JP7422527B2 - Rolling parts and their manufacturing method - Google Patents

Rolling parts and their manufacturing method Download PDF

Info

Publication number
JP7422527B2
JP7422527B2 JP2019220556A JP2019220556A JP7422527B2 JP 7422527 B2 JP7422527 B2 JP 7422527B2 JP 2019220556 A JP2019220556 A JP 2019220556A JP 2019220556 A JP2019220556 A JP 2019220556A JP 7422527 B2 JP7422527 B2 JP 7422527B2
Authority
JP
Japan
Prior art keywords
less
present
rolling
hardness
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019220556A
Other languages
Japanese (ja)
Other versions
JP2021088751A (en
Inventor
朋広 山下
大輔 平上
豊 根石
康介 田中
隆 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
JTEKT Corp
Original Assignee
Nippon Steel Corp
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, JTEKT Corp filed Critical Nippon Steel Corp
Priority to JP2019220556A priority Critical patent/JP7422527B2/en
Publication of JP2021088751A publication Critical patent/JP2021088751A/en
Application granted granted Critical
Publication of JP7422527B2 publication Critical patent/JP7422527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、浸炭焼入れを施し、続いて、高周波加熱と急冷による焼入れ、及び、焼き戻しを行うことで、転動負荷時の白色組織生成を抑制し、水素侵入下における寿命を高めた転動部品とその製造方法に関する。 The present invention is a rolling machine that suppresses the formation of white structures under rolling load and increases the lifespan under hydrogen penetration by performing carburizing and quenching, followed by quenching and tempering using high-frequency heating and rapid cooling. Concerning parts and their manufacturing methods.

近年、自動車用部品をはじめとする動力伝達部品は環境負荷軽減を目指して小型軽量化が求められている。さらに、これらの部品には、使用環境の過酷化と長寿命化に対応できる特性も同時に要求されている。 In recent years, there has been a demand for smaller and lighter power transmission parts, including automotive parts, with the aim of reducing environmental impact. Furthermore, these parts are also required to have characteristics that allow them to withstand harsher usage environments and longer lifespans.

特に、軸受を代表とする転動部品においては、例えば、潤滑油中に水が侵入することや、使用中に潤滑油が分解することによって発生した水素が転動部品中に侵入した場合、使用中に、鋼のマルテンサイト組織が白色組織と呼ばれる組織へと変化し、短期間で転動部品の表面に剥離が発生することが知られている。したがって、転動部品の長寿命化を図るためには、白色組織変化を抑制することが重要である。 In particular, for rolling parts such as bearings, if water gets into the lubricating oil or hydrogen generated by the decomposition of the lubricating oil during use gets into the rolling parts, It is known that during this process, the martensitic structure of the steel changes to a structure called a white structure, and peeling occurs on the surface of rolling parts in a short period of time. Therefore, in order to extend the lifespan of rolling components, it is important to suppress changes in the white structure.

この課題に対して、特許文献1には、2回の焼入れ工程によって旧オーステナイト結晶粒の粒度番号を12番以上にするとともに、Crを含有する0.03~1μmの炭化物又は炭窒化物を少なくとも15個/100μm2以上形成して、水素環境下での寿命を向上させる技術が開示されている。しかし、特許文献1の技術は、通常の油焼入れを行っているため、残留オーステナイト量が特段低減することはなく、白色組織が生成する恐れがある。 To address this problem, Patent Document 1 discloses that the grain size number of the prior austenite crystal grains is increased to 12 or more by two quenching steps, and at least 0.03 to 1 μm carbide or carbonitride containing Cr is A technique has been disclosed to improve the lifespan in a hydrogen environment by forming 15 or more particles/100 μm 2 . However, since the technique of Patent Document 1 performs normal oil quenching, the amount of retained austenite is not particularly reduced, and there is a possibility that a white structure may be generated.

また、特許文献2には、平均粒径が20nm以下のTi炭化物及びTi炭窒化物の少なくとも一方が、少なくとも、表面近傍に面積率で0.5~20.1%分散析出し、残留オーステナイト量が20%以下の転がり軸受が提案されている。しかし、特許文献2の技術は、鋼材を高温で溶体化するため、焼きならしを施しても、旧オーステナイト結晶粒の粒径が十分微細化せず、白色組織が生成する恐れがある。 Further, Patent Document 2 discloses that at least one of Ti carbide and Ti carbonitride with an average particle size of 20 nm or less is dispersed and precipitated in an area ratio of 0.5 to 20.1% near the surface, and the amount of retained austenite is A rolling bearing with less than 20% has been proposed. However, in the technique of Patent Document 2, the steel material is subjected to solution treatment at a high temperature, so even if the steel material is normalized, the grain size of the prior austenite crystal grains may not be sufficiently refined, and a white structure may be generated.

特開2010-043320号公報JP2010-043320A 特許第3728887号公報Patent No. 3728887

本発明は、従来技術の課題を踏まえ、転動部品において、水素侵入下での使用で生成する白色組織を抑制することを課題とし、該課題を解決する転動部品(例えば、軸受部品)と、その製造方法を提供することを目的とする。 In view of the problems of the prior art, the present invention aims to suppress the white structure generated in rolling parts when used under hydrogen penetration, and provides rolling parts (e.g., bearing parts) that solves the problem. , the purpose is to provide a manufacturing method thereof.

本発明者らは、上記課題を解決する手法について鋭意検討した。その結果、鋼のミクロ組織において、旧オーステナイト結晶粒の平均粒径、及び、残留オーステナイト量を所要の範囲内に維持すれば、白色組織の生成を抑制できることを見いだした。 The present inventors have intensively studied methods for solving the above problems. As a result, it has been found that in the microstructure of steel, if the average grain size of prior austenite crystal grains and the amount of retained austenite are maintained within the required ranges, the formation of a white structure can be suppressed.

本発明は、上記知見に基づいてなされたもので、その要旨は次のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.10~0.30%、Si:0.05~0.80%、Mn:0.40~1.00%、P:0.020%以下、S:0.015%以下、Cr:0.60~1.50%、Al:0.005~0.100%、N:0.003~0.025%、O:0.0015%以下を含み、残部Fe及び不純物からなり、
旧オーステナイト結晶粒の平均粒径が7.0μm以下であり、
残留オーステナイト量が体積率で20.0%以下であり、
表層硬さが750HV以上である
ことを特徴とする転動部品。
(1) In mass%, C: 0.10 to 0.30%, Si: 0.05 to 0.80%, Mn: 0.40 to 1.00%, P: 0.020% or less, S: 0.015% or less, Cr: 0.60 to 1.50%, Al: 0.005 to 0.100%, N: 0.003 to 0.025%, O: 0.0015% or less, the balance Consisting of Fe and impurities,
The average grain size of prior austenite crystal grains is 7.0 μm or less,
The amount of retained austenite is 20.0% or less in volume percentage,
A rolling component characterized by a surface hardness of 750HV or more.

(2)さらに、質量%で、Mo:0.10~0.50%、V:0.10~0.50%、Nb:0.01~0.10%、Ni:1.00%以下、B:0.005%以下、Ti:0.10%以下の1種又は2種以上を含むことを特徴とする前記(1)に記載の転動部品。 (2) Furthermore, in mass %, Mo: 0.10 to 0.50%, V: 0.10 to 0.50%, Nb: 0.01 to 0.10%, Ni: 1.00% or less, The rolling component according to (1) above, which contains one or more of B: 0.005% or less and Ti: 0.10% or less.

