JP7427578B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP7427578B2
JP7427578B2 JP2020205379A JP2020205379A JP7427578B2 JP 7427578 B2 JP7427578 B2 JP 7427578B2 JP 2020205379 A JP2020205379 A JP 2020205379A JP 2020205379 A JP2020205379 A JP 2020205379A JP 7427578 B2 JP7427578 B2 JP 7427578B2
Authority
JP
Japan
Prior art keywords
plug
axial direction
seismic isolation
internal
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020205379A
Other languages
Japanese (ja)
Other versions
JP2022092525A (en
Inventor
昌弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2020205379A priority Critical patent/JP7427578B2/en
Publication of JP2022092525A publication Critical patent/JP2022092525A/en
Application granted granted Critical
Publication of JP7427578B2 publication Critical patent/JP7427578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、免震装置に関する。 The present invention relates to a seismic isolation device.

下記特許文献1には、円形孔を有する複数の薄いゴム板と複数の薄い鋼板とが交互に積み重ねられて加硫接着され、複数のゴム板の円形孔と複数の鋼板の円形孔により上下に貫通した鉛プラグ挿入孔が形成された積層体と、積層体の鉛プラグ挿入孔に装着された円柱状の鉛プラグと、を備える免震用積層ゴム装置の製造方法が開示されている。これにより、免震用積層ゴム装置は、鉛プラグの外周部が鉛プラグ挿入孔の内周部にぴったりと合って、鉛プラグの外周部が鋼板の内周部に密着すると共に、鉛プラグの外周部がゴム層の中にやや食い込んだ状態で製造される。 In Patent Document 1 listed below, a plurality of thin rubber plates having circular holes and a plurality of thin steel plates are alternately stacked and vulcanized and bonded, and the circular holes of the plurality of rubber plates and the circular holes of a plurality of steel plates are arranged vertically. A method of manufacturing a laminated rubber device for seismic isolation is disclosed, which includes a laminate in which a penetrating lead plug insertion hole is formed, and a cylindrical lead plug attached to the lead plug insertion hole of the laminate. As a result, in the seismic isolation laminated rubber device, the outer periphery of the lead plug fits perfectly with the inner periphery of the lead plug insertion hole, and the outer periphery of the lead plug closely contacts the inner periphery of the steel plate. It is manufactured with the outer periphery slightly digging into the rubber layer.

特開2001-74096号公報Japanese Patent Application Publication No. 2001-74096

例えば、長さと幅の寸法に比べて高さ寸法が大きくなるような建造物では、建造物が横転するような大きな地震荷重等が生じると、免震装置に作用する建物上下方向の引張荷重が大きくなる。特許文献1に記載された免震装置をこのような建造物に適用した場合、外周部がゴム層の中にやや食い込んだ状態あるいは食い込まずに鉛プラグ挿入孔に装着されているだけの鉛プラグは引張荷重により建物上方へ向けて変位し易く、免震装置の機能を低下させる可能性がある。 For example, in a building whose height is larger than its length and width, if a large earthquake load that causes the building to overturn occurs, the tensile load acting on the seismic isolation device in the vertical direction of the building will increase. growing. When the seismic isolation device described in Patent Document 1 is applied to such a building, a lead plug whose outer circumferential portion is slightly wedged into the rubber layer or is simply installed in the lead plug insertion hole without digging into the rubber layer. tends to be displaced upwards of the building due to tensile loads, which may reduce the functionality of the seismic isolation device.

本発明は上記事実を考慮し、装置軸方向の荷重によるプラグの装置軸方向の変位を抑制又は防止できる免震装置を得ることを目的とする。 The present invention has been made in consideration of the above facts, and an object of the present invention is to obtain a seismic isolation device that can suppress or prevent displacement of a plug in the axial direction of the device due to a load in the axial direction of the device.

第1の態様に係る免震装置は、弾性体の板により形成され、略円形の孔を備えた複数の内部弾性板と前記内部弾性板よりも剛性の高い板により形成され、略円形の孔を備えた複数の内部剛性板が装置軸方向に沿って交互に積層されると共に、前記内部弾性板の前記孔と前記内部剛性板の前記孔により装置軸方向に貫通したプラグ挿入孔が形成された弾性積層体と、前記内部弾性板よりも高剛性かつ前記内部剛性板よりも低剛性に形成されると共に前記プラグ挿入孔に挿入されたプラグと、を含んで構成され、前記プラグは、装置軸方向に沿って略円柱状に形成され、外側部が前記複数の内部剛性板と密着する軸芯部と、前記軸芯部の外側部が前記内部弾性板へ向けて突出されると共に前記複数の内部剛性板の間に各々押入された複数の押入部と、を備えている。 The seismic isolation device according to the first aspect includes a plurality of internal elastic plates each having a substantially circular hole formed of elastic plates and a plate having a higher rigidity than the internal elastic plates and having substantially circular holes. A plurality of internal rigid plates are stacked alternately along the axial direction of the device, and a plug insertion hole penetrating in the axial direction of the device is formed by the hole of the internal elastic plate and the hole of the internal rigid plate. and a plug formed to have higher rigidity than the internal elastic plate and lower rigidity than the internal rigid plate and inserted into the plug insertion hole, the plug being inserted into the plug insertion hole. an axial core part that is formed in a substantially cylindrical shape along the axial direction and whose outer part is in close contact with the plurality of internal rigid plates; A plurality of push-in portions are each pushed in between the internal rigid plates of.

第1の態様に係る免震装置によれば、プラグは、内部剛性板よりも低剛性に形成され、外側部が複数の内部剛性板と各々密着する軸芯部を備えている。また、プラグは、内部弾性板よりも高剛性に形成され、軸芯部の外側部が内部弾性板へ向けて突出されると共に複数の内部剛性板の間に各々押入された複数の押入部を備えている。このため、プラグは弾性積層体のプラグ挿入孔に隙間なく挿入され、免震装置の装置軸方向に沿って荷重が作用した場合に、プラグの軸芯部と押入部は弾性積層体との間に抗力を生じさせる。これにより、装置軸方向の荷重によるプラグの装置軸方向の変位を抑制又は防止することができ、免震装置の免震力を維持することができる。 According to the seismic isolation device according to the first aspect, the plug is formed to have a lower rigidity than the internal rigid plates, and includes a shaft portion whose outer portion is in close contact with each of the plurality of internal rigid plates. Further, the plug is formed to have higher rigidity than the internal elastic plate, and includes a plurality of pushed-in portions in which the outer portion of the shaft portion protrudes toward the internal elastic plate, and is pushed in between the plurality of internal rigid plates. There is. Therefore, the plug is inserted into the plug insertion hole of the elastic laminate without any gaps, and when a load is applied along the axial direction of the seismic isolation device, the axial core part of the plug and the push-in part are inserted between the elastic laminate and the plug. generates a drag force. Thereby, displacement of the plug in the device axial direction due to a load in the device axial direction can be suppressed or prevented, and the seismic isolation force of the seismic isolation device can be maintained.

