a schematic diagram for explaining the precipitation of ε-carbide during soaking FIG. 3 is a schematic diagram for explaining the growth of ε-carbide.

このように、従来の焼戻し処理では、加熱時間H及び均熱時間Uの間、プレ靭性部へ入熱するため、その近傍に位置する硬化部となる部分(以降、プレ硬化部と称することがある)へこの熱量が伝熱してしまい、プレ硬化部が焼戻し処理され軟化してしまうことがあった。このため、従来の焼戻し処理では、プレ硬化部への伝熱を抑えるために、プレ靭性部への入熱が制限され、所望の硬度(例えば、440HV以下)まで、プレ靭性部の焼戻し処理がきちんと行われない場合があった。従って、従来の焼戻し処理では、靭性部に求められる焼戻し硬度を得ることが難しい場合があった。 As described above, in conventional tempering treatment, heat is input into the pre-toughened part during the heating time H and the soaking time U, so that the part that becomes the hardened part located near the pre-toughened part (hereinafter referred to as the pre-hardened part) (Sometimes, the amount of heat transferred from the dent) caused the pre-hardened part to be tempered and softened. For this reason, in conventional tempering treatment, heat input to the pre-toughened part is restricted in order to suppress heat transfer to the pre-hardened part, and the tempering treatment of the pre-toughened part is performed until the desired hardness (for example, 440 HV or less) is reached. There were times when things were not done properly. Therefore, in the conventional tempering process, it is sometimes difficult to obtain the tempering hardness required for the tough part.

ここで、下記表1に、従来の一例の焼戻し処理における焼戻し温度(最高到達温度)(℃)と、得られた靭性部の硬度(HV)とを示し、図6に、表1における両者の関係を表すグラフを示す。

Figure 0007428113000001
Here, Table 1 below shows the tempering temperature (maximum temperature reached) (°C) in a conventional example of tempering treatment and the hardness (HV) of the obtained tough part, and FIG. A graph representing the relationship is shown.
Figure 0007428113000001

これらに示すように、従来の焼戻し処理において、再焼きを防ぎかつ所望の硬度を付与するための焼戻し範囲は狭い範囲となる(図6では、705~725℃)。例えば、焼戻し温度を700℃とし、プレ靭性部への入熱を少なくすると、プレ靭性部が十分に軟化しない可能性がある。また、例えば、焼戻し温度を740℃とし、プレ靭性部への入熱を多くすると、再焼組織となり硬化してしまう可能性がある。 As shown in these figures, in the conventional tempering process, the tempering range for preventing reheating and imparting desired hardness is a narrow range (705 to 725° C. in FIG. 6). For example, if the tempering temperature is set to 700° C. and the heat input to the pre-toughened portion is reduced, the pre-toughened portion may not be sufficiently softened. Further, for example, if the tempering temperature is set to 740° C. and the heat input to the pre-toughened portion is increased, there is a possibility that it becomes a reheated structure and becomes hardened.

一方、本発明に係る鋼製品の製造方法(以下、本製造方法と称する場合がある)では、焼戻し処理において、焼入れ処理された鋼部材のプレ靭性部を、焼戻し温度まで加熱した直後に、冷却する焼戻し操作を行う。具体的には、図3に示すように、プレ靭性部を焼戻し温度まで、高周波コイル等で、加熱時間Hの間(例えば、数秒間)加熱(誘導加熱)した後、直ちに冷却時間Cの間、冷却水等により冷却を行う1回(1サイクル)の焼戻し操作を行う。続いて、必要に応じて、連続してこの焼戻し操作を、例えば、合計で2回または3回繰り返し、プレ靭性部を断続加熱する。図3は、本製造方法の一実施形態において、この焼戻し操作を3回繰り返した場合のプレ靭性部の温度推移(ヒートパターン、温度プロファイル)の一例を示すグラフである。 On the other hand, in the method for manufacturing steel products according to the present invention (hereinafter sometimes referred to as the present manufacturing method), in the tempering treatment, the pre-toughened part of the hardened steel member is heated to the tempering temperature and then cooled. Perform the tempering operation. Specifically, as shown in FIG. 3, after heating (induction heating) the pre-toughened part to the tempering temperature using a high-frequency coil or the like for a heating time H (for example, several seconds), the pre-toughened part is immediately heated for a cooling time C. , a tempering operation is performed once (one cycle) in which cooling is performed using cooling water or the like. Subsequently, if necessary, this tempering operation is continuously repeated, for example, two or three times in total, and the pre-toughened portion is intermittently heated. FIG. 3 is a graph showing an example of the temperature transition (heat pattern, temperature profile) of the pre-toughened part when this tempering operation is repeated three times in one embodiment of the present manufacturing method.

ここで、図5は、本製造方法の一実施形態において、焼戻し処理で3回焼戻し操作を連続して繰り返した際のε-炭化物の析出を説明するための概略図である。この図に示すように、上記焼戻し操作の回数が1回目のε-炭化物8の状態を示す図5(a)と比べて、2回目(図5(b))、3回目(図5(c))と、当該焼戻し操作を繰り返すたび、より具体的には、加熱が再開されるたびに、鋼部材中に新たなε-炭化物8が生成する。このため、鋼部材中に析出するε-炭化物8の合計量が、焼戻し操作を繰り返すたび、すなわち、断続加熱を行うたびに増え、より軟化していく。本発明では、このように、短時間加熱を断続的に行う焼戻し処理により、プレ靭性部以外の高い硬度を必要とするプレ硬質部の温度上昇を抑制し、軟化させることなく、所望の部分、すなわち、プレ靭性部のみを確実に所望の硬度まで容易に軟化できる。さらに、このような焼戻し処理を行うことで、再焼きのリスクを減らすことができるとともに、本発明における焼戻し処理を用いて製造された鋼製品の靭性部は優れたロバスト性を有することができる。また、本発明において、焼戻し操作の回数を少なく(例えば、1回や2回に)することで、焼戻し処理時間をより短縮でき、より多くの鋼製品を短時間で製造することもできる。 Here, FIG. 5 is a schematic diagram for explaining the precipitation of ε-carbide when the tempering operation is successively repeated three times in the tempering process in one embodiment of the present manufacturing method. As shown in this figure, compared with FIG. 5(a) showing the state of the ε-carbide 8 after the first tempering operation, the number of tempering operations is as follows: )), and each time the tempering operation is repeated, more specifically, each time the heating is restarted, new ε-carbides 8 are generated in the steel member. Therefore, the total amount of ε-carbide 8 precipitated in the steel member increases each time the tempering operation is repeated, that is, each time intermittent heating is performed, and the steel member becomes softer. In the present invention, as described above, the tempering treatment in which heating is performed intermittently for a short time suppresses the temperature rise of the pre-hard parts other than the pre-tough parts that require high hardness, and the desired parts, without being softened, are That is, only the pre-toughened portion can be reliably and easily softened to the desired hardness. Furthermore, by performing such a tempering treatment, the risk of re-heating can be reduced, and the tough part of the steel product manufactured using the tempering treatment of the present invention can have excellent robustness. Furthermore, in the present invention, by reducing the number of tempering operations (for example, to one or two times), the tempering treatment time can be further shortened, and more steel products can be manufactured in a shorter time.