(3)前記(1)又は(2)に記載の転動部品を製造する製造方法であって、
質量%で、C:0.10~0.30%、Si:0.05~0.80%、Mn:0.40~1.00%、P:0.020%以下、S:0.015%以下、Cr:0.60~1.50%、Al:0.005~0.100%、N:0.003~0.025%、O:0.0015%以下と、
Mo:0~0.50%、V:0~0.50%、Nb:0~0.10%、Ni:0~1.00%、B:0~0.005%、Ti:0~0.10%を含み、残部Fe及び不純物からなる鋼材に、熱間加工又は冷間加工を施して、部品形状に成形する工程、
成形した部品に浸炭焼入れを施す工程、
浸炭焼入れを施した部品を、高周波で加熱し、次いで、水噴射又は気水噴射で冷却する工程を含む
ことを特徴とする転動部品の製造方法。
(3) A manufacturing method for manufacturing the rolling component according to (1) or (2) above,
In mass%, C: 0.10 to 0.30%, Si: 0.05 to 0.80%, Mn: 0.40 to 1.00%, P: 0.020% or less, S: 0.015 % or less, Cr: 0.60 to 1.50%, Al: 0.005 to 0.100%, N: 0.003 to 0.025%, O: 0.0015% or less,
Mo: 0-0.50%, V: 0-0.50%, Nb: 0-0.10%, Ni: 0-1.00%, B: 0-0.005%, Ti: 0-0 A step of hot working or cold working a steel material containing 10% Fe and impurities, and forming it into a part shape;
The process of carburizing and quenching the molded parts,
A method for manufacturing rolling parts, comprising the steps of heating a carburized and quenched part with high frequency, and then cooling it with water jet or air water jet.

(4)前記鋼材は、更に、質量%で、Mo:0.10~0.50%、V:0.10~0.50%、Nb:0.01~0.10%、Ni:1.00%以下、B:0.005%以下、Ti:0.10%以下の1種又は2種以上を含むことを特徴とする(3)に記載の転動部品。 (4) The steel material further includes, in mass %, Mo: 0.10 to 0.50%, V: 0.10 to 0.50%, Nb: 0.01 to 0.10%, Ni: 1. 00% or less, B: 0.005% or less, and Ti: 0.10% or less.

本発明によれば、水素侵入下の使用においても、白色組織が生成せず、長寿命の転動部品(例えば、軸受部品)を提供することができる。 According to the present invention, it is possible to provide a rolling component (for example, a bearing component) that does not generate white tissue and has a long life even when used under hydrogen penetration.

粗形状の小ローラー試験片の側面図であって、試験片つかみ部の部分断面を示す。FIG. 2 is a side view of a rough-shaped small roller test piece, showing a partial cross section of the test piece gripping part. 粗形状の小ローラー試験片に施す熱処理を示す図である。(a)は、浸炭・油焼入れの熱履歴を示し、(b)は、浸炭・油焼入れ後の焼戻しの熱履歴を示す。It is a figure which shows the heat treatment performed on the rough-shaped small roller test piece. (a) shows the thermal history of carburizing and oil quenching, and (b) shows the thermal history of tempering after carburizing and oil quenching. 粗形状の小ローラー試験片の浸炭後の熱処理(高周波焼入れ、焼戻し)を示す図である。(a)は、浸炭後の焼入れの熱履歴を示し、(b)は、焼入れ後の焼戻しの熱履歴を示す。It is a figure which shows the heat treatment (induction hardening, tempering) after carburizing of the rough-shaped small roller test piece. (a) shows the thermal history of quenching after carburizing, and (b) shows the thermal history of tempering after quenching. 大ローラーの熱処理(球状化焼鈍,焼入れ、焼戻し)を示す図である。(a)は、粗加工前の大ローラー素材の球状化焼鈍の熱履歴を示し、(b)は、粗形状の大ローラー試験片に施す油焼入れの熱履歴を示し,(c)は粗形状の大ローラー試験片の焼入れ後の焼戻しの熱履歴を示す。It is a figure which shows the heat treatment (spheroidization annealing, hardening, and tempering) of a large roller. (a) shows the thermal history of spheroidizing annealing of a large roller material before rough processing, (b) shows the thermal history of oil quenching applied to a large roller test piece with a rough shape, and (c) shows the thermal history of oil quenching applied to a large roller test piece with a rough shape. The thermal history of the large roller test piece after quenching and tempering is shown. 仕上げ加工後の小ローラー試験片の側面図であって、試験片つかみ部の部分断面を示す。It is a side view of the small roller test piece after finishing processing, and shows a partial cross section of the test piece gripping part. 粗形状の大ローラー試験片の側面断面図である。FIG. 2 is a side cross-sectional view of a rough-shaped large roller test piece. 仕上げ加工後の大ローラー試験片の側面断面図である。FIG. 3 is a side sectional view of a large roller test piece after finishing processing.

本発明の転動部品(以下「本発明転動部品」ということがある。)は、
質量%で、C:0.10~0.30%、Si:0.05~0.80%、Mn:0.40~1.00%、P:0.020%以下、S:0.015%以下、Cr:0.60~1.50%、Al:0.005~0.100%、N:0.003~0.025%、O:0.0015%以下を含み、残部Fe及び不純物からなる転動部品において、
旧オーステナイト結晶粒の平均粒径が7.0μm以下であり、
残留オーステナイト量が体積率で20.0%以下であり、
表層硬さが750HV以上である
ことを特徴とする。
The rolling parts of the present invention (hereinafter sometimes referred to as "rolling parts of the present invention") are:
In mass%, C: 0.10 to 0.30%, Si: 0.05 to 0.80%, Mn: 0.40 to 1.00%, P: 0.020% or less, S: 0.015 % or less, Cr: 0.60 to 1.50%, Al: 0.005 to 0.100%, N: 0.003 to 0.025%, O: 0.0015% or less, the balance being Fe and impurities. In rolling parts consisting of
The average grain size of prior austenite crystal grains is 7.0 μm or less,
The amount of retained austenite is 20.0% or less in volume percentage,
It is characterized by a surface layer hardness of 750 HV or more.

本発明転動部品は、さらに、質量%で、Mo:0.10~0.50%、V:0.10~0.50%、Nb:0.01~0.10%、Ni:1.00%以下、B:0.005%以下、Ti:0.10%以下の1種又は2種以上を含むことを特徴とする。 The rolling component of the present invention further includes, in mass %, Mo: 0.10 to 0.50%, V: 0.10 to 0.50%, Nb: 0.01 to 0.10%, Ni: 1. 00% or less, B: 0.005% or less, and Ti: 0.10% or less.

本発明の転動部品の製造方法(以下「本発明製造方法」ということがある。)は、本発明転動部品を製造する製造方法であって、
本発明転動部品の素材である鋼材に、熱間加工又は冷間加工を施して、部品形状に成形する工程、
成形した部品に浸炭焼入れを施す工程、
浸炭焼入れを施した部品を、高周波で加熱し、次いで、水噴射又は気水噴射で冷却する工程を含む
ことを特徴とする。
The method for manufacturing rolling components of the present invention (hereinafter sometimes referred to as "the manufacturing method of the present invention") is a manufacturing method for manufacturing rolling components of the present invention, comprising:
A step of hot working or cold working the steel material that is the raw material for the rolling parts of the present invention to form it into a part shape;
The process of carburizing and quenching the molded parts,
It is characterized by including a step of heating the carburized and quenched part with high frequency, and then cooling it with water jet or air water jet.

以下、本発明転動部品及び本発明製造方法について説明する。 The rolling component of the present invention and the manufacturing method of the present invention will be explained below.

まず、本発明転動部品の素材である鋼材(以下「本発明鋼材」ということがある。)の成分組成の限定理由について説明する。以下、成分組成に係る%は質量%を意味する。 First, the reasons for limiting the composition of the steel material (hereinafter sometimes referred to as "the steel material of the present invention") that is the material of the rolling component of the present invention will be explained. Hereinafter, % in the component composition means mass %.

(A)成分組成
C:0.10~0.30%
Cは、転動部品の焼入れ性を確保するとともに、焼入れ後の芯部強度や靭性を確保するために必須の元素である。
(A) Component composition C: 0.10-0.30%
C is an essential element for ensuring the hardenability of rolling parts as well as core strength and toughness after hardening.

0.10%未満では、焼入れ後の硬さと靭性を確保できないので、Cは0.10%以上とする。好ましくは0.15%以上、より好ましくは0.18%以上である。一方、0.30%を超えると、靭性が低下するので、Cは0.30%以下とする。Cが過剰になると、鋼材の硬さが上昇し、熱間鍛造や切削加工等の製造性が低下するので、Cは0.28%以下が好ましい。より好ましくは0.25%以下である。 If C is less than 0.10%, hardness and toughness after quenching cannot be ensured, so the C content is set to 0.10% or more. Preferably it is 0.15% or more, more preferably 0.18% or more. On the other hand, if it exceeds 0.30%, the toughness decreases, so the C content is set to 0.30% or less. If C is excessive, the hardness of the steel material increases and manufacturability in hot forging, cutting, etc. decreases, so C is preferably 0.28% or less. More preferably it is 0.25% or less.

