JP7418642B1 - Ink for 3D printing food - Google Patents

Ink for 3D printing food Download PDF

Info

Publication number
JP7418642B1
JP7418642B1 JP2023115033A JP2023115033A JP7418642B1 JP 7418642 B1 JP7418642 B1 JP 7418642B1 JP 2023115033 A JP2023115033 A JP 2023115033A JP 2023115033 A JP2023115033 A JP 2023115033A JP 7418642 B1 JP7418642 B1 JP 7418642B1
Authority
JP
Japan
Prior art keywords
dietary fiber
mass
ink
dimensionally shaped
food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023115033A
Other languages
Japanese (ja)
Inventor
実希 山野上
Original Assignee
Mp五協フード&ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mp五協フード&ケミカル株式会社 filed Critical Mp五協フード&ケミカル株式会社
Priority to JP2023115033A priority Critical patent/JP7418642B1/en
Application granted granted Critical
Publication of JP7418642B1 publication Critical patent/JP7418642B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Jellies, Jams, And Syrups (AREA)

Abstract

【課題】本発明は、成形性及び保形性に優れる三次元造形食品を簡便に製造可能な三次元造形食品用インクを提供することを課題とする。【解決手段】食材と、食物繊維とを含み、前記食物繊維の保水力が自重の15倍以上である、三次元造形食品用インク。【選択図】なしAn object of the present invention is to provide an ink for three-dimensionally shaped foods that can easily produce three-dimensionally shaped foods with excellent moldability and shape retention. SOLUTION: An ink for three-dimensionally shaped food, which contains a food ingredient and dietary fiber, and the water retention capacity of the dietary fiber is 15 times or more its own weight. [Selection diagram] None

Description

本発明は、三次元造形食品用インクに関する。 The present invention relates to an ink for three-dimensionally shaped foods.

食品分野では、3Dプリンタ等で製造される三次元造形食品が利用されている。例えば、食品の嗜好性を高めるために、三次元造形食品の立体形状を利用することが提案されている。また、三次元造形食品は、形状などのデータが入力された3Dプリンタで自動的に製造され得るため、介護施設や病院などの施設における人手不足の解消に寄与すると考えられている。 In the food field, three-dimensionally shaped foods manufactured using 3D printers and the like are used. For example, it has been proposed to utilize the three-dimensional shape of three-dimensionally shaped foods in order to enhance the palatability of foods. Moreover, since three-dimensionally shaped foods can be automatically manufactured using a 3D printer into which data such as shape is input, it is thought that it will contribute to resolving labor shortages in facilities such as nursing homes and hospitals.

従来、三次元造形食品の製造に用いられるインクについての検討がなされている。例えば、特許文献1には、アルファ化澱粉等の基材と、該基材を分解し得るアミラーゼ等の分解剤と、アルギン酸ナトリウム等のゲル化剤とを含むインクが記載されている。かかるインクによれば、分解剤により基材が分解されるとともに、ゲル化剤によりインクがゲル化することによって、保形性等が付与された三次元造形食品が得られるとされている。 BACKGROUND ART Considerations have been made regarding inks used in the production of three-dimensionally shaped foods. For example, Patent Document 1 describes an ink that includes a base material such as pregelatinized starch, a decomposing agent such as amylase that can decompose the base material, and a gelling agent such as sodium alginate. According to such an ink, the base material is decomposed by the decomposing agent, and the ink is gelled by the gelling agent, thereby making it possible to obtain a three-dimensionally shaped food with shape retention properties and the like.

また、特許文献2には、豆類から抽出されたゲル化剤を含むインクが記載されている。かかるインクによれば、ゲル化剤のゲル化温度が10℃以下であるため、吐出前のインクを加温せずとも三次元造形食品を製造できるとされている。一方、特許文献3には、ゲル化温度が40℃程度の脱アシル型ジェランガムを含むインクが記載されている。かかるインクによれば、吐出先の雰囲気が室温であっても造形が可能とされている。 Further, Patent Document 2 describes an ink containing a gelling agent extracted from beans. According to this ink, since the gelling temperature of the gelling agent is 10° C. or lower, three-dimensionally shaped foods can be produced without heating the ink before ejection. On the other hand, Patent Document 3 describes an ink containing deacylated gellan gum with a gelling temperature of about 40°C. According to such ink, modeling is possible even if the atmosphere at the ejection destination is room temperature.

これらの他、特許文献4では、澱粉粉末と水とを含むインクにレーザー光を照射することによって該インクをゲル化させる方法が提案されている。 In addition to these, Patent Document 4 proposes a method of gelling an ink containing starch powder and water by irradiating the ink with laser light.

特開2018-102261号公報JP2018-102261A 特開2021-112183号公報JP 2021-112183 Publication 特開2023-35748号公報JP2023-35748A 特開2022-26221号公報JP2022-26221A

ところで、近年の外食産業等の食品に対する嗜好性の高まりから、より複雑な立体形状を有する三次元造形食品の提供が望まれ得る。そして、かかる要望を満たすために、三次元造形食品用インクには、複雑な立体形状を成形するための成形性が求められる。成形性としては、例えば、尖った角部のような形状を成形可能な性能が挙げられる。また、三次元造形食品用インクには、製造後から喫食までの間において当該立体形状を維持するための保形性が求められる。保形性としては、所定の高さを維持可能な性能、言い換えれば、崩れ落ちを抑制し得る性能が特に重要である。しかしながら、従来技術のインクでは、所望の成形性及び保形性を三次元造形食品に十分に付与できない場合がある。 Incidentally, due to the recent increase in preference for foods in the restaurant industry and the like, it may be desirable to provide three-dimensionally shaped foods having more complex three-dimensional shapes. In order to meet such demands, inks for three-dimensionally shaped foods are required to have moldability to form complex three-dimensional shapes. Formability includes, for example, the ability to form shapes such as sharp corners. Furthermore, inks for three-dimensionally shaped foods are required to have shape retention properties to maintain the three-dimensional shape from the time of manufacture to the time of consumption. Regarding shape retention, the ability to maintain a predetermined height, in other words, the ability to suppress collapse is particularly important. However, conventional inks may not be able to sufficiently impart desired moldability and shape retention to three-dimensionally shaped foods.

また、特許文献1及び特許文献2の技術のように、従来多用されているゲル化剤を含むインクでは、一般的に、3Dプリンタ等からの吐出前にゲル化が生じないようにするために、加温等の温度制御が必要となる場合がある。また、吐出後にゲル化を促進するために、冷却等の温度制御が必要となる場合がある。よって、従来技術のインクは、三次元造形食品のより簡便な製造という点において改善の余地がある。そして、かかる改善は、外食産業等における三次元造形食品の普及において特に重要と考えられる。 In addition, as in the techniques of Patent Document 1 and Patent Document 2, ink containing a gelling agent, which is commonly used in the past, is generally used to prevent gelation from occurring before being ejected from a 3D printer, etc. , temperature control such as heating may be required. Further, temperature control such as cooling may be required to promote gelation after discharge. Therefore, the ink of the prior art has room for improvement in terms of easier production of three-dimensionally shaped foods. Such improvements are considered to be particularly important in the spread of three-dimensionally shaped foods in the restaurant industry and the like.

上記事情に鑑み、本発明は、成形性及び保形性に優れる三次元造形食品を簡便に製造可能な三次元造形食品用インクを提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide an ink for three-dimensionally shaped foods that can easily produce three-dimensionally shaped foods with excellent moldability and shape retention.

本発明に係る三次元造形食品用インクは、
食材と、食物繊維とを含み、
前記食物繊維の保水力が自重の15倍以上である。
The ink for three-dimensionally shaped food according to the present invention is
Contains ingredients and dietary fiber,
The water retention capacity of the dietary fiber is 15 times or more its own weight.

かかる構成によれば、食物繊維の保水力が自重の15倍以上であることによって、3Dプリンタ等の吐出前後において温度制御されなくとも、成形性及び保形性に優れる三次元造形食品を製造することができる。より具体的には、3Dプリンタからの吐出前後の温度が室温であっても、成形性及び保形性に優れる三次元造形食品を製造することができ、言い換えれば、これらの性能に優れる三次元造形食品を簡便に製造することができる。 According to this configuration, since the water retention capacity of the dietary fiber is 15 times or more than its own weight, it is possible to produce a three-dimensionally shaped food with excellent moldability and shape retention even without temperature control before and after ejection using a 3D printer, etc. be able to. More specifically, even if the temperature before and after ejection from a 3D printer is room temperature, it is possible to produce a three-dimensionally shaped food with excellent moldability and shape retention. Shaped foods can be easily manufactured.