以下、本発明を適用した具体的な実施形態について、図面を参照しながらより詳細に説明する。なお、本発明は、以下の実施形態に限定されることはなく、趣旨を逸脱しない範囲で適宜変更できる。また、説明を明確にするため、これらの記載及び図面は、適宜、省略及び簡略化されている。 Hereinafter, specific embodiments to which the present invention is applied will be described in more detail with reference to the drawings. Note that the present invention is not limited to the following embodiments, and can be modified as appropriate without departing from the spirit. Further, in order to clarify the explanation, these descriptions and drawings are omitted and simplified as appropriate.

<鋼製品の製造方法>
本製造方法は、硬質部と、靭性部とを備えた鋼製品の製造方法である。ここで、硬質部とは、高い表面硬さを有することが求められる部分であり、図1に示す鋼製品1では、符号3に示す部分が相当する。また、靭性部とは、高い靭性を有することが求められる部分であり、図1に示す鋼製品1では、符号2に示す部分(ネジ部)が相当する。なお、硬質部と靭性部とは混在していてもよいが、両者の性質を容易に付与する観点から、異なる位置にそれぞれ配置されていることが好ましい。
なお、図1に示す鋼製品1では、上述したように、靭性部2と硬質部3との間の距離Dが非常に近く、数mm、間をあけて配置されている。このため、靭性部となる部分に対して行う焼戻し処理における入熱が、近傍に配置された硬質部となる部分へ容易に伝熱し、望まない部分にまで焼戻し処理が施されやすい。
<Manufacturing method of steel products>
This manufacturing method is a method for manufacturing a steel product having a hard part and a tough part. Here, the hard part is a part required to have high surface hardness, and in the steel product 1 shown in FIG. 1, the part indicated by reference numeral 3 corresponds to the part. Moreover, a tough part is a part required to have high toughness, and in the steel product 1 shown in FIG. 1, the part (threaded part) shown by the code|symbol 2 corresponds. Note that the hard portion and the tough portion may coexist, but from the viewpoint of easily imparting the properties of both, it is preferable that they are arranged at different positions.
In addition, in the steel product 1 shown in FIG. 1, as mentioned above, the distance D between the tough part 2 and the hard part 3 is very short, and they are arranged with an interval of several mm between them. Therefore, the heat input during the tempering process performed on the tough part is easily transferred to the nearby hard part, and the tempering process is likely to be applied to undesired parts.

ここで、靭性部の硬度(ビッカース硬さ:HV)は、再焼きを防止する観点から、260HV以上が好ましく、300HV以上がより好ましく、350HV以上がさらに好ましい。また、靭性部の硬度は、高い靭性を付与する観点から、440HV以下が好ましく、430HV以下がより好ましく、420HV以下がさらに好ましく、410HV以下が特に好ましい。 Here, the hardness (Vickers hardness: HV) of the tough part is preferably 260 HV or more, more preferably 300 HV or more, and even more preferably 350 HV or more, from the viewpoint of preventing reheating. Moreover, from the viewpoint of imparting high toughness, the hardness of the tough portion is preferably 440 HV or less, more preferably 430 HV or less, even more preferably 420 HV or less, and particularly preferably 410 HV or less.

硬質部の硬度は、高い硬度を有する観点から、500HV以上であることが好ましく、520HV以上であることがより好ましい。硬質部の硬度の上限値は、作製する鋼製品に求められる性質に応じて適宜設定でき、特に限定されない。 From the viewpoint of high hardness, the hardness of the hard portion is preferably 500 HV or more, and more preferably 520 HV or more. The upper limit of the hardness of the hard portion can be appropriately set depending on the properties required of the steel product to be manufactured, and is not particularly limited.

鋼製品の各部分の硬度は、JIS Z 2244:2009に規定されるビッカース硬さ(HV)試験方法(試験力:5kgf)に基づき、測定できる。 The hardness of each part of a steel product can be measured based on the Vickers hardness (HV) test method (test force: 5 kgf) specified in JIS Z 2244:2009.

ここで、本製造方法では、上述したように、焼入れ処理された鋼部材の靭性部となる部分(プレ靭性部)を、焼戻し温度まで加熱した直後に、冷却する焼戻し処理を行う。このように、従来の焼戻し処理と異なり、均熱保持しないため、ε-炭化物の成長を抑制し、靭性の制御が容易となる。また、短時間加熱した後にすぐに冷却を行うため、硬質部となる部分(プレ硬質部)への伝熱を抑制できる。 Here, in this manufacturing method, as described above, a tempering process is performed in which a part of the hardened steel member that becomes a tough part (pre-tough part) is heated to a tempering temperature and then cooled. In this way, unlike conventional tempering treatment, no soaking is required, so growth of ε-carbide is suppressed and toughness can be easily controlled. Furthermore, since cooling is performed immediately after heating for a short time, heat transfer to the portion that will become the hard portion (pre-hard portion) can be suppressed.

