JP7424158B2 - Soil surface solidification method - Google Patents

Soil surface solidification method Download PDF

Info

Publication number
JP7424158B2
JP7424158B2 JP2020055627A JP2020055627A JP7424158B2 JP 7424158 B2 JP7424158 B2 JP 7424158B2 JP 2020055627 A JP2020055627 A JP 2020055627A JP 2020055627 A JP2020055627 A JP 2020055627A JP 7424158 B2 JP7424158 B2 JP 7424158B2
Authority
JP
Japan
Prior art keywords
soil
solution
soil surface
lignin sulfonate
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020055627A
Other languages
Japanese (ja)
Other versions
JP2021154198A (en
Inventor
一貴 井出
俊彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2020055627A priority Critical patent/JP7424158B2/en
Publication of JP2021154198A publication Critical patent/JP2021154198A/en
Application granted granted Critical
Publication of JP7424158B2 publication Critical patent/JP7424158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、土壌表面の固化方法に関する。 The present invention relates to a method for solidifying soil surfaces.

乾燥している土壌や有害物質を含む汚染土壌を掘削する際、土壌表面を固化させたり湿潤状態にすることにより、粉塵の飛散を防止することが行われている。 When excavating dry soil or contaminated soil containing harmful substances, the scattering of dust is prevented by solidifying or moistening the soil surface.

たとえば、従来から、リグニンスルホン酸塩を含む溶液を土壌表面に散布することにより、土壌表面を固化させ、粉塵の飛散を防止する手法が用いられている。或いは、特許文献1には、吸着剤を混合した水を汚染土壌に散布し、汚染土壌を湿潤状態にすることで、粉塵の飛散を防止する技術が開示されている。 For example, conventional methods have been used to solidify the soil surface and prevent dust from scattering by spraying a solution containing lignin sulfonate on the soil surface. Alternatively, Patent Document 1 discloses a technique for preventing dust from scattering by spraying water mixed with an adsorbent onto contaminated soil to keep the contaminated soil in a moist state.

特開2006-75799公報Japanese Patent Application Publication No. 2006-75799

ところで、リグニンスルホン酸塩は水に溶けやすい。よって、散布したリグニンスルホン酸塩が土壌表面を固化させる前に土壌が含む水の中に溶け出してしまうことがある。また、リグニンスルホン酸塩の溶液を散布する際、コスト面を考慮しつつ、散布に適した粘度となるまで濃度を下げた場合、土壌表面を固化する性能が低下する恐れがあるという問題があった。 By the way, lignin sulfonate is easily soluble in water. Therefore, the sprayed lignin sulfonate may dissolve into the water contained in the soil before solidifying the soil surface. In addition, when spraying a lignin sulfonate solution, if the concentration is lowered to a viscosity suitable for spraying while taking cost into account, there is a problem that the ability to solidify the soil surface may deteriorate. Ta.

本発明は、土壌表面の固化をより確実に行うことが可能な方法を提供することを目的とする。 An object of the present invention is to provide a method that can solidify the soil surface more reliably.

本発明の一実施態様は、土壌表面に対してリグニンスルホン酸塩を含む溶液を散布する第1の処理と、前記土壌表面に対してカチオン系の材料を含む溶液を散布する第2の処理と、を含む土壌表面の固化方法である。
また、土壌表面の固化方法は、前記第1の処理を行った後、前記第2の処理を行うことができる。
また、前記リグニンスルホン酸塩は、リグニンスルホン酸マグネシウム、リグニンスルホン酸ナトリウム、及びリグニンスルホン酸カルシウムからなる群から選択される少なくとも一種類以上である。
また、前記カチオン系の材料は、ポリ塩化アルミニウム、ポリジアリルジメチルアンモニウムクロリド、及びメタクリル酸エステルのポリマーからなる群から選択される少なくとも一種類以上である。
One embodiment of the present invention includes a first treatment of spraying a solution containing a lignin sulfonate on the soil surface, and a second treatment of spraying a solution containing a cationic material on the soil surface. This is a soil surface solidification method including:
In addition, in the soil surface solidification method, after performing the first treatment, the second treatment can be performed.
Further, the ligninsulfonate is at least one type selected from the group consisting of magnesium ligninsulfonate, sodium ligninsulfonate, and calcium ligninsulfonate.
The cationic material is at least one selected from the group consisting of polyaluminum chloride, polydiallyldimethylammonium chloride, and methacrylic acid ester polymers.