第2の態様に係る免震装置は、第1の態様に係る免震装置において、前記プラグの前記軸芯部の外径及び装置径方向に沿った断面の面積と前記プラグの前記複数の押入部の数及び前記内部剛性板の装置径方向内側の端部における装置軸方向の厚さ寸法は、装置軸方向に沿った荷重に対する前記押入部のせん断強度が前記プラグの引張強度を上回るように設定されている。 In the seismic isolation device according to the second aspect, in the seismic isolation device according to the first aspect, an outer diameter of the axial core portion of the plug and an area of a cross section along the device radial direction and the plurality of intrusions of the plug are provided. The number of parts and the thickness dimension of the inner rigid plate in the axial direction of the device at the inner end in the radial direction of the device are such that the shear strength of the push-in part against the load along the axial direction of the device exceeds the tensile strength of the plug. It is set.

第2の態様に係る免震装置によれば、装置径方向外側へ向けて突出されると共に内部弾性板に押入された押入部は、免震装置の装置軸方向に荷重が作用した際に抗力を生じさせ、プラグの装置軸方向に沿った変位を抑制又は防止する。このため、押入部には装置軸方向に沿った荷重に対するせん断強度を確保する必要がある。せん断強度は、プラグの軸芯部の外径と押入部の数及び内部剛性板の装置径方向内側の端部における装置軸方向の厚さ寸法により変化する。また、プラグ自体の引張強度は、プラグの軸芯部の装置径方向に沿った断面の面積により変化する。このため、プラグの外径及び断面積と押入部の数及び装置軸方向の厚さ寸法を適切に設定することによってプラグ自体が引張破断する荷重よりも小さい荷重では押入部のせん断破壊を抑制又は防止することができる。これにより、装置軸方向に沿った荷重によるプラグの装置軸方向の変位を適切に抑制又は防止することができ、免震装置の免震力を維持することができる。 According to the seismic isolation device according to the second aspect, the push-in portion that is projected outward in the radial direction of the device and is pushed into the internal elastic plate generates a drag force when a load is applied in the axial direction of the seismic isolation device. This suppresses or prevents displacement of the plug along the device axis. For this reason, it is necessary for the push-in portion to ensure shear strength against the load along the axial direction of the device. The shear strength varies depending on the outer diameter of the axial core portion of the plug, the number of push-in portions, and the thickness dimension of the internal rigid plate in the axial direction of the device at the inner end in the radial direction of the device. Further, the tensile strength of the plug itself changes depending on the cross-sectional area of the axial core of the plug along the radial direction of the device. For this reason, by appropriately setting the outside diameter and cross-sectional area of the plug, the number of push-in sections, and the thickness dimension in the axial direction of the device, shear failure of the push-in sections can be suppressed or It can be prevented. Thereby, the displacement of the plug in the axial direction of the device due to the load along the axial direction of the device can be appropriately suppressed or prevented, and the seismic isolation force of the seismic isolation device can be maintained.

第3の態様に係る免震装置は、第1の態様又は第2の態様に係る免震装置において、前記内部剛性板の装置径方向内側の端部における前記複数の押入部の装置軸方向の厚さ寸法は、前記複数の内部剛性板の装置軸方向の間隔と各々略同一とされている。 In the seismic isolation device according to the third aspect, in the seismic isolation device according to the first aspect or the second aspect, the plurality of push-in portions at the inner end in the device radial direction of the internal rigid plate are arranged in the device axial direction. The thickness dimension is approximately the same as the distance between the plurality of internal rigid plates in the axial direction of the device.

第3の態様に係る免震装置によれば、内部剛性板の装置径方向内側の端部における押入部の装置軸方向の厚さ寸法は、内部剛性板の装置軸方向の間隔と各々略同一に形成されている。このため、装置軸方向に沿った荷重に対する押入部のせん断強度を向上させることができる。これにより、装置軸方向に沿った荷重が作用した場合に、押入部はせん断強度を適切に確保した上で弾性積層体との間に抗力を生じさせ、装置軸方向の荷重によるプラグの装置軸方向の変位を抑制又は防止することができる。 According to the seismic isolation device according to the third aspect, the thickness dimension in the device axial direction of the push-in portion at the device radially inner end of the internal rigid plate is approximately the same as the interval in the device axial direction between the internal rigid plates. is formed. Therefore, the shear strength of the push-in portion against loads along the device axis direction can be improved. As a result, when a load is applied in the axial direction of the device, the push-in part secures appropriate shear strength and generates a drag force between the elastic laminate and the plug's device axis due to the load in the axial direction of the device. Displacement in the direction can be suppressed or prevented.

第4態様に係る免震装置の取付構造は、弾性体の板により形成され、略円形の孔を備えた複数の内部弾性板と前記内部弾性板よりも剛性の高い板により形成され、略円形の孔を備えた複数の内部剛性板が装置軸方向に沿って交互に積層されると共に、前記内部弾性板の前記孔と前記内部剛性板の前記孔により装置軸方向に貫通したプラグ挿入孔が形成された弾性積層体と、前記プラグ挿入孔の内側面に形成された雌ねじ部と、前記内部弾性板よりも高剛性かつ前記内部剛性板よりも低剛性に形成され、装置軸方向に沿って略円柱状に形成された軸部と前記軸部の外側面に前記雌ねじ部と螺合可能に形成された雄ねじ部を備え、前記プラグ挿入孔に螺入されたプラグと、を含んで構成されている。 The mounting structure of the seismic isolation device according to the fourth aspect is formed of elastic plates, and includes a plurality of internal elastic plates each having a substantially circular hole, and a plate having higher rigidity than the internal elastic plates, and is substantially circular. A plurality of internal rigid plates each having a hole are stacked alternately along the axial direction of the device, and a plug insertion hole is formed through the hole in the internal elastic plate and the hole in the internal rigid plate in the axial direction of the device. The formed elastic laminate, the internal thread portion formed on the inner surface of the plug insertion hole, and the inner elastic plate formed to have higher rigidity than the internal elastic plate and lower rigidity than the internal rigid plate, The plug includes a shaft portion formed in a substantially cylindrical shape, a male screw portion formed on an outer surface of the shaft portion so as to be screwable with the female screw portion, and a plug screwed into the plug insertion hole. ing.