なお、本製造方法では、焼戻し処理において、プレ靭性部に対して、焼戻し温度まで加熱した直後に冷却する操作を複数回連続して行うことが好ましい。加熱と冷却とで構成される焼戻し操作を複数回繰り返すことにより、断続的に加熱されるたびに、ε-炭化物を生成するため、従来の方法と比較して軟化しやすくなる。 In addition, in the present manufacturing method, in the tempering treatment, it is preferable to perform an operation of heating the pre-toughened part to the tempering temperature and immediately cooling it several times in succession. By repeating the tempering operation consisting of heating and cooling multiple times, ε-carbide is generated each time the material is heated intermittently, making it easier to soften compared to conventional methods.

なお、前記焼戻し温度とは、焼戻し処理において、プレ靭性部を加熱した際の最高到達温度を意味するものであり、作製する鋼製品に応じて、適宜設定できる。焼戻し温度は、靭性部に高い靭性を付与する観点から、690℃以上であることが好ましく、695℃以上であることがより好ましく、700℃以上であることがさらに好ましい。また、焼戻し温度は、プレ靭性部の再焼きを防ぐ観点から、725℃以下であることが好ましく、720℃以下であることがより好ましい。 Note that the tempering temperature refers to the highest temperature reached when the pre-toughened part is heated in the tempering process, and can be set as appropriate depending on the steel product to be manufactured. From the viewpoint of imparting high toughness to the tough portion, the tempering temperature is preferably 690°C or higher, more preferably 695°C or higher, and even more preferably 700°C or higher. Further, the tempering temperature is preferably 725° C. or lower, more preferably 720° C. or lower, from the viewpoint of preventing reheating of the pre-toughened portion.

また、プレ靭性部を、焼戻し温度まで加熱した直後に、冷却する際の冷却温度は、適宜設定できるが、硬質部への伝熱を防ぐ観点から、100℃以下とすることが好ましく、50℃以下とすることがより好ましく、室温(例えば、25℃)とすることがさらに好ましい。 Further, the cooling temperature when cooling the pre-toughened part immediately after heating to the tempering temperature can be set as appropriate, but from the viewpoint of preventing heat transfer to the hard part, it is preferably 100°C or less, and 50°C or less. It is more preferable to set it as below, and it is still more preferable to set it as room temperature (for example, 25 degreeC).

本製造方法において、生産効率の観点から、鋼製品1個当たりの焼戻し処理時間は60~100秒であることが好ましい。このため、プレ靭性部に対して、焼戻し温度まで加熱した直後に冷却する1回の焼戻し操作は、30秒以内で行われることが好ましく、20秒以内で行われることがより好ましく、15秒以内で行われることがさらに好ましい。 In this manufacturing method, from the viewpoint of production efficiency, the tempering time per steel product is preferably 60 to 100 seconds. For this reason, one tempering operation of heating the pre-toughened part to the tempering temperature and immediately cooling it is preferably performed within 30 seconds, more preferably within 20 seconds, and within 15 seconds. It is more preferable that the process be carried out in

上記焼戻し処理における、プレ靭性部の加熱速度及び冷却速度は、所望の焼戻し処理時間に応じて、適宜変更でき、特に限定されない。 The heating rate and cooling rate of the pre-toughened portion in the above tempering treatment can be changed as appropriate depending on the desired tempering treatment time, and are not particularly limited.

本製造方法は、例えば、以下の工程を含むことができる。
・靭性部となる部分および硬質部となる部分を有する鋼部材(プレ鋼製品)を用意する工程(用意工程)。
・前記鋼部材に対して、浸炭処理を施す工程(浸炭処理工程)。
・浸炭処理された前記鋼部材に対して、焼入れ処理を施す工程(焼入れ処理工程)。
・焼入れ処理された鋼部材の靭性部となる部分を、焼戻し温度まで加熱した直後に、冷却して、焼戻し処理を施す工程(焼戻し処理工程)。
This manufacturing method can include, for example, the following steps.
- A process of preparing a steel member (pre-steel product) having a tough part and a hard part (preparation process).
- A step of carburizing the steel member (carburizing step).
- A process of subjecting the carburized steel member to a quenching process (quenching process).
- A process in which the tough part of a steel member that has been quenched is heated to a tempering temperature, and then immediately cooled and subjected to a tempering process (tempering process).

また、本製造方法は、以下の工程をさらに含むこともできる。
・前記焼戻し処理の際に、硬質部となる部分を冷却する工程(プレ硬質部冷却工程)。
・前記浸炭処理の前又は浸炭処理中に、防炭手段を用いて、靭性部となる部分の炭素侵入量を低下させる工程(防炭工程)。
Moreover, this manufacturing method can also further include the following steps.
- A step of cooling the part that becomes the hard part during the tempering process (pre-hard part cooling step).
- A step of reducing the amount of carbon intrusion into a portion that will become a tough part by using a carburizing means before or during the carburizing process (carburizing process).

これらの各工程は順次行われてもよいし、複数の工程(例えば、浸炭処理工程と防炭工程、焼戻し処理工程とプレ硬質部冷却工程)が並行して行われてもよい。 Each of these steps may be performed sequentially, or a plurality of steps (for example, a carburizing process and a carburizing process, a tempering process and a pre-hard part cooling process) may be performed in parallel.

鋼部材は、プレ靭性部とプレ硬質部とを有するものであれば、特にその形状などは限定されない。しかしながら、上述したように、適切な焼戻し処理を行い、各部分に適切な性質を付与する観点から、プレ靭性部とプレ硬質部とは離れた位置(両部分が少なくとも接触しない位置)に配置された鋼部材を用いることが望ましい。 The shape of the steel member is not particularly limited as long as it has a pre-tough part and a pre-hard part. However, as mentioned above, from the viewpoint of performing appropriate tempering treatment and imparting appropriate properties to each part, the pre-toughness part and the pre-hard part are placed at separate positions (at least at a position where the two parts do not contact each other). It is desirable to use steel members with

鋼部材に対する浸炭処理は、従来公知のものを適宜用いることができ、鋼部材(特に硬質部)の表面に炭素を添加できるものであれば特に限定されない。浸炭処理としては、例えば、木炭を炭素源とする固体浸炭、二酸化炭素、水素、メタンなどを主成分とするガスを用いるガス浸炭、真空引きした後にガス浸炭を行う真空ガス浸炭、さらに、ガスをプラズマ化して行うプラズマ浸炭などを用いることができる。これらの中でも、安全性や作業性の観点から、ガス浸炭、真空ガス浸炭、プラズマ浸炭を用いることが好ましい。 The carburizing treatment for the steel member can be performed using any conventionally known carburizing treatment, and is not particularly limited as long as carbon can be added to the surface of the steel member (particularly the hard part). Carburizing treatments include, for example, solid carburizing using charcoal as a carbon source, gas carburizing using a gas mainly composed of carbon dioxide, hydrogen, methane, etc., vacuum gas carburizing using gas carburizing after evacuation, and gas carburizing. Plasma carburization, which is performed by converting into plasma, can be used. Among these, from the viewpoint of safety and workability, it is preferable to use gas carburizing, vacuum gas carburizing, and plasma carburizing.

