JP7425660B2 - Polishing liquid composition for silicon oxide film - Google Patents

Polishing liquid composition for silicon oxide film Download PDF

Info

Publication number
JP7425660B2
JP7425660B2 JP2020069244A JP2020069244A JP7425660B2 JP 7425660 B2 JP7425660 B2 JP 7425660B2 JP 2020069244 A JP2020069244 A JP 2020069244A JP 2020069244 A JP2020069244 A JP 2020069244A JP 7425660 B2 JP7425660 B2 JP 7425660B2
Authority
JP
Japan
Prior art keywords
group
component
polishing
polishing liquid
liquid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020069244A
Other languages
Japanese (ja)
Other versions
JP2021166254A (en
Inventor
哲史 山口
将来 井上
孝直 盛池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2020069244A priority Critical patent/JP7425660B2/en
Publication of JP2021166254A publication Critical patent/JP2021166254A/en
Application granted granted Critical
Publication of JP7425660B2 publication Critical patent/JP7425660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本開示は、酸化珪素膜用研磨液組成物、これを用いた半導体基板の製造方法及び研磨方法に関する。 The present disclosure relates to a polishing liquid composition for a silicon oxide film, and a method for manufacturing and polishing a semiconductor substrate using the same.

近年、半導体素子の多層化、高精細化が飛躍的に進み、さらに微細なパターン形成技術が使用されるようになってきている。それに伴い、半導体素子の表面構造がさらに複雑になると共に、表面段差もさらに大きくなってきている。半導体素子を製造する際、基板上に形成された段差(表面凹凸)を平坦化する技術としてケミカルメカニカルポリッシング(CMP)技術が利用される。高精細化が進むにつれ、研磨液組成物には、平坦性が良好でありながら、高速で研磨できることが望まれるようになってきている。 In recent years, the multilayering and high definition of semiconductor devices have progressed dramatically, and even finer pattern forming techniques have come into use. Along with this, the surface structure of semiconductor devices has become more complex, and the surface level difference has also become larger. When manufacturing semiconductor devices, a chemical mechanical polishing (CMP) technique is used to flatten steps (surface irregularities) formed on a substrate. With the progress of higher definition, it has become desirable for polishing liquid compositions to be capable of high-speed polishing while having good flatness.

例えば、特許文献1には、酸化珪素膜の高研磨速度の確保、スクラッチ低減を目的として、特定のベタイン構造化合物又はベタイン構造化合物の重合体を含むCMP用の研磨剤が開示されている。特許文献2には、酸化珪素膜の高研磨速度の確保を目的として、ベタイン構造を含む水溶性高分子を含む酸化珪素膜用研磨液組成物が開示されている。 For example, Patent Document 1 discloses a polishing agent for CMP containing a specific betaine structure compound or a polymer of a betaine structure compound for the purpose of ensuring a high polishing rate of a silicon oxide film and reducing scratches. Patent Document 2 discloses a polishing liquid composition for a silicon oxide film containing a water-soluble polymer having a betaine structure for the purpose of ensuring a high polishing rate of a silicon oxide film.

特開2009-260236号公報JP2009-260236A 特開2019-121641号公報JP2019-121641A

半導体素子の多層化、高精細化の進展に伴い、研磨液組成物に対して更なる平坦性の向上(例えば、凹部の過剰研磨量の低減)が求められている。しかし、特許文献1等に開示された従来の酸化珪素膜用の研磨液組成物を用いる場合、凸部の研磨速度は向上するものの、同時に凹部の研磨速度も向上してしまうため、平坦性が悪化するという問題があった。 As semiconductor devices become more multi-layered and have higher definition, polishing liquid compositions are required to further improve flatness (for example, reduce the amount of excessive polishing of recesses). However, when using the conventional polishing liquid composition for silicon oxide films disclosed in Patent Document 1, etc., although the polishing rate of convex portions is improved, the polishing rate of concave portions is also increased at the same time, resulting in poor flatness. The problem was that it was getting worse.

そこで、本開示は、酸化珪素膜の研磨速度を確保しつつ、平坦性を向上可能な酸化珪素膜用研磨液組成物、これを用いた半導体基板の製造方法及び研磨方法等を提供する。 Therefore, the present disclosure provides a polishing liquid composition for a silicon oxide film that can improve the flatness while ensuring a polishing rate of the silicon oxide film, a method for manufacturing a semiconductor substrate using the same, a method for polishing a semiconductor substrate, and the like.

本開示は、一態様において、酸化セリウム粒子(成分A)と、高分子化合物(成分B)と、窒素含有複素芳香族化合物(成分C)と、水系媒体とを含有し、成分Bは、下記式(I)で表される構成単位b1を含む重合体である、酸化珪素膜用研磨液組成物に関する。
前記式(I)中、R1~R3は同一又は異なって、水素原子、メチル基、又はエチル基を示し、R4は、炭素数1以上4以下のアルキレン基、又は-Y1-OPO3 --Y2-を示し、Y1及びY2は同一又は異なって、炭素数1以上4以下のアルキレン基を示し、R5及びR6は同一又は異なって、炭素数1以上4以下の炭化水素基を示し、X1は、O又はNR7を示し、R7は、水素原子又は炭素数1以上4以下の炭化水素基を示し、X2は、炭素数1以上4以下の炭化水素基、-R8SO3 -、又は-R9COO-を示し、R8及びR9は同一又は異なって、炭素数1以上4以下のアルキレン基を示す。
ただし、X2は、R4が炭素数1以上4以下のアルキレン基のとき、-R8SO3 -、又は-R9COO-であり、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基である。
In one embodiment, the present disclosure includes cerium oxide particles (component A), a polymer compound (component B), a nitrogen-containing heteroaromatic compound (component C), and an aqueous medium, and component B is as follows: The present invention relates to a polishing liquid composition for a silicon oxide film, which is a polymer containing the structural unit b1 represented by formula (I).
In the formula (I), R 1 to R 3 are the same or different and represent a hydrogen atom, a methyl group, or an ethyl group, and R 4 is an alkylene group having 1 to 4 carbon atoms, or -Y 1 -OPO 3 - -Y 2 -, Y 1 and Y 2 are the same or different and represent an alkylene group having 1 to 4 carbon atoms, and R 5 and R 6 are the same or different and represent an alkylene group having 1 to 4 carbon atoms. represents a hydrocarbon group, X 1 represents O or NR 7 , R 7 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and X 2 represents a hydrocarbon group having 1 to 4 carbon atoms group, -R 8 SO 3 - , or -R 9 COO - , and R 8 and R 9 are the same or different and represent an alkylene group having 1 or more and 4 or less carbon atoms.
However, when R 4 is an alkylene group having 1 to 4 carbon atoms, X 2 is -R 8 SO 3 - or -R 9 COO - , and R 4 is -Y 1 -OPO 3 - -Y 2 When -, it is a hydrocarbon group having 1 or more and 4 or less carbon atoms.

本開示は、一態様において、本開示の酸化珪素膜用研磨液組成物を用いて被研磨膜を研磨する工程を含む、半導体基板の製造方法に関する。 In one aspect, the present disclosure relates to a method for manufacturing a semiconductor substrate, including a step of polishing a film to be polished using the polishing liquid composition for a silicon oxide film of the present disclosure.

本開示は、一態様において、本開示の酸化珪素膜用研磨液組成物を用いて被研磨膜を研磨する工程を含む、研磨方法に関する。 In one aspect, the present disclosure relates to a polishing method including a step of polishing a film to be polished using the polishing liquid composition for a silicon oxide film of the present disclosure.

本開示は、一態様において、酸化珪素膜用研磨液組成物を調製するための研磨液キットであって、酸化セリウム粒子(成分A)及び水系媒体を含む砥粒分散液(第1液)と、上記式(I)で表される構成単位b1を含む重合体である高分子化合物(成分B)及び窒素含有複素芳香族化合物(成分C)を含む添加剤水溶液(第2液)と、を相互に混合されない状態で含み、これらが使用時に混合され、必要に応じて水系媒体を用いて希釈される、研磨液キットに関する。 In one aspect, the present disclosure provides a polishing liquid kit for preparing a polishing liquid composition for a silicon oxide film, which comprises: an abrasive dispersion liquid (first liquid) containing cerium oxide particles (component A) and an aqueous medium; , an additive aqueous solution (second liquid) containing a polymer compound (component B) which is a polymer containing the structural unit b1 represented by the above formula (I) and a nitrogen-containing heteroaromatic compound (component C). It relates to a polishing liquid kit containing mutually unmixed liquids, which are mixed at the time of use and optionally diluted with an aqueous medium.

本開示によれば、一態様において、酸化珪素膜の研磨速度を確保しつつ、平坦性を向上可能な酸化珪素膜用研磨液組成物を提供できる。 According to the present disclosure, in one embodiment, it is possible to provide a polishing liquid composition for a silicon oxide film that can improve the flatness while ensuring the polishing rate of the silicon oxide film.

本発明者らが鋭意検討した結果、ベタイン構造を含む高分子化合物と窒素含有複素芳香環化合物とを併用することで、高研磨速度及び高平坦性を実現できるという知見にも基づく。 As a result of intensive studies by the present inventors, the present invention is also based on the knowledge that a high polishing rate and high flatness can be achieved by using a polymer compound containing a betaine structure and a nitrogen-containing heteroaromatic ring compound together.

すなわち、本開示は、一態様において、酸化セリウム粒子(成分A)と、高分子化合物(成分B)と、窒素含有複素芳香族化合物(成分C)と、水系媒体とを含有し、成分Bは、上記式(I)で表される構成単位b1を含む重合体である、酸化珪素膜用研磨液組成物(以下、「本開示の研磨液組成物」ともいう)に関する。 That is, in one embodiment, the present disclosure contains cerium oxide particles (component A), a polymer compound (component B), a nitrogen-containing heteroaromatic compound (component C), and an aqueous medium, and component B contains , relates to a polishing liquid composition for a silicon oxide film (hereinafter also referred to as "polishing liquid composition of the present disclosure"), which is a polymer containing the structural unit b1 represented by the above formula (I).

本開示において、ベタイン構造とは、正電荷と負電荷とを同一分子内に持ち、電荷が中和されている構造を示す。前記ベタイン構造は、前記正電荷と負電荷とを、好ましくは隣り合わない位置に持ち、そして、好ましくは1つ以上の原子を介する位置に持つ。 In the present disclosure, a betaine structure refers to a structure that has positive charges and negative charges in the same molecule, and the charges are neutralized. The betaine structure has the positive charge and the negative charge, preferably at non-adjacent positions, and preferably at positions with one or more atoms interposed between them.

本開示の効果発現メカニズムの詳細について明らかではないが、以下のように推察される。
研磨速度を向上させるためには、セリア粒子の被研磨対象物(酸化珪素膜)への接触頻度を向上させることが必要となる。成分Bはセリアと酸化珪素膜の双方に吸着することによりバインダーとして働き、セリア粒子の酸化珪素膜への接触頻度が向上すると考えられる。一方、成分Cは酸化珪素膜表面に効率良く吸着するが、研磨応力が強く掛かる凸部では、吸着の脱離が促進することで研磨が促進し、研磨応力が比較的低い凹部では成分Cの保護膜作用が強く働くことで凹部の研磨が抑制される。その結果、高研磨速度を維持しながら、高平坦性を実現できると考えられる。
但し、本開示はこれらのメカニズムに限定して解釈されなくてもよい。
Although the details of the effect-producing mechanism of the present disclosure are not clear, it is inferred as follows.
In order to improve the polishing rate, it is necessary to increase the frequency with which ceria particles come into contact with the object to be polished (silicon oxide film). It is believed that component B acts as a binder by adsorbing to both ceria and the silicon oxide film, thereby increasing the frequency of contact of ceria particles with the silicon oxide film. On the other hand, component C is efficiently adsorbed on the silicon oxide film surface, but in convex parts where polishing stress is strong, polishing is accelerated by promoting desorption of adsorption, and in concave parts where polishing stress is relatively low, component C is absorbed. The strong protective film action suppresses polishing of the recesses. As a result, it is thought that high flatness can be achieved while maintaining a high polishing rate.
However, the present disclosure does not need to be interpreted as being limited to these mechanisms.

[酸化セリウム粒子(成分A)]
本開示の研磨液組成物は、研磨砥粒として酸化セリウム(以下、「セリア」ともいう)粒子(以下、単に「成分A」ともいう)を含有する。成分Aは、1種類でもよいし、2種類以上の組合せであってもよい。
成分Aとしては、正帯電性の酸化セリウム粒子(以下、「正帯電セリア」ともいう)又は負帯電性の酸化セリウム粒子(以下、「負帯電セリア」ともいう)を用いることができるが、研磨速度向上の観点から、正電荷セリアが好ましい。成分Aの帯電性は、例えば、電気音響法(ESA法:Electorokinetic Sonic Amplitude)により求められる砥粒粒子表面における電位(表面電位)を測定することにより確認できる。表面電位は、例えば、「ゼータプローブ」(協和界面化学社製)を用いて測定でき、具体的には実施例に記載の方法により測定できる。
[Cerium oxide particles (component A)]
The polishing liquid composition of the present disclosure contains cerium oxide (hereinafter also referred to as "ceria") particles (hereinafter also simply referred to as "component A") as polishing abrasive grains. Component A may be one type or a combination of two or more types.
As component A, positively charged cerium oxide particles (hereinafter also referred to as "positively charged ceria") or negatively charged cerium oxide particles (hereinafter also referred to as "negatively charged ceria") can be used, but polishing From the viewpoint of speed improvement, positively charged ceria is preferred. The charging property of component A can be confirmed, for example, by measuring the electric potential (surface potential) on the surface of the abrasive grain determined by electroacoustic amplification (ESA method). The surface potential can be measured using, for example, "Zeta Probe" (manufactured by Kyowa Kaimen Kagaku Co., Ltd.), and specifically can be measured by the method described in Examples.