Si:0.05~0.80%
Siは、鋼の脱酸に必要な元素であり、鋼の強度や表面起点剥離寿命の向上に有効な元素である。また、鋼の焼戻し軟化抵抗を高め、部品が高温で使用される際の軟化を防ぐ作用をなす元素である。
Si: 0.05-0.80%
Si is an element necessary for deoxidizing steel, and is an effective element for improving the strength and surface-originated flaking life of steel. It is also an element that increases the temper softening resistance of steel and prevents parts from softening when used at high temperatures.

0.05%未満では、添加効果が十分に得られないので、Siは0.05%以上とする。好ましくは0.07%以上、より好ましくは0.09%以上である。一方、0.80%を超えると、靭性が低下するので、Siは上限を0.80%とする。また、Si量が過剰になると、鋼材の硬さ増加が上昇し、切削加工等の製造性が低下するので、Siは0.75%以下が好ましい。より好ましくは0.70%以下である。 If it is less than 0.05%, the effect of addition cannot be obtained sufficiently, so the content of Si is set to be 0.05% or more. Preferably it is 0.07% or more, more preferably 0.09% or more. On the other hand, if it exceeds 0.80%, the toughness decreases, so the upper limit of Si is set at 0.80%. Further, if the amount of Si is excessive, the hardness of the steel material increases and the productivity of cutting and the like decreases, so the Si content is preferably 0.75% or less. More preferably it is 0.70% or less.

Mn:0.40~1.00%
Mnは、焼入れ性を高める元素である。0.40%未満では、添加効果が十分に得られないので、Mnは0.40%以上とする。好ましくは0.45%以上、より好ましくは0.50%以上である。一方、Mnが1.00%を超えると、鋼材の硬さが上昇し、切削加工等の製造性が低下するので、Mnは1.00%以下とする。好ましく0.80%以下、より好ましくは0.75%以下である。
Mn: 0.40-1.00%
Mn is an element that improves hardenability. If it is less than 0.40%, the effect of addition cannot be sufficiently obtained, so the Mn content is set to 0.40% or more. Preferably it is 0.45% or more, more preferably 0.50% or more. On the other hand, if Mn exceeds 1.00%, the hardness of the steel material will increase and the manufacturability of cutting etc. will decrease, so Mn is set to 1.00% or less. It is preferably 0.80% or less, more preferably 0.75% or less.

P:0.020%以下
Pは、粒界に偏析して靭性及び疲労強度を阻害し部品強度を低下させる元素である。Pが0.020%を超えると、部品強度の低下が著しくなるので、Pは0.020%以下とする。好ましくは0.015%以下、より好ましくは0.010%以下である。
P: 0.020% or less P is an element that segregates at grain boundaries, inhibits toughness and fatigue strength, and reduces component strength. When P exceeds 0.020%, the strength of the part decreases significantly, so P is set to 0.020% or less. Preferably it is 0.015% or less, more preferably 0.010% or less.

S:0.015%以下
Sは、被削性に有効であるが、一方で、冷間加工性及び靭性を阻害するMnSを形成する元素である。Sが0.015%を超えると、冷間加工性及び靭性の低下が著しくなるので、Sは0.015%以下とする。好ましくは0.010%以下、より好ましくは0.007%以下である。
S: 0.015% or less S is an element that forms MnS, which is effective for machinability but inhibits cold workability and toughness. If S exceeds 0.015%, the cold workability and toughness will significantly deteriorate, so the S content should be 0.015% or less. Preferably it is 0.010% or less, more preferably 0.007% or less.

Cr:0.60~1.50%
Crは、鋼の焼入れ性を高め、また、浸炭処理時に微細な析出物を形成する重要な元素である。この微細な析出物は、水素のトラップサイトとして有効に機能するとともに、旧オーステナイト結晶粒の微細化に有効に機能する。
Cr:0.60~1.50%
Cr is an important element that improves the hardenability of steel and forms fine precipitates during carburizing. These fine precipitates function effectively as hydrogen trap sites and also function effectively in refining prior austenite crystal grains.

0.60%未満では、添加効果が十分に得られないので、Crは0.60%以上とする。好ましく0.62%以上、より好ましくは0.65%以上である。一方、1.50%超では、鋼材の硬さが上昇し、切削加工等の製造性が低下するので、Crは1.50%とする。好ましくは1.45%以下、より好ましくは1.40%以下である。 If it is less than 0.60%, the effect of addition cannot be sufficiently obtained, so the content of Cr is set to be 0.60% or more. It is preferably 0.62% or more, more preferably 0.65% or more. On the other hand, if it exceeds 1.50%, the hardness of the steel material increases and the manufacturability of cutting, etc. decreases, so Cr is set to 1.50%. Preferably it is 1.45% or less, more preferably 1.40% or less.

Al:0.005~0.100%
Alは、精錬工程で脱酸を行うために使用する元素である。0.005%未満では、添加効果が十分に得られないので、Alは0.005%以上とする。好ましくは0.010%以上、より好ましくは0.015%以上である。
Al: 0.005-0.100%
Al is an element used for deoxidizing in the refining process. If it is less than 0.005%, the effect of addition cannot be sufficiently obtained, so the content of Al is set to be 0.005% or more. Preferably it is 0.010% or more, more preferably 0.015% or more.

一方、0.100を超えると、粗大な酸化物が残存し易くなり、表面起点剥離寿命の低下を招くので、Alは0.100%以下とする。好ましくは0.075%以下、より好ましくは0.050%以下である。 On the other hand, if it exceeds 0.100, coarse oxides tend to remain, resulting in a decrease in surface-originated peeling life, so the Al content is set to 0.100% or less. Preferably it is 0.075% or less, more preferably 0.050% or less.

N:0.003~0.025%
Nは、Nbと炭窒化物を形成し、結晶粒微細化及び拡散性水素の無害化に寄与する元素である。0.003%未満では、添加効果が十分に得られないので、Nは0.003%以上とする。好ましくは0.007%以上、より好ましくは0.010%以上である。
N: 0.003-0.025%
N is an element that forms carbonitrides with Nb and contributes to grain refinement and detoxification of diffusible hydrogen. If it is less than 0.003%, the addition effect cannot be sufficiently obtained, so the content of N is set to be 0.003% or more. Preferably it is 0.007% or more, more preferably 0.010% or more.

一方、0.0250%を超えると、熱間変形能の低下をきたすので、Nは0.025%以下とする。好ましくは0.022%以下、より好ましくは0.019%以下である。 On the other hand, if it exceeds 0.0250%, the hot deformability will decrease, so the N content should be 0.025% or less. Preferably it is 0.022% or less, more preferably 0.019% or less.

O:0.0015%以下
Oは、鋼中に不純物として存在して酸化物を形成し、機械特性、なかでも、転動疲労寿命を阻害する元素である。0.0015%を超えると、酸化物が多くなり、転動疲労寿命が著しく低下するので、Oは0.0015%以下とする。好ましくは0.0013%以下、より好ましくは0.0010%以下である。
O: 0.0015% or less O is an element that exists as an impurity in steel, forms oxides, and impedes mechanical properties, especially rolling fatigue life. If it exceeds 0.0015%, the amount of oxides will increase and the rolling fatigue life will be significantly reduced, so the O content should be 0.0015% or less. Preferably it is 0.0013% or less, more preferably 0.0010% or less.