本発明の方法によれば、土壌表面の固化をより確実に行うことができる。 According to the method of the present invention, the soil surface can be solidified more reliably.

実施例1-3、及び比較例1の支持強度を示すグラフである。3 is a graph showing the support strength of Examples 1-3 and Comparative Example 1. 実施例4-6、及び比較例2の支持強度を示すグラフである。3 is a graph showing the support strength of Examples 4-6 and Comparative Example 2. 実施例1及び実施例7の支持強度を示すグラフである。3 is a graph showing the support strength of Example 1 and Example 7. 実施例4及び実施例8の支持強度を示すグラフである。7 is a graph showing the support strength of Example 4 and Example 8.

以下、本発明の実施の形態を、実施例を挙げながら詳細に説明する。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。 Hereinafter, embodiments of the present invention will be described in detail by giving examples. Note that the objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of this specification, and those skilled in the art will be able to easily reproduce the present invention from the description of this specification. can. The embodiments and specific examples of the invention described below indicate preferred embodiments of the invention and are provided for illustration or explanation, and the invention is not limited thereto. It is not limited. It will be apparent to those skilled in the art that various modifications can be made based on the description herein within the spirit and scope of the present invention disclosed herein.

==土壌==
本実施形態に係る固化方法が実施される土壌は、乾燥している土壌や有害物質を含む汚染土壌である。有害物質は、たとえば土壌汚染対策法に規定されている第1種特定有害物質(すなわち、揮発性有機化合物)や第2種特定有害物質(すなわち、重金属)、或いはダイオキシン類である。
==Soil==
The soil on which the solidification method according to the present embodiment is performed is dry soil or contaminated soil containing harmful substances. The harmful substances are, for example, Class 1 specified harmful substances (namely, volatile organic compounds), Class 2 specified hazardous substances (namely, heavy metals), or dioxins specified in the Soil Contamination Countermeasures Act.

本実施形態に係る固化方法は、掘削等の作業により粉塵が飛散しやすい状態にある土壌表面に対して行われることが好ましい。 The solidification method according to the present embodiment is preferably performed on soil surfaces where dust is likely to be scattered due to operations such as excavation.

==リグニンスルホン酸塩==
リグニンスルホン酸塩は、土壌表面を固化させる材料として用いられる。
==Lignin sulfonate==
Lignosulfonate is used as a material to solidify the soil surface.

リグニンスルホン酸塩は、リグニンの基本構造であるフェニルプロパン構造の側鎖α位を開裂させ、スルホン基を導入したものである。リグニンスルホン酸塩は、分子量数百から数百万の高分子である。また、リグニンスルホン酸塩は、水中で乖離する高分子電解質である。リグニンスルホン酸塩は、たとえば、リグニンスルホン酸マグネシウム、リグニンスルホン酸ナトリウム、及びリグニンスルホン酸カルシウムからなる群から選択される少なくとも一種以上である。 Lignin sulfonate is obtained by cleaving the α-position of the side chain of the phenylpropane structure, which is the basic structure of lignin, and introducing a sulfone group. Lignosulfonate is a polymer with a molecular weight of several hundred to several million. Furthermore, lignin sulfonate is a polymer electrolyte that dissociates in water. The ligninsulfonate is, for example, at least one selected from the group consisting of magnesium ligninsulfonate, sodium ligninsulfonate, and calcium ligninsulfonate.

本実施形態に係る固化方法においては、リグニンスルホン酸塩を水で希釈した溶液を用いる。希釈倍率は、土壌表面を固化させることができれば特に限定されるものではない。なお、リグニンスルホン酸塩のコスト面、及び土壌表面を固化する性能を考慮すると、希釈倍率は16倍~32倍であることが好ましい。 In the solidification method according to this embodiment, a solution of lignin sulfonate diluted with water is used. The dilution ratio is not particularly limited as long as it can solidify the soil surface. Note that, considering the cost of the lignin sulfonate and its ability to solidify the soil surface, the dilution ratio is preferably 16 to 32 times.