成分Aの製造方法、形状、及び表面状態については特に限定されなくてもよい。成分Aとしては、例えば、コロイダルセリア、不定形セリア、セリアコートシリカ等が挙げられる。コロイダルセリアは、例えば、特表2010-505735号公報の実施例1~4に記載の方法で、ビルドアッププロセスにより得ることができる。不定形セリアとしては、例えば、粉砕セリアが挙げられる。粉砕セリアの一実施形態としては、例えば、炭酸セリウムや硝酸セリウムなどのセリウム化合物を焼成、粉砕して得られる焼成粉砕セリアが挙げられる。粉砕セリアのその他の実施形態としては、例えば、無機酸や有機酸の存在下でセリア粒子を湿式粉砕することにより得られる単結晶粉砕セリアが挙げられる。湿式粉砕時に使用される無機酸としては、例えば硝酸が挙げられ、有機酸としては、例えば、カルボキシル基を有する有機酸が挙げられ、具体的には、ポリアクリル酸アンモニウム等のポリカルボン酸塩、ピコリン酸、グルタミン酸、アスパラギン酸、アミノ安息香酸及びp-ヒドロキシ安息香酸から選ばれる少なくとも一種が挙げられる。例えば、湿式粉砕時にピコリン酸、グルタミン酸、アスパラギン酸、アミノ安息香酸及びp-ヒドロキシ安息香酸から選ばれる少なくとも1種を使用した場合、正帯電セリアを得ることができ、湿式粉砕時にポリアクリル酸アンモニウム等のポリカルボン酸塩を使用した場合、負帯電セリアを得ることができる。湿式粉砕方法としては、例えば、遊星ビーズミル等による湿式粉砕が挙げられる。セリアコートシリカとしては、例えば、特開2015-63451号公報の実施例1~14もしくは特開2013-119131号公報の実施例1~4に記載の方法で、シリカ粒子表面の少なくとも一部が粒状セリアで被覆された構造を有する複合粒子が挙げられ、該複合粒子は、例えば、シリカ粒子にセリアを沈着させることで得ることができる。 There are no particular limitations on the manufacturing method, shape, and surface condition of component A. Examples of component A include colloidal ceria, amorphous ceria, and ceria coated silica. Colloidal ceria can be obtained by a build-up process, for example, by the method described in Examples 1 to 4 of Japanese Patent Publication No. 2010-505735. Examples of the amorphous ceria include ground ceria. One embodiment of the pulverized ceria includes, for example, sintered and pulverized ceria obtained by sintering and pulverizing a cerium compound such as cerium carbonate or cerium nitrate. Other embodiments of the pulverized ceria include, for example, single-crystal pulverized ceria obtained by wet-pulverizing ceria particles in the presence of an inorganic acid or an organic acid. Examples of inorganic acids used during wet pulverization include nitric acid, and examples of organic acids include organic acids having a carboxyl group. Specifically, polycarboxylic acid salts such as ammonium polyacrylate, At least one selected from picolinic acid, glutamic acid, aspartic acid, aminobenzoic acid and p-hydroxybenzoic acid can be mentioned. For example, when at least one selected from picolinic acid, glutamic acid, aspartic acid, aminobenzoic acid, and p-hydroxybenzoic acid is used during wet grinding, positively charged ceria can be obtained, and ammonium polyacrylate, etc. can be obtained during wet grinding. When a polycarboxylic acid salt of 1 is used, negatively charged ceria can be obtained. Examples of the wet pulverization method include wet pulverization using a planetary bead mill or the like. As ceria coated silica, at least a part of the surface of the silica particles is formed into a granular form by the method described in Examples 1 to 14 of JP-A No. 2015-63451 or Examples 1 to 4 of JP-A No. 2013-119131, for example. Examples include composite particles having a structure coated with ceria, which can be obtained, for example, by depositing ceria on silica particles.

成分Aの形状としては、例えば、略球状、多面体状、ラズベリー状が挙げられる。 Examples of the shape of component A include a substantially spherical shape, a polyhedral shape, and a raspberry shape.

成分Aの平均一次粒子径は、研磨速度向上の観点から、5nm以上が好ましく、10nm以上がより好ましく、20nm以上が更に好ましく、そして、研磨傷発生の抑制の観点から、300nm以下が好ましく、200nm以下がより好ましく、150nm以下が更に好ましく、100nm以下が更に好ましく、50nm以下が更に好ましい。本開示において成分Aの平均一次粒子径は、BET(窒素吸着)法によって算出されるBET比表面積S(m2/g)を用いて算出される。BET比表面積は、実施例に記載の方法により測定できる。 The average primary particle diameter of component A is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 20 nm or more, from the viewpoint of improving the polishing rate, and preferably 300 nm or less, and 200 nm or more from the viewpoint of suppressing the occurrence of polishing scratches. The following is more preferable, 150 nm or less is even more preferable, 100 nm or less is even more preferable, and even more preferably 50 nm or less. In the present disclosure, the average primary particle diameter of component A is calculated using the BET specific surface area S (m 2 /g) calculated by the BET (nitrogen adsorption) method. BET specific surface area can be measured by the method described in Examples.

本開示の研磨液組成物中の成分Aの含有量は、研磨速度向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、0.15質量%以上が更により好ましく、そして、研磨傷発生抑制の観点から、6質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましく、0.5質量%以下が更により好ましい。より具体的には、成分Aの含有量は、0.01質量%以上6質量%以下が好ましく、0.05質量%以上3質量%以下がより好ましく、0.1質量%以上1質量%以下が更に好ましく、0.15質量%以上0.5質量%以下が更により好ましい。成分Aが2種以上の組合せである場合、成分Aの含有量はそれらの合計の含有量をいう。 The content of component A in the polishing liquid composition of the present disclosure is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and still more preferably 0.1% by mass or more from the viewpoint of improving the polishing rate. It is preferably 0.15% by mass or more, even more preferably 0.15% by mass or more, and from the viewpoint of suppressing the occurrence of polishing scratches, it is preferably 6% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less, and 0.5% by mass. % or less is even more preferable. More specifically, the content of component A is preferably 0.01% by mass or more and 6% by mass or less, more preferably 0.05% by mass or more and 3% by mass or less, and 0.1% by mass or more and 1% by mass or less. is more preferable, and even more preferably 0.15% by mass or more and 0.5% by mass or less. When component A is a combination of two or more types, the content of component A refers to their total content.

[高分子化合物(成分B)]
本開示の研磨液組成物は、研磨速度向上及び平坦性向上の観点から、高分子化合物(以下、単に「成分B」ともいう)を含む。成分Bは、研磨速度向上及び平坦性向上の観点から、好ましくは水溶性高分子化合物である。成分Bは、一又は複数の実施形態において、後述する構成単位b1を含む共重合体である。成分Bの一実施形態としては、研磨速度向上及び平坦性向上の観点から、後述する構成単位b1からなるホモポリマーが挙げられる。成分Bのその他の実施形態としては、後述する構成単位b1と後述する構成単位b2とを含む共重合体、後述する構成単位b1と後述する構成単位b3とを含む共重合体、及び、後述する構成単位b1と後述する構成単位b2と後述する構成単位b3とを含む共重合体から選ばれる少なくとも1種の共重合体が挙げられる。成分Bは、研磨速度向上や平坦性向上の観点から、ホモポリマーが好ましい。成分Bは、1種であってもよいし、2種以上の組合せであってもよい。本開示において「水溶性」とは、水(20℃)に対して0.5g/100mL以上の溶解度、好ましくは2g/100mL以上の溶解度を有することをいう。
[High molecular compound (component B)]
The polishing liquid composition of the present disclosure contains a polymer compound (hereinafter also simply referred to as "component B") from the viewpoint of improving polishing speed and flatness. Component B is preferably a water-soluble polymer compound from the viewpoint of improving polishing rate and flatness. In one or more embodiments, component B is a copolymer containing the structural unit b1 described below. One embodiment of component B includes a homopolymer consisting of the structural unit b1 described below from the viewpoint of improving polishing rate and flatness. Other embodiments of component B include a copolymer containing a structural unit b1 described below and a structural unit b2 described below, a copolymer containing a structural unit b1 described below and a structural unit b3 described below, and a copolymer containing a structural unit b1 described below and a structural unit b3 described below. At least one type of copolymer selected from copolymers containing a structural unit b1, a structural unit b2 described below, and a structural unit b3 described below is exemplified. Component B is preferably a homopolymer from the viewpoint of improving polishing rate and flatness. Component B may be used alone or in a combination of two or more. In the present disclosure, "water-soluble" refers to having a solubility in water (20° C.) of 0.5 g/100 mL or more, preferably 2 g/100 mL or more.

(構成単位b1)
構成単位b1は、下記式(I)で表される構成単位b1である。構成単位b1は、1種であってもよいし、2種以上の組合せであってもよい。構成単位b1は、一又は複数の実施形態において、ベタイン構造を含む不飽和単量体を由来とする構成単位である。
(Constituent unit b1)
The structural unit b1 is represented by the following formula (I). The structural unit b1 may be one type or a combination of two or more types. In one or more embodiments, the structural unit b1 is a structural unit derived from an unsaturated monomer containing a betaine structure.

前記式(I)中、R1~R3は同一又は異なって、水素原子、メチル基、又はエチル基を示し、R4は、炭素数1以上4以下のアルキレン基、又は-Y1-OPO3 --Y2-を示し、Y1及びY2は同一又は異なって、炭素数1以上4以下のアルキレン基を示し、R5及びR6は同一又は異なって、炭素数1以上4以下の炭化水素基を示し、X1は、O又はNR7を示し、R7は、水素原子又は炭素数1以上4以下の炭化水素基を示し、X2は、炭素数1以上4以下の炭化水素基、-R8SO3 -、又は-R9COO-を示し、R8及びR9は同一又は異なって、炭素数1以上4以下のアルキレン基を示す。
ただし、X2は、R4が炭素数1以上4以下のアルキレン基のとき、-R8SO3 -、又は-R9COO-であり、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基である。
In the formula (I), R 1 to R 3 are the same or different and represent a hydrogen atom, a methyl group, or an ethyl group, and R 4 is an alkylene group having 1 to 4 carbon atoms, or -Y 1 -OPO 3 - -Y 2 -, Y 1 and Y 2 are the same or different and represent an alkylene group having 1 to 4 carbon atoms, and R 5 and R 6 are the same or different and represent an alkylene group having 1 to 4 carbon atoms. represents a hydrocarbon group, X 1 represents O or NR 7 , R 7 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and X 2 represents a hydrocarbon group having 1 to 4 carbon atoms group, -R 8 SO 3 - , or -R 9 COO - , and R 8 and R 9 are the same or different and represent an alkylene group having 1 or more and 4 or less carbon atoms.
However, when R 4 is an alkylene group having 1 to 4 carbon atoms, X 2 is -R 8 SO 3 - or -R 9 COO - , and R 4 is -Y 1 -OPO 3 - -Y 2 When -, it is a hydrocarbon group having 1 or more and 4 or less carbon atoms.

式(I)において、R1及びR2は、不飽和単量体の入手容易性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、それぞれ、水素原子が好ましい。
3は、不飽和単量体の入手容易性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。
1は、不飽和単量体の入手容易性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、O(酸素原子)が好ましい。
4は、研磨速度向上及び平坦性向上の観点から、炭素数2又は3のアルキレン基、又は-Y1-OPO3 --Y2-が好ましく、炭素数2のアルキレン基、又は-Y1-OPO3 --Y2-がより好ましく、-Y1-OPO3 --Y2-が更に好ましく、そして、不飽和単量体の入手容易性及び単量体の重合性の観点からは、炭素数2のアルキレン基が好ましい。
1及びY2は、不飽和単量体の入手容易性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、それぞれ、炭素数2又は3のアルキレン基が好ましく、炭素数2のアルキレン基がより好ましい。
5及びR6は、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、それぞれ、メチル基又はエチル基が好ましく、メチル基がより好ましい。
2は、R4が炭素数1以上4以下のアルキレン基のとき、-R8SO3 -、又は-R9COO-であり、研磨速度向上及び平坦性向上の観点から、-R9COO-が好ましい。X2は、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基であり、研磨速度向上及び平坦性向上の観点から、メチル基がより好ましい。
8の炭素数は、不飽和単量体の入手容易性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、1以上3以下が好ましく、2以上3以下がより好ましい。R9の炭素数は、不飽和単量体の入手容易性の観点、単量体の重合性の観点、研磨速度向上及び平坦性向上の観点から、1以上3以下が好ましく、1以上2以下がより好ましい。
In formula (I), each of R 1 and R 2 is preferably a hydrogen atom from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness.
R 3 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness.
X 1 is preferably O (oxygen atom) from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness.
From the viewpoint of improving polishing rate and flatness, R 4 is preferably an alkylene group having 2 or 3 carbon atoms, or -Y 1 -OPO 3 - -Y 2 -, and an alkylene group having 2 carbon atoms, or -Y 1 -OPO 3 - -Y 2 - is more preferred, -Y 1 -OPO 3 - -Y 2 - is even more preferred, and from the viewpoint of availability of the unsaturated monomer and polymerizability of the monomer, An alkylene group having 2 carbon atoms is preferred.
Y 1 and Y 2 are preferably alkylene groups having 2 or 3 carbon atoms, respectively, from the viewpoints of easy availability of unsaturated monomers, polymerizability of monomers, improvement of polishing rate, and improvement of flatness; The alkylene group of 2 is more preferred.
R 5 and R 6 are each preferably a methyl group or an ethyl group, more preferably a methyl group, from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness.
When R 4 is an alkylene group having 1 to 4 carbon atoms, X 2 is -R 8 SO 3 - or -R 9 COO - , and from the viewpoint of improving polishing rate and flatness, -R 9 COO - is preferred. When R 4 is -Y 1 -OPO 3 - -Y 2 -, X 2 is a hydrocarbon group having 1 to 4 carbon atoms, and from the viewpoint of improving polishing rate and flatness, a methyl group is more preferable. .
The number of carbon atoms in R 8 is preferably 1 or more and 3 or less, more preferably 2 or more and 3 or less, from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness. The number of carbon atoms in R 9 is preferably 1 or more and 3 or less, and 1 or more and 2 or less, from the viewpoint of easy availability of the unsaturated monomer, the polymerizability of the monomer, and the improvement of polishing rate and flatness. is more preferable.

前記式(I)において、R4が-Y1-OPO3 --Y2-のとき、構成単位b1は、一又は複数の実施形態において、下記式(V)で表される構成単位である。
In the above formula (I), when R 4 is -Y 1 -OPO 3 - -Y 2 -, the structural unit b1 is a structural unit represented by the following formula (V) in one or more embodiments. .

構成単位b1は、一又は複数の実施形態において、不飽和単量体の入手容易性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、スルホベタイン構造、カルボベタイン構造、又はホスホベタイン構造を含むモノマー由来の構成単位であることが好ましく、カルボベタイン構造又はホスホベタイン構造を含むモノマー由来の構成単位であることがより好ましい。
本開示において、ホスホベタイン構造とはベタイン構造の負電荷が解離したリン酸基によるものであり、スルホベタイン構造とは、ベタイン構造の負電荷が解離したスルホン酸基によるものであり、カルボベタイン構造とは、ベタイン構造の負電荷が解離したカルボキシ基によるものである。
In one or more embodiments, the structural unit b1 has a sulfobetaine structure, a carbobetaine structure, or It is preferably a structural unit derived from a monomer containing a phosphobetaine structure, and more preferably a structural unit derived from a monomer containing a carbobetaine structure or a phosphobetaine structure.
In the present disclosure, the phosphobetaine structure is due to a phosphoric acid group from which the negative charge of the betaine structure has been dissociated, the sulfobetaine structure is due to a sulfonic acid group from which the negative charge of the betaine structure has been dissociated, and the carbobetaine structure is due to a sulfonic acid group from which the negative charge of the betaine structure has been dissociated. This is due to the carboxy group in which the negative charge of the betaine structure is dissociated.