本発明鋼材は、上記元素の他、転動部品の特性向上のため、Mo:0.10~0.50%、V:0.10~0.50%、Nb:0.01~0.10%、Ni:1.00%以下、B:0.005%以下、Ti:0.10%以下の1種又は2種以上を任意添加元素として含有してもよい。これらの元素の添加による作用効果を得るための添加量の下限値は、以下に説明する。但し、本発明鋼材は、前記任意添加元素をその作用効果が得られる下限量を下回る範囲で含有していても良い。以下、これらの任意添加元素の作用効果と、成分組成の限定理由について説明する。 In addition to the above elements, the steel material of the present invention contains Mo: 0.10 to 0.50%, V: 0.10 to 0.50%, and Nb: 0.01 to 0.10 to improve the characteristics of rolling parts. %, Ni: 1.00% or less, B: 0.005% or less, and Ti: 0.10% or less. The lower limit of the addition amount for obtaining the effects of addition of these elements will be explained below. However, the steel material of the present invention may contain the above-mentioned optionally added element in an amount below the lower limit amount at which the effect can be obtained. Hereinafter, the effects of these optionally added elements and the reasons for limiting the component composition will be explained.

Mo:0~0.50%
Moは、鋼の焼入れ性及び靭性の向上に有効な元素である。さらに、Moは、浸炭処理時、微細な析出物を形成し、高周波焼入れ後の旧オーステナイト結晶粒の微細化に寄与する元素である。そして、Moの微細な析出物は、水素のトラップサイトとして機能する。
Mo: 0~0.50%
Mo is an element effective in improving the hardenability and toughness of steel. Furthermore, Mo is an element that forms fine precipitates during carburizing treatment and contributes to the refinement of prior austenite crystal grains after induction hardening. The fine precipitates of Mo function as hydrogen trap sites.

0.10%未満では、添加効果が十分に得られないので、Moは0.10%以上とすることが好ましい。より好ましくは0.20%以上である。一方、0.50%を超えると、鋼材コストの上昇を招くとともに、熱間加工性や切削性が低下するので、Moは0.50%以下とする。好ましくは0.45%以下である。 If it is less than 0.10%, the effect of addition cannot be obtained sufficiently, so it is preferable that Mo content is 0.10% or more. More preferably, it is 0.20% or more. On the other hand, if it exceeds 0.50%, the cost of the steel material increases and hot workability and machinability decrease, so the Mo content is set to 0.50% or less. Preferably it is 0.45% or less.

V:0~0.50%
Vは、鋼の焼入れ性を高め、浸炭処理時に微細な析出物を形成する元素である。そして、Vの微細な析出物は、水素のトラップサイトとして機能する。0.10%未満では、添加効果が十分に得られないので、Vは0.10%以上とすることが好ましい。より好ましくは0.15%以上である。
V: 0-0.50%
V is an element that improves the hardenability of steel and forms fine precipitates during carburizing treatment. The fine V precipitates function as hydrogen trap sites. If it is less than 0.10%, the effect of addition cannot be obtained sufficiently, so it is preferable that V is 0.10% or more. More preferably, it is 0.15% or more.

一方、0.50%を超えると、未固溶の粗大な炭化物や炭窒化物が残存し、靭性、熱間加工性、切削性が低下するので、Vは0.50%以下とする。好ましくは0.40%以下である。 On the other hand, if it exceeds 0.50%, undissolved coarse carbides and carbonitrides remain and the toughness, hot workability, and machinability deteriorate, so V is set to 0.50% or less. Preferably it is 0.40% or less.

Nb:0~0.10%
Nbは、浸炭処理時に微細な析出物を形成し、浸炭時のオーステナイト結晶粒の粗大化の抑制し、さらに、高周波焼入れ後の旧オーステナイト結晶粒の微細化に寄与する元素である。そして、Nbの微細な析出物は、水素のトラップサイトとして機能する。
Nb: 0-0.10%
Nb is an element that forms fine precipitates during carburizing, suppresses coarsening of austenite crystal grains during carburization, and further contributes to refinement of prior austenite crystal grains after induction hardening. The fine Nb precipitates function as hydrogen trap sites.

0.01%未満では、添加効果が十分に得られないので、Nbは0.01%以上とすることが好ましい。より好ましくは0.02%以上である。一方、0.10%を超えると、切削性が低下する恐れがあるので、Nbは0.10%以下とする。好ましくは0.08%以下である。 If it is less than 0.01%, the effect of addition cannot be sufficiently obtained, so it is preferable that Nb be 0.01% or more. More preferably, it is 0.02% or more. On the other hand, if it exceeds 0.10%, the machinability may deteriorate, so the content of Nb is set to 0.10% or less. Preferably it is 0.08% or less.

Ni:0~1.00%
Niは、焼入れ性を向上させ、かつ、焼入れ材の靭性を向上させる元素である。1.00%を超えると、添加効果が飽和し、コストが嵩むので、Niは1.00%以下とする。好ましくは0.85%以下である。添加効果を確保する点で、Niは0.05%以上が好ましい。
Ni: 0-1.00%
Ni is an element that improves hardenability and toughness of the hardened material. If it exceeds 1.00%, the effect of addition will be saturated and the cost will increase, so the Ni content should be 1.00% or less. Preferably it is 0.85% or less. In order to ensure the effect of addition, Ni is preferably 0.05% or more.

B:0~0.005%
Bは、焼入れ性を向上させる元素であり、また、焼入れ時のオーステナイト粒界におけるPやSの偏析を抑制する作用をなす元素でもある。0.005%を超えると、BNが生成して靭性が低下する場合があるので、Bは0.005%以下とする。好ましくは0.003%以下である。添加効果を得る点で、Bは0.0003%以上が好ましい。
B: 0-0.005%
B is an element that improves hardenability, and is also an element that suppresses segregation of P and S at austenite grain boundaries during hardening. If it exceeds 0.005%, BN may be generated and the toughness may deteriorate, so the B content is set to 0.005% or less. Preferably it is 0.003% or less. In order to obtain the effect of addition, B is preferably 0.0003% or more.

Ti:0~0.10%
Tiは、微細な析出物を形成して、浸炭時の結晶粒粗大化を抑制し、さらに高周波焼入れ後の旧オーステナイト結晶粒の微細化に寄与する元素である。そして、Tiの微細な析出物は、水素のトラップサイトとして機能する。
Ti: 0-0.10%
Ti is an element that forms fine precipitates, suppresses grain coarsening during carburizing, and further contributes to refinement of prior austenite grains after induction hardening. The fine Ti precipitates function as hydrogen trap sites.

0.10%を超えると、靭性が低下するので、Tiは0.10%以下とする。より好ましくは0.08%以下である。添加効果を得る点で、Tiは0.005%以上が好ましい。 If it exceeds 0.10%, the toughness decreases, so the Ti content is set to 0.10% or less. More preferably it is 0.08% or less. In order to obtain the effect of addition, Ti is preferably 0.005% or more.

本発明鋼材において、上記元素以外の残部は、Fe及び不純物である。不純物は、鋼原料(鉱石、スクラップ等)から及び/又は鋼製造工程で不可避的に混入し、本発明鋼材、本発明転動部品、及び、本発明製造方法の実施に悪影響を与えない範囲で許容される元素である。 In the steel material of the present invention, the remainder other than the above elements is Fe and impurities. Impurities are unavoidably mixed in from steel raw materials (ore, scrap, etc.) and/or during the steel manufacturing process, and are limited to the extent that they do not adversely affect the steel materials of the present invention, the rolling parts of the present invention, and the implementation of the manufacturing method of the present invention. It is an acceptable element.

次に、本発明転動部品のミクロ組織について説明する。 Next, the microstructure of the rolling component of the present invention will be explained.

(B)ミクロ組織
旧オーステナイト結晶粒の平均粒径:7.0μm以下
完成した転動部品の組織は、焼戻したマルテンサイトと残留オーステナイトで構成されるが、転動負荷のもとで白色組織が生成する。白色組織は、水素侵入下で、塑性変形が繰り返されることで生成するので、白色組織の発生を抑制するためには、水素侵入下での繰り返し塑性変形を抑制することが重要である。
(B) Microstructure Average particle size of prior austenite crystal grains: 7.0 μm or less The structure of the completed rolling component is composed of tempered martensite and retained austenite, but the white structure changes under rolling load. generate. Since the white structure is generated by repeated plastic deformation under hydrogen intrusion, in order to suppress the generation of white structure, it is important to suppress the repeated plastic deformation under hydrogen intrusion.