==カチオン系の材料==
カチオン系の材料は、リグニンスルホン酸塩が土壌表面を固化する性能を保つために用いられる。具体的には、リグニンスルホン酸塩がカチオン系の材料と反応してゲル化することにより、リグニンスルホン酸塩が土壌中に流出することを抑制し、土壌表面を確実に固化することができる。
==Cationic material==
Cationic materials are used to maintain the ability of lignin sulfonate to solidify the soil surface. Specifically, the lignin sulfonate reacts with a cationic material to form a gel, thereby suppressing the lignin sulfonate from flowing into the soil and reliably solidifying the soil surface.

カチオン系の材料は、たとえば、ポリ塩化アルミニウム、ポリジアリルジメチルアンモニウムクロリド、メタクリル酸エステル(メタクリル酸メチル、メタクリル酸エチル等)のポリマー(すなわちアクリル樹脂)、塩化カルシウム、塩化ナトリウム、硫酸ナトリウム、及び硫酸アルミニウムからなる群から選択される少なくとも1種である。特に、短時間でのゲル化を行うためには、カチオン系の材料は、ポリ塩化アルミニウム、ポリジアリルジメチルアンモニウムクロリド、及びメタクリル酸エステルのポリマーからなる群から選択される少なくとも一種類以上であることが好ましい。 Examples of cationic materials include polyaluminum chloride, polydiallyldimethylammonium chloride, polymers of methacrylic acid esters (methyl methacrylate, ethyl methacrylate, etc.) (i.e., acrylic resins), calcium chloride, sodium chloride, sodium sulfate, and sulfuric acid. At least one member selected from the group consisting of aluminum. In particular, in order to achieve gelation in a short time, the cationic material should be at least one type selected from the group consisting of polyaluminum chloride, polydiallyldimethylammonium chloride, and methacrylic acid ester polymers. is preferred.

本実施形態に係る固化方法においては、カチオン系の材料を水で希釈した溶液を用いる。溶液の濃度は、リグニンスルホン酸塩をゲル化することができれば特に限定されるものではないが、少なくとも1重量%であることが好ましい。一方、リグニンスルホン酸塩の添加量に対してカチオン系の材料の添加量が多すぎる場合、ゲル化が妨げられる可能性がありうる。よって、溶液の濃度は、最大で10重量%程度とすることが好ましい。 In the solidification method according to this embodiment, a solution of a cationic material diluted with water is used. The concentration of the solution is not particularly limited as long as it can gel the lignin sulfonate, but it is preferably at least 1% by weight. On the other hand, if the amount of the cationic material added is too large relative to the amount of lignin sulfonate added, gelation may be hindered. Therefore, the concentration of the solution is preferably about 10% by weight at most.

==土壌表面の固化方法==
本実施形態に係る固化方法は、第1の処理及び第2の処理を含む。第1の処理は、土壌表面に対してリグニンスルホン酸塩を含む溶液を散布する。第2の処理は、土壌表面に対してカチオン系の材料を含む溶液を散布する。
== Soil surface solidification method ==
The solidification method according to this embodiment includes a first process and a second process. The first treatment involves spraying a solution containing lignin sulfonate onto the soil surface. In the second treatment, a solution containing a cationic material is sprayed onto the soil surface.

第1の処理及び第2の処理を行う順番は特に限定されない。但し、土壌表面の固化をより確実に行うためには、第1の処理を行った後、第2の処理を行うことが好ましい。 The order in which the first process and second process are performed is not particularly limited. However, in order to solidify the soil surface more reliably, it is preferable to perform the second treatment after the first treatment.