構成単位b1を形成するモノマーの具体例としては、研磨速度向上及び平坦性向上の観点から、好ましくは、スルホベタインメタクリレート、メタクリロイルオキシエチルホスホリルコリン(MPC)、カルボキシベタインメタクリレート、N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン(GLBT)から選ばれる少なくとも1種のモノマーが好ましく、メタクリロイルオキシエチルホスホリルコリン(MPC)及びN-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン(GLBT)から選ばれる少なくとも1種のモノマーがより好ましい。 Specific examples of the monomer forming the structural unit b1 are preferably sulfobetaine methacrylate, methacryloyloxyethylphosphorylcholine (MPC), carboxybetaine methacrylate, N-methacryloyloxyethyl-N from the viewpoint of improving polishing rate and flatness. , N-dimethylammonium-α-N-methylcarboxybetaine (GLBT), methacryloyloxyethylphosphorylcholine (MPC) and N-methacryloyloxyethyl-N,N-dimethylammonium-α-. At least one monomer selected from N-methylcarboxybetaine (GLBT) is more preferred.

(構成単位b2)
構成単位b2は、一又は複数の実施形態において、研磨速度向上及び平坦性向上の観点から、下記式(II)で表される構成単位、下記式(III)で表される構成単位、及び下記式(IV)で表される構成単位から選ばれる少なくとも1種の構成単位であることが好ましい。構成単位b2は、1種であってもよいし、2種以上の組合せであってもよい。
(Constituent unit b2)
In one or more embodiments, the structural unit b2 is a structural unit represented by the following formula (II), a structural unit represented by the following formula (III), and the following from the viewpoint of improving polishing rate and flatness. It is preferable that it is at least one kind of structural unit selected from the structural units represented by formula (IV). The structural unit b2 may be one type or a combination of two or more types.

式(II)中、R10、R11及びR12は同一又は異なって、水素原子、メチル基又はエチル基を示し、X3はO又はNHを示し、R13は炭化水素基を示し、X4は水素原子又はヒドロキシル基を示す。
式(II)において、R10及びR11は、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、水素原子が好ましい。R12は、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。X3は、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、O(酸素原子)が好ましい。R13の炭化水素基は、直鎖状、分岐鎖状、環状のいずれの形態でもよい。R13の炭化水素基は、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、炭素数1~22のアルキレン基、炭素数6~22のアリーレン基、又は炭素数7~22のアラルキレン基が好ましく、炭素数1~22のアルキレン基又は炭素数7~22のアラルキレン基がより好ましい。R13の具体例としては、ブチレン基等のアルキレン基、-CH2-C64-等のアラルキレン基が挙げられる。
In formula (II), R 10 , R 11 and R 12 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, X 3 represents O or NH, R 13 represents a hydrocarbon group, 4 represents a hydrogen atom or a hydroxyl group.
In formula (II), R 10 and R 11 are preferably hydrogen atoms from the viewpoints of availability of the unsaturated monomer, monomer polymerizability, improvement in polishing rate, and improvement in flatness. R 12 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness. X 3 is preferably O (oxygen atom) from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness. The hydrocarbon group for R 13 may be linear, branched, or cyclic. The hydrocarbon group of R 13 is an alkylene group having 1 to 22 carbon atoms, an alkylene group having 6 to 22 carbon atoms, and an alkylene group having 6 to 22 carbon atoms, from the viewpoint of availability of unsaturated monomers, monomer polymerizability, improvement of polishing rate, and improvement of flatness. An arylene group or an aralkylene group having 7 to 22 carbon atoms is preferred, and an alkylene group having 1 to 22 carbon atoms or an aralkylene group having 7 to 22 carbon atoms is more preferred. Specific examples of R 13 include alkylene groups such as butylene groups, and aralkylene groups such as -CH 2 -C 6 H 4 -.

式(III)中、R14、R15及びR16は同一又は異なって、水素原子、メチル基又はエチル基を示し、R17は水素原子、ヒドロキシル基、炭化水素基又はアルコキシ基を示す。
式(III)において、R14及びR15は、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、水素原子が好ましい。R16は不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、水素原子又はメチル基が好ましい。R17の炭化水素基は、直鎖状又は分岐鎖状のいずれの形態でもよい。R17の炭化水素基としては、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、炭素数1~4のアルキル基又は炭素数6~10のアリール基が挙げられる。R17のアルコキシ基としては、研磨速度向上及び平坦性向上の観点から、炭素数1~4のアルコキシ基が挙げられる。R17は、不飽和単量体の入手性、単量体の重合性、研磨速度向上及び平坦性向上の観点から、水素原子が好ましい。
In formula (III), R 14 , R 15 and R 16 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, and R 17 represents a hydrogen atom, a hydroxyl group, a hydrocarbon group or an alkoxy group.
In formula (III), R 14 and R 15 are preferably hydrogen atoms from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement in polishing rate, and improvement in flatness. R 16 is preferably a hydrogen atom or a methyl group from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement in polishing rate, and improvement in flatness. The hydrocarbon group for R 17 may be either linear or branched. The hydrocarbon group for R 17 is an alkyl group having 1 to 4 carbon atoms or an alkyl group having 6 to 10 carbon atoms, from the viewpoint of availability of unsaturated monomers, polymerizability of monomers, improvement of polishing rate, and improvement of flatness. The following aryl groups are mentioned. Examples of the alkoxy group for R 17 include alkoxy groups having 1 to 4 carbon atoms from the viewpoint of improving polishing rate and flatness. R 17 is preferably a hydrogen atom from the viewpoints of availability of the unsaturated monomer, polymerizability of the monomer, improvement of polishing rate, and improvement of flatness.

式(IV)中、R18、R19及びR20は同一又は異なり、水素原子、メチル基又はエチル基を示し、nは2~12の整数を示す。
式(IV)において、R18、R19及びR20は、研磨速度向上及び平坦性向上の観点から、水素原子が好ましい。nは、研磨速度向上及び平坦性向上の観点から、2~12の整数が好ましく、3~10の整数がより好ましく、3~6が更に好ましい。
In formula (IV), R 18 , R 19 and R 20 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, and n represents an integer of 2 to 12.
In formula (IV), R 18 , R 19 and R 20 are preferably hydrogen atoms from the viewpoint of improving polishing rate and flatness. From the viewpoint of improving polishing rate and flatness, n is preferably an integer of 2 to 12, more preferably 3 to 10, and even more preferably 3 to 6.

式(II)で表される構成単位としては、一又は複数の実施形態において、ブチルメタクリレート(BMA)、2-エチルヘキシルメタクリレート(EHMA)、ラウリルメタクリレート(LMA)、ステアリルメタクリレート(SMA)、ベンジルメタクリレート(BzMA)及び(メタ)アクリル酸アルキルエステルから選ばれる少なくとも1種のモノマー由来の構成単位が挙げられる。本開示において、「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸を意味する。
式(III)で表される構成単位としては、一又は複数の実施形態において、スチレン(St)、α-メチルスチレン(αMSt)に由来する構成単位が挙げられる。
式(IV)で表される構成単位は、一又は複数の実施形態において、ビニルピロリドン(VP)に由来する構成単位が挙げられる。
In one or more embodiments, the structural unit represented by formula (II) includes butyl methacrylate (BMA), 2-ethylhexyl methacrylate (EHMA), lauryl methacrylate (LMA), stearyl methacrylate (SMA), benzyl methacrylate ( BzMA) and a structural unit derived from at least one monomer selected from (meth)acrylic acid alkyl ester. In the present disclosure, "(meth)acrylic acid" means acrylic acid or methacrylic acid.
In one or more embodiments, the structural unit represented by formula (III) includes a structural unit derived from styrene (St) and α-methylstyrene (αMSt).
In one or more embodiments, the structural unit represented by formula (IV) includes a structural unit derived from vinylpyrrolidone (VP).

成分Bが構成単位b1と構成単位b2を含む共重合体である場合、成分Bとしては、一又は複数の実施形態において、研磨速度向上及び平坦性向上の観点から、2-メタクリロイルオキシエチルホスホリルコリン/ブチルメタクリレート共重合体(MPC/BMA)、2-メタクリロイルオキシエチルホスホリルコリン/ステアリルメタクリレート共重合体(MPC/SMA)、2-メタクリロイルオキシエチルホスホリルコリン/ベンジルメタクリレート共重合体(MPC/BzMA)、2-メタクリロイルオキシエチルホスホリルコリン/スチレン共重合体(MPC/St)、2-メタクリロイルオキシエチルホスホリルコリン/α-メチルスチレン共重合体(MPC/αMSt)、2-メタクリロイルオキシエチルホスホリルコリン/ビニルピロリドン共重合体(MPC/VP)、N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン/ブチルメタクリレート共重合体(GLBT/BMA)及びN-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン/メタクリル酸アルキルエステル共重合体から選ばれる少なくとも1種が挙げられる。 When component B is a copolymer containing structural unit b1 and structural unit b2, in one or more embodiments, component B may include 2-methacryloyloxyethylphosphorylcholine/2-methacryloyloxyethylphosphorylcholine/ Butyl methacrylate copolymer (MPC/BMA), 2-methacryloyloxyethylphosphorylcholine/stearyl methacrylate copolymer (MPC/SMA), 2-methacryloyloxyethylphosphorylcholine/benzyl methacrylate copolymer (MPC/BzMA), 2-methacryloyl Oxyethylphosphorylcholine/styrene copolymer (MPC/St), 2-methacryloyloxyethylphosphorylcholine/α-methylstyrene copolymer (MPC/αMSt), 2-methacryloyloxyethylphosphorylcholine/vinylpyrrolidone copolymer (MPC/VP) ), N-methacryloyloxyethyl-N,N-dimethylammonium-α-N-methylcarboxybetaine/butyl methacrylate copolymer (GLBT/BMA) and N-methacryloyloxyethyl-N,N-dimethylammonium-α-N - At least one selected from methylcarboxybetaine/methacrylic acid alkyl ester copolymer.

成分Bが構成単位b1と構成単位b2を含む共重合体である場合、成分Bの全構成単位中における構成単位b1及び構成単位b2の合計含有量は、研磨速度向上及び平坦性向上の観点から、90~100モル%が好ましく、95~100モル%がより好ましく、99~100モル%が更に好ましい。 When component B is a copolymer containing structural unit b1 and structural unit b2, the total content of structural unit b1 and structural unit b2 in all the structural units of component B is determined from the viewpoint of improving polishing rate and flatness. , preferably 90 to 100 mol%, more preferably 95 to 100 mol%, even more preferably 99 to 100 mol%.

成分Bが構成単位b1と構成単位b2を含む共重合体である場合、成分Bの全構成単位中における構成単位b1と構成単位b2とのモル比(b1/b2)は、研磨速度向上及び平坦性向上の観点から、好ましくは10/90以上、より好ましくは20/80以上、更に好ましくは30/70以上、更に好ましくは40/60以上であり、更に好ましくは50/50以上であり、更に好ましくは60/40以上であり、更に好ましくは70/30以上であり、同様の観点から、好ましくは98/2以下、より好ましくは95/5以下である。本開示において、モル比(b1/b2)は、成分Bの重合に用いる構成単位b1を形成するモノマーと構成単位b2を形成するモノマーb2とのモル比とみなすことができる。 When component B is a copolymer containing structural unit b1 and structural unit b2, the molar ratio (b1/b2) of structural unit b1 and structural unit b2 in all the structural units of component B improves the polishing rate and polishes the polishing surface. From the viewpoint of improving properties, the ratio is preferably 10/90 or more, more preferably 20/80 or more, even more preferably 30/70 or more, even more preferably 40/60 or more, still more preferably 50/50 or more, and Preferably it is 60/40 or more, more preferably 70/30 or more, and from the same point of view, preferably 98/2 or less, more preferably 95/5 or less. In the present disclosure, the molar ratio (b1/b2) can be regarded as the molar ratio of the monomer forming the structural unit b1 used in the polymerization of component B to the monomer b2 forming the structural unit b2.

(構成単位b3)
構成単位b3は、一又は複数の実施形態において、研磨速度向上及び平坦性向上の観点から、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム基及びこれらの塩から選ばれる少なくとも1種の基を有する構成単位であることが好ましい。塩としては、例えば、クロライド(Cl-)塩、ブロマイド(Br-)塩、硫酸(SO4 2-)塩等が挙げられる。構成単位a3は、1種であってもよいし、2種以上の組合せであってもよい。
(Constituent unit b3)
In one or more embodiments, the structural unit b3 includes a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium group, and these groups, from the viewpoint of improving polishing rate and flatness. It is preferable that the structural unit has at least one group selected from salts. Examples of the salt include chloride (Cl - ) salt, bromide (Br - ) salt, sulfuric acid (SO 4 2- ) salt, and the like. The structural unit a3 may be one type or a combination of two or more types.

構成単位a3を形成するモノマーとしては、研磨速度向上及び平坦性向上の観点から、メタクリロイルオキシエチルジメチルエチルアミニウム(MOEDES)、メタクリル酸2-ヒドロキシ-3-(トリメチルアミニオ)プロピル(THMPA)、メタクリロイルエチルトリメチルアミニウム(MOETMA)、メタクリル酸2-アミノエチル(MOEA)及びメタクリル酸2-(ジエチルアミノ)エチル(MOEDEA)から選ばれる少なくとも1種が好ましく、THMPA、MOEA及びMOEDEAから選ばれる少なくとも1種がより好ましく、THMPAが更に好ましい。 Monomers forming structural unit a3 include methacryloyloxyethyldimethylethylamine (MOEDES), 2-hydroxy-3-(trimethylaminio)propyl methacrylate (THMPA), from the viewpoint of improving polishing speed and flatness. At least one selected from methacryloylethyltrimethylaminium (MOETMA), 2-aminoethyl methacrylate (MOEA), and 2-(diethylamino)ethyl methacrylate (MOEDEA) is preferred, and at least one selected from THMPA, MOEA, and MOEDEA. is more preferred, and THMPA is even more preferred.

成分Bが構成単位b1と構成単位b3を含む共重合体である場合、成分Bとしては、一又は複数の実施形態において、研磨速度向上及び平坦性向上の観点から、2-メタクリロイルオキシエチルホスホリルコリン/メタクリル酸2-ヒドロキシ-3-(トリメチルアミニオ)プロピル共重合体(MPC/THMPA)が挙げられる。 When component B is a copolymer containing structural unit b1 and structural unit b3, in one or more embodiments, from the viewpoint of improving polishing rate and flatness, component B may include 2-methacryloyloxyethylphosphorylcholine/ Examples include 2-hydroxy-3-(trimethylaminio)propyl methacrylate copolymer (MPC/THMPA).