また、本発明の一態様に係る三次元造形食品用インクは、
前記食物繊維が果実由来又は穀物由来であることが好ましく、シトラス由来、リンゴ由来、又はコーン由来であることがより好ましい。
Furthermore, the ink for three-dimensionally shaped food according to one aspect of the present invention is
The dietary fiber is preferably derived from fruit or grain, and more preferably from citrus, apple, or corn.

かかる構成によれば、上記由来の食物繊維を含むことによって、成形性及び保形性にさらに優れる三次元造形食品を製造することができる。 According to this configuration, by including the dietary fiber derived from the above, it is possible to produce a three-dimensionally shaped food product that has even better moldability and shape retention.

また、本発明の一態様に係る三次元造形食品用インクは、
水の含有量が50質量%以上である。
Furthermore, the ink for three-dimensionally shaped food according to one aspect of the present invention is
The water content is 50% by mass or more.

かかる構成によれば、水の含有量が50質量%以上であっても、上記食物繊維を含むことによって、成形性及び保形性に優れる三次元造形食品を製造することができる。 According to this configuration, even if the water content is 50% by mass or more, it is possible to produce a three-dimensionally shaped food with excellent moldability and shape retention by including the dietary fiber.

また、本発明の一態様に係る三次元造形食品用インクは、
前記食物繊維の含有量が5質量%以下である。
Furthermore, the ink for three-dimensionally shaped food according to one aspect of the present invention is
The content of the dietary fiber is 5% by mass or less.

かかる構成によれば、食物繊維の含有量が5質量%以下であることによって、良好な食感の三次元造形食品を製造することができる。 According to this configuration, since the content of dietary fiber is 5% by mass or less, a three-dimensionally shaped food with good texture can be produced.

以上のとおり、本発明によれば、成形性及び保形性に優れる三次元造形食品を簡便に製造可能な三次元造形食品用インクを提供することができる。 As described above, according to the present invention, it is possible to provide an ink for three-dimensionally shaped foods that can easily produce three-dimensionally shaped foods with excellent moldability and shape retention.

一実施形態に係る三次元造形食品用インクの適用が可能な3Dプリンタの概略図である。FIG. 1 is a schematic diagram of a 3D printer to which an ink for three-dimensionally shaped food according to an embodiment can be applied. 実施例と比較例とにおける三次元造形食品の外観(写真)を対比する図である。It is a figure which compares the external appearance (photograph) of the three-dimensionally shaped food in an Example and a comparative example.

本発明の一実施形態に係る三次元造形食品用インクについて説明する。 An ink for three-dimensionally shaped food according to an embodiment of the present invention will be described.

本実施形態の三次元造形食品用インクは、食材と、食物繊維とを含む。 The ink for three-dimensionally shaped food according to the present embodiment includes ingredients and dietary fiber.

本実施形態の食物繊維は、三次元造形食品用インク及び三次元造形食品に所望の性能を発揮させるために加えられたものであり、前記食材に含まれ得る食物繊維とは区別されるものである。 The dietary fiber of this embodiment is added to the ink for three-dimensionally shaped foods and the three-dimensionally shaped foods in order to exhibit desired performance, and is distinguished from the dietary fibers that may be included in the above-mentioned foodstuffs. be.

本実施形態の食物繊維は、その保水力が自重の15倍以上である。すなわち、本実施形態の食物繊維は、その乾燥繊維1gあたり15g以上の水を保持する性質を有するものである。 The dietary fiber of this embodiment has a water retention capacity of 15 times or more its own weight. That is, the dietary fiber of this embodiment has the property of retaining 15 g or more of water per 1 g of dry fiber.

本実施形態の食物繊維における保水力は、以下の方法によって測定することができる。まず、ハロゲン水分計を用いて食物繊維(試料)の乾燥減量を測定する。次に、質量既知の遠心管に食物繊維(試料)と水とを添加し、1質量%(食物繊維と水との質量比:1/99)の試料溶液を調製し、温度20~30℃、大気圧下にて24時間静置する。静置後、4,000gで10分間遠心分離し、遠心管を静かに傾けて逆さにして上澄み液及び沈殿していない食物繊維を除去し、含水繊維を得る。上澄み液等を除去した遠心管の質量を測定し、空の遠心管の質量を引いた値を「含水繊維の質量」とする。ハロゲン水分計での測定により得られた乾燥減量の値から、以下の式(1)により「乾燥繊維の質量」を算出し、これらの値を用いて以下の式(2)により保水力を算出する。
(1)乾燥繊維の質量=測定に用いた食物繊維の質量×(100-乾燥減量(%))/100
(2)保水力=(含水繊維の質量-乾燥繊維の質量)/乾燥繊維の質量
The water retention capacity of the dietary fiber of this embodiment can be measured by the following method. First, the drying loss of dietary fiber (sample) is measured using a halogen moisture meter. Next, dietary fiber (sample) and water were added to a centrifuge tube of known mass to prepare a 1% by mass (mass ratio of dietary fiber to water: 1/99) sample solution, and the temperature was 20 to 30°C. , and let stand under atmospheric pressure for 24 hours. After standing still, centrifugation is performed at 4,000 g for 10 minutes, and the centrifuge tube is gently tilted and turned upside down to remove the supernatant liquid and non-precipitated dietary fiber to obtain hydrated fiber. The mass of the centrifuge tube from which the supernatant liquid etc. have been removed is measured, and the value obtained by subtracting the mass of the empty centrifuge tube is defined as the "mass of water-containing fibers." From the drying loss value obtained by measurement with a halogen moisture meter, calculate the "mass of dry fiber" using the following formula (1), and use these values to calculate the water retention capacity using the following formula (2). do.
(1) Mass of dry fiber = mass of dietary fiber used for measurement x (100 - loss on drying (%)) / 100
(2) Water retention capacity = (mass of water-containing fiber - mass of dry fiber) / mass of dry fiber

前記食物繊維の保水力は、自重の15倍以上が好ましく、16倍以上がより好ましく、17倍以上がさらに好ましく、20倍以上がより一層好ましい。一方、記食物繊維の保水力は、通常、自重の30倍以下である。 The water retention capacity of the dietary fiber is preferably 15 times or more, more preferably 16 times or more, even more preferably 17 times or more, and even more preferably 20 times or more than its own weight. On the other hand, the water retention capacity of dietary fiber is usually 30 times or less than its own weight.

前記三次元造形食品用インクの総質量に対する前記食物繊維の質量割合は、0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上がさらに好ましく、3質量%以上がより一層好ましい。また、前記食物繊維の質量割合は、5質量%以下が好ましく、4質量%以下がより好ましい。 The mass ratio of the dietary fiber to the total mass of the three-dimensionally shaped food ink is preferably 0.5% by mass or more, more preferably 1% by mass or more, even more preferably 2% by mass or more, and even more preferably 3% by mass or more. More preferred. Moreover, the mass proportion of the dietary fiber is preferably 5% by mass or less, more preferably 4% by mass or less.

本実施形態の食物繊維は、果皮や果肉等の果実由来、又は穀物由来の食物繊維から取得することができ、その中でも、シトラス由来、リンゴ由来、又はコーン由来の食物繊維が好ましく、シトラス由来の食物繊維がさらに好ましい。 The dietary fiber of this embodiment can be obtained from fruit-derived dietary fiber such as pericarp and pulp, or grain-derived dietary fiber. Among these, citrus-derived, apple-derived, or corn-derived dietary fiber is preferable, and citrus-derived dietary fiber is preferable. Dietary fiber is more preferred.

本実施形態の食物繊維は、不溶性食物繊維及び水溶性食物繊維からなる。食物繊維を構成する不溶性食物繊維の質量割合は、不溶性食物繊維と水溶性食物繊維との合計質量に対して40質量%以上90質量%以下であることが好ましい。不溶性食物繊維及び水溶性食物繊維の質量は、「日本食品成分表分析マニュアル」に記載のプロスキー変法によって測定することができる。具体的には、プロスキー変法では、まず、マニュアル規定の酵素反応条件下で、不溶性の画分と、可溶性ではあるが追加のエタノール添加等の処理によって不溶化する画分とに分画する。次いで、それぞれの画分の質量から、これらに含まれる灰分及びたんぱく質の質量を差し引き、不溶性食物繊維の質量及び水溶性食物繊維の質量を求める。 The dietary fiber of this embodiment consists of insoluble dietary fiber and water-soluble dietary fiber. The mass proportion of the insoluble dietary fiber constituting the dietary fiber is preferably 40% by mass or more and 90% by mass or less based on the total mass of the insoluble dietary fiber and the water-soluble dietary fiber. The mass of insoluble dietary fiber and water-soluble dietary fiber can be measured by the Prosky modified method described in the "Japanese Food Composition Analysis Manual". Specifically, in the Prosky modified method, first, under the enzymatic reaction conditions specified in the manual, the fraction is fractionated into an insoluble fraction and a fraction that is soluble but becomes insolubilized by additional treatment such as addition of ethanol. Next, the mass of ash and protein contained in each fraction is subtracted from the mass of each fraction to determine the mass of insoluble dietary fiber and the mass of water-soluble dietary fiber.