浸炭処理された鋼部材(プレ硬質部及びプレ靭性部を含む)の焼入れ処理は、従来公知のものを適宜用いることができ、特に限定されない。焼入れ処理において、鋼部材は、例えば、高周波コイルによる誘導加熱等により、オーステナイト組織になるまで加熱された後、急冷され、マルテンサイト組織に変態する。 The quenching treatment of the carburized steel member (including the pre-hardened part and the pre-toughened part) can be performed using any conventionally known method and is not particularly limited. In the hardening process, the steel member is heated until it becomes an austenitic structure, for example, by induction heating using a high-frequency coil, and then rapidly cooled to transform into a martensitic structure.

続いて、上述した本製造方法の焼戻し処理により、焼入れ処理された鋼部材のプレ靭性部を、焼戻し温度まで加熱した直後に冷却する焼戻し操作を1回以上(好ましくは複数回)行う。これにより、高い硬度を有する硬質部と、高い靭性を有する靭性部とを備えた鋼製品を得ることができる。 Subsequently, the pre-toughened part of the steel member that has been quenched by the tempering process of the present manufacturing method described above is heated to the tempering temperature and then immediately cooled, which is performed one or more times (preferably multiple times). Thereby, it is possible to obtain a steel product having a hard part having high hardness and a tough part having high toughness.

なお、本製造方法では、焼戻し処理において、プレ靭性部を焼戻し温度まで加熱する際に、並行して、プレ硬質部を冷却してもよい。これにより、焼戻し処理時のプレ靭性部への入熱がプレ硬質部へと伝熱し軟化することをより容易に防止できる。 In addition, in this manufacturing method, in the tempering process, when heating the pre-tough part to the tempering temperature, the pre-hard part may be cooled in parallel. Thereby, it is possible to more easily prevent the heat input into the pre-tough part during the tempering treatment from being transferred to the pre-hard part and causing softening.

また、本製造方法では、鋼部材を浸炭処理する際に、防炭手段を用いて(例えば、銅製の防炭キャップをプレ靭性部にはめることにより)、プレ靭性部への炭素侵入量を低下させ、焼入れ処理時のプレ靭性部の硬度上昇を防ぐこともできる。 In addition, in this manufacturing method, when carburizing steel members, carburization prevention means are used (for example, by fitting a copper anti-carburization cap to the pre-toughened part) to reduce the amount of carbon intrusion into the pre-toughened part. It is also possible to prevent the hardness of the pre-toughened portion from increasing during the quenching process.

さらに、鋼部材への浸炭処理の前に、プレ靭性部に、防炭手段となる防炭剤を塗布してもよい。これにより、浸炭処理時のプレ靭性部への炭素侵入量を低下させ、プレ靭性部の焼入れ処理時の硬度上昇をより抑制できる。 Furthermore, before carburizing the steel member, an anti-carburizing agent serving as a carburizing means may be applied to the pre-toughened portion. Thereby, the amount of carbon penetrating into the pre-toughened part during carburizing can be reduced, and the increase in hardness of the pre-toughened part can be further suppressed during quenching.

<鋼製品の製造装置>
本発明に係る鋼製品の製造装置(以降、本製造装置と称することがある)は、硬質部と、靭性部とを備えた鋼製品の製造装置である。本製造装置は、鋼部材を加熱するための加熱処理部と、前記鋼部材を冷却するための冷却処理部と、前記鋼部材を各処理部へと移動可能な移動機構とを備える。図8には、本製造装置の一実施形態として、加熱処理手段4として加熱コイルが備えられた加熱処理部4a、冷却処理手段5として冷却ジャケットが備えられた冷却処理部5a及び移動機構6として、紙面の上下方向に移動可能な移動手段を備えた(高周波)焼戻し装置が記載されている。
ここで、移動機構6は、鋼部材7(処理部品)に対する焼戻し処理において、加熱処理部4aで鋼部材7のプレ靭性部7a(ネジ部)が焼戻し温度まで加熱された直後に、鋼部材7(特にプレ靭性部7a)を冷却処理部5aへと移動させる。ここで、冷却処理部5aは、例えば水冷した際の水切り用にエアジャケット(不図示)を備えることもできる。また、本製造装置は、不図示の固定手段を備えることもでき、この固定手段により鋼製品を固定した状態で加熱処理や冷却処理、移動機構による移動を行うことができる。
<Steel product manufacturing equipment>
A steel product manufacturing apparatus according to the present invention (hereinafter sometimes referred to as the present manufacturing apparatus) is a steel product manufacturing apparatus including a hard part and a tough part. This manufacturing apparatus includes a heat treatment section for heating a steel member, a cooling treatment section for cooling the steel member, and a movement mechanism capable of moving the steel member to each treatment section. FIG. 8 shows, as an embodiment of the present manufacturing apparatus, a heating processing section 4a equipped with a heating coil as the heating processing means 4, a cooling processing section 5a equipped with a cooling jacket as the cooling processing means 5, and a moving mechanism 6. , a (high-frequency) tempering device equipped with a moving means that can be moved in the vertical direction of the plane of the paper is described.
Here, in the tempering process for the steel member 7 (processed part), the moving mechanism 6 moves the steel member 7 immediately after the pre-toughened part 7a (threaded part) of the steel member 7 is heated to the tempering temperature in the heat treatment section 4a. (In particular, the pre-toughened part 7a) is moved to the cooling treatment part 5a. Here, the cooling processing section 5a can also be provided with an air jacket (not shown) for draining water during water cooling, for example. Further, the present manufacturing apparatus can also be provided with a fixing means (not shown), and the steel product can be heated, cooled, and moved by a moving mechanism while being fixed by the fixing means.