成分Bが構成単位b1と構成単位b3を含む共重合体である場合、成分Bの全構成単位中における構成単位b1及び構成単位b3の合計含有量は、研磨速度向上及び平坦性向上の観点から、90~100モル%が好ましく、95~100モル%がより好ましく、99~100モル%が更に好ましい。本開示において、成分B中の構成単位aの含有量と構成単位bの含有量の合計は、成分Bの重合に用いた全モノマーの質量に対する、構成単位b1を形成するモノマーの質量と構成単位b3を形成するモノマーの質量の合計とみなすことができる。 When component B is a copolymer containing structural unit b1 and structural unit b3, the total content of structural unit b1 and structural unit b3 in all the structural units of component B is determined from the viewpoint of improving polishing rate and flatness. , preferably 90 to 100 mol%, more preferably 95 to 100 mol%, even more preferably 99 to 100 mol%. In the present disclosure, the sum of the content of the structural unit a and the content of the structural unit b in component B is the mass of the monomer forming the structural unit b1 and the structural unit relative to the mass of all monomers used in the polymerization of component B. It can be considered as the sum of the masses of monomers forming b3.

成分Bが構成単位b1と構成単位b3を含む共重合体である場合、成分Bの全構成単位中における構成単位b1と構成単位b3とのモル比(b1/b3)は、研磨速度向上及び平坦性向上の観点から、好ましくは10/90以上、より好ましくは20/80以上、更に好ましくは30/70以上、更に好ましくは40/60以上、更に好ましくは50/50以上、更に好ましくは60/40以上、更に好ましくは70/30以上であり、同様の観点から、好ましくは98/2以下、より好ましくは95/5以下である。 When component B is a copolymer containing structural unit b1 and structural unit b3, the molar ratio (b1/b3) of structural unit b1 and structural unit b3 in all the structural units of component B improves the polishing rate and polishes the polishing surface. From the viewpoint of improving properties, the It is 40 or more, more preferably 70/30 or more, and from the same point of view, preferably 98/2 or less, more preferably 95/5 or less.

成分Bが構成単位b1と構成単位b2と構成単位b3とを含む共重合体である場合、成分Bの全構成単位中における構成単位b1の含有量と構成単位b2及び構成単位b3との合計含有量とのモル比[b1/(b2+b3)]は、研磨速度向上及び平坦性向上の観点から、好ましくは10/90以上、より好ましくは20/80以上であり、そして、同様の観点から、好ましくは98/2以下、より好ましくは95/5以下である。 When component B is a copolymer containing structural unit b1, structural unit b2, and structural unit b3, the total content of structural unit b1 and structural unit b2 and structural unit b3 in all structural units of component B. The molar ratio [b1/(b2+b3)] is preferably 10/90 or more, more preferably 20/80 or more from the viewpoint of improving polishing rate and flatness, and from the same viewpoint, is 98/2 or less, more preferably 95/5 or less.

成分Bは、上述した構成単位b1、構成単位b2、及び構成単位b3以外のその他の構成単位を有していてもよい。その他の構成単位としては、アクリロニトリル等が挙げられる。 Component B may have other structural units other than the above-described structural unit b1, structural unit b2, and structural unit b3. Other structural units include acrylonitrile and the like.

成分Bの重量平均分子量は、研磨速度向上及び平坦性向上の観点から、好ましくは1,000以上、より好ましくは5,000以上、更に好ましくは10,000以上であり、そして、同様の観点から、好ましくは3,000,000以下、より好ましくは2,000,000以下、更に好ましくは1,000,000以下である。より具体的には、成分Bの重量平均分子量は、好ましくは1,000以上3,000,000以下、より好ましくは5,000以上2,000,000以下、更に好ましくは10,000以上1,000,000以下である。成分Bがホモポリマーの場合の重量平均分子量は、研磨速度向上及び平坦性向上の観点から、好ましくは10,000以上、より好ましくは30,000以上、更に好ましくは50,000以上であり、そして、同様の観点から、好ましくは1,500,000以下、より好ましくは1,000,000以下、更に好ましくは750,000以下である。より具体的には、成分Bの重量平均分子量は、好ましくは10,000以上1,500,000以下、より好ましくは30,000以上1,000,000以下、更に好ましくは50,000以上750,000以下である。尚、成分Bの重量平均分子量は、実施例に記載の方法により測定できる。 The weight average molecular weight of component B is preferably 1,000 or more, more preferably 5,000 or more, even more preferably 10,000 or more, from the viewpoint of improving polishing speed and flatness, and from the same viewpoint , preferably 3,000,000 or less, more preferably 2,000,000 or less, still more preferably 1,000,000 or less. More specifically, the weight average molecular weight of component B is preferably 1,000 or more and 3,000,000 or less, more preferably 5,000 or more and 2,000,000 or less, still more preferably 10,000 or more and 1,000 or more. 000,000 or less. When component B is a homopolymer, the weight average molecular weight is preferably 10,000 or more, more preferably 30,000 or more, and even more preferably 50,000 or more, from the viewpoint of improving polishing speed and flatness. , from the same point of view, preferably 1,500,000 or less, more preferably 1,000,000 or less, still more preferably 750,000 or less. More specifically, the weight average molecular weight of component B is preferably 10,000 or more and 1,500,000 or less, more preferably 30,000 or more and 1,000,000 or less, still more preferably 50,000 or more and 750, 000 or less. Incidentally, the weight average molecular weight of component B can be measured by the method described in Examples.

本開示の研磨液組成物中の成分Bの含有量は、研磨速度向上及び平坦性向上の観点から、好ましくは0.0005質量%以上、より好ましくは0.001質量%以上、更に好ましくは0.002質量%以上、更により好ましくは0.003質量%以上、更により好ましくは0.005質量%以上であり、そして、同様の観点から、好ましくは1質量%以下、より好ましくは0.7質量%以下、更に好ましくは0.4質量%以下、更により好ましくは0.2質量%以下、更により好ましくは0.08質量%以下である。より具体的には、成分Bの含有量は、好ましくは0.0005質量%以上1質量%以下、より好ましくは0.001質量%以上0.7質量%以下、更に好ましくは0.002質量%以上0.4質量%以下、更により好ましくは0.003質量%以上0.2質量%以下、更により好ましくは0.005質量%以上0.08質量%以下である。成分Bが2種以上の組合せである場合、成分Bの含有量はそれらの合計の含有量をいう。 The content of component B in the polishing liquid composition of the present disclosure is preferably 0.0005% by mass or more, more preferably 0.001% by mass or more, and even more preferably 0.001% by mass or more, from the viewpoint of improving polishing rate and flatness. .002% by mass or more, even more preferably 0.003% by mass or more, even more preferably 0.005% by mass or more, and from the same point of view, preferably 1% by mass or less, more preferably 0.7% by mass. It is not more than 0.4% by mass, even more preferably not more than 0.2% by mass, even more preferably not more than 0.08% by mass. More specifically, the content of component B is preferably 0.0005% by mass or more and 1% by mass or less, more preferably 0.001% by mass or more and 0.7% by mass or less, and still more preferably 0.002% by mass. It is 0.4% by mass or less, even more preferably 0.003% by mass or more and 0.2% by mass or less, and even more preferably 0.005% by mass or more and 0.08% by mass or less. When Component B is a combination of two or more types, the content of Component B refers to their total content.

本開示の研磨液組成物における成分Aと成分Bの質量比A/B(成分Aの含有量/成分Bの含有量)は、研磨速度向上及び平坦性向上の観点から、好ましくは0.1以上、より好ましくは1以上、更に好ましくは5以上、更に好ましくは10以上であり、そして、同様の観点から、好ましくは500以下、より好ましくは250以下、更に好ましくは100以下、更に好ましくは30以下である。より具体的には、質量比A/Bは、好ましくは0.1以上500以下、より好ましくは1以上250以下、更に好ましくは5以上100以下、更に好ましくは10以上30以下である。 The mass ratio A/B (content of component A/content of component B) of component A and component B in the polishing liquid composition of the present disclosure is preferably 0.1 from the viewpoint of improving polishing speed and flatness. Above, more preferably 1 or more, still more preferably 5 or more, still more preferably 10 or more, and from the same point of view, preferably 500 or less, more preferably 250 or less, still more preferably 100 or less, still more preferably 30 It is as follows. More specifically, the mass ratio A/B is preferably 0.1 or more and 500 or less, more preferably 1 or more and 250 or less, still more preferably 5 or more and 100 or less, and even more preferably 10 or more and 30 or less.

[窒素含有複素芳香族化合物(成分C)]
本開示の研磨液組成物に含まれる成分Cは、研磨速度向上及び平坦性向上の観点から、好ましくは、少なくとも1つの水素原子がヒドロキシル基で置換された含窒素複素芳香環骨格を含むN-オキシド化合物又はその塩である。上記の塩としては、アルカリ金属塩、アルカリ土類金属塩、有機アミン塩、アンモニウム塩等が挙げられる。成分Cは、1種類単独で用いてもよいし、2種以上の組合せであってもよい。
[Nitrogen-containing heteroaromatic compound (component C)]
From the viewpoint of improving polishing speed and flatness, component C contained in the polishing liquid composition of the present disclosure preferably contains a nitrogen-containing heteroaromatic ring skeleton in which at least one hydrogen atom is substituted with a hydroxyl group. It is an oxide compound or its salt. Examples of the above salts include alkali metal salts, alkaline earth metal salts, organic amine salts, ammonium salts, and the like. Component C may be used alone or in combination of two or more.

本開示において、N-オキシド化合物とは、一又は複数の実施形態において、N-オキシド基(N→O基)を有する化合物を示す。N-オキシド化合物は、N→O基を1又は2以上有することができ、入手容易性の点からは、N→O基の数は1つが好ましい。 In the present disclosure, the N-oxide compound refers to a compound having an N-oxide group (N→O group) in one or more embodiments. The N-oxide compound can have one or more N→O groups, and from the viewpoint of availability, the number of N→O groups is preferably one.

本開示において、含窒素複素芳香環骨格に含まれる少なくとも1つの窒素原子がN-オキシドを形成する。成分Cに含まれる含窒素複素芳香環としては、一又は複数の実施形態において、単環又は2環の縮合環が挙げられる。成分Cに含まれる含窒素複素芳香環の窒素原子数としては、一又は複数の実施形態において、1~3個が挙げられ、研磨速度向上及び平坦性向上の観点から、1又は2個が好ましく、1個がより好ましい。成分Cに含まれる含窒素複素芳香環骨格としては、一又は複数の実施形態において、ピリジンN-オキシド骨格、キノリンN-オキシド骨格等から選ばれる少なくとも一種が挙げられる。本開示において、ピリジンN-オキシド骨格とは、ピリジン環に含まれる窒素原子がN-オキシドを形成している構成を示す。キノリンN-オキシド骨格とは、キノリン環に含まれる窒素原子がN-オキシドを形成している構成を示す。 In the present disclosure, at least one nitrogen atom included in the nitrogen-containing heteroaromatic ring skeleton forms an N-oxide. In one or more embodiments, the nitrogen-containing heteroaromatic ring contained in component C includes a monocyclic or bicyclic condensed ring. In one or more embodiments, the number of nitrogen atoms in the nitrogen-containing heteroaromatic ring contained in component C is 1 to 3, and preferably 1 or 2 from the viewpoint of improving polishing rate and flatness. , one piece is more preferable. In one or more embodiments, the nitrogen-containing heteroaromatic ring skeleton contained in component C includes at least one selected from a pyridine N-oxide skeleton, a quinoline N-oxide skeleton, and the like. In the present disclosure, a pyridine N-oxide skeleton refers to a structure in which nitrogen atoms contained in a pyridine ring form an N-oxide. The quinoline N-oxide skeleton refers to a structure in which nitrogen atoms contained in the quinoline ring form an N-oxide.

成分Cとしては、一又は複数の実施形態において、少なくとも1つの水素原子がヒドロキシ基で置換されたピリジン環を有するN-オキシド化合物、少なくとも1つの水素原子がヒドロキシ基で置換されたキノリン環を有するN-オキシド化合物、及びこれらの塩から選ばれる少なくとも一種が挙げられる。これらの中でも、研磨速度向上及び平坦性向上の観点から、成分Bとしては、少なくとも1つの水素原子がヒドロキシ基で置換されたピリジン環を有するN-オキシド化合物又はその塩が好ましい。 In one or more embodiments, component C is an N-oxide compound having a pyridine ring in which at least one hydrogen atom is substituted with a hydroxy group, or a quinoline ring in which at least one hydrogen atom is substituted with a hydroxy group. At least one selected from N-oxide compounds and salts thereof can be mentioned. Among these, from the viewpoint of improving polishing rate and flatness, as component B, an N-oxide compound or a salt thereof having a pyridine ring in which at least one hydrogen atom is substituted with a hydroxy group is preferable.

成分Cの具体例としては、2-ヒドロキシピリジンN-オキシド、3-ヒドロキシピリジンN-オキシド、8-ヒドロキシキノリンN-オキシド等が挙げられる。 Specific examples of component C include 2-hydroxypyridine N-oxide, 3-hydroxypyridine N-oxide, and 8-hydroxyquinoline N-oxide.

本開示の研磨液組成物中の成分Cの含有量は、研磨速度向上及び平坦性向上観点から、0.001質量%以上が好ましく、0.002質量%以上がより好ましく、0.005質量%以上が更に好ましく、0.01質量%以上が更に好ましく、そして、同様の観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましく、0.05質量%以下が更に好ましい。より具体的には、成分Cの含有量は、0.001質量%以上1質量%以下が好ましく、0.002質量%以上0.5質量%以下がより好ましく、0.005質量%以上0.1質量%以下が更に好ましく、0.01質量%以上0.05質量%以下が更に好ましい。成分Cが2種以上の組合せである場合、成分Cの含有量は、それらの合計の含有量をいう。 The content of component C in the polishing liquid composition of the present disclosure is preferably 0.001% by mass or more, more preferably 0.002% by mass or more, and 0.005% by mass from the viewpoint of improving polishing speed and flatness. The above is more preferable, 0.01% by mass or more is even more preferable, and from the same viewpoint, 1% by weight or less is preferable, 0.5% by weight or less is more preferable, even more preferably 0.1% by weight or less, 0. More preferably, it is .05% by mass or less. More specifically, the content of component C is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.002% by mass or more and 0.5% by mass or less, and 0.005% by mass or more and 0.5% by mass or less. It is more preferably 1% by mass or less, and even more preferably 0.01% by mass or more and 0.05% by mass or less. When component C is a combination of two or more types, the content of component C refers to their total content.