第4態様に係る免震装置の取付構造によれば、プラグ挿入孔の内側面には装置軸方向に沿って雌ねじ部が形成され、プラグの軸部の外側面には雌ねじ部と螺合可能な雄ねじ部が形成されている。このため、プラグを弾性積層体のプラグ挿入孔に容易に螺入することができ、装置軸方向に沿って荷重が作用した場合にプラグと弾性積層体との間に抗力を生じさせる。これにより、装置軸方向の荷重によるプラグの装置軸方向の変位を抑制又は防止することができ、免震装置の免震力を維持することができる。 According to the mounting structure of the seismic isolation device according to the fourth aspect, a female threaded portion is formed on the inner surface of the plug insertion hole along the axial direction of the device, and can be screwed with the female threaded portion on the outer surface of the shaft portion of the plug. A male threaded portion is formed. Therefore, the plug can be easily screwed into the plug insertion hole of the elastic laminate, and when a load is applied along the axial direction of the device, a drag force is generated between the plug and the elastic laminate. Thereby, displacement of the plug in the device axial direction due to a load in the device axial direction can be suppressed or prevented, and the seismic isolation force of the seismic isolation device can be maintained.

以上説明したように、本発明に係る免震装置は、装置軸方向の荷重によるプラグの装置軸方向の変位を抑制又は防止できるという優れた効果を有する。 As explained above, the seismic isolation device according to the present invention has the excellent effect of suppressing or preventing the displacement of the plug in the axial direction of the device due to the load in the axial direction of the device.

第1実施形態に係る免震装置を装置上方側から見た斜視図である。FIG. 1 is a perspective view of the seismic isolation device according to the first embodiment, viewed from above the device. 図1の2-2断面線に沿った免震装置の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of the seismic isolation device taken along section line 2-2 in FIG. 1; 図2のA部分の拡大図である。3 is an enlarged view of part A in FIG. 2. FIG. 第2実施形態に係る免震装置の縦断面図である。FIG. 7 is a longitudinal cross-sectional view of a seismic isolation device according to a second embodiment. 図4のB部分の拡大図である。5 is an enlarged view of part B in FIG. 4. FIG.

(第1実施形態)
以下、図1~図3を用いて、本発明の第1実施形態に係る免震装置10について説明する。ここで、図中矢印DAは免震装置10の装置軸方向かつ装置上下方向(建物上下方向)を示し、矢印DRは免震装置10の装置径方向を示す。
(First embodiment)
A seismic isolation device 10 according to a first embodiment of the present invention will be described below with reference to FIGS. 1 to 3. Here, the arrow DA in the figure indicates the device axis direction and device vertical direction (building vertical direction) of the seismic isolation device 10, and the arrow DR indicates the device radial direction of the seismic isolation device 10.

図1には、免震装置10を装置上方側から見た斜視図が示されている。免震装置10は、弾性積層体12を備えている。弾性積層体12は、装置軸方向(建物上下方向)には、例えば、橋、家等の構造物や重量物(いずれも図示省略)を支え、装置径方向(建物水平方向)には、例えば、地震、外部振動力等による構造物や重量物の揺れを吸収するように構成されている。 FIG. 1 shows a perspective view of the seismic isolation device 10 viewed from above the device. The seismic isolation device 10 includes an elastic laminate 12. The elastic laminate 12 supports, for example, a structure such as a bridge or a house or a heavy object (all not shown) in the axial direction of the device (vertical direction of the building), and supports, for example, It is constructed to absorb the shaking of structures and heavy objects caused by earthquakes, external vibration forces, etc.

図2には、免震装置10をその中心軸CLを通過するように装置軸方向(装置上下方向)かつ装置径方向に沿って切断した縦断面図が示されている。免震装置10は、その装置軸方向が建物上下方向(鉛直方向)と一致するように構造物又は重量物に設置される。 FIG. 2 shows a longitudinal cross-sectional view of the seismic isolation device 10 cut along the device axis direction (device vertical direction) and device radial direction so as to pass through the central axis CL. The seismic isolation device 10 is installed on a structure or heavy object so that the device axis direction coincides with the vertical direction (vertical direction) of the building.

弾性積層体12の上面には、当該上面の外形よりも大きな底面積を有して略平板状に形成された金属製の上部フランジ板14(図1参照)が固定されている。上部フランジ板14は、図示しないボルトを介して構造物又は重量物の下部に埋め込まれた上部支持部材(図示省略)に固定されている。これにより、免震装置10の上端部は、構造物又は重量物に固定されている。また、上部フランジ板14の装置径方向の略中央部の装置上方側には、装置上下方向(厚さ方向)に沿ってその中心軸を免震装置10の中心軸CLと一致させた略円形の上側孔14Aが形成されている。上側孔14Aの装置下方側には、その中心軸を免震装置10の中心軸CLと一致させ、上側孔14Aよりも内径の短い略円形の下側孔14Bが装置軸方向に沿って形成されている。下側孔14Bの内径は、後述するプラグ30の軸芯部32の外径と略同一に形成されている。 A metal upper flange plate 14 (see FIG. 1), which is formed into a substantially flat plate shape and has a larger bottom area than the outer shape of the upper surface, is fixed to the upper surface of the elastic laminate 12. The upper flange plate 14 is fixed to an upper support member (not shown) embedded in the lower part of a structure or heavy object via bolts (not shown). Thereby, the upper end portion of the seismic isolation device 10 is fixed to a structure or a heavy object. Further, on the upper side of the device at the approximate center in the device radial direction of the upper flange plate 14, a substantially circular shape whose central axis coincides with the central axis CL of the seismic isolation device 10 along the vertical direction (thickness direction) of the device is provided. An upper hole 14A is formed. On the lower side of the device of the upper hole 14A, a substantially circular lower hole 14B whose central axis coincides with the center axis CL of the seismic isolation device 10 and whose inner diameter is shorter than that of the upper hole 14A is formed along the device axial direction. ing. The inner diameter of the lower hole 14B is formed to be approximately the same as the outer diameter of the shaft core portion 32 of the plug 30, which will be described later.