旧オーステナイト結晶粒の平均粒径が7.0μmを超えると、局所的な塑性変形が大きくなり、白色組織の生成抑制が困難になるので、旧オーステナイト結晶粒の平均粒径は7.0μm以下とする。好ましくは6.5μm以下である。 If the average grain size of prior austenite crystal grains exceeds 7.0 μm, local plastic deformation will increase and it will be difficult to suppress the formation of a white structure, so the average grain size of prior austenite crystal grains should be 7.0 μm or less. do. Preferably it is 6.5 μm or less.

残留オーステナイト量:体積率で20.0%以下
残留オーステナイトは、水素の固溶限が高いので、鋼材に侵入してきた水素のトラップサイトとして機能する。しかし、部品の使用中、残留オーステナイトが加工誘起変態してマルテンサイトになると、残留オーステナイトがトラップしていた水素が放出される。
Amount of retained austenite: 20.0% or less by volume Since retained austenite has a high solid solubility limit for hydrogen, it functions as a trap site for hydrogen that has entered the steel material. However, when the retained austenite undergoes deformation-induced transformation and becomes martensite during use of the part, the hydrogen trapped in the retained austenite is released.

放出された水素は、局所的な塑性変形を助長するので、白色組織が生成し易くなる。残留オーステナイト量が体積率で20.0%を超えると、局所的な塑性変形が大きくなり、白色組織の生成抑制が困難になるので、残留オーステナイト量は体積率で20.0%以下とする。好ましくは体積率で15.0%以下である。なお、残留オーステナイト量は、X線回折で得られたbcc構造の(211)面とfcc構造の(220)面の回折ピークの積分強度比から算出することができる。 The released hydrogen promotes local plastic deformation, making it easier to generate a white structure. If the amount of retained austenite exceeds 20.0% in terms of volume fraction, local plastic deformation becomes large and it becomes difficult to suppress the formation of a white structure, so the amount of retained austenite is set to 20.0% or less in terms of volume fraction. Preferably, the volume percentage is 15.0% or less. The amount of retained austenite can be calculated from the integrated intensity ratio of the diffraction peaks of the (211) plane of the BCC structure and the (220) plane of the FCC structure obtained by X-ray diffraction.

次に、本発明転動部品の機械特性について説明する。 Next, the mechanical properties of the rolling component of the present invention will be explained.

(C)表層硬さ
表層硬さ:750HV以上
白色組織は、水素侵入下で塑性変形が繰り返されることにより生成するので、白色組織の生成を抑制するためには、水素侵入下での繰り返し塑性変形を抑制することが重要である。
(C) Surface layer hardness Surface layer hardness: 750 HV or more The white structure is generated by repeated plastic deformation under hydrogen intrusion, so in order to suppress the formation of white structure, repeated plastic deformation under hydrogen intrusion is necessary. It is important to suppress

表層硬さが750HV未満であると、繰り返し塑性変形量が増大し、白色組織の生成抑制が困難になり、また、所要の耐摩耗性が得られないので、表層硬さは750HV以上とする。好ましくは770HV以上である。 If the surface hardness is less than 750 HV, the amount of repeated plastic deformation will increase, making it difficult to suppress the formation of a white structure, and the required wear resistance will not be obtained, so the surface hardness is set to 750 HV or more. Preferably it is 770HV or more.

(D)内部硬さ
本発明転動部品は、その用途上、内部硬さが260HV以上であることが好ましい。
(D) Internal hardness The rolling component of the present invention preferably has an internal hardness of 260 HV or more in view of its intended use.

以上のミクロ組織及び機械特性を有する転動部品を製造するためには、例えば、浸炭焼入れ後に高周波焼入れを行い、焼戻しを行う。高周波による短時間加熱後、水噴射による急冷を行うことが効果的である。 In order to manufacture a rolling component having the above microstructure and mechanical properties, for example, induction hardening is performed after carburizing and quenching, followed by tempering. It is effective to perform short-term heating using high-frequency waves followed by rapid cooling using water jets.

次に、本発明製造方法について説明する。 Next, the manufacturing method of the present invention will be explained.

(D)製造方法
本発明転動部品を製造する本発明製造方法は、
本発明鋼材に、熱間加工又は冷間加工を施して、部品形状に成形する工程、
成形した部品に浸炭焼入れを施す工程、
浸炭焼入れを施した部品を、高周波で加熱し、次いで、水噴射又は気水噴射で冷却する工程を含む
ことを特徴とする。
(D) Manufacturing method The manufacturing method of the present invention for manufacturing the rolling parts of the present invention includes:
A step of subjecting the steel material of the present invention to hot working or cold working and forming it into a part shape;
The process of carburizing and quenching the molded parts,
It is characterized by including a step of heating the carburized and quenched part with high frequency, and then cooling it with water jet or air water jet.

以下、工程条件について説明する。 The process conditions will be explained below.

本発明鋼材の製造
本発明鋼材の製造方法は、特に特定の製造方法に限定されない。常法で、鋼を溶製し、連続鋳造し、得られた鋼片を熱間圧延して製造する。鋼片には、必要に応じ、均熱拡散処理や分塊圧延を施す。本発明鋼材は、例えば、棒鋼であり、必要に応じて、熱間鍛伸、焼準、球状化焼鈍を施してもよい。
Manufacture of Steel Materials of the Present Invention The method of manufacturing the steel materials of the present invention is not particularly limited to a specific manufacturing method. It is produced by melting steel, continuous casting, and hot rolling the obtained steel pieces using conventional methods. The steel billet is subjected to soaking diffusion treatment and blooming rolling as necessary. The steel material of the present invention is, for example, a steel bar, and may be subjected to hot forging, normalizing, and spheroidizing annealing, if necessary.

本発明鋼材は、切削加工性を確保するため、硬さが270HV以下となることが好ましい。例えば、直径30mm~140mmの棒鋼を、925℃~930℃に加熱し、1~3時間保持した後、空冷する焼準を行い、焼準後硬さを270HV以下とすることができる。 In order to ensure machinability, the steel material of the present invention preferably has a hardness of 270 HV or less. For example, a steel bar with a diameter of 30 mm to 140 mm can be normalized by heating it to 925° C. to 930° C., holding it for 1 to 3 hours, and then cooling it in air, so that the hardness after normalization is 270 HV or less.

成形:熱間加工又は冷間加工
本発明鋼材に、熱間加工又は冷間加工を施して転動部品に成形する。成形後、切削加工や仕上げ加工を施してもよい。熱間加工及び冷間加工の加工条件は、転動部品を成形できる条件であればよく、特に特定の加工条件に限定されない。
Forming: Hot Working or Cold Working The steel material of the present invention is subjected to hot working or cold working to form rolling parts. After molding, cutting or finishing may be performed. The processing conditions for hot working and cold working are not particularly limited to specific processing conditions as long as they can form a rolling component.

浸炭焼入れ
浸炭焼入れは、通常の方法で行えばよい。例えば、920~1000℃の温度域で浸炭を行い、浸炭後、油焼入れ又は水焼入れをする。その後、焼戻しを行ってもよい。
Carburizing and quenching Carburizing and quenching can be carried out using the usual method. For example, carburizing is performed in a temperature range of 920 to 1000°C, and after carburizing, oil quenching or water quenching is performed. After that, tempering may be performed.

高周波加熱と冷却
浸炭焼入れを施した部品を、さらに、高周波で加熱し、加熱後、水噴射又は気水噴射で冷却する。高周波加熱は、A3点以上、A3点+150℃以下の温度に、30秒以下加熱するのが好ましい。
High-frequency heating and cooling The carburized and quenched parts are further heated with high-frequency waves, and after heating, they are cooled with water jet or air-water jet. The high-frequency heating is preferably performed at a temperature of A3 point or higher and A3 point +150° C. or lower for 30 seconds or less.

高周波で加熱した後は、水の強噴射による水冷、又は、気水の強噴射による気水冷却を行い、7.0μm以下の旧オーステナイト結晶粒の平均粒径と、20%以下の残留オーステナイト体積率を有するミクロ組織、及び、750HV以上の表層硬さを実現する。 After heating with high frequency, water cooling with strong water injection or air/water cooling with strong air water injection is performed to reduce the average grain size of prior austenite crystal grains of 7.0 μm or less and the residual austenite volume of 20% or less. Achieves a microstructure with a high ratio and a surface hardness of 750 HV or more.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited. The present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.