なお、移動機構は、各鋼部材に対する焼戻し処理において、上述した加熱と冷却とで構成される焼戻し操作を複数回行うために、前記加熱処理部から前記冷却処理部への移動を複数回行うことが好ましい。なお、上記焼戻し操作を複数回行う場合には、再度、プレ靭性部を加熱処理するために、移動機構により、冷却処理部から加熱処理部への移動が1回以上行われることになる。 In addition, in the tempering process for each steel member, the moving mechanism moves from the heat treatment section to the cooling treatment section multiple times in order to perform the tempering operation consisting of heating and cooling described above multiple times. is preferred. In addition, when performing the said tempering operation multiple times, in order to heat-process a pre-toughness part again, movement from a cooling process part to a heat process part will be performed one or more times by a movement mechanism.

本製造装置が有する加熱処理手段4は、鋼部材(特にプレ靭性部)を焼戻し温度まで加熱できるものであれば特に限定されず、公知のものを適宜使用できる。図8では、加熱処理手段4として、誘導加熱を行う高周波(加熱)コイルを用いている。
なお、加熱処理部4aは、本製造装置において、加熱処理手段4により鋼部材7の加熱処理を行う領域を意味する。好ましい焼戻し温度(最高到達温度)などの加熱処理条件に関しては、上述したため、説明を省略する。
The heat treatment means 4 included in this manufacturing apparatus is not particularly limited as long as it can heat the steel member (particularly the pre-toughened part) to the tempering temperature, and any known means can be used as appropriate. In FIG. 8, a high frequency (heating) coil that performs induction heating is used as the heat treatment means 4.
Note that the heat treatment section 4a means a region where the steel member 7 is subjected to heat treatment by the heat treatment means 4 in this manufacturing apparatus. Since the heat treatment conditions such as the preferable tempering temperature (maximum temperature) have been described above, their explanation will be omitted.

本製造装置が有する冷却処理手段は5、鋼部材(特にプレ靭性部7a)を焼戻し温度まで加熱した後、直ちに冷却できるものであれば特に限定されず、公知のものを適宜使用できる。図8では、冷却処理手段5として、冷却ジャケット(より具体的には冷却水)を用いており、この水切り用にエアジャケットも併設してある。
なお、冷却処理部5aは、本製造装置において、冷却処理手段5により鋼部材7の冷却処理を行う領域を意味する。好ましい冷却温度などの冷却処理条件に関しては、上述したため、説明を省略する。
The cooling treatment means 5 included in this manufacturing apparatus is not particularly limited as long as it can cool the steel member (particularly the pre-toughened part 7a) immediately after heating it to the tempering temperature, and any known means can be used as appropriate. In FIG. 8, a cooling jacket (more specifically, cooling water) is used as the cooling processing means 5, and an air jacket is also provided for draining the water.
Note that the cooling processing section 5a means a region where the steel member 7 is subjected to cooling processing by the cooling processing means 5 in this manufacturing apparatus. Since the cooling processing conditions such as the preferable cooling temperature have been described above, their explanation will be omitted.

本製造装置が有する移動機構6は、焼戻し処理において、鋼部材7を加熱処理部4aと冷却処理部5aの両部分へと移動可能なものであれば、特に限定されず、公知のものを適宜使用できる。図8では、移動機構6として、紙面の上下方向に移動可能な移動装置が用いられている。 The moving mechanism 6 of this manufacturing apparatus is not particularly limited as long as it can move the steel member 7 to both the heat treatment section 4a and the cooling treatment section 5a during the tempering process, and a known mechanism may be used as appropriate. Can be used. In FIG. 8, a moving device that is movable in the vertical direction of the page is used as the moving mechanism 6.

さらに、本製造装置は、プレ靭性部7aへの加熱処理手段による加熱処理の際に、並行して、冷却処理手段5により、プレ硬質部7bの冷却処理を行ってもよい。これにより、プレ靭性部7aへの熱量がプレ硬質部7bへと伝熱し軟化するのをより防ぎやすくなる。その際、加熱処理手段4と冷却処理手段5の配置は、鋼部材7のプレ靭性部7aとプレ硬質部7bとの配置並びに移動機構6による移動距離を加味した配置とすることが好ましい。このように、両手段の配置を調整することで、誘導加熱方向及び冷却水の放出方向等の調整がしやすく、より確実にプレ靭性部7aの加熱と、プレ硬質部7bの冷却とを行うことができる。 Furthermore, in this manufacturing apparatus, the cooling treatment means 5 may perform a cooling treatment on the pre-hard portion 7b in parallel with the heat treatment performed on the pre-toughness portion 7a by the heat treatment means. This makes it easier to prevent the amount of heat applied to the pre-tough portion 7a from being transferred to the pre-hard portion 7b and causing it to soften. At this time, the arrangement of the heat treatment means 4 and the cooling treatment means 5 is preferably such that the arrangement of the pre-toughness part 7a and the pre-hard part 7b of the steel member 7 and the distance moved by the movement mechanism 6 are taken into account. In this way, by adjusting the arrangement of both means, it is easy to adjust the induction heating direction, the cooling water discharge direction, etc., and the pre-tough part 7a is heated and the pre-hard part 7b is cooled more reliably. be able to.

また、本製造装置は、防炭手段(不図示)を備えることもでき、この防炭手段により、浸炭処理の前又は浸炭処理中に、プレ靭性部7aへの炭素の侵入を抑制し、焼入れ処理時のプレ靭性部の硬さ上昇を適度に抑制できる。防炭手段としては、例えば、防炭キャップや防炭剤を用いることができる。具体的には、浸炭処理の前に、プレ靭性部に銅製などの防炭キャップをはめて浸炭処理を行うことで、プレ靭性部への炭素侵入を防ぐことができる。また、浸炭処理の前にプレ靭性部に防炭剤を塗布することで、プレ靭性部への炭素の侵入を抑制し、焼入時の硬さ上昇をより抑制できる。 Further, the present manufacturing apparatus can also be equipped with a carburizing prevention means (not shown), which suppresses the intrusion of carbon into the pre-toughened part 7a before or during the carburizing process, and prevents the quenching. Increase in hardness of the pre-toughened part during processing can be moderately suppressed. As the carburizing means, for example, a carburizing cap or a carburizing agent can be used. Specifically, by performing the carburizing treatment by fitting a carburizing cap made of copper or the like to the pre-toughened portion before carburizing, it is possible to prevent carbon from entering the pre-toughened portion. In addition, by applying an anti-carburizing agent to the pre-toughened part before carburizing, it is possible to suppress the intrusion of carbon into the pre-toughened part and further suppress the increase in hardness during quenching.