各溶液の散布は、散布する土壌の広さや土壌表面の状態等に応じて様々な方法で行うことができる。たとえば、バックホー等の重機に、各溶液を入れたタンク及び噴霧器を設置する。そして、溶液を散布する土壌近辺まで重機を移動させた後、噴霧器からタンク内の溶液を土壌表面に散布することができる。噴霧器の構成やタンクの容量等は、散布する土壌の広さや溶液の状態(たとえば溶液の粘度)に応じて適当なものを用いることができる。また、各溶液の散布量も土壌表面の状態等に応じて適宜設定することができる。 Spraying of each solution can be performed in various ways depending on the area of the soil to be sprayed, the condition of the soil surface, etc. For example, a tank containing each solution and a sprayer are installed on heavy equipment such as a backhoe. After moving the heavy equipment to the vicinity of the soil where the solution is to be sprayed, the solution in the tank can be sprayed onto the soil surface from the sprayer. The structure of the sprayer, the capacity of the tank, etc. can be appropriately selected according to the area of the soil to be sprayed and the state of the solution (for example, the viscosity of the solution). Furthermore, the amount of each solution to be sprayed can be appropriately set depending on the condition of the soil surface and the like.

本実施形態に係る固化方法によれば、散布したリグニンスルホン酸塩がカチオン系の材料によりゲル化する。よって、リグニンスルホン酸塩が土壌表面を固化させる前に土壌が含む水の中に溶け出す可能性が低いため、土壌表面の固化をより確実に行うことができる。その結果、土壌の掘削に伴う粉塵の飛散を防止することができる。 According to the solidification method according to the present embodiment, the dispersed lignin sulfonate is gelled by the cationic material. Therefore, since there is a low possibility that the lignin sulfonate will dissolve into the water contained in the soil before solidifying the soil surface, the soil surface can be solidified more reliably. As a result, scattering of dust due to soil excavation can be prevented.

==実施例==
[土壌を固化する性能について]
リグニンスルホン酸塩の土壌を固化する性能について実験を行った。
==Example==
[About soil solidification performance]
An experiment was conducted on the ability of lignin sulfonate to solidify soil.

(土壌)
土壌は、珪砂7号(瑞浪産)約4000gを容器に敷き詰めたものを用いた。容器のサイズは、312mm×237mm×d49mm(表面積は0.074m)である。
(soil)
The soil used was a container filled with approximately 4000 g of silica sand No. 7 (produced by Mizunami). The size of the container is 312 mm x 237 mm x d49 mm (surface area is 0.074 m 2 ).

(リグニンスルホン酸塩)
リグニンスルホン酸塩は、リグニンスルホン酸マグネシウム(P321粉体 日本製紙株式会社製)を用いた。散布用の溶液としては、リグニンスルホン酸マグネシウムを水で希釈したものを用いた。希釈倍率は16倍または32倍である。
(lignin sulfonate)
As the lignin sulfonate, magnesium lignin sulfonate (P321 powder, manufactured by Nippon Paper Industries Co., Ltd.) was used. As the solution for spraying, magnesium lignin sulfonate diluted with water was used. The dilution factor is 16 times or 32 times.

(カチオン系の材料)
カチオン系の材料は、実施例1及び実施例4ではPAC(ポリ塩化アルミニウム 大明化学株式会社製)を用い、実施例2及び実施例5ではPolyDADMAC(ポリジアリルジメチルアンモニウムクロリド 大明化学株式会社製)を用い、実施例3及び実施例6ではメタクリル酸メチルのポリマー(メタクリル樹脂。MTアクアポリマー株式会社製)を用いた。散布用の溶液としては、これらの材料を水で希釈したものを用いた。各溶液の濃度はいずれも1重量%である。
(Cationic material)
As the cationic material, PAC (polyaluminum chloride manufactured by Daimei Chemical Co., Ltd.) was used in Examples 1 and 4, and PolyDADMAC (polydiallyldimethylammonium chloride manufactured by Daimei Chemical Co., Ltd.) was used in Examples 2 and 5. In Examples 3 and 6, a polymer of methyl methacrylate (methacrylic resin, manufactured by MT Aqua Polymer Co., Ltd.) was used. These materials were diluted with water and used as a solution for spraying. The concentration of each solution was 1% by weight.