表1に示す成分組成を有する溶鋼を連続鋳造し、必要に応じ、均熱拡散処理、分塊圧延を施して160mm角の圧延素材とした。続いて、熱間棒鋼圧延で、直径60mm(以下、「Φ60mm」という。)の棒鋼を製造した。 Molten steel having the composition shown in Table 1 was continuously cast, and subjected to soaking diffusion treatment and blooming rolling as necessary to obtain a rolled material of 160 mm square. Subsequently, a steel bar with a diameter of 60 mm (hereinafter referred to as "Φ60 mm") was manufactured by hot steel bar rolling.

直径60mmの棒鋼(以下「Φ60mm棒鋼」という。)の一部は、切断後、熱間鍛伸を施して、直径30mmの棒鋼(以下「Φ30mm棒鋼」という。)に仕上げ、さらに、Φ30mm棒鋼を、925℃に加熱し、1時間保持した後、空冷する焼き準しを行った。 After cutting, a part of the steel bar with a diameter of 60 mm (hereinafter referred to as "Φ60 mm steel bar") is subjected to hot forging and stretching to finish it into a steel bar with a diameter of 30 mm (hereinafter referred to as "Φ30 mm steel bar"), and further, the steel bar with a diameter of 30 mm is further processed. The sample was heated to 925° C., held for 1 hour, and then air cooled for normalization.

表1において、実施例の鋼1~19は、成分組成が、本発明の範囲内にある鋼であり、比較例の鋼20~27は、成分組成が、本発明の範囲外にある鋼である。 In Table 1, Steels 1 to 19 of Examples are steels whose compositions are within the range of the present invention, and Steels 20 to 27 of Comparative Examples are steels whose compositions are outside the range of the present invention. be.

Figure 0007422527000001
Figure 0007422527000001

[焼準後の硬さの評価]
前記焼準後のΦ30mm棒鋼を、長手方向に直交する面で切断し、切断面が観察面となるように樹脂に埋め込んで研磨し、観察面を鏡面仕上げした。鏡面仕上げ後、試験片の表層部において、2.94Nの試験力でビッカース硬さを測定した。
[Evaluation of hardness after normalizing]
The normalized Φ30 mm steel bar was cut along a plane perpendicular to the longitudinal direction, embedded in resin and polished so that the cut surface became the observation surface, and the observation surface was mirror-finished. After mirror finishing, the Vickers hardness of the surface layer of the test piece was measured using a test force of 2.94N.

焼準後のビッカース硬さの測定は、試験片中心および中心から8mmの位置を45度間隔で8点,合計9点実施し、その平均値を焼準後の硬さの測定値とした。ビッカース硬さ≦270HVの場合は「○」、ビッカース硬さ>270HVの場合は「×」と判定した。 The Vickers hardness after normalization was measured at 8 points at 45 degree intervals at the center of the test piece and at a position 8 mm from the center, for a total of 9 points, and the average value was taken as the measured value of the hardness after normalization. When the Vickers hardness was ≦270HV, it was judged as “○”, and when the Vickers hardness was >270HV, it was judged as “×”.

[小ローラー試験片の加工]
前記焼準後のΦ30mmの棒鋼を、図1に示す小ローラー試験片の粗形状に加工した。粗形状の小ローラー試験片に、図2に示す熱処理(表面C濃度0.8~1.2質量%を狙っての浸炭、油焼入れ、焼戻し)を施し、次いで、図3に示す熱処理(a:高周波焼入れ、b:焼戻し)を施した。その後、図5に示す小ローラー試験片の形状に加工した。
[Processing of small roller test piece]
The normalized steel bar with a diameter of 30 mm was processed into the rough shape of a small roller test piece shown in FIG. 1. The rough-shaped small roller test piece was subjected to the heat treatment shown in Fig. 2 (carburizing, oil quenching, and tempering aiming at a surface C concentration of 0.8 to 1.2% by mass), and then the heat treatment shown in Fig. 3 (a : induction hardening, b: tempering). Thereafter, it was processed into the shape of a small roller test piece shown in FIG.

[大ローラー試験片の加工]
JISに規定の成分組成を有するSUJ2を連続鋳造し、分塊圧延工程を経て、160mm角の圧延素材とした。続いて、熱間鍛伸によって、直径140mmの棒鋼(以下、「Φ140mm棒鋼」という。)を製造した。
[Processing of large roller test piece]
SUJ2 having a composition specified by JIS was continuously cast and subjected to a blooming process to obtain a rolled material of 160 mm square. Subsequently, a steel bar with a diameter of 140 mm (hereinafter referred to as "Φ140 mm steel bar") was manufactured by hot forging and stretching.

Φ140mm棒鋼を、930℃に加熱し、3時間保持した後、空冷した。空冷したΦ140mm棒鋼を、図4(a)に示す球状化焼鈍した後,図6に示す大ローラー試験片の粗形状に加工した。粗形状の大ローラー試験片に、図4(b,c)に示す熱処理(b:焼入れ、c:焼戻し)を施した後、図7に示す大ローラー試験片の形状に加工した。 A steel bar with a diameter of 140 mm was heated to 930° C., held for 3 hours, and then cooled in air. An air-cooled steel bar having a diameter of 140 mm was subjected to spheroidizing annealing as shown in FIG. 4(a), and then processed into the rough shape of a large roller test piece as shown in FIG. 6. The rough-shaped large roller test piece was subjected to heat treatment (b: quenching, c: tempering) shown in FIGS. 4(b, c), and then processed into the shape of the large roller test piece shown in FIG. 7.

[表層硬さ及び内部硬さの評価]
小ローラー試験片の直径26.0mm部を横断するように切断し、小ローラー試験片の長手方向と直交する切断面が観察面となるように、試験片を樹脂に埋め込み、研磨し、観察面を鏡面仕上げした。
[Evaluation of surface hardness and internal hardness]
Cut the small roller test piece across the 26.0 mm diameter part, embed the test piece in resin so that the cut surface perpendicular to the longitudinal direction of the small roller test piece becomes the observation surface, and polish it. has a mirror finish.

鏡面仕上げ後、試験片の表層部及び内部において、2.94Nの試験力でビッカース硬さを測定した。表層硬さは,試験片表面から50μm深さ位置を9点測定し,その平均値を測定値とした。内部硬さは、試験片中心および中心から8mmの位置を45度間隔で8点,合計9点測定し、その平均を測定値とした。表層硬さは、表層硬さ≧750HVの場合は「○」、表層硬さ<750HVの場合は「×」と判定した。内部硬さは、内部硬さ≧260HVの場合は「○」、内部硬さ<260HVの場合は「×」と判定した。 After mirror finishing, the Vickers hardness was measured on the surface layer and inside of the test piece using a test force of 2.94N. The surface hardness was measured at nine points at a depth of 50 μm from the surface of the test piece, and the average value was taken as the measured value. The internal hardness was measured at 8 points at 45 degree intervals at the center of the test piece and at a position 8 mm from the center, 9 points in total, and the average was taken as the measured value. The surface hardness was determined as "○" when the surface layer hardness was ≧750 HV, and as "x" when the surface layer hardness was <750 HV. The internal hardness was determined as "○" when the internal hardness was 260 HV, and as "x" when the internal hardness was <260 HV.

[旧オーステナイト結晶粒の平均粒径の評価]
小ローラー試験片の直径26.0mm部を横断するように切断し、試験片の長手方向と直交する切断面が観察面となるように、試験片を樹脂に埋め込み、研磨し、観察面を鏡面仕上げした。
[Evaluation of average grain size of prior austenite grains]
Cut the small roller test piece across the 26.0 mm diameter section, embed the test piece in resin so that the cut surface perpendicular to the longitudinal direction of the test piece becomes the observation surface, polish it, and make the observation surface mirror-like. Finished.