以下、実施例を用いて本発明をより詳しく説明するが、これらの例により本発明は限定されない。 EXAMPLES Hereinafter, the present invention will be explained in more detail using examples, but the present invention is not limited by these examples.

[実施例1]
図8に示す、加熱処理手段4として加熱コイル、冷却処理手段5として冷却ジャケット、水切り用にエアジャケット、及び紙面の上下方向に移動可能な移動機構6を備えた高周波焼戻し装置を用いて、浸炭焼入れ処理を施された鋼部材7の焼き戻し処理を行った。図8に示すように、鋼部材7は、プレ靭性部7aとしてネジ部、プレ硬質部7bとして軸部を有するものである。
そして、この鋼部材7を不図示の固定手段により、加熱処理部4aにセットした。次いで、鋼部材7のネジ部を加熱コイルで、焼戻し温度(最高到達温度):700℃とする加熱処理を行った。そして、ネジ部に対する焼戻し温度までの加熱が完了する(加熱時間:3秒間)と同時に、当該ネジ部を、移動機構6により、冷却処理部5aへと移動させた。そして、当該ネジ部を、冷却ジャケット(冷却水)により、室温(25℃)まで冷却した。
この冷却処理の後、冷却ジャケットに併設された不図示のエアジャケットで、鋼部材7の水切りを行った。実施例1では、焼戻し処理における、上記加熱処理及び上記冷却処理をそれぞれ1回ずつのみ行った。
[Example 1]
Carburizing was carried out using an induction tempering device shown in FIG. 8, which was equipped with a heating coil as the heat treatment means 4, a cooling jacket as the cooling treatment means 5, an air jacket for draining water, and a moving mechanism 6 movable in the vertical direction of the page. The steel member 7 that had been hardened was subjected to a tempering treatment. As shown in FIG. 8, the steel member 7 has a screw portion as the pre-toughness portion 7a and a shaft portion as the pre-rigid portion 7b.
Then, this steel member 7 was set in the heat treatment section 4a by a fixing means (not shown). Next, the threaded portion of the steel member 7 was heat-treated to a tempering temperature (maximum temperature) of 700° C. using a heating coil. Then, at the same time as the heating of the threaded portion to the tempering temperature was completed (heating time: 3 seconds), the threaded portion was moved to the cooling processing section 5a by the moving mechanism 6. Then, the threaded portion was cooled to room temperature (25° C.) using a cooling jacket (cooling water).
After this cooling treatment, water was drained from the steel member 7 using an air jacket (not shown) attached to the cooling jacket. In Example 1, the heat treatment and the cooling treatment in the tempering treatment were performed only once each.

以上より、靭性部と硬質部とを備えた鋼製品を作製した。この手順に従い、3つの鋼製品をそれぞれ作製した。得られた鋼製品の靭性部のビッカース硬さを上述した方法に従い測定したところ、436HV、434HV及び432HVであり、所望の硬度(440HV以下)が得られていることが分かった。なお、得られた鋼製品の硬質部のビッカース硬さはいずれも500HV以上であった。 As described above, a steel product having a tough part and a hard part was produced. Three steel products were each produced according to this procedure. When the Vickers hardness of the tough part of the obtained steel product was measured according to the method described above, it was found to be 436 HV, 434 HV, and 432 HV, indicating that the desired hardness (440 HV or less) was obtained. In addition, the Vickers hardness of the hard part of the obtained steel products was all 500 HV or more.

[実施例2]
焼戻し処理における、焼戻し操作(加熱処理及び冷却処理)の回数を2回に変更した以外は実施例1と同様にして、靭性部と硬質部とを備えた鋼製品を作製した。具体的には、加熱処理されたネジ部を冷却処理部で冷却処理した後、再び移動機構により、ネジ部を加熱処理部に移動させ、加熱コイルにより加熱処理し、焼戻し温度まで到達すると同時に、冷却処理部へと移動させ、室温となるまで冷却した。この手順に従い、3つの鋼製品をそれぞれ作製した。得られた鋼製品の靭性部のビッカース硬さを上述した方法に従い測定したところ、414HV、409HV及び406HVであり、所望の硬度が得られていることが分かった。なお、得られた鋼製品の硬質部のビッカース硬さはいずれも500HV以上であった。
[Example 2]
A steel product having a tough portion and a hard portion was produced in the same manner as in Example 1 except that the number of tempering operations (heat treatment and cooling treatment) in the tempering treatment was changed to two. Specifically, after the heat-treated threaded part is cooled in the cooling processing part, the threaded part is again moved to the heat processing part by the moving mechanism, and is heat-treated by the heating coil, and at the same time when it reaches the tempering temperature, It was moved to a cooling treatment section and cooled to room temperature. Three steel products were each produced according to this procedure. When the Vickers hardness of the tough part of the obtained steel product was measured according to the method described above, it was found to be 414 HV, 409 HV, and 406 HV, indicating that the desired hardness was obtained. In addition, the Vickers hardness of the hard part of the obtained steel products was all 500 HV or more.

[実施例3]
焼戻し処理における、焼戻し操作(加熱処理及び冷却処理)の回数を3回に変更した以外は実施例1と同様にして、靭性部と硬質部とを備えた鋼製品を作製した。この手順に従い、3つの鋼製品をそれぞれ作製した。得られた鋼製品の靭性部のビッカース硬さを上述した方法に従い測定したところ、400HV、404HV及び408HVであり、所望の硬度が得られていることが分かった。なお、得られた鋼製品の硬質部のビッカース硬さはいずれも500HV以上であった。
[Example 3]
A steel product having a tough portion and a hard portion was produced in the same manner as in Example 1 except that the number of tempering operations (heat treatment and cooling treatment) in the tempering treatment was changed to three times. Three steel products were each produced according to this procedure. When the Vickers hardness of the tough part of the obtained steel product was measured according to the method described above, it was found to be 400 HV, 404 HV, and 408 HV, indicating that the desired hardness was obtained. In addition, the Vickers hardness of the hard part of the obtained steel products was all 500 HV or more.