前記食物繊維を構成する不溶性食物繊維の質量割合は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上がより一層好ましい。また、前記食物繊維を構成する不溶性食物繊維の質量割合は、90質量%以下が好ましく、85質量%以下がより好ましい。 The mass proportion of the insoluble dietary fiber constituting the dietary fiber is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and even more preferably 80% by mass or more. Furthermore, the mass proportion of the insoluble dietary fiber constituting the dietary fiber is preferably 90% by mass or less, more preferably 85% by mass or less.

前記食物繊維を構成する水性食物繊維の質量割合は、10質量%以上が好ましく、15質量%以上がより好ましい。また、前記食物繊維を構成する水溶性食物繊維の質量割合は、前記の不溶性食物繊維の質量割合よりも低いことが好ましく、具体的には、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましい。 The mass ratio of the aqueous dietary fiber constituting the dietary fiber is preferably 10% by mass or more, more preferably 15% by mass or more. Further, the mass proportion of the water-soluble dietary fiber constituting the dietary fiber is preferably lower than the mass proportion of the insoluble dietary fiber, specifically, preferably 30 mass% or less, and more preferably 25 mass% or less. It is preferably 20% by mass or less, and more preferably 20% by mass or less.

本実施形態の三次元造形食品用インクは、該インクの総質量に対して50質量%以上の水を含む。水の含有量は、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよく、90質量%以上であってもよい。なお、水は、前記食材に含まれる水分であってもよく、別途、添加されたものであってもよい。 The ink for three-dimensionally shaped foods of this embodiment contains water in an amount of 50% by mass or more based on the total mass of the ink. The content of water may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more. Note that the water may be water contained in the food material, or may be added separately.

前記食材としては、デキストリン、ショ糖、フラクトオリゴ糖等の各種オリゴ糖;でんぷんや、難消化性デキストリン、ポリデキストロース等の食物繊維等の炭水化物;カゼイン、ホエイタンパク等の動物性タンパク質;大豆タンパク等の植物性タンパク質;植物性油脂や動物性油脂等の油脂を含むものが挙げられる。かかる食材としては、例えば、米粉、小麦粉、片栗粉、穀類粉末、豆類粉末、いも類粉末、コーンスターチ、山芋、葛粉、マッシュポテト、フラワーペースト、コーンシラップ、液糖、蜂蜜、野菜ペースト、乾燥野菜、乾燥果実、果汁、バッター、畜肉、魚肉、卵黄、卵白、大豆蛋白、チーズ、ヨーグルト、バター、マーガリン等が挙げられる。 The above-mentioned ingredients include various oligosaccharides such as dextrin, sucrose, and fructooligosaccharide; carbohydrates such as starch and dietary fiber such as indigestible dextrin and polydextrose; animal proteins such as casein and whey protein; and soybean protein. Vegetable proteins include those containing fats and oils such as vegetable oils and animal fats. Examples of such ingredients include rice flour, wheat flour, potato starch, grain powder, bean powder, potato powder, cornstarch, yam, arrowroot powder, mashed potatoes, flour paste, corn syrup, liquid sugar, honey, vegetable paste, dried vegetables, and dried fruits. , fruit juice, batter, livestock meat, fish meat, egg yolk, egg white, soybean protein, cheese, yogurt, butter, margarine, etc.

前記食材は、予め加熱処理されたものであってもよく、加熱処理されていない生の状態のものであってもよい。 The food material may be heat-treated in advance, or may be raw without being heat-treated.

次に、本実施形態の三次元造形食品用インクを用いる三次元造形食品の製造方法について、3Dプリンタを用いる方法を例示して説明する。 Next, a method for manufacturing a three-dimensionally shaped food using the ink for three-dimensionally shaped foods of this embodiment will be described by exemplifying a method using a 3D printer.

図1に示すように、本実施形態で用いる3Dプリンタ1は、三次元造形食品用インクを充填する円筒状のシリンダ部10と、シリンダ部10内を摺動する円柱状のプランジャ部20と、シリンダ部10内のインクの温度を所定の温度に維持する熱交換部30と、三次元造形食品の加工台40と、加工台40周りの雰囲気を所定の温度に維持する温度制御部50とを備えている。すなわち、3Dプリンタ1は、材料押出方式を採用した3Dプリンタである。シリンダ部10及び加工台40は、水平方向及び垂直方向に相対移動するように構成されている。また、3Dプリンタ1は、シリンダ部10の先端と加工台40乃至は加工台40上の造形物との距離を測定するセンサ部と、前記造形物の表面形状に関するデータをリアルタイムに取得するスキャン部とを備えている。3Dプリンタ1は、制御部に入力された3Dデータ及び前記スキャン部が取得したデータに基づいて、シリンダ部10からのインクの吐出量及び前記相対移動を制御するように構成されている。なお、本実施形態の三次元造形食品用インクは、ゲルのように固化することが抑制されており、且つ、吐出先の雰囲気が室温であっても所望の成形性及び保形性を発揮し得るものである。よって、3Dプリンタは、上記のような熱交換部及び温度制御部を備えていなくてもよい。 As shown in FIG. 1, the 3D printer 1 used in this embodiment includes a cylindrical cylinder part 10 filled with ink for three-dimensionally printed food, a cylindrical plunger part 20 that slides inside the cylinder part 10, A heat exchange section 30 that maintains the temperature of ink in the cylinder section 10 at a predetermined temperature, a processing table 40 for three-dimensionally shaped food, and a temperature control section 50 that maintains the atmosphere around the processing table 40 at a predetermined temperature. We are prepared. That is, the 3D printer 1 is a 3D printer that employs a material extrusion method. The cylinder section 10 and the processing table 40 are configured to move relative to each other in the horizontal and vertical directions. The 3D printer 1 also includes a sensor unit that measures the distance between the tip of the cylinder unit 10 and the processing table 40 or the object on the processing table 40, and a scan unit that acquires data regarding the surface shape of the object in real time. It is equipped with The 3D printer 1 is configured to control the amount of ink ejected from the cylinder section 10 and the relative movement based on 3D data input to the control section and data acquired by the scanning section. In addition, the ink for three-dimensionally shaped foods of this embodiment is suppressed from solidifying like a gel, and exhibits desired formability and shape retention even if the atmosphere at the ejection destination is room temperature. It's something you get. Therefore, the 3D printer does not need to include the heat exchange section and temperature control section as described above.

シリンダ部10は、三次元造形食品用インクを吐出するノズル部11を有する。ノズル部11の内径は、0.4mm以上が好ましい。また、ノズル部11の内径は、5mm以下が好ましい。シリンダ部10の内部のインクは、プランジャ部20で押圧され、ノズル部11を介して加工台40に吐出される。 The cylinder section 10 has a nozzle section 11 that discharges ink for three-dimensionally shaped foods. The inner diameter of the nozzle portion 11 is preferably 0.4 mm or more. Further, the inner diameter of the nozzle portion 11 is preferably 5 mm or less. The ink inside the cylinder section 10 is pressed by the plunger section 20 and is discharged onto the processing table 40 via the nozzle section 11.

本実施形態の製造方法は、三次元造形食品用インクを調製する調製工程と、三次元造形食品用インク及び3Dプリンタ1を用いて三次元造形食品を作製する造形工程とを備える。 The manufacturing method of this embodiment includes a preparation step of preparing an ink for three-dimensionally shaped food, and a modeling step of producing the three-dimensionally shaped food using the ink for three-dimensionally shaped food and the 3D printer 1.

本実施形態の調製工程では、必要に応じて加熱処理された前記食材と、前記食物繊維と、任意的な水分量調整用の水とを1~30℃で混合し、ペースト状の三次元造形食品用インクを調製する。調製工程では、ペースト状とされた前記食材と前記食物繊維とを混合してもよく、前記食材と前記食物繊維とを混合した混合物をペースト状としてもよい。 In the preparation process of this embodiment, the food material, which has been heat-treated as necessary, the dietary fiber, and optionally water for adjusting the moisture content are mixed at 1 to 30°C, and a paste-like three-dimensional model is formed. Prepare food grade ink. In the preparation step, the pasted food material and the dietary fiber may be mixed, or a mixture of the food material and the dietary fiber may be made into a paste state.