弾性積層体12の下面には、当該下面の外形よりも大きな底面積を有して略平板状に形成された金属製の下部フランジ板16(図1参照)が固定されている。下部フランジ板16は、図示しないボルトを介して、構造物又は重量物が設置される基礎に埋め込まれた下部支持部材(いずれも図示省略)に固定されている。これにより、免震装置10の下端部は、構造物又は重量物が設置される基礎に固定されている。また、下部フランジ板16の装置径方向の略中央部の装置下方側には、装置上下方向(厚さ方向)に沿ってその中心軸を免震装置10の中心軸CLと一致させた略円形の下側孔16Aが形成されている。下側孔16Aの装置上方側には、その中心軸を免震装置10の中心軸CLと一致させ、下側孔16Aよりも内径の短い略円形の上側孔16Bが装置軸方向に沿って形成されている。上側孔16Bの内径は、プラグ30の軸芯部32の外径と略同一に形成されている。 A metal lower flange plate 16 (see FIG. 1) is fixed to the lower surface of the elastic laminate 12 and is formed into a substantially flat plate shape and has a larger bottom area than the outer shape of the lower surface. The lower flange plate 16 is fixed via bolts (not shown) to a lower support member (both not shown) embedded in a foundation on which a structure or heavy object is installed. Thereby, the lower end of the seismic isolation device 10 is fixed to a foundation on which a structure or heavy object is installed. Further, on the lower side of the device at the approximate center in the device radial direction of the lower flange plate 16, there is a substantially circular shape whose center axis coincides with the center axis CL of the seismic isolation device 10 along the device vertical direction (thickness direction). A lower hole 16A is formed. On the upper side of the device of the lower hole 16A, a substantially circular upper hole 16B whose central axis coincides with the central axis CL of the seismic isolation device 10 and whose inner diameter is shorter than that of the lower hole 16A is formed along the device axial direction. has been done. The inner diameter of the upper hole 16B is formed to be approximately the same as the outer diameter of the shaft core portion 32 of the plug 30.

図2に示されるように、弾性積層体12は、略円板状に形成されたゴム製(弾性体)の内部弾性板18と略円板状に形成された内部弾性板よりも剛性の高い鋼製の内部剛性板20が装置軸方向(装置上下方向)に沿って交互に積層されることにより一体に形成されている。ここでいう剛性とは、主に、せん断剛性及び曲げ剛性を意味する。また、積層された内部弾性板18と内部剛性板20の外周部には、内部弾性板18と一体成形されたゴム製の被覆ゴム22が外周部全体を覆うように設けられている。なお、弾性積層体12の外形は略円形に限られず、四角や多角形であってもよい。 As shown in FIG. 2, the elastic laminate 12 has an internal elastic plate 18 made of rubber (elastic body) formed in a substantially disk shape, and an internal elastic plate having higher rigidity than the internal elastic plate formed in a substantially disk shape. The internal rigid plates 20 made of steel are integrally formed by alternately stacking them along the axial direction of the device (the vertical direction of the device). Stiffness here mainly means shear stiffness and bending stiffness. Furthermore, a covering rubber 22 made of rubber and integrally molded with the internal elastic plate 18 is provided on the outer periphery of the laminated internal elastic plate 18 and internal rigid plate 20 so as to cover the entire outer periphery. Note that the outer shape of the elastic laminate 12 is not limited to a substantially circular shape, but may be square or polygonal.

ゴム製の内部弾性板18は、装置軸方向に沿って構造物等を支持し、装置径方向に沿って所定の距離を変位することが可能となる弾性を有している。鋼製の内部剛性板20は、構造物等から受ける装置軸方向の荷重や構造物等の装置径方向に沿った変位により生じる装置径方向の荷重に対して変形しない程度の剛性を有している。なお、以下の説明では、内部剛性板20は鋼製であるとして説明するが、これに限らず、内部剛性板として作用する荷重に対して適切に剛性を確保することができる鋼製以外の金属板が用いられてもよい。 The internal elastic plate 18 made of rubber supports a structure or the like along the axial direction of the device and has elasticity that allows it to be displaced a predetermined distance along the radial direction of the device. The internal rigid plate 20 made of steel has a rigidity to the extent that it does not deform in response to a load in the axial direction of the device received from a structure or the like or a load in the radial direction of the device caused by displacement of the structure or the like along the radial direction of the device. There is. In the following description, the internal rigid plate 20 will be explained as being made of steel, but the invention is not limited to this, and metals other than steel that can appropriately ensure rigidity against the load acting as the internal rigid plate may be used. A plate may also be used.

内部弾性板18の略中央部には、孔としての第1孔部24が装置軸方向(厚さ方向)に沿って貫通形成されている。また、内部剛性板20の略中央部には、孔としての第2孔部26が装置軸方向に沿って貫通形成されている。第1孔部24と第2孔部26は、内部弾性板18と内部剛性板20が積層された際に外形が装置径方向に重なるように各々形成されている。このため、弾性積層体12の略中央部には、第1孔部24と第2孔部26が交互に積層されることにより装置軸方向に貫通したプラグ挿入孔28が形成されている。 A first hole 24 serving as a hole is formed to penetrate approximately the center of the internal elastic plate 18 along the device axis direction (thickness direction). Further, a second hole portion 26 serving as a hole is formed to penetrate approximately the center of the internal rigid plate 20 along the axial direction of the device. The first hole 24 and the second hole 26 are each formed so that their outer shapes overlap in the device radial direction when the internal elastic plate 18 and the internal rigid plate 20 are stacked. Therefore, a plug insertion hole 28 is formed approximately in the center of the elastic laminate 12 by first hole portions 24 and second hole portions 26 being alternately stacked, thereby penetrating in the axial direction of the device.

プラグ挿入孔28の内部には、装置軸方向に沿ってプラグ30が挿入されている。プラグ30は、内部弾性板18よりも高剛性かつ内部剛性板20よりも低剛性に構成されている。このため、プラグ30は、例えば、鉛、錫、樹脂等により構成されている。 A plug 30 is inserted into the plug insertion hole 28 along the axial direction of the device. The plug 30 is configured to have higher rigidity than the internal elastic plate 18 and lower rigidity than the internal rigid plate 20. Therefore, the plug 30 is made of, for example, lead, tin, resin, or the like.

プラグ30の装置径方向略中央部には、装置軸方向に沿って延在された略円柱状の軸芯部32が形成されている。軸芯部32の外側部は、プラグ30がプラグ挿入孔28に挿入された際に複数の内部剛性板20と密着するように形成されている。 A substantially cylindrical shaft core portion 32 extending along the axial direction of the device is formed at a substantially central portion of the plug 30 in the radial direction of the device. The outer side of the shaft core portion 32 is formed so as to come into close contact with the plurality of internal rigid plates 20 when the plug 30 is inserted into the plug insertion hole 28.