[比較例1]
焼戻し処理において、ネジ部を加熱処理後、700℃前後で10秒間保持(均熱)した後、室温まで冷却処理した以外は実施例1と同様にして、靭性部と硬質部とを備えた鋼製品を作製した。この手順に従い、3つの鋼製品をそれぞれ作製した。得られた鋼製品の靭性部のビッカース硬さを上述した方法に従い測定したところ、438HV、433HV及び434HVであり、所望の硬度が得られていることが分かった。しかしながら、得られた鋼製品の硬質部のビッカース硬さはいずれも500HVを下回り、上記焼戻し処理において、硬質部が軟化していることが分かった。
[Comparative example 1]
In the tempering treatment, the threaded portion was heated, held at around 700°C for 10 seconds (soaked), and then cooled to room temperature. The product was created. Three steel products were each produced according to this procedure. When the Vickers hardness of the tough part of the obtained steel product was measured according to the method described above, it was found to be 438 HV, 433 HV, and 434 HV, indicating that the desired hardness was obtained. However, the Vickers hardness of the hard parts of the obtained steel products was all below 500 HV, indicating that the hard parts were softened in the above tempering treatment.

これらの各例で得られた鋼製品における靭性部の硬度分布を、図7に示す。 FIG. 7 shows the hardness distribution of the tough part in the steel products obtained in each of these examples.

以上より、本発明によれば、硬質部と靭性部とを備えた鋼製品を製造する際の焼戻し処理において、靭性部となる部分に対して適切な量の熱量を与えることができ、硬質部となる部分への伝熱を抑制できることが分かった。その結果、靭性部と硬質部とを有する鋼製品において、靭性部の靭性を確保したまま、硬質部の硬度が低下することを防ぐことができた。 As described above, according to the present invention, in the tempering treatment when manufacturing a steel product having a hard part and a tough part, an appropriate amount of heat can be applied to the part that becomes the tough part, and the hard part It was found that it is possible to suppress heat transfer to the parts where . As a result, in a steel product having a tough part and a hard part, it was possible to prevent the hardness of the hard part from decreasing while maintaining the toughness of the tough part.

なお、本製造方法及び本製造装置は、自動車などの車両や建築物等の様々な用途に用いられる鋼製品に対して適用できる。また、本発明の趣旨を逸脱しない範囲で、本実施形態における構成要素を他の周知の構成要素に適宜置き換えることができる。 Note that the present manufacturing method and the present manufacturing apparatus can be applied to steel products used for various purposes such as vehicles such as automobiles and buildings. Moreover, the components in this embodiment can be appropriately replaced with other well-known components without departing from the spirit of the present invention.

1 鋼製品
2 靭性部
3 硬質部
4 加熱処理手段
4a 加熱処理部
5 冷却処理手段
5a 冷却処理部
6 移動機構
7 鋼部材
7a プレ靭性部
7b プレ硬質部
8 ε-炭化物
D 靭性部と硬質部との間の距離
H 加熱時間
U 均熱時間
C 冷却時間
1 Steel product 2 Toughness part 3 Hard part 4 Heat treatment means 4a Heat treatment part 5 Cooling treatment means 5a Cooling treatment part 6 Movement mechanism 7 Steel member 7a Pre-toughness part 7b Pre-hardness part 8 ε-Carbide D Toughness part and hard part Distance between H Heating time U Soaking time C Cooling time

Claims (2)

硬質部と、靭性部とを備えた鋼製品の製造方法であって、
焼入れ処理された鋼部材の前記靭性部となる部分を、焼戻し温度まで加熱した直後に、冷却する操作を複数回連続して行う焼戻し処理を行い、
前記焼戻し処理において、前記靭性部となる部分に対して、焼戻し温度まで加熱した直後に冷却する1回の操作は、30秒以内で行われ、
ここで、前記硬質部の硬度は、500HV以上であり、前記靭性部の硬度は、260HV以上、440HV以下であり、
前記焼戻し温度は、690℃以上、725℃以下であり、前記冷却における冷却温度は、100℃以下である、
ことを特徴とする鋼製品の製造方法。
A method for manufacturing a steel product having a hard part and a tough part,
Immediately after heating the tough part of the quenched steel member to a tempering temperature, a tempering process is performed in which a cooling operation is performed several times in succession ,
In the tempering treatment, one operation of heating the tough part to the tempering temperature and immediately cooling it is performed within 30 seconds,
Here, the hardness of the hard part is 500HV or more, and the hardness of the tough part is 260HV or more and 440HV or less,
The tempering temperature is 690°C or higher and 725°C or lower, and the cooling temperature in the cooling is 100°C or lower.
A method of manufacturing a steel product, characterized by:
硬質部と、靭性部とを備えた鋼製品の製造装置であって、
鋼部材を加熱する加熱処理部と、
前記鋼部材を冷却する冷却処理部と、
前記鋼部材を各処理部へと移動可能な移動機構と
を備え、
前記移動機構は、前記鋼部材に対する焼戻し処理において、前記加熱処理部で前記鋼部材の靭性部となる部分が焼戻し温度まで加熱された直後に、前記鋼部材を前記冷却処理部へと移動させる操作を複数回行い、
前記靭性部となる部分が、前記加熱処理部において焼戻し温度まで加熱された直後に、前記冷却処理部において冷却される1回の操作を、30秒以内で行うように構成され、
ここで、前記鋼製品における、前記硬質部の硬度は、500HV以上であり、前記靭性部の硬度は、260HV以上、440HV以下であり、
前記加熱処理部における焼戻し温度は、690℃以上、725℃以下であり、
前記冷却処理部における冷却温度は、100℃以下である、
ことを特徴とする鋼製品の製造装置。
A manufacturing device for steel products having a hard part and a tough part,
a heat treatment section that heats the steel member;
a cooling processing unit that cools the steel member;
A moving mechanism capable of moving the steel member to each processing section,
The moving mechanism moves the steel member to the cooling treatment section immediately after a portion of the steel member that becomes a tough part is heated to a tempering temperature in the heat treatment section in the tempering treatment for the steel member. Perform the operation multiple times,
Immediately after the portion that becomes the toughness portion is heated to a tempering temperature in the heat treatment portion, the portion is cooled in the cooling treatment portion once, within 30 seconds,
Here, in the steel product, the hard part has a hardness of 500 HV or more, and the tough part has a hardness of 260 HV or more and 440 HV or less,
The tempering temperature in the heat treatment section is 690°C or higher and 725°C or lower,
The cooling temperature in the cooling processing section is 100°C or less,
A steel product manufacturing device characterized by:
JP2020179748A 2020-10-27 2020-10-27 Steel product manufacturing method and steel product manufacturing equipment Active JP7428113B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020179748A JP7428113B2 (en) 2020-10-27 2020-10-27 Steel product manufacturing method and steel product manufacturing equipment
CN202110834451.5A CN114480790A (en) 2020-10-27 2021-07-21 Method and apparatus for manufacturing steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020179748A JP7428113B2 (en) 2020-10-27 2020-10-27 Steel product manufacturing method and steel product manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2022070602A JP2022070602A (en) 2022-05-13
JP7428113B2 true JP7428113B2 (en) 2024-02-06