本実施形態の調製工程では、1~30℃の三次元造形食品用インクを調製する。混合温度は、15~30℃であってもよく、20~30℃であってもよい。このような室温を含む温度範囲で調製された三次元造形食品用インクであっても、三次元造形食品に所望の成形性及び保形性を発揮させることができる。 In the preparation process of this embodiment, an ink for three-dimensionally shaped foods at a temperature of 1 to 30°C is prepared. The mixing temperature may be 15-30°C or 20-30°C. Even with an ink for three-dimensionally shaped foods prepared in a temperature range including room temperature, the three-dimensionally shaped foods can exhibit desired moldability and shape retention.

混合には、前記食材を剪断可能なミキサー等を用いることが好ましい。また、前記食物繊維を水に分散させ、ミキサー等で事前に膨潤させてから前記食材と混合してもよい。より好ましくは、前記食物繊維の膨潤には、圧力ホモジナイザーを用いる。前記圧力ホモジナイザーは、前記食物繊維の水溶液を15MPa以上の圧力で処理可能なものが好ましい。圧力ホモジナイザーを用いることによって、前記食物繊維がより多くの水分を保持しつつ膨潤し得る繊維構造を有するものとなる。そして、このような食物繊維を含む三次元造形食品用インクは、離水を抑制することができ、それによって、より優れた保形性を三次元造形食品に発揮させることができる。また、ノズル部11からの吐出性が良好なものとなる。さらに、このようなインクで製造された三次元造形食品は、滑らかな食感を有するものとなる。 For mixing, it is preferable to use a mixer or the like that can shear the ingredients. Alternatively, the dietary fiber may be dispersed in water, swollen in advance using a mixer, etc., and then mixed with the food material. More preferably, a pressure homogenizer is used to swell the dietary fiber. The pressure homogenizer is preferably one that can process the aqueous solution of dietary fiber at a pressure of 15 MPa or more. By using a pressure homogenizer, the dietary fiber has a fibrous structure that can retain more water and swell. The ink for three-dimensionally shaped foods containing such dietary fibers can suppress syneresis, thereby allowing the three-dimensionally shaped foods to exhibit better shape retention. Moreover, the ejection performance from the nozzle portion 11 is improved. Furthermore, three-dimensionally shaped foods manufactured using such ink have a smooth texture.

本実施形態の造形工程では、調製工程で調製した三次元造形食品用インクをシリンダ部10に充填し、該インクを1~30℃の雰囲気下に置かれた加工台40に吐出し、三次元造形食品を製造する。このように、本実施形態の三次元造形食品用インクは、前記食物繊維を含むことによって、吐出前のシリンダ部10での温度制御及び吐出後の温度制御を行うことなく、優れた成形性及び保形性を発揮し得る三次元造形食品を製造することができる。すなわち、本実施形態の三次元造形食品用インクによれば、三次元造形食品の製造工程を簡便なものとすることができる。また、従来技術で多用されているゲル化剤や増粘剤のみで十分な成形性及び保形性を付与しようした場合、添加量が多くなり、口当たりや食感に影響が出る場合がある。本実施形態の三次元造形食品用インクは、前記食物繊維を含むことによって、ゲル化剤や増粘剤の添加量を大幅に減らすことができ、またこれらを実質的に含まずとも、優れた成形性及び保形性を有する三次元造形食品を製造することができる。これにより、本実施形態の三次元造形食品用インクで製造された三次元造形食品は、ぬめりやべたつきが少なく、口当たりや食感が良好なものとなる。 In the modeling process of this embodiment, the cylinder part 10 is filled with the ink for three-dimensionally shaped food prepared in the preparation process, and the ink is discharged onto the processing table 40 placed in an atmosphere of 1 to 30°C, Manufacture shaped foods. As described above, the ink for three-dimensionally shaped food according to the present embodiment has excellent moldability and excellent moldability without performing temperature control in the cylinder section 10 before and after ejection by containing the dietary fiber. It is possible to produce a three-dimensionally shaped food that exhibits shape-retaining properties. That is, according to the ink for three-dimensionally shaped foods of this embodiment, the manufacturing process of three-dimensionally shaped foods can be simplified. Furthermore, when attempting to impart sufficient moldability and shape retention using only gelling agents and thickeners, which are often used in the prior art, the amount added becomes large, which may affect the mouth feel and texture. By containing the dietary fiber, the ink for three-dimensionally shaped food according to the present embodiment can significantly reduce the amount of gelling agent and thickener added, and even without substantially containing these, the ink has excellent properties. Three-dimensionally shaped foods that have moldability and shape retention can be produced. As a result, the three-dimensionally shaped food produced using the ink for three-dimensionally shaped foods of this embodiment has less sliminess and stickiness, and has a good mouthfeel and texture.

本実施形態では、前記三次元造形食品をそのまま提供してもよく、前記三次元造形食品を加熱した後に提供してもよい。例えば、前記食材として生肉を用いた場合、生の状態の前記三次元造形食品を製造し、該三次元造形食品をオーブン等で加熱処理してもよい。前記食物繊維を含むことによって、加熱時においても離水が抑えられ、ジューシーな三次元造形食品とすることができる。 In this embodiment, the three-dimensionally shaped food may be provided as is, or may be provided after the three-dimensionally shaped food is heated. For example, when raw meat is used as the food material, the three-dimensionally shaped food may be produced in a raw state, and the three-dimensionally shaped food may be heat-treated in an oven or the like. By containing the dietary fiber, syneresis can be suppressed even during heating, and a juicy three-dimensionally shaped food can be obtained.

以上のように、例示としての実施形態を示したが、本発明に係る三次元造形食品用インクは、上記実施形態の構成に限定されるものではない。また、本発明に係る三次元造形食品用インクは、上記した作用効果により限定されるものでもない。本発明に係る三次元造形食品用インクは、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 As described above, although the exemplary embodiment has been shown, the ink for three-dimensionally shaped food according to the present invention is not limited to the configuration of the above embodiment. Furthermore, the ink for three-dimensionally shaped foods according to the present invention is not limited to the above-mentioned effects. The ink for three-dimensionally shaped foods according to the present invention can be modified in various ways without departing from the gist of the present invention.

例えば、本発明の三次元造形食品用インクは、ゲル化剤、増粘剤、賦形剤、希釈剤、緩衝剤、香料、着色剤、消泡剤、コーティング剤、甘味料、矯味剤、結合剤、界面活性剤、保湿剤、粘稠剤、乳化剤、滑択剤、懸濁剤、防腐剤、キレート剤、酸化防止剤、研磨剤、粘結剤、pH調整剤、光沢剤等のその他の添加剤を含んでいてもよい。これらは1種単独で又は2種以上を適宜組み合わせて用いることができる。 For example, the ink for three-dimensionally shaped foods of the present invention includes gelling agents, thickeners, excipients, diluents, buffering agents, fragrances, coloring agents, antifoaming agents, coating agents, sweeteners, corrigents, binding agents, Other agents such as surfactants, humectants, thickeners, emulsifiers, lubricants, suspending agents, preservatives, chelating agents, antioxidants, abrasives, binders, pH adjusters, brighteners, etc. It may also contain additives. These can be used alone or in an appropriate combination of two or more.

特に、三次元造形食品の成形性及び保形性をさらに向上させるために、ゲル化剤及び増粘剤を添加してもよい。ゲル化剤としては、例えば、ネイティブ型ジェランガム、前記ネイティブ型ジェランガムのアシル基が部分的に除去された部分脱アシル化ジェランガム、前記ネイティブ型ジェランガムのアシル基が除去された脱アシル型ジェランガム等が挙げられる。増粘剤としては、例えば、キサンタンガム、タマリンドシードガム、グァーガム、ローカストビーンガム等が挙げられる。 In particular, in order to further improve the moldability and shape retention of the three-dimensionally shaped food, a gelling agent and a thickener may be added. Examples of the gelling agent include native gellan gum, partially deacylated gellan gum from which the acyl groups of the native gellan gum have been partially removed, and deacylated gellan gum from which the acyl groups of the native gellan gum have been removed. It will be done. Examples of thickeners include xanthan gum, tamarind seed gum, guar gum, and locust bean gum.

ただし、ゲル化剤及び増粘剤の添加は、三次元造形食品の口当たりや食感を悪化させるおそれがある。よって、三次元造形食品用インクの総質量に対するゲル化剤及び増粘剤の合計の質量割合は、添加剤としての前記食物繊維よりも少ないことが好ましく、例えば、1質量%以下が好ましく、0.6質量%以下がより好ましい。 However, the addition of gelling agents and thickeners may deteriorate the mouthfeel and texture of the three-dimensionally shaped food. Therefore, the total mass ratio of the gelling agent and the thickener to the total mass of the ink for three-dimensionally shaped food is preferably smaller than the dietary fiber as an additive, for example, preferably 1% by mass or less, and 0% by mass or less. .6% by mass or less is more preferable.