軸芯部32の外側部のうち複数の内部弾性板18と対向する部分には、内部弾性板18に第1孔部24から径方向外側まで各々押入された複数の押入部34が形成されている。プラグ30は、プラグ挿入孔28に挿入され、その軸方向(装置軸方向)に沿って軸圧縮力が、例えば、工具等により付与(負荷)される。このため、軸芯部32の外側部のうち複数の内部弾性板18と対向する部分は、塑性変形により内部弾性板18へ向けて(装置径方向外側へ向けて)突出されると共に複数の内部剛性板20の間に各々押入されている。 A plurality of push-in portions 34 are formed in a portion of the outer side of the shaft core portion 32 that faces the plurality of internal elastic plates 18, each of which is pushed into the inner elastic plate 18 from the first hole portion 24 to the outside in the radial direction. There is. The plug 30 is inserted into the plug insertion hole 28, and an axial compressive force is applied (loaded) along its axial direction (device axial direction) using, for example, a tool. Therefore, the portion of the outer side of the shaft core portion 32 that faces the plurality of internal elastic plates 18 is protruded toward the internal elastic plates 18 (toward the outside in the device radial direction) due to plastic deformation, and the portion that faces the plurality of internal elastic plates 18 is They are each pressed between the rigid plates 20.

図3に示されるように、複数の押入部34の装置軸方向の厚さ寸法Bは、装置軸方向(建物上下方向)に隣接する内部剛性板20の装置径方向内側の端部EDにおける複数の内部剛性板20の装置軸方向の間隔DDと略同一となるように各々形成されている。このため、複数の押入部34の装置軸方向の厚さ寸法Bは、押入部34が押入されている内部弾性板18の装置軸方向の厚さ寸法とも各々略同一とされている。これにより、複数の押入部34は、装置径方向内側の端部EDにおいて内部剛性板20の装置軸方向の間隔DDを塞ぐように形成されている。 As shown in FIG. 3, the thickness dimension B of the plurality of push-in portions 34 in the device axial direction is equal to The distances DD of the internal rigid plates 20 in the device axial direction are approximately the same. Therefore, the thickness dimension B of the plurality of push-in portions 34 in the device axial direction is also approximately the same as the thickness dimension of the internal elastic plate 18 into which the push-in portions 34 are pushed in, in the device axial direction. Thereby, the plurality of push-in portions 34 are formed so as to close the interval DD of the internal rigid plate 20 in the device axial direction at the end ED on the inside in the device radial direction.

プラグ30の軸芯部32の外径DI及び装置径方向に沿った断面の面積AS(いずれも図2参照)とプラグ30の複数の押入部34の数N及び内部剛性板20の装置径方向内側の端部EDにおける装置軸方向の厚さ寸法Bは、装置軸方向に沿った荷重に対する押入部34のせん断強度がプラグ30の引張強度を上回るように設定されている。 The outer diameter DI of the shaft core portion 32 of the plug 30, the area AS of the cross section along the device radial direction (both refer to FIG. 2), the number N of the plurality of push-in portions 34 of the plug 30, and the device radial direction of the internal rigid plate 20 The thickness dimension B in the axial direction of the device at the inner end ED is set so that the shear strength of the push-in portion 34 against the load along the axial direction of the device exceeds the tensile strength of the plug 30.

引張強度の評価指標となるプラグ30の引張荷重により破断する際の荷重(ここでは、破断引張荷重WTBと称する)は、例えば、WTB=AS×σと近似的に表すことができる。ここで、ASは、プラグ30の軸芯部32の装置径方向に沿った断面積(有効断面積)、σは、プラグ30の引張破断応力を各々表す。 The load at which the plug 30 breaks due to a tensile load (herein referred to as breaking tensile load WTB), which is an evaluation index of tensile strength, can be approximately expressed as, for example, WTB=AS×σ. Here, AS represents the cross-sectional area (effective cross-sectional area) of the shaft core portion 32 of the plug 30 along the device radial direction, and σ represents the tensile breaking stress of the plug 30, respectively.

せん断強度の評価指標としてプラグ30の押入部34にせん断き裂が生じる荷重(以下、せん断破壊荷重WSFと称する)用いることができる。押入部34は内部剛性板20に沿って装置径方向に延在されていることから押入部34の内部剛性板20との接触面の法線方向は装置軸方向と略同一とすると、せん断破壊荷重WSFは、例えば、WSF=π×DI×B×τ×Nと近似的に表すことができる。この近似式は、せん断破壊によるき裂が押入部34の付け根部分、すなわち、装置径方向内側の端部EDにおいて装置軸方向に沿って生じるとの仮定に基づいて導かれる。ここで、πは円周率、DIはプラグ30の軸芯部32の外径、Bは押入部34の装置径方向内側の端部EDにおける装置軸方向の厚さ寸法、Nは軸芯部32の外側部に形成された押入部34の数、τは押入部34のせん断破壊応力を各々表す。 A load that causes a shear crack in the push-in portion 34 of the plug 30 (hereinafter referred to as shear failure load WSF) can be used as an evaluation index of shear strength. Since the push-in portion 34 extends in the radial direction of the device along the internal rigid plate 20, if the normal direction of the contact surface of the push-in portion 34 with the internal rigid plate 20 is approximately the same as the axial direction of the device, shear failure will occur. The load WSF can be approximately expressed as, for example, WSF=π×DI×B×τ×N. This approximate expression is derived based on the assumption that a crack due to shear failure occurs along the device axial direction at the root portion of the push-in portion 34, that is, at the end ED on the inside in the device radial direction. Here, π is the circumference, DI is the outer diameter of the shaft core portion 32 of the plug 30, B is the thickness dimension in the device axial direction at the end ED on the inner side in the device radial direction of the push-in portion 34, and N is the shaft core portion The number of push-in portions 34 formed on the outer side of 32 and τ represent the shear fracture stress of the push-in portions 34, respectively.

