JP7418194B2 - Manufacturing method of powder magnetic core - Google Patents

Manufacturing method of powder magnetic core Download PDF

Info

Publication number
JP7418194B2
JP7418194B2 JP2019221685A JP2019221685A JP7418194B2 JP 7418194 B2 JP7418194 B2 JP 7418194B2 JP 2019221685 A JP2019221685 A JP 2019221685A JP 2019221685 A JP2019221685 A JP 2019221685A JP 7418194 B2 JP7418194 B2 JP 7418194B2
Authority
JP
Japan
Prior art keywords
powder
lubricant
magnetic
coating
coating mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019221685A
Other languages
Japanese (ja)
Other versions
JP2021093405A (en
Inventor
泰雄 大島
功太 赤岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2019221685A priority Critical patent/JP7418194B2/en
Publication of JP2021093405A publication Critical patent/JP2021093405A/en
Application granted granted Critical
Publication of JP7418194B2 publication Critical patent/JP7418194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧粉磁心の製造方法に関する。 The present invention relates to a method for manufacturing a powder magnetic core.

圧粉磁心は、インダクタ及びリアクトルとも呼ばれるコイルのコアに用いられる磁性体である。圧粉磁心は軟磁性粉末により成る。軟磁性粉末としては、鉄を主成分とするパーマロイ(Fe-Ni合金)、Si含有鉄合金(Fe-Si合金)、センダスト合金(Fe-Si-Al合金)、アモルファス合金、純鉄粉等が挙げられる。この軟磁性粉末は、粉砕法、水アトマイズ法、ガスアトマイズ法、水ガスアトマイズ法等の手法によって作製される。近年では、水アトマイズ法は、もっとも入手性が良く低コストであり、ガスアトマイズ法は、ヒステリシス損失を効果的に低減でき、特に多用されている。 A powder magnetic core is a magnetic material used in the core of a coil, also called an inductor or reactor. The powder magnetic core is made of soft magnetic powder. Examples of soft magnetic powders include permalloy whose main component is iron (Fe-Ni alloy), Si-containing iron alloy (Fe-Si alloy), sendust alloy (Fe-Si-Al alloy), amorphous alloy, pure iron powder, etc. Can be mentioned. This soft magnetic powder is produced by a method such as a pulverization method, a water atomization method, a gas atomization method, a water gas atomization method, or the like. In recent years, the water atomization method is the most readily available and low cost, and the gas atomization method is particularly widely used because it can effectively reduce hysteresis loss.

リアクトルやインダクタ等のコイルは、用途に応じて求められる磁気的特性が異なる。例えば、商用電源用途等、低周波数領域での使用が想定される場合、コイルには高いインダクタンス値が求められることがあり、その場合、コイルに用いる圧粉磁心の初透磁率を向上させることが望ましい。 Required magnetic properties of coils such as reactors and inductors differ depending on the application. For example, if the coil is expected to be used in a low frequency range, such as in commercial power supply applications, a high inductance value may be required for the coil. desirable.

特許第5023096号公報Patent No. 5023096 特開2014-86672号公報Japanese Patent Application Publication No. 2014-86672

圧粉磁心の初透磁率を向上させるため、より低損失で、初透磁率が高く、安価なFeSiAl合金粉末がよく用いられている。しかしながら、近年では、更に高い初透磁率を有する圧粉磁心が要望されるところである。本発明は、上記のような課題を解決するために提案されたものであり、本発明の目的は、初透磁率の高い圧粉磁心の製造方法を提供することにある。 In order to improve the initial permeability of powder magnetic cores, FeSiAl alloy powder, which has lower loss, higher initial permeability, and is inexpensive, is often used. However, in recent years, there has been a demand for powder magnetic cores with even higher initial permeability. The present invention was proposed to solve the above problems, and an object of the present invention is to provide a method for manufacturing a powder magnetic core with high initial permeability.

上記の目的を達成するため、本発明の実施形態に係る圧粉磁心の製造方法は、メジアン径で粒径60μm以上のFeSiAl合金の粉砕粉を、絶縁樹脂で被覆する絶縁処理工程と、前記絶縁処理工程前に、前記FeSiAl合金の粉砕粉に対して0.2wt%以上の割合で潤滑剤を混合する被覆前混合工程と、前記絶縁樹脂で被覆された前記FeSiAl合金の粉砕粉を所定形状の成形体に加圧成形する成形工程と、前記成形体を焼鈍する熱処理工程と、を含むこと、を特徴とする。 In order to achieve the above object, a method for manufacturing a powder magnetic core according to an embodiment of the present invention includes an insulation treatment step of coating pulverized FeSiAl alloy powder having a median particle size of 60 μm or more with an insulating resin; Before the treatment step, a pre-coating mixing step includes mixing a lubricant at a ratio of 0.2 wt% or more to the FeSiAl alloy pulverized powder, and a pre-coating mixing step in which the FeSiAl alloy pulverized powder coated with the insulating resin is shaped into a predetermined shape. The method is characterized in that it includes a forming step of press-molding the molded object, and a heat treatment step of annealing the molded object.