本開示の研磨液組成物中における成分Aと成分Cとの質量比A/C(成分Aの含有量/成分Cの含有量)は、研磨速度向上及び平坦性向上の観点から、0.001以上が好ましく、0.1以上がより好ましく、0.5以上が更に好ましく、1.5以上が更に好ましく、5以上が更に好ましく、そして、6000以下が好ましく、500以下がより好ましく、250以下が更に好ましく、100以下が更に好ましく、50以下が更に好ましい。より具体的には、質量比A/Cは、0.001以上6000以下が好ましく、0.1以上500以下がより好ましく、0.5以上250以下が更に好ましく、1.5以上100以下が更に好ましく、5以上50以下が更に好ましい。 The mass ratio A/C (content of component A/content of component C) between component A and component C in the polishing liquid composition of the present disclosure is 0.001 from the viewpoint of improving polishing speed and flatness. or more, preferably 0.1 or more, further preferably 0.5 or more, even more preferably 1.5 or more, even more preferably 5 or more, and preferably 6000 or less, more preferably 500 or less, and 250 or less. It is more preferably 100 or less, even more preferably 50 or less. More specifically, the mass ratio A/C is preferably 0.001 or more and 6000 or less, more preferably 0.1 or more and 500 or less, even more preferably 0.5 or more and 250 or less, and even more preferably 1.5 or more and 100 or less. It is preferably 5 or more and 50 or less.

本開示の研磨液組成物中における成分Bと成分Cとの質量比B/C(成分Bの含有量/成分Cの含有量)は、研磨速度向上及び平坦性向上観点から、0.01以上が好ましく、0.05以上がより好ましく、0.1以上が更に好ましく、0.5以上が更に好ましく、そして、100以下が好ましく、20以下がより好ましく、10以下が更に好ましく、5以下が更に好ましい。より具体的には、質量比B/Cは、0.01以上100以下が好ましく、0.05以上20以下がより好ましく、0.1以上10以下が更に好ましく、0.5以上5以下が更に好ましい。 The mass ratio B/C (content of component B/content of component C) between component B and component C in the polishing liquid composition of the present disclosure is 0.01 or more from the viewpoint of improving polishing speed and flatness. is preferably 0.05 or more, more preferably 0.1 or more, even more preferably 0.5 or more, and preferably 100 or less, more preferably 20 or less, still more preferably 10 or less, and still more preferably 5 or less. preferable. More specifically, the mass ratio B/C is preferably 0.01 or more and 100 or less, more preferably 0.05 or more and 20 or less, still more preferably 0.1 or more and 10 or less, and even more preferably 0.5 or more and 5 or less. preferable.

[水系媒体]
本開示の研磨液組成物は、媒体として、水系媒体を含有する。水系媒体としては、水、及び水と水に可溶な溶媒との混合物が挙げられる。前記水に可溶な溶媒としては、メタノール、エタノール、イソプロパノール等のアルコールが挙げられ、酸化珪素膜の研磨の際の安全性向上の観点からエタノールが好ましい。また、前記水系媒体としては、半導体装置の品質向上、及び揮発性が低いことによる研磨液組成物のハンドリング性の向上並びに酸化珪素膜の研磨の際の安全性向上の観点から、イオン交換水、蒸留水、超純水等の水がより好ましい。
[Aqueous medium]
The polishing liquid composition of the present disclosure contains an aqueous medium as a medium. The aqueous medium includes water and a mixture of water and a water-soluble solvent. Examples of the water-soluble solvent include alcohols such as methanol, ethanol, and isopropanol, and ethanol is preferred from the viewpoint of improving safety during polishing of the silicon oxide film. In addition, the aqueous medium may include ion-exchanged water, Water such as distilled water and ultrapure water is more preferred.

本開示の研磨液組成物中の水系媒体の含有量は、成分A、成分B、成分C及び下記任意成分を除いた残余とすることができる。 The content of the aqueous medium in the polishing liquid composition of the present disclosure can be the remainder after removing component A, component B, component C, and the following optional components.

[任意成分]
本開示の研磨液組成物は、pH調整剤、界面活性剤、増粘剤、分散剤、防錆剤、防腐剤、塩基性物質、研磨速度向上剤、窒化珪素膜研磨抑制剤、ポリシリコン膜研磨抑制剤等の任意成分をさらに含有することができる。本開示の研磨液組成物が任意成分をさらに含有する場合、本開示の研磨液組成物中の任意成分の含有量は、研磨速度向上及び平坦性向上の観点から、0.001質量%以上が好ましく、0.0025質量%以上がより好ましく、0.01質量%以上が更に好ましく、そして、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましい。より具体的には、任意成分の含有量は、0.001質量%以上1質量%以下が好ましく、0.0025質量%以上0.5質量%以下がより好ましく、0.01質量%以上0.1質量%以下が更に好ましい。
[Optional ingredients]
The polishing liquid composition of the present disclosure includes a pH adjuster, a surfactant, a thickener, a dispersant, a rust preventive, a preservative, a basic substance, a polishing rate improver, a silicon nitride film polishing inhibitor, and a polysilicon film. It may further contain optional components such as a polishing inhibitor. When the polishing liquid composition of the present disclosure further contains an optional component, the content of the optional component in the polishing liquid composition of the present disclosure is 0.001% by mass or more from the viewpoint of improving polishing rate and flatness. Preferably, 0.0025% by mass or more, more preferably 0.01% by mass or more, and preferably 1% by mass or less, more preferably 0.5% by mass or less, even more preferably 0.1% by mass or less. . More specifically, the content of the optional component is preferably 0.001% by mass or more and 1% by mass or less, more preferably 0.0025% by mass or more and 0.5% by mass or less, and 0.01% by mass or more and 0.01% by mass or more. More preferably, it is 1% by mass or less.

[研磨液組成物]
本開示の研磨液組成物は、成分A、成分B、成分C、水系媒体、必要に応じて任意成分を公知の方法で配合する工程を含む製造方法によって製造できる。例えば、本開示の研磨液組成物は、成分A及び水系媒体を含む分散液(スラリー)、成分Bと成分Cと水系媒体とを含む溶液と、必要に応じて任意成分を配合してなるものとすることができる。本開示において「配合する」とは、成分A、成分B、成分C及び水系媒体、並びに必要に応じてその他の任意成分を同時に又は順に混合することを含む。混合する順序は特に限定されない。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本開示の研磨液組成物の製造方法における各成分の配合量は、上述した本開示の研磨液組成物における各成分の含有量と同じとすることができる。
[Polishing liquid composition]
The polishing liquid composition of the present disclosure can be manufactured by a manufacturing method including a step of blending component A, component B, component C, an aqueous medium, and optional components as necessary by a known method. For example, the polishing liquid composition of the present disclosure is formed by blending a dispersion (slurry) containing component A and an aqueous medium, a solution containing component B, component C, and an aqueous medium, and optional components as necessary. It can be done. In the present disclosure, "blending" includes mixing component A, component B, component C, an aqueous medium, and other arbitrary components simultaneously or in order as necessary. The order of mixing is not particularly limited. The blending can be performed using a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill. The blending amount of each component in the method for producing a polishing liquid composition of the present disclosure can be the same as the content of each component in the polishing liquid composition of the present disclosure described above.

本開示の研磨液組成物の実施形態は、全ての成分が予め混合された状態で市場に供給される、いわゆる1液型であってもよいし、使用時に混合される、いわゆる2液型であってもよい。 Embodiments of the polishing liquid composition of the present disclosure may be of a so-called one-component type, in which all components are supplied to the market in a pre-mixed state, or may be a so-called two-component type, in which all components are mixed at the time of use. There may be.

本開示の研磨液組成物のpHは、研磨速度向上及び平坦性向上の観点から、好ましくは3.5以上、より好ましくは4以上であり、保存安定性の観点から好ましくは9.5以下、より好ましくは9以下である。本開示において、研磨液組成物のpHは、25℃における値であって、pHメータを用いて測定した値である。本開示の研磨液組成物のpHは、具体的には、実施例に記載の方法で測定できる。 The pH of the polishing liquid composition of the present disclosure is preferably 3.5 or more, more preferably 4 or more from the viewpoint of improving polishing speed and flatness, and preferably 9.5 or less from the viewpoint of storage stability. More preferably it is 9 or less. In the present disclosure, the pH of the polishing liquid composition is a value at 25° C., and is a value measured using a pH meter. Specifically, the pH of the polishing liquid composition of the present disclosure can be measured by the method described in Examples.

本開示において「研磨液組成物中の各成分の含有量」とは、研磨液組成物の研磨への使用を開始する時点での前記各成分の含有量をいう。本開示の研磨液組成物は、その安定性が損なわれない範囲で濃縮された状態で保存および供給されてもよい。この場合、製造・輸送コストを低くできる点で好ましい。そしてこの濃縮液は、必要に応じて前述の水系媒体で適宜希釈して研磨工程で使用することができる。希釈割合としては5~100倍が好ましい。 In the present disclosure, "the content of each component in the polishing liquid composition" refers to the content of each component at the time when the polishing liquid composition starts to be used for polishing. The polishing liquid composition of the present disclosure may be stored and supplied in a concentrated state as long as its stability is not impaired. This case is preferable in that manufacturing and transportation costs can be reduced. This concentrated solution can be used in the polishing process after being appropriately diluted with the above-mentioned aqueous medium, if necessary. The dilution ratio is preferably 5 to 100 times.

[被研磨膜]
本開示の研磨液組成物を用いて研磨される被研磨膜としては、例えば、酸化珪素膜が挙げられる。したがって、本開示の研磨液組成物は、酸化珪素膜の研磨を必要とする工程に使用できる。一又は複数の実施形態において、本開示の研磨液組成物は、半導体基板の素子分離構造を形成する工程で行われる酸化珪素膜の研磨、層間絶縁膜を形成する工程で行われる酸化珪素膜の研磨、埋め込み金属配線を形成する工程で行われる酸化珪素膜の研磨、又は、埋め込みキャパシタを形成する工程で行われる酸化珪素膜の研磨に好適に使用できる。その他の一又は複数の実施形態において、本開示の研磨液組成物は、3次元NAND型フラッシュメモリ等の3次元半導体装置の製造に好適に使用できる。
[Polished film]
Examples of the film to be polished using the polishing liquid composition of the present disclosure include a silicon oxide film. Therefore, the polishing liquid composition of the present disclosure can be used in a process that requires polishing a silicon oxide film. In one or more embodiments, the polishing liquid composition of the present disclosure is suitable for polishing a silicon oxide film performed in a step of forming an element isolation structure of a semiconductor substrate, or polishing a silicon oxide film performed in a step of forming an interlayer insulating film. It can be suitably used for polishing a silicon oxide film performed in the step of forming a buried metal wiring, or polishing a silicon oxide film performed in the step of forming a buried capacitor. In one or more other embodiments, the polishing liquid composition of the present disclosure can be suitably used for manufacturing three-dimensional semiconductor devices such as three-dimensional NAND flash memories.

[研磨液キット]
本開示は、一態様において、本開示の研磨液組成物を調製するためのキット(以下、「本開示の研磨液キット」ともいう)に関する。
本開示の研磨液キットの一実施形態としては、例えば、成分A及び水系媒体を含む砥粒分散液(第1液)と、成分B及び成分Cを含む添加剤水溶液(第2液)と、を相互に混合されない状態で含み、これらが使用時に混合され、必要に応じて水系媒体を用いて希釈される、研磨液キット(2液型研磨液組成物)が挙げられる。前記砥粒分散液(第1液)に含まれる水系媒体は、研磨液組成物の調製に使用する水の全量でもよいし、一部でもよい。前記添加剤水溶液(第2液)には、研磨液組成物の調製に使用する水系媒体の一部が含まれていてもよい。前記砥粒分散液(第1液)及び前記添加剤水溶液(第2液)にはそれぞれ必要に応じて、上述した任意成分が含まれていてもよい。前記砥粒分散液(第1液)と前記添加剤水溶液(第2液)との混合は、研磨対象の表面への供給前に行われてもよいし、これらは別々に供給されて被研磨基板の表面上で混合されてもよい。本開示の研磨液キットによれば、研磨速度を確保しつつ、平坦性を向上可能な研磨液組成物が得られうる。
[Polishing liquid kit]
In one aspect, the present disclosure relates to a kit for preparing the polishing liquid composition of the present disclosure (hereinafter also referred to as "polishing liquid kit of the present disclosure").
An embodiment of the polishing liquid kit of the present disclosure includes, for example, an abrasive dispersion liquid (first liquid) containing component A and an aqueous medium, an additive aqueous solution (second liquid) containing component B and component C, Examples include polishing liquid kits (two-component polishing liquid compositions) that contain these components in a mutually unmixed state, which are mixed at the time of use and diluted with an aqueous medium as necessary. The aqueous medium contained in the abrasive dispersion liquid (first liquid) may be the entire amount of water used for preparing the polishing liquid composition, or may be a portion thereof. The additive aqueous solution (second liquid) may contain a part of the aqueous medium used for preparing the polishing liquid composition. The abrasive grain dispersion liquid (first liquid) and the additive aqueous solution (second liquid) may each contain the above-mentioned optional components as necessary. The abrasive grain dispersion liquid (first liquid) and the additive aqueous solution (second liquid) may be mixed before being supplied to the surface of the object to be polished, or they may be separately supplied to the surface of the object to be polished. It may also be mixed on the surface of the substrate. According to the polishing liquid kit of the present disclosure, a polishing liquid composition that can improve flatness while ensuring a polishing rate can be obtained.

[酸化珪素膜研磨用添加剤組成物]
本開示は、一態様において、成分A及び水系媒体を含む分散液(第1液)と共に使用するための、水系媒体と、水系媒体に溶解された、成分B及び成分Cを含む酸化珪素膜研磨用添加剤組成物(以下、「本開示の添加剤組成物」ともいう。)に関する。本開示の添加剤組成物には、必要に応じて上述した任意成分が含まれていてもよい。本開示の添加剤組成物は、添加剤組成物とは別に供給される酸化セリウム粒子の水分散液と、使用時に混合され、必要に応じて水系媒体や任意成分が混合されることにより、研磨速度を確保しつつ、平坦性を向上可能な研磨液組成物が得られる。
[Additive composition for polishing silicon oxide film]
In one aspect, the present disclosure provides a silicon oxide film polishing comprising an aqueous medium and components B and C dissolved in the aqueous medium for use with a dispersion (first liquid) comprising a component A and an aqueous medium. (hereinafter also referred to as "the additive composition of the present disclosure"). The additive composition of the present disclosure may contain the above-mentioned optional components as necessary. The additive composition of the present disclosure is mixed at the time of use with an aqueous dispersion of cerium oxide particles supplied separately from the additive composition, and is mixed with an aqueous medium and optional components as necessary to achieve polishing. A polishing liquid composition that can improve flatness while ensuring speed can be obtained.