上記実施形態では、自動制御された調理機としての3Dプリンタを例示したが、本発明に係る三次元造形食品用インクは、立体形状を形成可能な手作業用の調理具に適用されてもよい。かかる調理具としては、例えば、三次元造形食品用インクを収容する樹脂製の収容部を備え、該収容部が内部のインクを排出するための吐出口を有し、前記収容部への手指等の押圧によって内部のインクが前記吐出口から吐出するように構成されたものが挙げられる。この調理具に相当するものとしては、例えば、生クリーム等の吐出に用いられる絞り袋、デコペンと呼ばれるプラスチック製の吐出容器が挙げられる。これらのなかでも、本発明に係る三次元造形食品用インクは、口径が5mm以下の吐出口を有する調理機又は調理具に適用されることが好ましい。これによって、複雑な形状の三次元造形食品を製造することができる。 In the above embodiment, a 3D printer is used as an automatically controlled cooking machine, but the ink for three-dimensionally printed food according to the present invention may also be applied to manual cooking utensils that can form three-dimensional shapes. . Such cooking utensils include, for example, a resin-made storage part for storing ink for three-dimensionally shaped food, the storage part having an ejection port for discharging the ink inside, and a finger or the like inserted into the storage part. An example of such a device is one in which the ink inside is ejected from the ejection port by the pressure of the ejector. Examples of cooking utensils include piping bags used for dispensing fresh cream and the like, and plastic dispensing containers called decopens. Among these, the ink for three-dimensionally shaped food according to the present invention is preferably applied to a cooking machine or cooking utensil having an ejection opening with a diameter of 5 mm or less. Thereby, three-dimensionally shaped foods with complex shapes can be manufactured.

以下、実施例により本発明をさらに説明するが、本発明は、これらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited thereto.

[使用原料]
(添加剤)
・シトラス由来の食物繊維(AQプラスCF-D/100)
・リンゴ由来の食物繊維(AQプラスApple-AF700)
・コーン由来の食物繊維(MFCN)
・パルプ由来の食物繊維(セオラスCL611)
・キサンタンガム(エコーガム、下記表では「XG」と表記)
・ローカストビーンガム(GRINDSTED LBG047、下記表では「LBG」と表記)
・脱アシル型ジェランガム(ケルコゲル、下記表では「LAG」と表記)
・α化デンプン(マツノリンCM)
(食材)
・人参パウダー(こだま食品)
・かぼちゃパウダー(こだま食品)
・ほうれん草ペースト(ダンフーズ)
・α化米粉(たかい食品)
・鶏胸肉(市販品)
・塩鮭(市販品)
[Raw materials used]
(Additive)
・Dietary fiber derived from citrus (AQ Plus CF-D/100)
・Dietary fiber derived from apples (AQ Plus Apple-AF700)
・Dietary fiber derived from corn (MFCN)
・Dietary fiber derived from pulp (CEOLUS CL611)
・Xanthan gum (echo gum, written as "XG" in the table below)
・Locust bean gum (GRINDSTED LBG047, written as "LBG" in the table below)
・Deacylated gellan gum (Kerukogel, written as "LAG" in the table below)
・Pregelatinized starch (Matsunorin CM)
(ingredients)
・Carrot powder (Kodama Foods)
・Pumpkin powder (Kodama Foods)
・Spinach paste (Dan Foods)
・Pregelatinized rice flour (Takai Foods)
・Chicken breast (commercially available)
・Salted salmon (commercially available)

添加剤としての食物繊維の保水力の値は、表1に示したとおりである。なお、添加剤としての食物繊維の保水力の値については、以下の方法によって測定した。また、表1には、上記方法によって測定した不溶性食物繊維及び水溶性食物繊維の含有量を併記した。 The water-holding capacity values of dietary fiber as an additive are shown in Table 1. In addition, the value of the water retention capacity of the dietary fiber as an additive was measured by the following method. Table 1 also lists the contents of insoluble dietary fiber and water-soluble dietary fiber measured by the above method.

(保水力の測定)
まず、ハロゲン水分計(メトラー・トレド社、HG53 Halogen Moisture Analyzer)を用い、試料の乾燥減量を測定した。
次に、質量既知の50mL遠心管に試料0.3gと水29.7gとを添加し、1質量%の試料溶液を調製した。このとき、試料全体に水が行きわたるようにする。温度20~30℃、大気圧下にて24時間静置した。静置後、遠心機(日立製作所、日立高速冷却遠心機CR20GIII)を用いて25℃、4,000gで10分間遠心分離した。遠心管を静かに傾けて逆さにしてから3秒間静置し、上澄み液及び沈殿していない食物繊維を除去し含水繊維を得た。上澄み液等を除去した遠心管の質量を測定し、そこから空の遠心管の質量を引いた値を「含水繊維の質量」とした。また、ハロゲン水分計での測定により得られた乾燥減量の値を用いて、以下の式により乾燥繊維の質量を算出した。
乾燥繊維の質量(g)=0.3×(100-乾燥減量(%))/100
これらの値を用いて、以下の式により保水力を算出した。
保水力(g/g)=(含水繊維の質量-乾燥繊維の質量)/乾燥繊維の質量
(Measurement of water retention capacity)
First, the loss on drying of the sample was measured using a halogen moisture analyzer (METTLER TOLEDO, HG53 Halogen Moisture Analyzer).
Next, 0.3 g of the sample and 29.7 g of water were added to a 50 mL centrifuge tube of known mass to prepare a 1% by mass sample solution. At this time, make sure that water is distributed throughout the sample. The mixture was allowed to stand for 24 hours at a temperature of 20 to 30°C and atmospheric pressure. After standing still, centrifugation was performed at 25° C. and 4,000 g for 10 minutes using a centrifuge (Hitachi High Speed Refrigerated Centrifuge CR20GIII). The centrifuge tube was gently tilted upside down and left to stand for 3 seconds to remove the supernatant and non-precipitated dietary fiber to obtain hydrated fiber. The mass of the centrifuge tube from which the supernatant liquid etc. had been removed was measured, and the value obtained by subtracting the mass of the empty centrifuge tube from there was defined as the "mass of water-containing fibers." Further, the mass of the dry fiber was calculated using the following formula using the value of loss on drying obtained by measurement with a halogen moisture meter.
Mass of dry fiber (g) = 0.3 x (100 - loss on drying (%)) / 100
Using these values, water retention capacity was calculated using the following formula.
Water retention capacity (g/g) = (mass of hydrated fiber - mass of dry fiber) / mass of dry fiber

[シトラス由来食物繊維の前処理]
シトラス由来の食物繊維(AQプラスCF-D/100)については、上記原料をそのまま(粉体のまま)食材と混合して用いる場合と、脱イオン水に分散させて圧力ホモジナイザーで処理したものを用いる場合とを評価することとした。圧力ホモジナイザーによる処理手順は、下記のとおりである。
(圧力ホモジナイザーによる処理手順)
1.脱イオン水に4.0質量%のAQプラスCF-D/100を添加し、撹拌装置(新東科学社、スリーワンモータBLh1200)で10分間撹拌する。
2.圧力ホモジナイザー(三和エンジニアリング社、L100-DA1)を用い、15MPaで処理する。
3.撹拌装置で1分間撹拌し、全体を均一にする。
なお、表3では、圧力ホモジナイザーで処理したものを「圧ホモ」と併記した。
[Pretreatment of citrus-derived dietary fiber]
Regarding citrus-derived dietary fiber (AQ Plus CF-D/100), the above raw materials can be used as they are (powder) and mixed with food ingredients, or they can be dispersed in deionized water and treated with a pressure homogenizer. We decided to evaluate the cases in which it is used. The treatment procedure using a pressure homogenizer is as follows.
(Processing procedure using pressure homogenizer)
1. Add 4.0% by mass of AQ Plus CF-D/100 to deionized water and stir for 10 minutes using a stirring device (Shinto Kagakusha, Three-One Motor BLh1200).
2. Processing is performed using a pressure homogenizer (Sanwa Engineering Co., Ltd., L100-DA1) at 15 MPa.
3. Stir with a stirrer for 1 minute to make it homogeneous.
In addition, in Table 3, those treated with a pressure homogenizer are also written as "pressure homogenizer".