(実験方法)
容器に敷き詰めた土壌の表面全体に対して均一になるよう、溶液の散布を行った。溶液の散布は、土壌に対して高さ10cm程度の位置から霧吹きを用いて行った。実施例1-6の場合、リグニンスルホン酸マグネシウムの溶液の散布を先に行い、その後、カチオン系の材料の溶液の散布を行った。各溶液の散布量は、2L/mである。なお、比較例1及び比較例2の場合、リグニンスルホン酸マグネシウムの溶液のみを散布した。
(experimental method)
The solution was spread evenly over the entire surface of the soil spread in the container. The solution was sprayed onto the soil from a position of about 10 cm in height using a sprayer. In the case of Example 1-6, the solution of magnesium ligninsulfonate was first sprayed, and then the solution of the cationic material was sprayed. The spray volume of each solution is 2 L/m 2 . In addition, in the case of Comparative Example 1 and Comparative Example 2, only the solution of magnesium ligninsulfonate was sprayed.

各溶液を散布した土壌を室温(22℃)で1週間養生した。その後、当該土壌に対してコーン貫入試験を行った。コーン貫入試験は、プッシュコーン(大起理化工業株式会社製)を用いて貫入抵抗量を測定した。求めた貫入抵抗量を支持強度に換算した値により固化の性能を判定した。一般に、土壌の固化が進んでいる場合、支持強度は高い値を示す。 The soil sprayed with each solution was cured at room temperature (22°C) for one week. Thereafter, a cone penetration test was conducted on the soil. In the cone penetration test, the amount of penetration resistance was measured using a push cone (manufactured by Daiki Rika Kogyo Co., Ltd.). The solidification performance was determined by converting the obtained penetration resistance into support strength. Generally, when soil solidification is progressing, the bearing strength shows a high value.

Figure 0007424158000001
Figure 0007424158000001

(実験結果)
表1、図1A及び図1Bに示したように、実施例1-実施例6の場合、比較例1及び比較例2の場合と比べて、支持強度が高い値を示した。すなわち、リグニンスルホン酸マグネシウムの溶液及びカチオン系の材料の溶液を散布することにより、リグニンスルホン酸マグネシウムの溶液のみを散布する場合よりも、土壌の固化を確実に行うことができた。また、カチオン系の材料のうち、PolyDADMACを用いた場合(実施例2及び実施例5)が比較的高い支持強度を示した。これは、PolyDADMACがイオン性の強い材料であるため、ゲル化した際の強度が強くなったことに起因すると考えられる。また、実施例4-実施例6の結果から明らかなように、リグニンスルホン酸マグネシウムの溶液の希釈率を高くした場合であっても、リグニンスルホン酸マグネシウムの溶液のみを散布する場合より、土壌の固化を確実に行うことができた。
(Experimental result)
As shown in Table 1, FIG. 1A, and FIG. 1B, the support strength of Examples 1 to 6 was higher than that of Comparative Examples 1 and 2. That is, by spraying the solution of magnesium lignosulfonate and the solution of the cationic material, the soil could be solidified more reliably than when only the solution of magnesium ligninsulfonate was sprayed. Further, among the cationic materials, when PolyDADMAC was used (Example 2 and Example 5), relatively high support strength was exhibited. This is considered to be due to the fact that PolyDADMAC is a highly ionic material and therefore has increased strength when gelled. Furthermore, as is clear from the results of Examples 4 to 6, even when the dilution rate of the magnesium lignosulfonate solution was increased, the soil was more susceptible to soil damage than when only the magnesium lignosulfonate solution was sprayed. Solidification could be achieved reliably.

[溶液を散布する順番について]
リグニンスルホン酸塩の溶液及びカチオン系の材料の溶液を散布する順番について実験を行った。
[About the order of spraying the solution]
An experiment was conducted regarding the order in which the lignin sulfonate solution and the cationic material solution were sprayed.

(土壌、リグニンスルホン酸塩、カチオン系の材料)
土壌及びリグニンスルホン酸塩は、実施例1等で用いたものと同様である。実施例7及び実施例8において、カチオン系の材料は、PAC(ポリ塩化アルミニウム 大明化学株式会社製)を用いた。散布用の溶液としては、PACを水で希釈したものを用いた。溶液の濃度は1重量%である。
(soil, lignin sulfonate, cationic materials)
The soil and lignin sulfonate are the same as those used in Example 1 and others. In Examples 7 and 8, PAC (polyaluminum chloride manufactured by Daimei Chemical Co., Ltd.) was used as the cationic material. As the solution for spraying, PAC diluted with water was used. The concentration of the solution is 1% by weight.