本開示の添加剤組成物における成分Bの含有量は、添加剤組成物の濃縮化の観点から、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.03質量%以上であり、そして、酸化セリウム粒子の水分散液との混合時の取り扱い容易性の観点から、好ましくは30質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。より具体的には、本開示の添加剤組成物における成分Bの含有量は、好ましくは0.005質量%以上30質量%以下、より好ましくは0.01質量%以上10質量%以下、更に好ましくは0.03質量%以上5質量%以下である。 From the viewpoint of concentrating the additive composition, the content of component B in the additive composition of the present disclosure is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.005% by mass or more. 03% by mass or more, and from the viewpoint of ease of handling when mixed with an aqueous dispersion of cerium oxide particles, preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less. It is. More specifically, the content of component B in the additive composition of the present disclosure is preferably 0.005% by mass or more and 30% by mass or less, more preferably 0.01% by mass or more and 10% by mass or less, and even more preferably is 0.03% by mass or more and 5% by mass or less.

本開示の添加剤組成物における成分Cの含有量は、添加剤組成物の濃縮化の観点から、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.03質量%以上であり、そして、酸化セリウム粒子の水分散液との混合時の取り扱い容易性の観点から、好ましくは30質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。より具体的には、本開示の添加剤組成物における成分Cの含有量は、好ましくは0.005質量%以上30質量%以下、より好ましくは0.01質量%以上10質量%以下、更に好ましくは0.03質量%以上5質量%以下である。 From the viewpoint of concentrating the additive composition, the content of component C in the additive composition of the present disclosure is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.005% by mass or more. 03% by mass or more, and from the viewpoint of ease of handling when mixed with an aqueous dispersion of cerium oxide particles, preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less. It is. More specifically, the content of component C in the additive composition of the present disclosure is preferably 0.005% by mass or more and 30% by mass or less, more preferably 0.01% by mass or more and 10% by mass or less, and even more preferably is 0.03% by mass or more and 5% by mass or less.

[半導体基板の製造方法]
本開示は、一態様において、本開示の研磨液組成物を用いて被研磨膜を研磨する工程(以下、「本開示の研磨液組成物を用いた研磨工程」ともいう)を含む、半導体基板の製造方法(以下、「本開示の半導体基板の製造方法」ともいう。)に関する。本開示の半導体基板の製造方法は、例えば、本開示の研磨液組成物を用いて、酸化珪素膜の窒化珪素膜と接する面の反対面、例えば、酸化珪素膜の凹凸段差面を研磨する工程を含む、半導体装置の製造方法に関する。本開示の半導体装置の製造方法によれば、酸化珪素膜の高速研磨が可能であるので、半導体装置を効率よく製造できるという効果が奏されうる。
[Method for manufacturing semiconductor substrate]
In one aspect, the present disclosure provides a semiconductor substrate that includes a step of polishing a film to be polished using the polishing liquid composition of the present disclosure (hereinafter also referred to as "polishing step using the polishing liquid composition of the present disclosure"). (hereinafter also referred to as "the method for manufacturing a semiconductor substrate of the present disclosure"). The method for manufacturing a semiconductor substrate of the present disclosure includes, for example, a step of polishing the surface of a silicon oxide film opposite to the surface in contact with the silicon nitride film, for example, the uneven step surface of the silicon oxide film, using the polishing liquid composition of the present disclosure. The present invention relates to a method for manufacturing a semiconductor device, including a method for manufacturing a semiconductor device. According to the method for manufacturing a semiconductor device of the present disclosure, it is possible to polish a silicon oxide film at high speed, so that the semiconductor device can be manufactured efficiently.

酸化珪素膜の凹凸段差面は、例えば、酸化珪素膜を化学気相成長法等の方法で形成した際に酸化珪素膜の下層の凹凸段差に対応して自然に形成されものであってもよいし、リソグラフィー法等を用いて凹凸パターンを形成することにより得られたものであってもよい。 The uneven step surface of the silicon oxide film may be formed naturally in response to the uneven step surface of the lower layer of the silicon oxide film, for example, when the silicon oxide film is formed by a method such as chemical vapor deposition. However, it may be obtained by forming a concavo-convex pattern using a lithography method or the like.

本開示の半導体基板の製造方法の具体例としては、まず、シリコン基板を酸化炉内で酸素に晒すことよりその表面に二酸化シリコン層を成長させ、次いで、当該二酸化シリコン層上に窒化珪素(Si34)膜又はポリシリコン膜等の研磨ストッパ膜を、例えばCVD法(化学気相成長法)にて形成する。次に、シリコン基板と前記シリコン基板の一方の主面側に配置された研磨ストッパ膜とを含む基板、例えば、シリコン基板の二酸化シリコン層上に研磨ストッパ膜が形成された基板に、フォトリソグラフィー技術を用いてトレンチを形成する。次いで、例えば、シランガスと酸素ガスを用いたCVD法により、トレンチ埋め込み用の被研磨膜である酸化珪素(SiO2)膜を形成し、研磨ストッパ膜が被研磨膜(酸化珪素膜)で覆われた被研磨基板を得る。酸化珪素膜の形成により、前記トレンチは酸化珪素膜の酸化珪素で満たされ、研磨ストッパ膜の前記シリコン基板側の面の反対面は酸化珪素膜によって被覆される。このようにして形成された酸化珪素膜のシリコン基板側の面の反対面は、下層の凸凹に対応して形成された段差を有する。次いで、CMP法により、酸化珪素膜を、少なくとも研磨ストッパ膜のシリコン基板側の面の反対面が露出するまで研磨し、より好ましくは、酸化珪素膜の表面と研磨ストッパ膜の表面とが面一になるまで酸化珪素膜を研磨する。本開示の研磨液組成物は、このCMP法による研磨を行う工程に用いることができる。酸化珪素膜の下層の凹凸に対応して形成された凸部の幅は、例えば、0.5μm以上5000μm以下であり、凹部の幅は、例えば、0.5μm以上5000μm以下である。 As a specific example of the method for manufacturing a semiconductor substrate of the present disclosure, first, a silicon substrate is exposed to oxygen in an oxidation furnace to grow a silicon dioxide layer on the surface thereof, and then silicon nitride (Si A polishing stopper film such as a 3N4 ) film or a polysilicon film is formed by, for example, CVD (chemical vapor deposition). Next, a substrate including a silicon substrate and a polishing stopper film disposed on one main surface side of the silicon substrate, for example, a substrate in which a polishing stopper film is formed on a silicon dioxide layer of a silicon substrate, is subjected to a photolithography technique. Form a trench using Next, a silicon oxide (SiO 2 ) film, which is a film to be polished for filling the trench, is formed by, for example, a CVD method using silane gas and oxygen gas, and the polishing stopper film is covered with the film to be polished (silicon oxide film). A substrate to be polished is obtained. By forming the silicon oxide film, the trench is filled with silicon oxide of the silicon oxide film, and the surface of the polishing stopper film opposite to the silicon substrate side is covered with the silicon oxide film. The surface of the silicon oxide film thus formed opposite to the silicon substrate side has a step formed to correspond to the unevenness of the underlying layer. Next, the silicon oxide film is polished by CMP until at least the surface opposite to the silicon substrate side of the polishing stopper film is exposed, and more preferably, the surface of the silicon oxide film and the surface of the polishing stopper film are flush with each other. Polish the silicon oxide film until it becomes . The polishing liquid composition of the present disclosure can be used in this polishing process using the CMP method. The width of the convex portion formed to correspond to the unevenness of the lower layer of the silicon oxide film is, for example, 0.5 μm or more and 5000 μm or less, and the width of the concave portion is, for example, 0.5 μm or more and 5000 μm or less.

CMP法による研磨では、被研磨基板の表面と研磨パッドとを接触させた状態で、本開示の研磨液組成物をこれらの接触部位に供給しつつ被研磨基板及び研磨パッドを相対的に移動させることにより、被研磨基板の表面の凹凸部分を平坦化させる。
なお、本開示の半導体基板の製造方法において、シリコン基板の二酸化シリコン層と研磨ストッパ膜との間に他の絶縁膜が形成されていてもよいし、被研磨膜(例えば、酸化珪素膜)と研磨ストッパ膜(例えば、窒化珪素膜)との間に他の絶縁膜が形成されていてもよい。
In polishing by the CMP method, while the surface of the substrate to be polished and the polishing pad are in contact with each other, the polishing liquid composition of the present disclosure is supplied to the contact area, and the substrate to be polished and the polishing pad are relatively moved. As a result, uneven portions on the surface of the substrate to be polished are flattened.
Note that in the method for manufacturing a semiconductor substrate of the present disclosure, another insulating film may be formed between the silicon dioxide layer of the silicon substrate and the polishing stopper film, or a film to be polished (for example, a silicon oxide film) may be formed between the silicon dioxide layer and the polishing stopper film. Another insulating film may be formed between the polishing stopper film (for example, a silicon nitride film).

本開示の研磨液組成物を用いた研磨工程において、研磨パッドの回転数は、例えば、30~200rpm/分、被研磨基板の回転数は、例えば、30~200rpm/分、研磨パッドを備えた研磨装置に設定される研磨荷重は、例えば、20~500g重/cm2、研磨液組成物の供給速度は、例えば、10~500mL/分以下に設定できる。 In the polishing step using the polishing liquid composition of the present disclosure, the rotation speed of the polishing pad is, for example, 30 to 200 rpm/min, and the rotation speed of the substrate to be polished is, for example, 30 to 200 rpm/min. The polishing load set on the polishing apparatus can be set, for example, to 20 to 500 g/cm 2 , and the supply rate of the polishing liquid composition can be set, for example, to 10 to 500 mL/min.

本開示の研磨液組成物を用いた研磨工程において、用いられる研磨パッドの材質等については、従来公知のものが使用できる。研磨パッドの材質としては、例えば、硬質発泡ポリウレタン等の有機高分子発泡体や無発泡体等が挙げられるが、なかでも、硬質発泡ポリウレタンが好ましい。 In the polishing process using the polishing liquid composition of the present disclosure, conventionally known materials can be used for the polishing pad used. Examples of the material of the polishing pad include organic polymer foams such as hard polyurethane foam, non-foamed materials, and among others, hard polyurethane foam is preferred.

[研磨方法]
本開示は、一態様において、本開示の研磨液組成物を用いて被研磨膜を研磨する工程(研磨工程)を含む、研磨方法(以下、「本開示の研磨方法」ともいう)に関する。本開示の研磨方法の一実施形態としては、本開示の酸化珪素膜用研磨液組成物を用いて酸化珪素膜を研磨する工程(研磨工程)を含み、前記酸化珪素膜は、半導体装置の製造過程で形成される絶縁膜である、酸化珪素膜の研磨方法が挙げられる。前記研磨工程は、例えば、窒化珪素膜上の酸化珪素膜を研磨する工程を含む。
[Polishing method]
In one aspect, the present disclosure relates to a polishing method (hereinafter also referred to as "polishing method of the present disclosure") including a step (polishing step) of polishing a film to be polished using the polishing liquid composition of the present disclosure. An embodiment of the polishing method of the present disclosure includes a step (polishing step) of polishing a silicon oxide film using the polishing liquid composition for a silicon oxide film of the present disclosure, and the silicon oxide film is manufactured by manufacturing a semiconductor device. One example is a method of polishing a silicon oxide film, which is an insulating film formed in the process. The polishing step includes, for example, polishing a silicon oxide film on a silicon nitride film.

本開示の研磨方法を使用することにより、研磨速度を確保しつつ、平坦性を向上できるため、品質が向上した半導体基板の生産性を向上できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本開示の半導体基板の製造方法と同じようにすることができる。 By using the polishing method of the present disclosure, it is possible to improve flatness while ensuring a polishing rate, so it is possible to achieve the effect that productivity of semiconductor substrates with improved quality can be improved. The specific polishing method and conditions can be the same as in the method for manufacturing a semiconductor substrate of the present disclosure described above.

以下に、実施例により本開示を具体的に説明するが、本開示はこれらの実施例によって何ら限定されるものではない。 EXAMPLES The present disclosure will be specifically explained below with reference to Examples, but the present disclosure is not limited to these Examples in any way.

1.研磨液組成物の調製
[実施例1~20及び比較例1~3の研磨液組成物の調製]
酸化セリウム粒子(成分A)、水溶性高分子化合物(成分B)、窒素含有複素芳香族化合物(成分C)及び水を混合して実施例1~20及び比較例1~3の研磨液組成物を得た。研磨液組成物中の各成分の含有量(質量%、有効分)はそれぞれ、表1に示すとおりであり、水の含有量は、成分A、成分B及び成分Cを除いた残余である。pH調整はアンモニアもしくは硝酸を用いて実施した。
1. Preparation of polishing liquid composition [Preparation of polishing liquid compositions of Examples 1 to 20 and Comparative Examples 1 to 3]
Polishing liquid compositions of Examples 1 to 20 and Comparative Examples 1 to 3 were prepared by mixing cerium oxide particles (component A), a water-soluble polymer compound (component B), a nitrogen-containing heteroaromatic compound (component C), and water. I got it. The content (mass %, effective content) of each component in the polishing liquid composition is as shown in Table 1, and the water content is the remainder after removing component A, component B, and component C. pH adjustment was performed using ammonia or nitric acid.

研磨液組成物の調製に用いた酸化セリウム粒子(成分A)の詳細は下記の通りである。
A1:正帯電セリア(粉砕セリア、平均一次粒子径:27.1nm、BET比表面積:30.6m2/g、表面電位=85mV)
A2:負帯電セリア(粉砕セリア、平均一次粒子径:26.8nm、BET比表面積:30.8m2/g、表面電位=-57mV)
Details of the cerium oxide particles (component A) used in preparing the polishing liquid composition are as follows.
A1: Positively charged ceria (pulverized ceria, average primary particle diameter: 27.1 nm, BET specific surface area: 30.6 m 2 /g, surface potential = 85 mV)
A2: Negatively charged ceria (pulverized ceria, average primary particle diameter: 26.8 nm, BET specific surface area: 30.8 m 2 /g, surface potential = -57 mV)

研磨液組成物の調製に用いた、窒素含有複素芳香族化合物(成分C)の詳細は下記及び表2に示した通りである。
C1:2-ヒドロキシピリジンN-オキシド(東京化成工業株式会社製)
C2:3-ヒドロキシピリジンN-オキシド(東京化成工業株式会社製)
Details of the nitrogen-containing heteroaromatic compound (component C) used in preparing the polishing liquid composition are as shown below and in Table 2.
C1: 2-hydroxypyridine N-oxide (manufactured by Tokyo Chemical Industry Co., Ltd.)
C2: 3-hydroxypyridine N-oxide (manufactured by Tokyo Chemical Industry Co., Ltd.)