[ペースト状の食材の調製]
(人参パウダー、かぼちゃパウダー、又はα化米粉を用いた場合)
人参パウダー、かぼちゃパウダー、又はα化米粉と、水とを混合し、ペースト状とした。
(鶏胸肉を用いた場合)
生の鶏胸肉に加水し、ペースト状になるまでミキサーで破砕した。又は、スチームコンベクションオーブンにて85℃20分加熱後、加水してペースト状になるまでミキサーで破砕した。
(塩鮭を用いた場合)
オーブンにて260℃で10分焼いた後、加水してペースト状になるまでミキサーで破砕した。
[Preparation of paste-like ingredients]
(When using carrot powder, pumpkin powder, or pregelatinized rice flour)
Carrot powder, pumpkin powder, or pregelatinized rice flour was mixed with water to form a paste.
(When using chicken breast)
Raw chicken breast was added with water and crushed in a mixer until it became a paste. Alternatively, after heating in a steam convection oven at 85°C for 20 minutes, water was added and crushed in a mixer until it became a paste.
(When using salted salmon)
After baking in an oven at 260°C for 10 minutes, water was added and crushed with a mixer until it became a paste.

[水分量の測定]
調製した各インクについて、ハロゲン水分計(メトラー・トレド社、HG53 Halogen Moisture Analyzer)を用いた乾燥減量としての水分量を測定した。
[Measurement of moisture content]
For each of the prepared inks, the moisture content as loss on drying was measured using a halogen moisture analyzer (HG53 Halogen Moisture Analyzer, manufactured by Mettler Toledo).

[三次元造形食品用インクの作製例]
下記表に示す配合で、調製したペースト状の食材と、添加剤とを混合し、撹拌装置を用いて撹拌し、三次元造形食品用インクを作製した。なお、シトラス由来の食物繊維、リンゴ由来の食物繊維、コーン由来の食物繊維、及びパルプ由来の食物繊維を用いた場合には、ここでの工程の全てを室温にて実施した。一方、ゲル化剤又は増粘剤を用いた場合には、必要に応じて、加温を実施した。
[Example of production of ink for three-dimensionally shaped food]
The prepared pasty food ingredients and additives were mixed with the formulation shown in the table below and stirred using a stirring device to produce ink for three-dimensionally shaped foods. In addition, when using the dietary fiber derived from citrus, the dietary fiber derived from apple, the dietary fiber derived from corn, and the dietary fiber derived from pulp, all of the steps here were performed at room temperature. On the other hand, when a gelling agent or a thickener was used, heating was performed as necessary.

[三次元造形食品の製造例]
3Dプリンタ(武蔵エンジニアリング社、SM200SX)を用い、円柱状の三次元造形食品(以下、造形食品C)、上面視において星形であり且つ筒状の三次元造形食品(以下、造形食品S)、及び、かぼちゃの形を模した三次元形状であり且つ内部が空洞の中空構造を有する三次元造形食品(以下、造形食品P)を製造した。ノズル部においては、各食材で食材由来の固形成分が詰まることなく滑らかに吐出できる内径のノズルを選択した。ノズル部の内径の大きさに合わせて、造形食品Sおよび造形食品Cの造形プログラムを下記の通り調節している。造形食品Pについては造形プログラムの変更は行っておらず、ノズル径の大きさによってサイズは変動しやすいため、目安値である。なお、ノズルの移動速度はいずれも40mm/sとした。
(人参パウダーを用いた場合)
3Dプリンタのノズル部の内径:0.7mm
造形食品S:一辺約30mm、高さ約14mm(20層)
造形食品C:直径約11mm、高さ約14mm(20層)
造形食品P:直径約20mm
(かぼちゃパウダーを用いた場合)
3Dプリンタのノズル部の内径:1.0mm
造形食品S:一辺約30mm、高さ約15mm(15層)
造形食品C:直径約12mm、高さ約15mm(15層)
造形食品P:直径約20mm
(ほうれん草ペーストを用いた場合)
3Dプリンタのノズル部の内径:1.25mm
造形食品S:一辺約30mm、高さ約14mm(11層)
造形食品C:直径約20mm、高さ約14mm(11層)
造形食品P:直径約20mm
(α化米粉を用いた場合)
3Dプリンタのノズル部の内径:0.7mm
造形食品S:一辺約30mm、高さ約14mm(20層)
造形食品C:直径約11mm、高さ約14mm(20層)
造形食品P:直径約20mm
(生の鶏胸肉を用いた場合)
3Dプリンタのノズル部の内径:1.25mm
造形食品S:一辺約30mm、高さ約14mm(11層)
造形食品C:直径約20mm、高さ約14mm(11層)
造形食品P:直径約20mm
(蒸した鶏胸肉を用いた場合)
3Dプリンタのノズル部の内径:1.25mm
造形食品S:一辺約30mm、高さ約14mm(11層)
造形食品C:直径約20mm、高さ約14mm(11層)
造形食品P:直径約20mm
(塩鮭を用いた場合)
3Dプリンタのノズル部の内径:1.25mm
造形食品S:一辺約30mm、高さ約14mm(11層)
造形食品C:直径約20mm、高さ約14mm(11層)
造形食品P:直径約20mm
[Example of manufacturing three-dimensionally shaped food]
Using a 3D printer (Musashi Engineering Co., Ltd., SM200SX), a cylindrical three-dimensionally shaped food (hereinafter, shaped food C), a star-shaped and cylindrical three-dimensionally shaped food when viewed from above (hereinafter, shaped food S), A three-dimensionally shaped food (hereinafter referred to as shaped food P) having a three-dimensional shape imitating the shape of a pumpkin and having a hollow structure with a cavity inside was manufactured. For the nozzle part, we selected a nozzle with an inner diameter that allows solid components derived from each food ingredient to be smoothly discharged without clogging. The shaping programs for shaped food S and shaped food C are adjusted as follows according to the size of the inner diameter of the nozzle part. The modeling program for the shaped food P has not been changed, and the size is likely to vary depending on the nozzle diameter, so this value is a guideline. In addition, the moving speed of the nozzle was 40 mm/s in all cases.
(When using carrot powder)
Inner diameter of 3D printer nozzle: 0.7mm
Modeled food S: Approximately 30mm on a side, approximately 14mm in height (20 layers)
Shaped food C: Approximately 11 mm in diameter, approximately 14 mm in height (20 layers)
Shaped food P: Approximately 20mm in diameter
(When using pumpkin powder)
Inner diameter of 3D printer nozzle: 1.0mm
Modeled food S: Approximately 30mm on a side, approximately 15mm in height (15 layers)
Shaped food C: Approximately 12 mm in diameter, approximately 15 mm in height (15 layers)
Shaped food P: Approximately 20mm in diameter
(When using spinach paste)
Inner diameter of 3D printer nozzle: 1.25mm
Shaped food S: Approximately 30mm on a side, approximately 14mm in height (11 layers)
Shaped food C: Approximately 20 mm in diameter, approximately 14 mm in height (11 layers)
Shaped food P: Approximately 20mm in diameter
(When using pregelatinized rice flour)
Inner diameter of 3D printer nozzle: 0.7mm
Modeled food S: Approximately 30mm on a side, approximately 14mm in height (20 layers)
Shaped food C: Approximately 11 mm in diameter, approximately 14 mm in height (20 layers)
Shaped food P: Approximately 20mm in diameter
(When using raw chicken breast)
Inner diameter of 3D printer nozzle: 1.25mm
Shaped food S: Approximately 30mm on a side, approximately 14mm in height (11 layers)
Shaped food C: Approximately 20 mm in diameter, approximately 14 mm in height (11 layers)
Shaped food P: Approximately 20mm in diameter
(When using steamed chicken breast)
Inner diameter of 3D printer nozzle: 1.25mm
Shaped food S: Approximately 30mm on a side, approximately 14mm in height (11 layers)
Shaped food C: Approximately 20 mm in diameter, approximately 14 mm in height (11 layers)
Shaped food P: Approximately 20mm in diameter
(When using salted salmon)
Inner diameter of 3D printer nozzle: 1.25mm
Shaped food S: Approximately 30mm on a side, approximately 14mm in height (11 layers)
Shaped food C: Approximately 20 mm in diameter, approximately 14 mm in height (11 layers)
Modeled food P: Approximately 20mm in diameter

作製したインク及び三次元造形食品について、下記の項目について評価し、総合評価において「◎」又は「○」と評価されたインクを総合的な実用可能性があるとして評価した。
[評価1:吐出性]
3Dプリンタのノズル部からの吐出性について、次の評価基準にしたがい評価した。
◎:ノズル部から途切れず滑らかに吐出し、吐出量(吐出線の太さ)が均一である
○:ノズル部から途切れず滑らかに吐出するが、吐出量(吐出線の太さ)が均一でない
△:ノズル部から滑らかに吐出せず(途切れ)、吐出量(吐出線の太さ)が均一でない
×:吐出できない又はノズルから漏れる
The produced inks and three-dimensionally shaped foods were evaluated on the following items, and inks that were rated "◎" or "○" in the overall evaluation were evaluated as having comprehensive practical potential.
[Evaluation 1: Dischargeability]
The ejection performance from the nozzle portion of the 3D printer was evaluated according to the following evaluation criteria.
◎: Discharges smoothly from the nozzle without interruption, and the discharge amount (thickness of the discharge line) is uniform.○: Discharges smoothly from the nozzle without interruption, but the discharge amount (thickness of the discharge line) is not uniform. △: Discharge does not occur smoothly from the nozzle (interruptions), and the discharge amount (thickness of the discharge line) is not uniform ×: Discharge is not possible or leaks from the nozzle