ここでは、せん断破壊荷重WSFを破断引張荷重WTBよりも大きくする(WSF>WTB)ことにより、装置軸方向に沿った荷重に対する押入部34のせん断強度がプラグ30の引張強度を上回るように設定されている。このため、WSF>WTBから、(τ/σ)×(π×DI×B×N)>ASの関係が導かれる。ここで、せん断破壊応力τと引張破断応力σの比τ/σは、プラグ30を構成する材料に依存する係数αと置き換えることができるため(α×π×DI×B×N)>ASの関係が成り立つ。このため、軸芯部32の外径DA及び断面積ASと押入部34の数N及び装置軸方向の厚さ寸法Bを、(α×π×DI×B×N)>ASの関係を満たして設定することにより押入部34のせん断強度がプラグ30の引張強度を上回るように設定することができる。なお、係数αについては、プラグ30を構成する材料の物性値に基づいて算定されてもよく、室内実験等により算出されてもよい。 Here, by making the shear failure load WSF larger than the failure tensile load WTB (WSF>WTB), the shear strength of the push-in part 34 against the load along the device axis direction is set to exceed the tensile strength of the plug 30. ing. Therefore, the relationship (τ/σ)×(π×DI×B×N)>AS is derived from WSF>WTB. Here, the ratio τ/σ of the shear fracture stress τ and the tensile fracture stress σ can be replaced with a coefficient α that depends on the material constituting the plug 30, so that (α×π×DI×B×N)>AS A relationship is established. Therefore, the outer diameter DA and cross-sectional area AS of the shaft core portion 32, the number N of the push-in portions 34, and the thickness dimension B in the axial direction of the device satisfy the relationship (α×π×DI×B×N)>AS. By setting this, the shear strength of the push-in portion 34 can be set to exceed the tensile strength of the plug 30. Note that the coefficient α may be calculated based on the physical property values of the material constituting the plug 30, or may be calculated by indoor experiments or the like.

プラグ30の軸芯部32の上端部は、上部フランジ板14の下側孔14Bに挿入されている。また、軸芯部32の装置上方側における上部フランジ板14の上側孔14Aの内部には、軸芯部32の上端部と接合又は一体成形された略円板状の上側蓋部36が配置されている。 The upper end of the shaft portion 32 of the plug 30 is inserted into the lower hole 14B of the upper flange plate 14. Furthermore, a substantially disc-shaped upper lid portion 36 that is joined or integrally formed with the upper end portion of the shaft core portion 32 is disposed inside the upper hole 14A of the upper flange plate 14 on the upper side of the device of the shaft core portion 32. ing.

プラグ30の軸芯部32の下端部は、下部フランジ板16の上側孔16Bに挿入されている。また、軸芯部32の装置下方側における下部フランジ板16の下側孔16Aの内部には、軸芯部32の下端部と接合又は一体成形された略円板状の下側蓋部38が配置されている。 The lower end of the shaft core 32 of the plug 30 is inserted into the upper hole 16B of the lower flange plate 16. Further, inside the lower hole 16A of the lower flange plate 16 on the lower side of the device of the shaft core portion 32, there is a substantially disc-shaped lower lid portion 38 that is joined or integrally formed with the lower end portion of the shaft core portion 32. It is located.

(作用、効果)
次に、本実施形態に係る免震装置10の作用並びに効果について説明する。
(action, effect)
Next, the operation and effects of the seismic isolation device 10 according to this embodiment will be explained.

本実施形態に係る免震装置10によれば、プラグ30は、内部剛性板20よりも低剛性に形成され、外側部が複数の内部剛性板20と各々密着する軸芯部32を備えている。また、プラグ30は、内部弾性板18よりも高剛性に形成され、軸芯部32の外側部が内部弾性板18へ向けて突出されると共に複数の内部剛性板20の間に各々押入された複数の押入部34を備えている。このため、プラグ30は弾性積層体12のプラグ挿入孔28に隙間なく挿入され、免震装置10の装置軸方向に沿って荷重が作用した場合にプラグ30の軸芯部32と押入部34は弾性積層体12との間に抗力を生じさせる。これにより、装置軸方向の荷重によるプラグ30の装置軸方向の変位を抑制又は防止することができ、免震装置10の免震力を維持することができる。 According to the seismic isolation device 10 according to the present embodiment, the plug 30 is formed to have a lower rigidity than the internal rigid plates 20, and includes a shaft core portion 32 whose outer portion is in close contact with each of the plurality of internal rigid plates 20. . Further, the plug 30 is formed to have higher rigidity than the internal elastic plate 18, and the outer part of the shaft core part 32 protrudes toward the internal elastic plate 18 and is inserted between the plurality of internal rigid plates 20. A plurality of push-in portions 34 are provided. Therefore, the plug 30 is inserted into the plug insertion hole 28 of the elastic laminate 12 without any gaps, and when a load is applied along the axial direction of the seismic isolation device 10, the axial center portion 32 and the push-in portion 34 of the plug 30 are A drag force is generated between the elastic laminate 12 and the elastic laminate 12. Thereby, displacement of the plug 30 in the device axial direction due to a load in the device axial direction can be suppressed or prevented, and the seismic isolation force of the seismic isolation device 10 can be maintained.

また、本実施形態に係る免震装置10によれば、装置径方向外側へ向けて突出されると共に内部弾性板18に押入された押入部34は、免震装置10の装置軸方向に荷重が作用した際に抗力を生じさせ、プラグ30の装置軸方向に沿った変位を抑制又は防止する。ここで、せん断強度を評価する指標となるせん断破壊荷重WSFは、例えば、WSF=π×DI×B×τ×Nと近似的に表すことができる。また、プラグ30の引張強度を評価するための破断引張荷重WTBは、例えば、WTB=AS×σと近似的に表すことができる。このため、(α×π×DI×B×N)>ASの関係を満たすようにプラグ30の軸芯部32の外径DI及び断面積ASと押入部34の数N及び装置軸方向の厚さ寸法Bを適切に設定することによってプラグ30自体が引張破断する荷重よりも小さい荷重では押入部34のせん断破壊を抑制又は防止することができる。これにより、装置軸方向に沿った荷重によるプラグ30の装置軸方向の変位を適切に抑制又は防止することができ、免震装置10の免震力を維持することができる。 Furthermore, according to the seismic isolation device 10 according to the present embodiment, the push-in portion 34 that is projected outward in the radial direction of the device and is pushed into the internal elastic plate 18 is capable of handling a load in the axial direction of the seismic isolation device 10. When applied, a drag force is generated to suppress or prevent displacement of the plug 30 along the device axis direction. Here, the shear failure load WSF, which is an index for evaluating the shear strength, can be approximately expressed as, for example, WSF=π×DI×B×τ×N. Further, the breaking tensile load WTB for evaluating the tensile strength of the plug 30 can be approximately expressed as WTB=AS×σ, for example. For this reason, the outer diameter DI and cross-sectional area AS of the shaft core portion 32 of the plug 30, the number N of the push-in portions 34, and the thickness in the axial direction of the device are determined so as to satisfy the relationship (α×π×DI×B×N)>AS. By appropriately setting the width dimension B, it is possible to suppress or prevent shear failure of the push-in portion 34 under a load smaller than the load at which the plug 30 itself undergoes tensile failure. Thereby, displacement of the plug 30 in the axial direction of the device due to a load along the axial direction of the device can be appropriately suppressed or prevented, and the seismic isolation force of the seismic isolation device 10 can be maintained.