(実験方法)
実施例7及び実施例8は、実施例1等と同様の方法により行った。但し、実施例7及び実施例8においては、PACの溶液の散布を先に行い、その後、リグニンスルホン酸マグネシウムの溶液の散布を行った。各溶液の散布量は2L/mである。
(experimental method)
Examples 7 and 8 were carried out in the same manner as in Example 1 and the like. However, in Examples 7 and 8, the PAC solution was first sprayed, and then the magnesium ligninsulfonate solution was sprayed. The spray volume of each solution is 2 L/m 2 .

Figure 0007424158000002
Figure 0007424158000002

(実験結果)
表2、図2A及び図2Bに示したように、リグニンスルホン酸マグネシウムの溶液及びカチオン系の材料の溶液を散布することにより、溶液の散布の順番によらず高い支持強度を得ることができた。一方、リグニンスルホン酸マグネシウムの溶液を先に散布した場合、カチオン系の材料の溶液を先に散布した場合よりも高い支持強度を得ることができた。これは、水に溶け易いリグニンスルホン酸マグネシウムが先に土壌中に浸透した結果、ゲル化される領域が広くなったためであると考えられる。逆に、カチオン系の材料は土壌に浸透し難いため、カチオン系の材料の溶液を先に散布した場合には、土壌表面でのみゲル化が進行したものと考えられる。
(Experimental result)
As shown in Table 2, Figures 2A and 2B, by spraying the magnesium lignosulfonate solution and the cationic material solution, high support strength could be obtained regardless of the order in which the solutions were sprayed. . On the other hand, when a solution of magnesium ligninsulfonate was first sprayed, a higher supporting strength could be obtained than when a solution of a cationic material was first sprayed. This is thought to be because magnesium lignin sulfonate, which is easily soluble in water, permeated into the soil first, resulting in a wider gelation area. On the other hand, since cationic materials have difficulty penetrating into the soil, if a solution of the cationic material was sprayed first, it is thought that gelation would have progressed only on the soil surface.

Claims (4)

土壌表面に対してリグニンスルホン酸塩を含む溶液を散布する第1の処理と、
前記土壌表面に対してポリ塩化アルミニウム、ポリジアリルジメチルアンモニウムクロリド、メタクリル酸エステルのポリマー、塩化カルシウム、塩化ナトリウム、硫酸ナトリウム、及び硫酸アルミニウムからなる群から選択される少なくとも一種類以上のカチオン系の材料を含む溶液を散布する第2の処理と、
を含む土壌表面の固化方法。
a first treatment of spraying a solution containing lignin sulfonate on the soil surface;
At least one cationic material selected from the group consisting of polyaluminum chloride, polydiallyldimethylammonium chloride, methacrylic acid ester polymer, calcium chloride, sodium chloride, sodium sulfate, and aluminum sulfate for the soil surface. a second treatment of spraying a solution containing;
Methods of solidifying soil surfaces, including:
前記第1の処理を行った後、前記第2の処理を行うことを特徴とする請求項1記載の土壌表面の固化方法。 2. The soil surface solidification method according to claim 1, wherein the second treatment is performed after the first treatment. 前記リグニンスルホン酸塩は、リグニンスルホン酸マグネシウム、リグニンスルホン酸ナトリウム、及びリグニンスルホン酸カルシウムからなる群から選択される少なくとも一種類以上であることを特徴とする請求項1または2記載の土壌表面の固化方法。 3. The soil surface treatment according to claim 1 or 2, wherein the ligninsulfonate is at least one type selected from the group consisting of magnesium lignosulfonate, sodium ligninsulfonate, and calcium lignosulfonate. Solidification method. 前記カチオン系の材料は、ポリ塩化アルミニウム、ポリジアリルジメチルアンモニウムクロリド、及びメタクリル酸エステルのポリマーからなる群から選択される少なくとも一種類以上であることを特徴とする請求項1から3のいずれか一つに記載の土壌表面の固化方法。 Any one of claims 1 to 3, wherein the cationic material is at least one selected from the group consisting of polyaluminum chloride, polydiallyldimethylammonium chloride, and methacrylic acid ester polymer. The soil surface solidification method described in .
JP2020055627A 2020-03-26 2020-03-26 Soil surface solidification method Active JP7424158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020055627A JP7424158B2 (en) 2020-03-26 2020-03-26 Soil surface solidification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020055627A JP7424158B2 (en) 2020-03-26 2020-03-26 Soil surface solidification method