鏡面仕上げ後、表層部を、オーステナイト粒界腐食液で腐食し、光学顕微鏡で1000倍の写真を撮影し、JIS0551(2013:鋼-結晶粒度の顕微鏡試験方法 付属書C)に記載の直線試験線による切断方法により、旧オーステナイト結晶粒の平均粒径を算出した。旧オーステナイト結晶粒の平均粒径≦7.0μmの場合は「○」、旧オーステナイト粒の平均粒径>7.0μmの場合は「×」と判定した。 After mirror finishing, the surface layer was corroded with an austenite intergranular corrosive liquid, and a photograph was taken with an optical microscope at 1000x magnification, and the straight line test line described in JIS 0551 (2013: Steel - Microscopic test method for grain size Annex C) was taken. The average grain size of prior austenite crystal grains was calculated using the cutting method according to the following. When the average grain size of prior austenite crystal grains was ≦7.0 μm, it was determined as “○”, and when the average grain size of prior austenite grains was >7.0 μm, it was determined as “x”.

[残留オーステナイト量の評価]
小ローラー試験片の直径26.0mm部の外周面を、外周面から200μmの深さまで電解研磨した後、X線を照射し、bcc構造の(211)面と、fcc構造の(220)面の回折ピークの積分強度比から、残留オーステナイト量を算出した。残留オーステナイト量≦20%の場合は「○」、残留オーステナイト量>20.0%の場合は「×」と判定した。
[Evaluation of retained austenite amount]
After electrolytically polishing the outer circumferential surface of the 26.0 mm diameter section of the small roller test piece to a depth of 200 μm from the outer circumferential surface, X-rays were irradiated to reveal the (211) plane of the BCC structure and the (220) plane of the FCC structure. The amount of retained austenite was calculated from the integrated intensity ratio of the diffraction peaks. When the amount of retained austenite was ≦20%, it was determined as "○", and when the amount of retained austenite was >20.0%, it was determined as "x".

[白色組織抑制特性の評価]
白色組織抑制特性は、小ローラー試験片と大ローラー試験片を用いて、2円筒転がり疲労試験を行って評価した。2円筒転がり疲労試験は、潤滑環境下で、面圧2.5GPa、すべり率40%、回転数1500rpmの条件で、繰返し数1.0×107回まで実施した。
[Evaluation of white tissue suppression properties]
The white structure suppression property was evaluated by performing a two-cylinder rolling fatigue test using a small roller test piece and a large roller test piece. The two-cylinder rolling fatigue test was carried out under the conditions of a surface pressure of 2.5 GPa, a slip ratio of 40%, and a rotational speed of 1500 rpm in a lubricated environment up to a repetition rate of 1.0×10 7 times.

試験後、小ローラー試験片の直径26.0mm部の摺動部を横断するように切断し、小ローラー試験片の長手方向と直交する切断面が観察面となるように、試験片を樹脂に埋め込み、研磨し、観察面を鏡面仕上げした。鏡面仕上げ後、観察面をナイタール腐食液で腐食し、光学顕微鏡を用いて、白色組織の有無を観察した。白色組織が観察されなかった場合は「○」、白色組織が観察された場合は「×」と判定した。 After the test, the small roller test piece was cut across the sliding part of the 26.0 mm diameter part, and the test piece was covered with resin so that the cut surface perpendicular to the longitudinal direction of the small roller test piece was the observation surface. It was embedded, polished, and the viewing surface was polished to a mirror finish. After mirror finishing, the observation surface was corroded with a nital corrosive solution, and the presence or absence of white tissue was observed using an optical microscope. When no white tissue was observed, it was judged as "○", and when white tissue was observed, it was judged as "x".

表2に、焼準後硬さ、表層硬さ、内部硬さ、旧オーステナイト結晶粒の平均粒径、残留オーステナイト量、及び、白色組織抑制特性の評価結果を示す。 Table 2 shows the evaluation results of the hardness after normalization, surface hardness, internal hardness, average grain size of prior austenite crystal grains, amount of retained austenite, and white structure suppression property.

Figure 0007422527000002
Figure 0007422527000002

表2に示すように、成分組成、ミクロ組織、硬さ、及び、表面硬化処理方法が本発明の範囲内にある試験番号1~19においては、白色組織抑制特性が優れ、評価は「○」である。 As shown in Table 2, in test numbers 1 to 19 in which the component composition, microstructure, hardness, and surface hardening treatment method were within the scope of the present invention, the white structure suppression property was excellent and the evaluation was "○" It is.

これに対して、試験番号20~30は、鋼の成分組成、ミクロ組織、表層硬さ、又は、表面硬化処理方法が、本発明範囲外であるため、製造性,内部硬さ,もしくは白色組織抑制特性が劣位で、総合的な評価は「×」である。 On the other hand, in test numbers 20 to 30, the component composition, microstructure, surface hardness, or surface hardening treatment method of the steel is outside the scope of the present invention, so the manufacturability, internal hardness, or white structure The suppressive properties are inferior, and the overall evaluation is "x".

試験番号20は、Cが少ないため、内部硬さが低い。試験番号21は、Cが多いため、焼準後の硬さが高く、切削性に劣る。試験番号22は、Siが多いため、焼準後の硬さが高く、切削性に劣る。試験番号23は、Mnが多いため、焼準後の硬さが高く、切削性に劣る。試験番号24は、Crが多いため、焼準後の硬さが高く、切削性に劣る。試験番号25は、Moが多いため、焼準後の硬さが高く、切削性に劣る。 Test number 20 has a low internal hardness due to a small amount of C. Test No. 21 has a large amount of C, so the hardness after normalization is high and the machinability is poor. Test No. 22 has a large amount of Si, so the hardness after normalization is high and the machinability is poor. Test No. 23 has a large amount of Mn, so the hardness after normalization is high and the machinability is poor. Test No. 24 has a large amount of Cr, so the hardness after normalization is high and the machinability is poor. Test No. 25 has a large amount of Mo, so the hardness after normalization is high and the machinability is poor.

試験番号26は、Vが多いため、焼準後の硬さが高く、切削性に劣る。試験番号27は、Nbが多いため、焼準後の硬さが高く、切削性に劣る。試験番号28は、鋼1の成分組成は本発明範囲であるが,浸炭焼入れ・焼戻し後、高周波焼入れ・焼戻しをしていないため、表層硬さが本発明範囲より低く、旧オーステナイト結晶粒の平均粒径が本発明範囲より高く、残留オーステナイト量が本発明範囲よりも高くなり、白色組織が生成した。 Test No. 26 has a large amount of V, so the hardness after normalization is high and the machinability is poor. Test No. 27 has a large amount of Nb, so the hardness after normalization is high and the machinability is poor. In test number 28, the composition of Steel 1 is within the range of the present invention, but because induction hardening and tempering were not performed after carburizing and quenching, the surface hardness was lower than the range of the present invention, and the average prior austenite crystal grains were lower than the range of the present invention. The particle size was higher than the range of the present invention, the amount of retained austenite was higher than the range of the present invention, and a white structure was generated.

試験番号29は、鋼11の成分組成は本発明範囲であるが,浸炭焼入れ・焼戻し後、高周波焼入れ・焼戻しをしていないため、表層硬さが本発明範囲より低く、旧オーステナイト結晶粒の平均粒径が本発明範囲より高く、残留オーステナイト量が本発明範囲より高くなり、白色組織が生成した。 In test number 29, the composition of steel 11 is within the range of the present invention, but because induction hardening and tempering were not performed after carburizing and quenching, the surface hardness was lower than the range of the present invention, and the average prior austenite grains were lower than the range of the present invention. The grain size was higher than the range of the present invention, the amount of retained austenite was higher than the range of the present invention, and a white structure was generated.

試験番号30は、鋼17の成分組成は本発明範囲であるが,浸炭焼入れ・焼戻し後、高周波焼入れ・焼戻しをしていないため、表層硬さが本発明範囲より低く、旧オーステナイト結晶粒の平均粒径が本発明範囲より高く、残留オーステナイト量が本発明範囲より高くなり、白色組織が生成した。 In test number 30, the composition of Steel 17 is within the range of the present invention, but since induction hardening and tempering were not performed after carburizing and quenching, the surface hardness was lower than the range of the present invention, and the average prior austenite crystal grains were lower than the range of the present invention. The grain size was higher than the range of the present invention, the amount of retained austenite was higher than the range of the present invention, and a white structure was generated.