Family

ID=81491776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020179748A Active JP7428113B2 (en) 2020-10-27 2020-10-27 Steel product manufacturing method and steel product manufacturing equipment

Country Status (2)

Country Link
JP (1) JP7428113B2 (en)
CN (1) CN114480790A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123227A1 (en) 2008-03-31 2009-10-08 高周波熱錬株式会社 Steel material, process for producing steel material, and apparatus for producing steel material
US20180274052A1 (en) 2017-03-21 2018-09-27 Ford Global Technologies, Llc Rapid local annealing of high strength steel
CN208701138U (en) 2018-07-18 2019-04-05 上海汽车集团股份有限公司 Realize the annealing device of automobile longitudinal girder strength non-linearity distribution

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916326B1 (en) * 1970-12-31 1974-04-22
JPS63143222A (en) * 1986-12-04 1988-06-15 Nippon Steel Corp Manufacture of steel material having low maximum hardness and low yield ratio
US4874437A (en) * 1989-02-08 1989-10-17 Kioritz Corporation Method of adjusting hardness of metallic material
JPH06287610A (en) * 1993-03-31 1994-10-11 Tokyo Seiko Co Ltd Cemented carbide material combined with different compositions and its production and spike made of cemented carbide material combined with different compositions
JP3542229B2 (en) * 1996-04-02 2004-07-14 アイシン・エィ・ダブリュ株式会社 Tempering method of steel
US20010050121A1 (en) * 1997-08-25 2001-12-13 Komatsu Ltd. Bushing for crawler belt and method of manufacture
JP3878829B2 (en) * 2001-10-10 2007-02-07 富士電子工業株式会社 High-frequency heating device for stepped shaft workpiece
JP4175955B2 (en) * 2003-06-05 2008-11-05 トピー工業株式会社 Heat treatment equipment for cylindrical workpiece
JP2008267786A (en) * 2007-03-29 2008-11-06 Ntn Corp Monitoring system for high frequency heat treatment facility of automobile shaft component or like
JP2009293076A (en) * 2008-06-04 2009-12-17 Jtekt Corp Heat-treatment method
JP2011140697A (en) * 2010-01-07 2011-07-21 Honda Motor Co Ltd Method for hardening steel product
JP2012007202A (en) * 2010-06-23 2012-01-12 Neturen Co Ltd Method for cooling workpiece and device for heat treating workpiece
CN103924045A (en) * 2014-05-06 2014-07-16 大连圣洁真空技术开发有限公司 Quenching heat treatment process for composite steel and composite steel obtained by adopting heat treatment process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123227A1 (en) 2008-03-31 2009-10-08 高周波熱錬株式会社 Steel material, process for producing steel material, and apparatus for producing steel material
US20180274052A1 (en) 2017-03-21 2018-09-27 Ford Global Technologies, Llc Rapid local annealing of high strength steel
CN208701138U (en) 2018-07-18 2019-04-05 上海汽车集团股份有限公司 Realize the annealing device of automobile longitudinal girder strength non-linearity distribution

Also Published As

Publication number Publication date
CN114480790A (en) 2022-05-13
JP2022070602A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
EP0092815B1 (en) A car stabilizer and a manufacturing method therefor
JPWO2006118242A1 (en) Steel member and heat treatment method thereof
JP4760664B2 (en) Sheave member for belt type continuously variable transmission and method for manufacturing the same
JPH11343520A (en) Bevel gear and production of gear having many gear teeth
JP7428113B2 (en) Steel product manufacturing method and steel product manufacturing equipment
CN107447086B (en) A kind of vacuum heat treatment process of FV520B-S steel
JP4708158B2 (en) Surface hardened steel and surface hardening method of steel
JPH0328318A (en) Method for hardening hot die steel
JP5358875B2 (en) Steel member cooling method
JP5015386B2 (en) Heat treatment method for thick steel plate
JPH08134545A (en) Production of coil spring and high-toughness and high tensile coil spring
JP2019514699A (en) Method for producing a shaped body
JPH06264147A (en) Manufacture of steering rack shaft
JPH04143225A (en) Manufacture of long size steel with different strength in longitudinal direction
CN1176227C (en) Heat treatment method of raising the hardness of structural alloy steel
JP5050436B2 (en) Alloy steel manufacturing method
RU2816975C1 (en) Method of heat treatment of articles made from steel with carbon content of 0,4-1,5%
CN103834789A (en) Heat treatment process for gear
JPH11279647A (en) Method for tempering cylindrical work
US20080257460A1 (en) Method of producing forgings having excellent tensile strength and elongation from steel wire rods
JP2023061553A (en) Manufacturing method of martensitic stainless steel material
JP2008106307A (en) Induction hardening method for metallic ring
KR101336770B1 (en) Illumination apparatus
JP2005133212A (en) Heat treatment system
Tarney Heat treatment of tool steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240108

R151 Written notification of patent or utility model registration

Ref document number: 7428113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151