Publications (2)

Publication Number Publication Date
JP2021154198A JP2021154198A (en) 2021-10-07
JP7424158B2 true JP7424158B2 (en) 2024-01-30

Family

ID=77916404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020055627A Active JP7424158B2 (en) 2020-03-26 2020-03-26 Soil surface solidification method

Country Status (1)

Country Link
JP (1) JP7424158B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328058A (en) 1999-05-24 2000-11-28 Umeuchi Toshio Preparation of soil hardening composition
JP2015199057A (en) 2014-04-02 2015-11-12 国立大学法人茨城大学 Dispersion type polymer coagulant, soil solidifying agent and coagulation and sedimentation agent, and contamination spreading prevention method of radioactive substance, decontamination method of contaminated soil, vegetation base creation method and water cleaning method
JP2019056075A (en) 2017-09-22 2019-04-11 株式会社大林組 Method for producing soil solidification composition and soil solidification method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328058A (en) 1999-05-24 2000-11-28 Umeuchi Toshio Preparation of soil hardening composition
JP2015199057A (en) 2014-04-02 2015-11-12 国立大学法人茨城大学 Dispersion type polymer coagulant, soil solidifying agent and coagulation and sedimentation agent, and contamination spreading prevention method of radioactive substance, decontamination method of contaminated soil, vegetation base creation method and water cleaning method
JP2019056075A (en) 2017-09-22 2019-04-11 株式会社大林組 Method for producing soil solidification composition and soil solidification method using the same

Also Published As

Publication number Publication date
JP2021154198A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
Chelazzi et al. Microemulsions, micelles, and functional gels: how colloids and soft matter preserve works of art
Ibáñez et al. Potential of protonated alginate beads for heavy metals uptake
Li et al. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents
CN103464102A (en) Porous composite adsorbing agent for removing stream substrate sludge contamination and preparation process of agent
JP4588512B2 (en) Soil-improving injection material and method for insolubilizing soil contaminants using the injection material
JP2009249554A (en) Insolubilizing agent for soil contaminated with heavy metal or the like, and insolubilization method for soil using the same
JP7424158B2 (en) Soil surface solidification method
Long et al. AuNPs composites of gelatin hydrogels crosslinked by ferrocene‐containing polymer as recyclable supported catalysts
US4623469A (en) Method for rendering hazardous wastes less permeable and more resistant to leaching
JP2006273921A (en) Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
KR101499578B1 (en) Hydrogen fluoride compositions
JP5246177B2 (en) Soil-improving injection material and method for insolubilizing soil contaminants using the injection material
JP2015093977A (en) Method of forming friction-reducing coat, formation agent and method of treating water-containing particle/muddy matter
CN106947017B (en) A kind of garbage flying ash inorganic agent and its preparation method and application
JP6168546B2 (en) Radioactive substance-containing soil immobilization solution using water-soluble or water-dispersible polymer and radioactive substance decontamination method using the immobilization solution
US11090702B2 (en) Compositions and methods for delivery of active agents
JP5437589B2 (en) Heavy metal insolubilizing agent and soil purification method using the same.
CN106492769B (en) A kind of polypropylene support type organic solvent absorbent and preparation method thereof
JP2020033437A (en) Method for preventing sticking, adhesion or fastening of sand and fluidized treatment soil
JPH022871A (en) Method of preventing leakage of liquid
JPH1076298A (en) Method for deodorizing and solidifying sludge or dredging sludge
KR101392071B1 (en) A coating agent and a method for creating coating agent for covering up the surface of piles with the cement-blended fly ash out of a coal-fired power plant as basic materials
Gong et al. Evaluation of organics leaching from solidified/stabilized hazardous wastes using a powder reactivated carbon additive
JP3182650B2 (en) Eflorescence solvent and method for producing the same
JPH10263499A (en) Capturing for pollutant and interceptive wall of pollutant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R150 Certificate of patent or registration of utility model

Ref document number: 7424158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150