[評価2:成形性]
製造した造形食品Sの外観を観察し、次の評価基準にしたがい評価した。
◎:星形の角部の外側及び内側の両方がきれいに成形されている
○:星形の角部の外側がきれいに成形されているが内側は若干成形性に劣る
△:星形の形状と判別できるが角部の外側及び内側がともにきれいに成形できていない
×:星形の形状と判別できない
[Evaluation 2: Moldability]
The appearance of the manufactured shaped food S was observed and evaluated according to the following evaluation criteria.
◎: Both the outside and inside of the star-shaped corner are well formed. ○: The outside of the star-shaped corner is well-formed, but the inside is slightly less formable. △: Distinguished as a star shape. It is possible, but both the outside and inside of the corner are not formed neatly ×: Cannot be distinguished from the star-shaped shape

[評価3:保形性]
一般に、保形性の低いインクを用いて三次元造形食品を製造した場合、高さを保てず横に広がったような形状となる。したがって、造形食品Cおよび造形食品Pの縦横比を用いて下記の評価基準にしたがい評価した。
(1)造形食品Cを真横から撮影した写真より、造形食品Cの高さHc及び横幅Wcを測定し、理論値から算出されるHc/Wcと測定値から算出されるHc/Wcとの差に基づいて評価した。理論値から算出されるHc/Wcとは、プログラムされた造形食品Cの高さ(ノズル部の内径×層数)をHc、直径をWcとして算出される値である。なお、高さ及び横幅の測定には、画像処理ソフトImageJを用いた。
◎:理論値に対する差が±10.0%以内
○:理論値に対する差が±20.0%以内
△:理論値に対する差が±30.0%以内
×:理論値に対する差が±30.0%を超える(形状を判別できない場合を含む)
(2)造形食品Pを真横から撮影した写真より、造形食品Pの高さHp及び横幅Wpを測定し、測定値から算出されるHp/Wpの値に基づいて評価した。
◎:Hp/Wpの値が0.70以上
○:Hp/Wpの値が0.60以上
△:Hp/Wpの値が0.50以上
×:Hp/Wpの値が0.49以下(形状を判別できない場合を含む)
[Evaluation 3: Shape retention]
Generally, when a three-dimensionally shaped food is manufactured using ink with low shape retention, the height cannot be maintained and the shape appears to spread laterally. Therefore, the aspect ratios of the shaped food C and the shaped food P were evaluated according to the following evaluation criteria.
(1) Measure the height Hc and width Wc of the shaped food C from a photograph taken from the side, and the difference between Hc/Wc calculated from the theoretical values and Hc/Wc calculated from the measured values. The evaluation was based on Hc/Wc calculated from the theoretical value is a value calculated by setting the height (inner diameter of the nozzle part x number of layers) of the programmed shaped food C as Hc and the diameter as Wc. Note that image processing software ImageJ was used to measure the height and width.
◎: Difference from the theoretical value is within ±10.0% ○: Difference from the theoretical value is within ±20.0% △: Difference from the theoretical value is within ±30.0% ×: Difference from the theoretical value is ±30.0% % (including cases where the shape cannot be determined)
(2) The height Hp and width Wp of the shaped food P were measured from a photograph taken from the side, and evaluated based on the value of Hp/Wp calculated from the measured values.
◎: Hp/Wp value is 0.70 or more ○: Hp/Wp value is 0.60 or more △: Hp/Wp value is 0.50 or more ×: Hp/Wp value is 0.49 or less (shape (including cases where it is not possible to determine the

[総合評価]
各評価項目の◎を3点、〇を2点、△を1点、×を0点としたときの合計点数(最大12点)に基づき、総合的に評価した。
◎:12~10点
○:9~8点
△:7~6点
×:5点以下
[comprehensive evaluation]
A comprehensive evaluation was made based on the total score (maximum 12 points) for each evaluation item, with ◎ being 3 points, ○ being 2 points, △ being 1 point, and × being 0 points.
◎: 12-10 points ○: 9-8 points △: 7-6 points ×: 5 points or less

下記の表2~9に各評価結果についてまとめた。各表の簡単な説明は、次のようなものである。
表2:人参パウダーを用いた場合の比較例(添加剤として食物繊維を用いない場合)の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
表3:人参パウダーを用いた場合であって添加剤として食物繊維を用いた場合の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
表4:かぼちゃパウダーを用いた場合の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
表5:ほうれん草ペーストを用いた場合の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
表6:α化米粉を用いた場合の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
表7:生の鶏胸肉を用いた場合の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
表8:蒸した鶏胸肉を用いた場合の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
表9:塩鮭を用いた場合の吐出性、成形性、保形性の評価結果及び総合評価を示す。保形性の評価として、Hc/Wcの理論値との差及びHp/Wpの測定値を括弧内に記載し、形状が判断できない場合には(不可)と記載した。
Tables 2 to 9 below summarize the evaluation results. A brief explanation of each table is as follows.
Table 2: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention of a comparative example using carrot powder (when no dietary fiber was used as an additive). As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).
Table 3: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention when carrot powder was used and dietary fiber was used as an additive. As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).
Table 4: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention when pumpkin powder was used. As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).
Table 5: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention when spinach paste was used. As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).
Table 6: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention when using pregelatinized rice flour. As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).
Table 7: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention when raw chicken breast was used. As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).
Table 8: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention when steamed chicken breast was used. As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).
Table 9: Shows the evaluation results and overall evaluation of dischargeability, moldability, and shape retention when salted salmon was used. As the evaluation of shape retention, the difference from the theoretical value of Hc/Wc and the measured value of Hp/Wp are written in parentheses, and when the shape cannot be determined, it is written as (impossible).

[評価結果の概要]
・表2~9及び図2に示すように、比較例1、6、9、12、15、18、21の造形不可であったインク(食材)に保水力が自重の15倍以上の食物繊維を添加するだけで、所望の成形性及び保形性を有する三次元造形食品を製造できることがわかる。特に、保形性の付与がより困難な中空構造であっても、当該食物繊維を添加するだけで(すなわち簡便な方法で)所望の成形性及び保形性を付与できたことは、非常に有利なことと考えられる。
・比較例9(ほうれん草ペースト)を用いた製造では、初めに水分のみがノズル部から絞りだされた後、残った食材由来の繊維等の微細な固形物がノズル部を閉塞させ、ほとんど吐出することができなかった。また、α化デンプンを添加した場合には、食材によってはダマが生じて吐出性を悪化させた。一方、保水力が自重の15倍以上の食物繊維を添加した場合には、インク中での固形物の分散性が向上し、また、ダマの形成も認められず、ノズル部を閉塞させることはなかった。
・上記以外の評価として、食感に関し、シトラス由来の食物繊維を添加した場合(圧力ホモジナイザーによる処理無し)、添加量が多いと若干ざらつきを感じさせたが、同程度の添加量のものを圧力ホモジナイザーで処理した場合には、滑らかな食感への改善が認められた。よって、所望の成形性及び保形性を付与しつつ、良好な食感を得るためには、インク中の添加剤としての食物繊維の含有割合は、当該食物繊維を4質量%以下とするか、又は圧力ホモジナイザーで処理された食物繊維を用いることが好ましいと考えられる。一方、α化デンプンを添加した場合には、粘り気の強い食感となった。
・増粘剤(例えばXG)やゲル化剤(例えばLAG)は、単独で添加した場合には比較例2、3より所望の成形性および造形性を付与できない場合があるが、これらを保水力が自重の15倍以上の食物繊維と併用で添加することで吐出性、成形性及び保形性に優れた三次元造形食品を製造することができた。また、当該食物繊維に増粘剤やゲル化剤を併用することで物性が向上する場合もある。具体的には、増粘剤を併用した場合には、吐出性の改善が認められるとともに、三次元造形食品に艶を付与できることがわかった。また、ゲル化剤を併用した場合には、当該食物繊維の添加量を減らしても所望の保形性を付与でき、且つべたつきのある食材においては、そのべたつきやねばつき等を抑えて食感を改善できることがわかった。
[Summary of evaluation results]
・As shown in Tables 2 to 9 and Figure 2, the inks (ingredients) that were unable to be molded in Comparative Examples 1, 6, 9, 12, 15, 18, and 21 contained dietary fibers with a water retention capacity of 15 times or more its own weight. It can be seen that a three-dimensionally shaped food having desired moldability and shape-retaining properties can be produced by simply adding . In particular, it is extremely impressive that even in hollow structures where it is more difficult to impart shape retention, the desired formability and shape retention could be imparted simply by adding the dietary fiber (in other words, by a simple method). This is considered to be advantageous.
・In production using Comparative Example 9 (spinach paste), only water is first squeezed out of the nozzle, and then fine solids such as fibers from the remaining ingredients clog the nozzle, resulting in most of the water being ejected. I couldn't. Furthermore, when pregelatinized starch was added, clumps were formed depending on the food material, which worsened the discharge performance. On the other hand, when dietary fiber with a water retention capacity of 15 times or more than its own weight is added, the dispersibility of solids in the ink improves, no lumps are observed, and nozzle clogging occurs. There wasn't.
・As an evaluation other than the above, regarding the texture, when citrus-derived dietary fiber was added (not treated with a pressure homogenizer), a large amount added made it feel a little rough, but when the same amount was added, it felt slightly rough. When processed with a homogenizer, an improvement to smooth texture was observed. Therefore, in order to obtain a good texture while imparting desired moldability and shape retention, the content of dietary fiber as an additive in the ink should be 4% by mass or less. It is considered preferable to use dietary fibers that have been treated with a pressure homogenizer or a pressure homogenizer. On the other hand, when pregelatinized starch was added, the texture became sticky.
・If thickeners (e.g. By adding it in combination with dietary fiber in an amount of 15 times or more its own weight, it was possible to produce a three-dimensionally shaped food with excellent dischargeability, moldability, and shape retention. Further, the physical properties may be improved by using a thickener or a gelling agent in combination with the dietary fiber. Specifically, when a thickener was used in combination, it was found that dispensing properties were improved and gloss could be imparted to the three-dimensionally shaped food. In addition, when a gelling agent is used in combination, the desired shape retention can be imparted even if the amount of dietary fiber added is reduced, and in the case of sticky foods, the stickiness and stickiness can be suppressed to improve the texture. It turns out that it can be improved.