さらに、本実施形態に係る免震装置10によれば、内部剛性板20の装置径方向内側の端部EDにおける押入部34の装置軸方向の厚さ寸法Bは、内部剛性板20の装置軸方向の間隔DDと略同一に各々形成されている。このため、装置軸方向に沿った荷重に対する押入部34のせん断強度を向上させることができる。これにより、装置軸方向に沿った荷重が作用した場合に、押入部34はせん断強度を適切に確保した上で弾性積層体12との間に抗力を生じさせ、装置軸方向の荷重によるプラグ30の装置軸方向の変位を抑制又は防止することができる。 Furthermore, according to the seismic isolation device 10 according to the present embodiment, the thickness dimension B in the device axial direction of the push-in portion 34 at the device radially inner end ED of the internal rigid plate 20 is They are each formed to have substantially the same distance in the direction DD. Therefore, the shear strength of the push-in portion 34 against loads along the device axis direction can be improved. As a result, when a load is applied in the axial direction of the device, the push-in portion 34 generates a drag force with the elastic laminate 12 while ensuring appropriate shear strength, and the plug 30 due to the load in the axial direction of the device Displacement in the axial direction of the device can be suppressed or prevented.

以上説明したように、本実施形態に係る免震装置10は、装置軸方向の荷重によるプラグ30の装置軸方向の変位を抑制又は防止できる。 As described above, the seismic isolation device 10 according to the present embodiment can suppress or prevent displacement of the plug 30 in the axial direction of the device due to a load in the axial direction of the device.

(第2実施形態)
以下、図4~図5を用いて、本発明の第2実施形態に係る免震装置40について説明する。なお、前述した第1実施形態と同一構成部分については、同一番号を付してその説明を省略する。
(Second embodiment)
A seismic isolation device 40 according to a second embodiment of the present invention will be described below with reference to FIGS. 4 and 5. Note that the same components as those in the first embodiment described above are given the same numbers and the description thereof will be omitted.

本実施形態に係る免震装置40によれば、プラグ挿入孔28には、その内側面に沿って雌ねじ部42が形成されている。また、プラグ44には、内部弾性板18よりも高剛性かつ内部剛性板20よりも低剛性に形成されると共に装置軸方向に沿って略円柱状に形成された軸部46と軸部46の外側面に雌ねじ部42と螺合可能に形成された雄ねじ部48が設けられている。 According to the seismic isolation device 40 according to the present embodiment, the plug insertion hole 28 has a female threaded portion 42 formed along the inner surface thereof. The plug 44 also includes a shaft portion 46 which is formed to have higher rigidity than the internal elastic plate 18 and lower rigidity than the internal rigid plate 20, and is formed into a substantially cylindrical shape along the device axis direction. A male threaded portion 48 is provided on the outer surface so that it can be screwed into the female threaded portion 42 .

本実施形態に係る免震装置40によれば、プラグ挿入孔28の内側面には雌ねじ部42が形成され、プラグ44の軸部46には雌ねじ部42と螺合可能な雄ねじ部48が形成されている。このため、プラグ44を弾性積層体12のプラグ挿入孔28に容易に螺入することができ、装置軸方向に沿って荷重が作用した場合にプラグ44と弾性積層体12との間に抗力を生じさせる。これにより、装置軸方向の荷重によるプラグ44の装置軸方向の変位を抑制又は防止することができ、免震装置40の免震力を維持することができる。 According to the seismic isolation device 40 according to the present embodiment, a female threaded portion 42 is formed on the inner surface of the plug insertion hole 28, and a male threaded portion 48 that can be screwed into the female threaded portion 42 is formed on the shaft portion 46 of the plug 44. has been done. Therefore, the plug 44 can be easily screwed into the plug insertion hole 28 of the elastic laminate 12, and when a load is applied along the axial direction of the device, there is no resistance between the plug 44 and the elastic laminate 12. bring about Thereby, displacement of the plug 44 in the device axial direction due to a load in the device axial direction can be suppressed or prevented, and the seismic isolation force of the seismic isolation device 40 can be maintained.

[その他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
[Other embodiments]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and it is of course possible to implement various modifications other than the above without departing from the spirit thereof. It is.

なお、ここでは、図2に示されるように、内部弾性板18と内部剛性板20は、装置径方向の厚さ寸法が略同一となるように表されているが、これに限らず、例えば、内部弾性板の厚さ寸法が内部剛性板の厚さ寸法よりも厚く形成されてもよい。 Note that, as shown in FIG. 2, the internal elastic plate 18 and the internal rigid plate 20 are shown to have substantially the same thickness in the radial direction of the device, but are not limited to this, for example. The thickness of the internal elastic plate may be greater than the thickness of the internal rigid plate.

さらに、ここでは、内部弾性板18と内部剛性板20は円板状に形成されているとして説明したが、これに限らず、内部弾性板と内部剛性板は、例えば、矩形状等に形成されてよい。 Furthermore, although the internal elastic plate 18 and the internal rigid plate 20 are described here as being formed in a disk shape, the internal elastic plate and the internal rigid plate are not limited to this, and may be formed in a rectangular shape, for example. It's okay.

また、ここでは、上部フランジ板14と下部フランジ板16は略平板状に形成されているとして説明したが、これに限らず、上部フランジ板と下部フランジ板は、例えば、円板状等に形成されてよい。 In addition, although the upper flange plate 14 and the lower flange plate 16 have been described as being formed into a substantially flat plate shape, the upper flange plate and the lower flange plate are, for example, formed into a disk shape. It's okay to be.

さらに、ここでは、内部剛性板20の装置径方向内側の端部EDにおける押入部34の厚さ寸法Bは、内部剛性板20の間隔DDと略同一に各々形成されているとして説明したが、例えば、押入部の数を増やすことにより、厚さ寸法は内部剛性板の間隔よりも短く形成されてもよい。 Furthermore, here, the description has been made assuming that the thickness dimension B of the push-in portion 34 at the end ED of the internal rigid plate 20 on the inner side in the device radial direction is formed to be approximately the same as the interval DD of the internal rigid plate 20. For example, by increasing the number of push-in portions, the thickness may be made shorter than the interval between the internal rigid plates.