研磨液組成物の調製に用いた水溶性高分子化合物(成分B)の詳細は下記に示した通りである。
[水溶性高分子化合物B1]
MPC(2-メタクリロイルオキシエチルホスホリルコリン)ホモポリマー[Lipidure-HM、日油(株)製、重量平均分子量80,000]
[水溶性高分子化合物B2]
MPCとBMAの共重合体[商品名Lipidure-PMB、日油株式会社、モル比(MPC/BMA)80/20、重量平均分子量は600,000]
[水溶性高分子化合物B3の製造例]
内容量300mLの4つ口ナスフラスコにエタノールを20.0g入れ、80℃まで昇温させた。そこにMPC(東京化成工業(株)製)10.0g、α-メチルスチレン(αMSt)(富士フィルム和光純薬工業(株)製)0.99g、エタノール20.0gを混合させた溶液と、2,2'-アゾビス(イソブチルニトリル)(和光純薬工業(株)製)0.042g、エタノール10.0gを混合させた溶液を別々に2時間かけて滴下して重合した。4時間熟成させた後に溶媒を減圧留去し水に置換することで水溶性高分子化合物B3(MPCとαMStの共重合体)(成分B)を含有するポリマー水溶液を得た。水溶性高分子化合物B3における構成単位のモル比(MPC/αMSt)は80/20であり、水溶性高分子化合物B3の重量平均分子量は100,000であった。
[水溶性高分子化合物B4の製造例]
内容量300mLの4つ口ナスフラスコにエタノールを20.0g入れ、80℃まで昇温させた。そこにMPC(東京化成工業(株)製)10.0g、1-ビニルー2-ピロリドン(VP)(富士フィルム和光純薬工業(株)製)0.94g、エタノール20.0gを混合させた溶液と、2,2'-アゾビス(イソブチルニトリル)(和光純薬工業(株)製)0.042g、エタノール10.0gを混合させた溶液を別々に2時間かけて滴下して重合した。4時間熟成させた後に溶媒を減圧留去し水に置換することで水溶性高分子化合物B4(MPCとVPの共重合体)を含有するポリマー水溶液を得た。水溶性高分子化合物B4における構成単位のモル比(MPC/VP)は80/20であり、水溶性高分子化合物B4の重量平均分子量は100,000であった。
[水溶性高分子化合物B5]
MPCとTHMPAの共重合体[Lipidure-C、日油(株)製、モル比(MPC/THMPA):80/20、重量平均分子量500,000]
[水溶性高分子化合物B6]
GLBT(N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン)ホモポリマー[p-MEB、大阪有機化学工業(株)製、重量平均分子量600,000]
[水溶性高分子化合物B7]
GLBT/メタクリル酸アルキルエステル共重合体[RAMレジン-4000、大阪有機化学工業(株)製、重量平均分子量50,000]
Details of the water-soluble polymer compound (component B) used in preparing the polishing liquid composition are as shown below.
[Water-soluble polymer compound B1]
MPC (2-methacryloyloxyethylphosphorylcholine) homopolymer [Lipidure-HM, manufactured by NOF Corporation, weight average molecular weight 80,000]
[Water-soluble polymer compound B2]
Copolymer of MPC and BMA [trade name Lipidure-PMB, NOF Corporation, molar ratio (MPC/BMA) 80/20, weight average molecular weight 600,000]
[Production example of water-soluble polymer compound B3]
20.0 g of ethanol was placed in a four-necked eggplant flask with an internal capacity of 300 mL, and the temperature was raised to 80°C. A solution in which 10.0 g of MPC (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.99 g of α-methylstyrene (αMSt) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 20.0 g of ethanol were mixed therein; A solution prepared by mixing 0.042 g of 2,2'-azobis(isobutylnitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) and 10.0 g of ethanol was separately added dropwise over 2 hours to polymerize. After aging for 4 hours, the solvent was distilled off under reduced pressure and replaced with water to obtain a polymer aqueous solution containing water-soluble polymer compound B3 (copolymer of MPC and αMSt) (component B). The molar ratio (MPC/αMSt) of the structural units in water-soluble polymer compound B3 was 80/20, and the weight average molecular weight of water-soluble polymer compound B3 was 100,000.
[Production example of water-soluble polymer compound B4]
20.0 g of ethanol was placed in a four-necked eggplant flask with an internal capacity of 300 mL, and the temperature was raised to 80°C. A solution in which 10.0 g of MPC (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.94 g of 1-vinyl-2-pyrrolidone (VP) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and 20.0 g of ethanol were mixed therein. , 0.042 g of 2,2'-azobis(isobutylnitrile) (manufactured by Wako Pure Chemical Industries, Ltd.), and 10.0 g of ethanol were separately added dropwise over 2 hours to polymerize. After aging for 4 hours, the solvent was distilled off under reduced pressure and replaced with water to obtain an aqueous polymer solution containing water-soluble polymer compound B4 (copolymer of MPC and VP). The molar ratio (MPC/VP) of the structural units in water-soluble polymer compound B4 was 80/20, and the weight average molecular weight of water-soluble polymer compound B4 was 100,000.
[Water-soluble polymer compound B5]
Copolymer of MPC and THMPA [Lipidure-C, manufactured by NOF Corporation, molar ratio (MPC/THMPA): 80/20, weight average molecular weight 500,000]
[Water-soluble polymer compound B6]
GLBT (N-methacryloyloxyethyl-N,N-dimethylammonium-α-N-methylcarboxybetaine) homopolymer [p-MEB, manufactured by Osaka Organic Chemical Industry Co., Ltd., weight average molecular weight 600,000]
[Water-soluble polymer compound B7]
GLBT/methacrylic acid alkyl ester copolymer [RAM Resin-4000, manufactured by Osaka Organic Chemical Industry Co., Ltd., weight average molecular weight 50,000]

2.各種パラメータの測定方法
[水溶性高分子化合物の重量平均分子量]
研磨液組成物の調製に用いた水溶性高分子化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づき算出した。
装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
カラム:TSKgel α-M(東ソー(株)製)を2本直列に連結
溶離液:0.15molNa2SO4/1%CH3COOH/水
流量:1.0mL/min
カラム温度:40℃
検出器:RI 検出器
標準物質:プルラン
2. Methods for measuring various parameters [Weight average molecular weight of water-soluble polymer compound]
The weight average molecular weight of the water-soluble polymer compound used to prepare the polishing liquid composition was calculated based on the peaks in the chromatogram obtained by applying the gel permeation chromatography (GPC) method under the following conditions.
Equipment: HLC-8320 GPC (Tosoh Corporation, integrated detector)
Column: Two TSKgel α-M (manufactured by Tosoh Corporation) connected in series Eluent: 0.15 mol Na 2 SO 4 /1% CH 3 COOH/water flow rate: 1.0 mL/min
Column temperature: 40℃
Detector: RI Detector standard material: Pullulan

[研磨液組成物のpH]
研磨液組成物の25℃におけるpH値は、pHメータ(東亜電波工業株式会社、HM-30G)を用いて測定した値であり、電極の研磨液組成物への浸漬後1分後の数値である。結果を表1に示した。
[pH of polishing liquid composition]
The pH value of the polishing liquid composition at 25°C is the value measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is the value 1 minute after the electrode is immersed in the polishing liquid composition. be. The results are shown in Table 1.

[酸化セリウム粒子の平均一次粒子径]
酸化セリウム粒子の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出される粒径(真球換算)を意味し、下記式により算出される。
下記式中、比表面積Sは、酸化セリウム粒子のスラリー10gを110℃で減圧乾燥して水分を除去したものをメノウ乳鉢で解砕し、得られた粉末を流動式比表面積自動測定装置フローソーブ2300(島津製作所製)を用いて測定することにより求めた。
平均一次粒子径(nm)=820/S
[Average primary particle diameter of cerium oxide particles]
The average primary particle diameter (nm) of cerium oxide particles means the particle diameter (in terms of true sphere) calculated by the following formula using the specific surface area S (m 2 /g) calculated by the BET (nitrogen adsorption) method. It is calculated using the following formula.
In the following formula, the specific surface area S is determined by drying 10 g of slurry of cerium oxide particles under reduced pressure at 110°C to remove moisture, crushing the slurry in an agate mortar, and crushing the resulting powder using a fluidized specific surface area automatic measuring device Flowsorb 2300. (manufactured by Shimadzu Corporation).
Average primary particle diameter (nm) = 820/S

[酸化セリウムの表面電位]
酸化セリウム粒子の表面電位(mV)は、表面電位測定装置(協和界面化学社製「ゼータプローブ」)にて測定した。超純水を用い、酸化セリウム濃度0.15%に調整し、表面電位測定装置に投入し、粒子密度7.13g/ml、粒子誘電率7の条件にて表面電位を測定した。測定回数は3回行い、それらの平均値を測定結果とした。
[Surface potential of cerium oxide]
The surface potential (mV) of the cerium oxide particles was measured with a surface potential measuring device ("Zeta Probe" manufactured by Kyowa Interface Science Co., Ltd.). Using ultrapure water, the cerium oxide concentration was adjusted to 0.15%, and the sample was placed in a surface potential measuring device, and the surface potential was measured under conditions of a particle density of 7.13 g/ml and a particle dielectric constant of 7. The measurement was performed three times, and the average value was taken as the measurement result.

3.研磨液組成物(実施例1~20及び比較例1~3)の評価
[評価用サンプル]
評価用サンプルとして市販のCMP特性評価用ウエハ(Advantec社製の「P-TEOS CMP464 PTウエハ」、直径200mm)を用意し、これを40mm×40mmに切断した。この評価用サンプルは、シリコン基板上に膜厚2000nmの酸化珪素膜が凸部として配置されており、凹部も同様に膜厚2000nmの酸化珪素膜が配置され、凸部と凹部の段差が800nmになるよう、エッチングにより線状凹凸パターンが形成されている。酸化珪素膜はP-TEOSにより形成されており、凸部及び凹部の線幅がそれぞれ100μmのものを測定対象として使用した。
3. Evaluation of polishing liquid compositions (Examples 1 to 20 and Comparative Examples 1 to 3) [Samples for evaluation]
A commercially available wafer for CMP characteristic evaluation (“P-TEOS CMP464 PT wafer” manufactured by Advantec, diameter 200 mm) was prepared as a sample for evaluation, and this was cut into 40 mm×40 mm. In this evaluation sample, a silicon oxide film with a thickness of 2000 nm is placed on a silicon substrate as a convex portion, a silicon oxide film with a thickness of 2000 nm is also placed on a concave portion, and the step difference between the convex portion and the concave portion is 800 nm. A linear uneven pattern is formed by etching. The silicon oxide film was made of P-TEOS, and the line width of each of the convex and concave portions was 100 μm and was used as the measurement target.

[研磨条件]
研磨装置:TriboLab CMP(Bruker社製)
定盤回転数:100rpm
ヘッド回転数:107rpm
研磨荷重:99.3N
研磨液供給量:50mL/分
研磨時間:1/3分間
[Polishing conditions]
Polishing device: TriboLab CMP (manufactured by Bruker)
Surface plate rotation speed: 100rpm
Head rotation speed: 107 rpm
Polishing load: 99.3N
Polishing liquid supply amount: 50mL/min Polishing time: 1/3 minute

[研磨速度]
実施例1~20及び比較例1~3の各研磨液組成物を用いて、上記研磨条件で評価用サンプルを研磨した。研磨後、超純水を用いて洗浄し、乾燥して、評価用サンプルを後述の光干渉式膜厚測定装置による測定対象とした。
研磨前及び研磨後において、光干渉式膜厚測定装置(SCREENセミコンダクターソリューションズ社製「VM-1230」)を用いて、凸部及び凹部の酸化珪素膜の膜厚を測定した。凸部及び凹部の酸化珪素膜の研磨速度をそれぞれ下記式により算出した。算出結果を表1に示した。
凸部の研磨速度(nm/分)
=[研磨前の凸部の酸化珪素膜厚さ(nm)-研磨後の凸部の酸化珪素膜厚さ(nm)]/研磨時間(分)
凹部の研磨速度(nm/分)
=[研磨前の凹部の酸化珪素膜厚さ(nm)-研磨後の凹部の酸化珪素膜厚さ(nm)]/研磨時間(分)
ここで、凹部の研磨速度が速いほど、ディッシングが発生していることを示す。
[Polishing speed]
Evaluation samples were polished using each of the polishing liquid compositions of Examples 1 to 20 and Comparative Examples 1 to 3 under the above polishing conditions. After polishing, the sample was washed with ultrapure water and dried, and the evaluation sample was subjected to measurement using an optical interference film thickness measuring device described below.
Before and after polishing, the thickness of the silicon oxide film in the convex portions and concave portions was measured using an optical interference film thickness measuring device (“VM-1230” manufactured by SCREEN Semiconductor Solutions). The polishing rates of the silicon oxide film on the convex portions and the concave portions were calculated using the following formulas. The calculation results are shown in Table 1.
Polishing speed of convex parts (nm/min)
= [Silicon oxide film thickness on the convex portion before polishing (nm) - Silicon oxide film thickness on the convex portion after polishing (nm)]/Polishing time (minutes)
Recess polishing speed (nm/min)
= [Thickness of silicon oxide film in the recess before polishing (nm) - Thickness of silicon oxide film in the recess after polishing (nm)] / Polishing time (minutes)
Here, the faster the polishing speed of the concave portion is, the more dishing occurs.

[平坦化効率]
平坦性を示す指標として、下記式により平坦化効率を算出した。
平坦化効率
=[凸部の研磨速度(nm/分)-凹部の研磨速度(nm/分)]/凸部の研磨速度(nm/分)×100
ここで、凹部の研磨速度が低いほど、数値は1に近くなり、ディッシングが抑制されていることを示す。
[Flattening efficiency]
As an index indicating flatness, flattening efficiency was calculated using the following formula.
Planarization efficiency = [polishing rate of convex parts (nm/min) - polishing rate of concave parts (nm/min)] / polishing rate of convex parts (nm/min) x 100
Here, the lower the polishing rate of the recesses, the closer the numerical value is to 1, indicating that dishing is suppressed.

Figure 0007425660000005
Figure 0007425660000005

表1に示されるように、実施例1~20の研磨液組成物は、比較例1~3の研磨液組成物と比較して、研磨速度を確保しつつ、平坦性が向上していた。 As shown in Table 1, the polishing liquid compositions of Examples 1 to 20 had improved flatness while maintaining the polishing rate as compared to the polishing liquid compositions of Comparative Examples 1 to 3.