前述したように、本発明によれば、水素侵入下の使用においても、白色組織が生成せず、長寿命の転動部品(例えば、軸受部品)を提供することができる。よって、本発明は、機械部品製造及び利用産業において利用可能性が高いものである。 As described above, according to the present invention, it is possible to provide a rolling component (for example, a bearing component) that does not generate white tissue and has a long life even when used under hydrogen penetration. Therefore, the present invention has high applicability in mechanical parts manufacturing and application industries.

Claims (4)

質量%で、C:0.10~0.30%、Si:0.05~0.80%、Mn:0.40~1.00%、P:0.020%以下、S:0.015%以下、Cr:0.60~1.50%、Al:0.005~0.100%、N:0.003~0.025%、O:0.0015%以下を含み、残部Fe及び不純物からなり、
旧オーステナイト結晶粒の平均粒径が7.0μm以下であり、
残留オーステナイト量が体積率で20.0%以下であり、
表層硬さが750HV以上である
ことを特徴とする転動部品。
In mass%, C: 0.10 to 0.30%, Si: 0.05 to 0.80%, Mn: 0.40 to 1.00%, P: 0.020% or less, S: 0.015 % or less, Cr: 0.60 to 1.50%, Al: 0.005 to 0.100%, N: 0.003 to 0.025%, O: 0.0015% or less, the balance being Fe and impurities. Consisting of
The average grain size of prior austenite crystal grains is 7.0 μm or less,
The amount of retained austenite is 20.0% or less in volume percentage,
A rolling component characterized by a surface hardness of 750HV or more.
さらに、質量%で、Mo:0.10~0.50%、V:0.10~0.50%、Nb:0.01~0.10%、Ni:1.00%以下、B:0.005%以下、Ti:0.10%以下の1種又は2種以上を含むことを特徴とする請求項1に記載の転動部品。 Furthermore, in mass%, Mo: 0.10 to 0.50%, V: 0.10 to 0.50%, Nb: 0.01 to 0.10%, Ni: 1.00% or less, B: 0 The rolling component according to claim 1, characterized in that it contains one or more of Ti: 0.005% or less and Ti: 0.10% or less. 請求項1又は2に記載の転動部品を製造する製造方法であって、
質量%で、C:0.10~0.30%、Si:0.05~0.80%、Mn:0.40~1.00%、P:0.020%以下、S:0.015%以下、Cr:0.60~1.50%、Al:0.005~0.100%、N:0.003~0.025%、O:0.0015%以下と、
Mo:0~0.50%、V:0~0.50%、Nb:0~0.10%、Ni:0~1.00%、B:0~0.005%、Ti:0~0.10%を含み、残部Fe及び不純物からなる鋼材に、熱間加工又は冷間加工を施して、部品形状に成形する工程、
成形した部品に浸炭焼入れを施す工程、
浸炭焼入れを施した部品を、高周波で加熱し、次いで、水噴射又は気水噴射で冷却する工程を含む
ことを特徴とする転動部品の製造方法。
A manufacturing method for manufacturing the rolling component according to claim 1 or 2, comprising:
In mass%, C: 0.10 to 0.30%, Si: 0.05 to 0.80%, Mn: 0.40 to 1.00%, P: 0.020% or less, S: 0.015 % or less, Cr: 0.60 to 1.50%, Al: 0.005 to 0.100%, N: 0.003 to 0.025%, O: 0.0015% or less,
Mo: 0-0.50%, V: 0-0.50%, Nb: 0-0.10%, Ni: 0-1.00%, B: 0-0.005%, Ti: 0-0 A step of hot working or cold working a steel material containing 10% Fe and impurities, and forming it into a part shape;
The process of carburizing and quenching the molded parts,
A method for manufacturing rolling parts, comprising the steps of heating a carburized and quenched part with high frequency, and then cooling it with water jet or air water jet.
前記鋼材は、質量%で、Mo:0.10~0.50%、V:0.10~0.50%、Nb:0.01~0.10%、Ni:1.00%以下、B:0.005%以下、Ti:0.10%以下の1種又は2種以上を含むことを特徴とする請求項3に記載の転動部品の製造方法 The steel material contains , in mass %, Mo: 0.10 to 0.50%, V: 0.10 to 0.50%, Nb: 0.01 to 0.10%, Ni: 1.00% or less, 4. The method for manufacturing a rolling component according to claim 3, comprising one or more of B: 0.005% or less and Ti: 0.10% or less.
JP2019220556A 2019-12-05 2019-12-05 Rolling parts and their manufacturing method Active JP7422527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220556A JP7422527B2 (en) 2019-12-05 2019-12-05 Rolling parts and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220556A JP7422527B2 (en) 2019-12-05 2019-12-05 Rolling parts and their manufacturing method

Publications (2)

Publication Number Publication Date
JP2021088751A JP2021088751A (en) 2021-06-10
JP7422527B2 true JP7422527B2 (en) 2024-01-26

Family

ID=76219720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220556A Active JP7422527B2 (en) 2019-12-05 2019-12-05 Rolling parts and their manufacturing method

Country Status (1)

Country Link
JP (1) JP7422527B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4394058A1 (en) * 2021-08-24 2024-07-03 NSK Ltd. Roller bearing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200348A (en) 2000-01-17 2001-07-24 Daido Steel Co Ltd Gear couple excellent in surface fatigue strength
WO2006118243A1 (en) 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. Carburized induction-hardened component
JP2009299165A (en) 2008-06-16 2009-12-24 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component by induction hardening
WO2013084800A1 (en) 2011-12-06 2013-06-13 日本精工株式会社 Rolling bearing and method for producing same
WO2015105187A1 (en) 2014-01-10 2015-07-16 新日鐵住金株式会社 Bearing component
US20170081738A1 (en) 2014-06-27 2017-03-23 Aktiebolaget Skf Method & metal component
WO2019198539A1 (en) 2018-04-10 2019-10-17 日本製鉄株式会社 Machine component and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200348A (en) 2000-01-17 2001-07-24 Daido Steel Co Ltd Gear couple excellent in surface fatigue strength
WO2006118243A1 (en) 2005-04-28 2006-11-09 Aisin Aw Co., Ltd. Carburized induction-hardened component
JP2009299165A (en) 2008-06-16 2009-12-24 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component by induction hardening
WO2013084800A1 (en) 2011-12-06 2013-06-13 日本精工株式会社 Rolling bearing and method for producing same
WO2015105187A1 (en) 2014-01-10 2015-07-16 新日鐵住金株式会社 Bearing component
US20170081738A1 (en) 2014-06-27 2017-03-23 Aktiebolaget Skf Method & metal component
WO2019198539A1 (en) 2018-04-10 2019-10-17 日本製鉄株式会社 Machine component and method for producing same

Also Published As

Publication number Publication date
JP2021088751A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
WO2011004913A1 (en) Steel wire for high-strength spring
US11332817B2 (en) Machine component
JP6241136B2 (en) Case-hardened steel
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP7095116B2 (en) Steel material used as a material for carburized nitriding bearing parts
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
JP7422527B2 (en) Rolling parts and their manufacturing method
JP5336972B2 (en) Nitriding steel and nitride parts
JP6225613B2 (en) Case-hardened steel
CN113631746A (en) Carburized component and method for manufacturing same
JP6488945B2 (en) Case-hardened steel for high-strength cold forging
JP2008179848A (en) Steel for gear having superior impact fatigue resistance and contact fatigue strength, and gear using the same
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6447064B2 (en) Steel parts
JP6680406B1 (en) Machine parts and method of manufacturing machine parts
JP4821582B2 (en) Steel for vacuum carburized gear
JP6551225B2 (en) Induction hardening gear
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP7360060B2 (en) steel and bearings
JP7180300B2 (en) Steel parts and manufacturing method thereof
JP6881497B2 (en) Parts and their manufacturing methods
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing
JP7163770B2 (en) Rolling bearing component and manufacturing method thereof
JP6601359B2 (en) Carburized parts with excellent wear resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240116

R150 Certificate of patent or registration of utility model

Ref document number: 7422527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150