また、ここでは、せん断破壊荷重WSFと破断引張荷重WTBの近似式を定義することにより装置軸方向に沿った荷重に対する押入部34のせん断強度がプラグ30の引張強度を上回るように設定できるとして説明したが、これに限らず、例えば、有限要素法による直接解析や模型実験等に基づいて強度評価を行った上でプラグの各寸法が設定されてもよい。 In addition, the following description assumes that by defining approximate expressions for the shear failure load WSF and the failure tensile load WTB, the shear strength of the push-in portion 34 against loads along the device axis direction can be set to exceed the tensile strength of the plug 30. However, the present invention is not limited to this, and each dimension of the plug may be set after performing strength evaluation based on, for example, direct analysis using the finite element method or model experiment.

さらに、ここでは、図2に示されるように、第1孔部24と第2孔部26は、内径が略同一となるように表されているが、これに限らず、例えば、プラグの押入部が押入される第1孔部の内径が第2孔部の内径よりも大きく形成されてもよい。 Furthermore, as shown in FIG. 2, the first hole part 24 and the second hole part 26 are shown to have substantially the same inner diameter, but the invention is not limited to this, and for example, The inner diameter of the first hole into which the part is pushed may be larger than the inner diameter of the second hole.

10、40…免震装置、12…弾性積層体、18…内部弾性板、20…内部剛性板、24…第1孔部(孔)、26…第2孔部(孔)、28…プラグ挿入孔、30、44…プラグ、32…軸芯部、34…押入部、42…雌ねじ部、46…軸部、48…雄ねじ部、AS…軸芯部の断面積、B…押入部の厚さ寸法、CL…中心軸、DD…間隔、DI…軸芯部の外径、ED…端部、N…押入部の数、WSF…せん断破壊荷重(せん断強度)、WTB…破断引張荷重(引張強度)、σ…引張破断応力、τ…せん断破壊応力 DESCRIPTION OF SYMBOLS 10, 40... Seismic isolation device, 12... Elastic laminate, 18... Internal elastic plate, 20... Internal rigid plate, 24... First hole (hole), 26... Second hole (hole), 28... Plug insertion Hole, 30, 44...Plug, 32...Shaft part, 34...Pushing part, 42...Female thread part, 46...Shaft part, 48...Male thread part, AS...Cross-sectional area of shaft core part, B...Thickness of push-in part Dimensions, CL...center axis, DD...interval, DI...outer diameter of shaft core, ED...end, N...number of push-in parts, WSF...shear failure load (shear strength), WTB...breakage tensile load (tensile strength) ), σ…Tensile fracture stress, τ…Shear fracture stress

Claims (1)

弾性体の板により形成され、略円形の孔を備えた複数の内部弾性板と前記内部弾性板よりも剛性の高い板により形成され、略円形の孔を備えた複数の内部剛性板が装置軸方向に沿って交互に積層されると共に、前記内部弾性板の前記孔と前記内部剛性板の前記孔により装置軸方向に貫通したプラグ挿入孔が形成された弾性積層体と、
前記プラグ挿入孔の内側面に形成された雌ねじ部と、
前記内部弾性板よりも高剛性かつ前記内部剛性板よりも低剛性に形成され、装置軸方向に沿って略円柱状に形成された軸部と前記軸部の外側面に前記雌ねじ部と螺合可能に形成された雄ねじ部を備え、前記プラグ挿入孔に螺入されたプラグと、
を含んで構成された免震装置。
A plurality of internal elastic plates formed of elastic plates and provided with substantially circular holes; and a plurality of internal rigid plates formed of plates with higher rigidity than the internal elastic plates and provided with substantially circular holes are connected to the device axis. an elastic laminate that is alternately laminated along the direction and has a plug insertion hole penetrating in the axial direction of the device formed by the hole of the internal elastic plate and the hole of the internal rigid plate;
a female thread formed on the inner surface of the plug insertion hole;
A shaft portion formed to have a higher rigidity than the internal elastic plate and a lower rigidity than the internal rigid plate, and formed in a substantially cylindrical shape along the axial direction of the device, and an outer surface of the shaft portion are screwed with the female thread portion. a plug that is screwed into the plug insertion hole;
A seismic isolation device consisting of:
JP2020205379A 2020-12-10 2020-12-10 Seismic isolation device Active JP7427578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020205379A JP7427578B2 (en) 2020-12-10 2020-12-10 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020205379A JP7427578B2 (en) 2020-12-10 2020-12-10 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2022092525A JP2022092525A (en) 2022-06-22
JP7427578B2 true JP7427578B2 (en) 2024-02-05

Family

ID=82067941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020205379A Active JP7427578B2 (en) 2020-12-10 2020-12-10 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP7427578B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501532B1 (en) * 2022-10-17 2023-02-21 (주)솔방이엔지 Earthquake reduction device for water tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074096A (en) 1999-09-07 2001-03-23 Fujita Corp Manufacture of laminated rubber device for base isolation
JP2001343040A (en) 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP2018179256A (en) 2017-04-20 2018-11-15 オイレス工業株式会社 Base isolation support device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074096A (en) 1999-09-07 2001-03-23 Fujita Corp Manufacture of laminated rubber device for base isolation
JP2001343040A (en) 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP2018179256A (en) 2017-04-20 2018-11-15 オイレス工業株式会社 Base isolation support device

Also Published As

Publication number Publication date
JP2022092525A (en) 2022-06-22

Similar Documents

Publication Publication Date Title
JP5541329B2 (en) Seismic isolation device
JP7427578B2 (en) Seismic isolation device
WO2017183542A1 (en) Seismic isolator apparatus
JP3205393U (en) Seismic isolation device
JP5692335B2 (en) Seismic isolation device
TWI672447B (en) Base isolation supporting device
JP6279793B1 (en) Seismic reduction hardware
JP2016223586A (en) Lamination rubber support
JP4483619B2 (en) Laminated rubber bearing with hardening properties
JP2019127994A (en) Aseismic base isolation support device
JP2006207680A (en) Laminated rubber supporter
JP5703035B2 (en) Seismic isolation device
WO2018016402A1 (en) Earthquake-proof support device
JP5136622B2 (en) Laminated rubber body with lead plug
JP2006226414A (en) Multilayered rubber bearing having hardening characteristic
JP7390208B2 (en) Seismic isolation device
JP2002181129A (en) Supporting device
JP2000081087A (en) Base isolation device
JP7421982B2 (en) Seismic isolation device
JP7404138B2 (en) Seismic isolation device
TWI704303B (en) Base isolation supporting device
JP5577147B2 (en) Isolation structure
JP7339149B2 (en) Seismic isolation device and its mounting structure
JP7473380B2 (en) Seismic isolation device
JP2000145884A (en) Laminated rubber support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240124

R150 Certificate of patent or registration of utility model

Ref document number: 7427578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150