本開示に係る研磨液組成物は、高密度化又は高集積化用の半導体装置の製造方法において有用である。 The polishing liquid composition according to the present disclosure is useful in a method of manufacturing a semiconductor device for high density or high integration.

Claims (12)

酸化セリウム粒子(成分A)と、高分子化合物(成分B)と、窒素含有複素芳香族化合物(成分C)と、水系媒体とを含有し、
成分Bは、下記式(I)で表される構成単位b1を含む重合体である、酸化珪素膜用研磨液組成物。
前記式(I)中、R1~R3は同一又は異なって、水素原子、メチル基、又はエチル基を示し、R4は、炭素数1以上4以下のアルキレン基、又は-Y1-OPO3 --Y2-を示し、Y1及びY2は同一又は異なって、炭素数1以上4以下のアルキレン基を示し、R5及びR6は同一又は異なって、炭素数1以上4以下の炭化水素基を示し、X1は、O又はNR7を示し、R7は、水素原子又は炭素数1以上4以下の炭化水素基を示し、X2は、炭素数1以上4以下の炭化水素基、-R8SO3 -、又は-R9COO-を示し、R8及びR9は同一又は異なって、炭素数1以上4以下のアルキレン基を示す。
ただし、X2は、R4が炭素数1以上4以下のアルキレン基のとき、-R8SO3 -、又は-R9COO-であり、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基である。
Contains cerium oxide particles (component A), a polymer compound (component B), a nitrogen-containing heteroaromatic compound (component C), and an aqueous medium,
Component B is a polishing liquid composition for a silicon oxide film, which is a polymer containing a structural unit b1 represented by the following formula (I).
In the formula (I), R 1 to R 3 are the same or different and represent a hydrogen atom, a methyl group, or an ethyl group, and R 4 is an alkylene group having 1 to 4 carbon atoms, or -Y 1 -OPO 3 - -Y 2 -, Y 1 and Y 2 are the same or different and represent an alkylene group having 1 to 4 carbon atoms, and R 5 and R 6 are the same or different and represent an alkylene group having 1 to 4 carbon atoms. represents a hydrocarbon group, X 1 represents O or NR 7 , R 7 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and X 2 represents a hydrocarbon group having 1 to 4 carbon atoms group, -R 8 SO 3 - , or -R 9 COO - , and R 8 and R 9 are the same or different and represent an alkylene group having 1 or more and 4 or less carbon atoms.
However, when R 4 is an alkylene group having 1 to 4 carbon atoms, X 2 is -R 8 SO 3 - or -R 9 COO - , and R 4 is -Y 1 -OPO 3 - -Y 2 When -, it is a hydrocarbon group having 1 or more and 4 or less carbon atoms.
成分Bは、前記式(I)で表される構成単位b1からなるホモポリマーである、請求項1に記載の研磨液組成物。 The polishing liquid composition according to claim 1, wherein component B is a homopolymer consisting of the structural unit b1 represented by the formula (I). 成分Bは、前記式(I)で表される構成単位b1と、下記式(II)で表される構成単位、下記式(III)で表される構成単位、及び下記式(IV)で表される構成単位から選ばれる少なくとも1種の構成単位b2とを含む共重合体である、請求項1に記載の研磨液組成物。
式(II)中、R10、R11及びR12は同一又は異なって、水素原子、メチル基又はエチル基を示し、X3はO又はNHを示し、R13は炭化水素基を示し、X4は水素原子又はヒドロキシル基を示す。
式(III)中、R14、R15及びR16は同一又は異なって、水素原子、メチル基又はエチル基を示し、R17は水素原子、ヒドロキシル基、炭化水素基又はアルコキシ基を示す。
式(IV)中、R18、R19及びR20は同一又は異なり、水素原子、メチル基又はエチル基を示し、nは2~12の整数を示す。
Component B consists of a structural unit b1 represented by the above formula (I), a structural unit represented by the following formula (II), a structural unit represented by the following formula (III), and a structural unit represented by the following formula (IV). The polishing liquid composition according to claim 1, which is a copolymer containing at least one kind of structural unit b2 selected from the following structural units.
In formula (II), R 10 , R 11 and R 12 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, X 3 represents O or NH, R 13 represents a hydrocarbon group, 4 represents a hydrogen atom or a hydroxyl group.
In formula (III), R 14 , R 15 and R 16 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, and R 17 represents a hydrogen atom, a hydroxyl group, a hydrocarbon group or an alkoxy group.
In formula (IV), R 18 , R 19 and R 20 are the same or different and represent a hydrogen atom, a methyl group or an ethyl group, and n represents an integer of 2 to 12.
成分Bは、前記式(I)で表される構成単位b1と、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム基、及びこれらの塩から選ばれる少なくとも1種の基を有する構成単位b3とを含む共重合体である、請求項1又は3に記載の研磨液組成物。 Component B includes the structural unit b1 represented by the formula (I) and at least one selected from a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium group, and salts thereof. The polishing liquid composition according to claim 1 or 3, which is a copolymer containing a structural unit b3 having one type of group. 式(I)で表される構成単位b1が、ホスホベタイン構造又はカルボベタイン構造を含むモノマー由来の構成単位である、請求項1から4のいずれかに記載の研磨液組成物。 The polishing liquid composition according to any one of claims 1 to 4, wherein the structural unit b1 represented by formula (I) is a structural unit derived from a monomer containing a phosphobetaine structure or a carbobetaine structure. 成分Cは、少なくとも1つの水素原子がヒドロキシル基で置換された含窒素複素芳香環骨格を含むN-オキシド化合物及びその塩から選ばれる少なくとも1種の化合物である、請求項1から5のいずれかに記載の研磨液組成物。 Component C is at least one compound selected from N-oxide compounds and salts thereof containing a nitrogen-containing heteroaromatic ring skeleton in which at least one hydrogen atom is substituted with a hydroxyl group. The polishing liquid composition described in . 成分Cは、少なくとも1つの水素原子がヒドロキシル基に置換されたピリジン環を有するN-オキシド化合物、少なくとも1つの水素原子がヒドロキシル基に置換されたキノリン環を有するN-オキシド化合物、及びこれらの塩から選ばれる少なくとも1種の化合物である、請求項1から6のいずれかに記載の研磨液組成物。 Component C is an N-oxide compound having a pyridine ring in which at least one hydrogen atom is substituted with a hydroxyl group, an N-oxide compound having a quinoline ring in which at least one hydrogen atom is substituted with a hydroxyl group, and salts thereof. The polishing liquid composition according to any one of claims 1 to 6, which is at least one compound selected from the following. 成分Aが、正帯電性の酸化セリウム粒子である、請求項1から7のいずれかに記載の研磨液組成物。 The polishing liquid composition according to any one of claims 1 to 7, wherein component A is positively charged cerium oxide particles. 前記研磨液組成物の25℃におけるpHは、3.5以上9.5以下である、請求項1から8のいずれかに記載の研磨液組成物。 The polishing liquid composition according to any one of claims 1 to 8, wherein the polishing liquid composition has a pH of 3.5 or more and 9.5 or less at 25°C. 請求項1から9のいずれかに記載の研磨液組成物を用いて被研磨膜を研磨する工程を含む、半導体基板の製造方法。 A method for manufacturing a semiconductor substrate, comprising the step of polishing a film to be polished using the polishing liquid composition according to any one of claims 1 to 9. 請求項1から9のいずれかに記載の研磨液組成物を用いて被研磨膜を研磨する工程を含む、研磨方法。 A polishing method comprising the step of polishing a film to be polished using the polishing liquid composition according to any one of claims 1 to 9. 酸化珪素膜用研磨液組成物を調製するための研磨液キットであって、
酸化セリウム粒子(成分A)及び水系媒体を含む砥粒分散液(第1液)と、下記式(I)で表される構成単位b1を含む重合体である高分子化合物(成分B)及び窒素含有複素芳香族化合物(成分C)を含む添加剤水溶液(第2液)と、を相互に混合されない状態で含み、これらが使用時に混合され、必要に応じて水系媒体を用いて希釈される、研磨液キット。
前記式(I)中、R1~R3は同一又は異なって、水素原子、メチル基、又はエチル基を示し、R4は、炭素数1以上4以下のアルキレン基、又は-Y1-OPO3 --Y2-を示し、Y1及びY2は同一又は異なって、炭素数1以上4以下のアルキレン基を示し、R5及びR6は同一又は異なって、炭素数1以上4以下の炭化水素基を示し、X1は、O又はNR7を示し、R7は、水素原子又は炭素数1以上4以下の炭化水素基を示し、X2は、炭素数1以上4以下の炭化水素基、-R8SO3 -、又は-R9COO-を示し、R8及びR9は同一又は異なって、炭素数1以上4以下のアルキレン基を示す。
ただし、X2は、R4が炭素数1以上4以下のアルキレン基のとき、-R8SO3 -、又は-R9COO-であり、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基である。
A polishing liquid kit for preparing a polishing liquid composition for silicon oxide film, comprising:
An abrasive dispersion (first liquid) containing cerium oxide particles (component A) and an aqueous medium, a polymer compound (component B) that is a polymer containing a structural unit b1 represented by the following formula (I), and nitrogen and an additive aqueous solution (second liquid) containing a containing heteroaromatic compound (component C) in a mutually unmixed state, and these are mixed at the time of use and diluted with an aqueous medium as necessary. Polishing liquid kit.
In the formula (I), R 1 to R 3 are the same or different and represent a hydrogen atom, a methyl group, or an ethyl group, and R 4 is an alkylene group having 1 to 4 carbon atoms, or -Y 1 -OPO 3 - -Y 2 -, Y 1 and Y 2 are the same or different and represent an alkylene group having 1 to 4 carbon atoms, and R 5 and R 6 are the same or different and represent an alkylene group having 1 to 4 carbon atoms. represents a hydrocarbon group, X 1 represents O or NR 7 , R 7 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and X 2 represents a hydrocarbon group having 1 to 4 carbon atoms group, -R 8 SO 3 - , or -R 9 COO - , and R 8 and R 9 are the same or different and represent an alkylene group having 1 or more and 4 or less carbon atoms.
However, when R 4 is an alkylene group having 1 to 4 carbon atoms, X 2 is -R 8 SO 3 - or -R 9 COO - , and R 4 is -Y 1 -OPO 3 - -Y 2 When -, it is a hydrocarbon group having 1 or more and 4 or less carbon atoms.
JP2020069244A 2020-04-07 2020-04-07 Polishing liquid composition for silicon oxide film Active JP7425660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020069244A JP7425660B2 (en) 2020-04-07 2020-04-07 Polishing liquid composition for silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020069244A JP7425660B2 (en) 2020-04-07 2020-04-07 Polishing liquid composition for silicon oxide film

Publications (2)

Publication Number Publication Date
JP2021166254A JP2021166254A (en) 2021-10-14
JP7425660B2 true JP7425660B2 (en) 2024-01-31

Family

ID=78021990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069244A Active JP7425660B2 (en) 2020-04-07 2020-04-07 Polishing liquid composition for silicon oxide film

Country Status (1)

Country Link
JP (1) JP7425660B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023098704A (en) * 2021-12-28 2023-07-10 花王株式会社 Polishing liquid composition for silicon oxide film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273547A (en) 2003-03-05 2004-09-30 Kao Corp Polishing rate selectivity enhancer
JP2006318952A (en) 2005-05-10 2006-11-24 Hitachi Chem Co Ltd Cmp abrasive and method of polishing substrate
JP2009260236A (en) 2008-03-18 2009-11-05 Hitachi Chem Co Ltd Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
JP2011031324A (en) 2009-07-30 2011-02-17 Kao Corp Polishing liquid composition for glass substrate
JP2018107329A (en) 2016-12-27 2018-07-05 花王株式会社 Polishing liquid composition for silicon oxide film
JP2019121641A (en) 2017-12-28 2019-07-22 花王株式会社 Polishing liquid composition for silicon oxide film
WO2020066786A1 (en) 2018-09-28 2020-04-02 花王株式会社 Polishing liquid composition for silicon oxide film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273547A (en) 2003-03-05 2004-09-30 Kao Corp Polishing rate selectivity enhancer
JP2006318952A (en) 2005-05-10 2006-11-24 Hitachi Chem Co Ltd Cmp abrasive and method of polishing substrate
JP2009260236A (en) 2008-03-18 2009-11-05 Hitachi Chem Co Ltd Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
JP2011031324A (en) 2009-07-30 2011-02-17 Kao Corp Polishing liquid composition for glass substrate
JP2018107329A (en) 2016-12-27 2018-07-05 花王株式会社 Polishing liquid composition for silicon oxide film
JP2019121641A (en) 2017-12-28 2019-07-22 花王株式会社 Polishing liquid composition for silicon oxide film
WO2020066786A1 (en) 2018-09-28 2020-04-02 花王株式会社 Polishing liquid composition for silicon oxide film

Also Published As

Publication number Publication date
JP2021166254A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7133667B2 (en) Polishing liquid composition for silicon oxide film
KR100661273B1 (en) Abrasive composition for polishing of wafer
TWI413678B (en) Polishing liquid
WO2014199739A1 (en) Polishing liquid for cmp, and polishing method
JP2006339594A (en) Abrasive agent for semiconductor
TW200800486A (en) CMP slurry and method for polishing semiconductor wafer using the same
JP2019087660A (en) Polishing agent and polishing method, and additive solution for polishing
JP7425660B2 (en) Polishing liquid composition for silicon oxide film
JP2019009278A (en) Finish polishing liquid composition for silicon wafer
TWI796575B (en) Polishing liquid composition for silicon oxide film
JP6811090B2 (en) Abrasive liquid composition for silicon oxide film
JP7475184B2 (en) Polishing composition for silicon oxide film
JP2023142077A (en) Polishing liquid composition for silicon oxide films
TWI548727B (en) A chemical mechanical polishing (cmp) composition comprising two types of corrosion inhibitors
JP2022060878A (en) Polishing liquid composition for silicon oxide film
JP7252073B2 (en) Polishing liquid composition for silicon oxide film
JP2023142078A (en) Polishing liquid composition for silicon oxide films
WO2022075179A1 (en) Polishing liquid composition for silicon oxide films
WO2022113775A1 (en) Polishing liquid composition for silicon oxide film
TW202342662A (en) Polishing liquid composition for silicon oxide film
JP2022085857A (en) Polishing liquid composition for silicon oxide film
JP2023082545A (en) Polishing liquid composition for silicon oxide film
TW202344640A (en) Ceria-based slurry compositions for selective and nonselective cmp of silicon oxide, silicon nitride, and polysilicon
TW202122428A (en) Low oxide trench dishing shallow trench isolation chemical mechanical planarization polishing
JP2012146938A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240119

R151 Written notification of patent or utility model registration

Ref document number: 7425660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151