なお、生の鶏胸肉を用いた場合には、喫食時を想定して造形食品Cをスチームコンベクションオーブンで85℃10分加熱したところ、保水力が自重の15倍以上の食物繊維を添加した場合、加熱後においても三次元造形食品の形状が維持されていた。また、加水を行ったにもかかわらず肉様の繊維感と弾力が付与されており、好ましい食感であった。さらに離水が抑制されており、それによって、歩留まりの向上が期待できる。 In addition, when raw chicken breast was used, when shaped food C was heated in a steam convection oven at 85°C for 10 minutes assuming that it would be eaten, dietary fiber with a water retention capacity of more than 15 times its own weight was added. In this case, the shape of the three-dimensionally shaped food was maintained even after heating. Furthermore, despite the addition of water, it had a meat-like fibrous feel and elasticity, and had a desirable texture. Furthermore, syneresis is suppressed, and as a result, an improvement in yield can be expected.

表2~表9の結果によれば、試験に用いた全ての食材において、保水力が自重の15倍以上の食物繊維を添加することによって、所望の成形性及び保形性を三次元造形食品に付与できることを把握することができる。一方、他の添加剤では、食材によっては、所望の成形性及び保形性を付与できない場合があることを把握することができる。この結果から、保水力が自重の15倍以上の食物繊維は、食材の構成要素による影響を受けにくく、より多くの食材を三次元造形食品に適用させ得るものと考えられる。 According to the results in Tables 2 to 9, for all the ingredients used in the test, adding dietary fiber with a water retention capacity of 15 times or more than its own weight can improve the desired formability and shape retention of three-dimensionally shaped foods. It is possible to understand what can be added to. On the other hand, it can be understood that other additives may not be able to provide desired moldability and shape retention depending on the food material. From this result, it is considered that dietary fibers with a water retention capacity of 15 times or more of their own weight are less affected by the constituent elements of foodstuffs, and can be applied to more foodstuffs in three-dimensionally shaped foods.

1:3Dプリンタ、10:シリンダ部、11:ノズル部、20:プランジャ部、30:熱交換部、40:加工台、50:温度制御部 1: 3D printer, 10: cylinder section, 11: nozzle section, 20: plunger section, 30: heat exchange section, 40: processing table, 50: temperature control section

Claims (2)

食材と、添加剤としての食物繊維とを含み、
前記食物繊維の保水力が自重の15倍以上であり、
前記食物繊維は、シトラス由来又はリンゴ由来であり該食物繊維を構成する不溶性食物繊維の含有量が該食物繊維の総質量に対して80質量%以上90質量%以下であり且つ水溶性食物繊維の含有量が該食物繊維の総質量に対して10質量%以上である、三次元造形食品用インク。
Contains ingredients and dietary fiber as an additive ,
The water retention capacity of the dietary fiber is 15 times or more its own weight,
The dietary fiber is derived from citrus or apple , and the content of insoluble dietary fiber constituting the dietary fiber is 80% by mass or more and 90% by mass or less based on the total mass of the dietary fiber, and is water-soluble dietary fiber. An ink for three-dimensionally shaped food, the content of which is 10% by mass or more based on the total mass of the dietary fiber .
前記食物繊維の含有量が5質量%以下である、請求項1に記載の三次元造形食品用インク。 The ink for three-dimensionally shaped foods according to claim 1 , wherein the content of the dietary fiber is 5% by mass or less.
JP2023115033A 2023-07-13 2023-07-13 Ink for 3D printing food Active JP7418642B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023115033A JP7418642B1 (en) 2023-07-13 2023-07-13 Ink for 3D printing food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023115033A JP7418642B1 (en) 2023-07-13 2023-07-13 Ink for 3D printing food

Publications (1)

Publication Number Publication Date
JP7418642B1 true JP7418642B1 (en) 2024-01-19

Family

ID=89543227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023115033A Active JP7418642B1 (en) 2023-07-13 2023-07-13 Ink for 3D printing food

Country Status (1)

Country Link
JP (1) JP7418642B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022181158A (en) 2021-05-25 2022-12-07 国立研究開発法人農業・食品産業技術総合研究機構 Method for disintegrating water-insoluble carbohydrates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022181158A (en) 2021-05-25 2022-12-07 国立研究開発法人農業・食品産業技術総合研究機構 Method for disintegrating water-insoluble carbohydrates

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Mastermind [オンライン], 2022.12.01 [検索日 2023.08.15], インターネット:<URL:https://www.mastermind.co.jp/news/development-food-printer/>
ハッピーキヌア編集部 [オンライン], 2021.04.18 [検索日 2023.08.15], インターネット:<URL:https://happy-quinoa.com/3d-printer/page/2/>
ムーンショット型農林水産研究開発事業成果報告会 [オンライン], 2022.08.31 [検索日 2023.08.15], インターネット:<URL:https://www.naro.go.jp/laboratory/brain/moon_shot/ms508_nakajima.pdf>

Similar Documents

Publication Publication Date Title
CN102014661B (en) Food quality improver and food
US20240090535A1 (en) Method for producing feed or food
EP0295865B1 (en) Comestibles containing parenchymal cell cellulose
US20080138484A1 (en) Starchy Food Material or Starchy Food
CN107252082A (en) Cellulose composition
KR102276751B1 (en) Oil-in-water type composition and food using same
CN108366592A (en) Food improver
JP2015146750A (en) Baked confectionery and manufacturing method thereof
JP4468841B2 (en) Pore inhibitor, heat-gelled food and method for producing the same
JP5125472B2 (en) Method for producing baked confectionery dough or bread dough with high protein content
JP4284885B2 (en) Filling material and manufacturing method thereof
JP7418642B1 (en) Ink for 3D printing food
JP2015223147A (en) Gelatinous filling, method for producing the same, gelatinizer for gelatinous filling and gelatinous filling-containing food product
KR101827686B1 (en) Doughnuts and method for producing same
JP7027192B2 (en) Cream croquette and its manufacturing method
JP6999291B2 (en) Mix for takoyaki or okonomiyaki, and manufacturing method for takoyaki or okonomiyaki
JP6960767B2 (en) Spring roll skin, spring roll skin manufacturing method, spring roll skin composition, and fried spring roll manufacturing method
JP6215526B2 (en) Confectionery containing cellulose
JPH10304828A (en) Quality improver for processed food
JP2022128426A (en) Soybean-containing processed food and production method of the same
JP6596262B2 (en) Fried confectionery
WO2021065930A1 (en) Composition
JP6877135B2 (en) Wheat swelling food
JP2009028003A (en) New meat-processed product
JP6732612B2 (en) Improver for baked goods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230713

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7418642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150