前記絶縁処理工程は、加熱による乾燥工程を含み、前記被覆前混合工程では、遅くとも前記乾燥工程の前までに潤滑剤を混合するようにしてもよい。 The insulation treatment step may include a drying step by heating, and in the pre-coating mixing step, a lubricant may be mixed at the latest before the drying step.

前記被覆前混合工程は、潤滑剤を前記FeSiAl合金の粉砕粉に対して0.3以上0.7wt%以下の割合で混合するようにしてもよい。 In the pre-coating mixing step, the lubricant may be mixed with the pulverized powder of the FeSiAl alloy at a ratio of 0.3 to 0.7 wt%.

前記被覆前混合工程は、潤滑剤を前記FeSiAl合金の粉砕粉に対して0.4以上0.7wt%以下の割合で混合するようにしてもよい。 In the pre-coating mixing step, the lubricant may be mixed with the pulverized powder of the FeSiAl alloy at a ratio of 0.4 to 0.7 wt%.

前記絶縁処理工程の後、及び前記加圧成形工程の前に、前記絶縁樹脂で被覆された前記FeSiAl合金の粉砕粉に更に潤滑剤を混合する被覆後混合工程を含むようにしてもよい。 After the insulation treatment step and before the pressure molding step, a post-coating mixing step may be included in which a lubricant is further mixed into the pulverized powder of the FeSiAl alloy coated with the insulating resin.

前記被覆前混合工程では、前記被覆後混合工程より多くの潤滑剤を混合するようにしてもよい。 In the pre-coating mixing step, more lubricant may be mixed than in the post-coating mixing step.

前記被覆後混合工程は、潤滑剤を前記FeSiAl合金の粉砕粉に対して0.1以上0.3wt%以下の割合で混合するようにしてもよい。 In the post-coating mixing step, a lubricant may be mixed with the pulverized powder of the FeSiAl alloy at a ratio of 0.1 to 0.3 wt%.

粉砕法により、メジアン径で粒径60μm以上のFeSiAl合金の粉砕粉を作製する粉末作製工程を含むようにしてもよい。 The method may include a powder production step of producing pulverized FeSiAl alloy powder having a median particle size of 60 μm or more using a pulverization method.

圧粉磁心の初透磁率を144以上にするようにしてもよい。 The powder magnetic core may have an initial permeability of 144 or more.

本発明によれば、圧粉磁心の初透磁率を高めることができる。 According to the present invention, the initial permeability of a powder magnetic core can be increased.

圧粉磁心の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a powder magnetic core. 被覆前混合工程における潤滑剤の混合量と初透磁率との関係を示すグラフである。It is a graph showing the relationship between the amount of lubricant mixed in the pre-coating mixing step and the initial magnetic permeability. 被覆前混合工程における潤滑剤の混合量と鉄損との関係を示すグラフである。It is a graph showing the relationship between the amount of lubricant mixed in the pre-coating mixing step and iron loss. 被覆後混合工程における潤滑剤の混合量と初透磁率との関係を示すグラフである。It is a graph showing the relationship between the amount of lubricant mixed and the initial magnetic permeability in the post-coating mixing step. 被覆後混合工程における潤滑剤の混合量と抜き圧との関係を示すグラフである。It is a graph showing the relationship between the amount of lubricant mixed and the extraction pressure in the post-coating mixing step. 軟磁性粉末をふるい分ける櫛の目開きと初透磁率との関係を示すグラフである。It is a graph showing the relationship between the opening of a comb used to sieve soft magnetic powder and the initial magnetic permeability.

以下、本実施形態に係る圧粉磁心の製造方法について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。 Hereinafter, a method for manufacturing a powder magnetic core according to this embodiment will be described in detail. Note that the present invention is not limited to the embodiments described below.

(概略製法)
圧粉磁心は、インダクタ及びリアクトルとも呼ばれるコイルのコアに用いられる磁性体である。圧粉磁心は、絶縁被覆された軟磁性粉末により成る。この圧粉磁心は、図1に示すように、軟磁性粉末を作製する粉末作製工程(ステップS01)、軟磁性粉末と潤滑剤を混合する被覆前混合工程(ステップS02)、結着性絶縁樹脂で軟磁性粉末を被覆する絶縁処理工程(ステップS03)、更に潤滑剤を混合する被覆後混合工程(ステップS04)、加圧成形する成型工程(ステップS05)、及び焼鈍する熱処理工程(ステップS06)を経て作製される。
(General manufacturing method)
A powder magnetic core is a magnetic material used in the core of a coil, also called an inductor or reactor. A powder magnetic core is made of soft magnetic powder coated with insulation. As shown in FIG. 1, this powder magnetic core is manufactured through a powder production process (step S01) for producing soft magnetic powder, a pre-coating mixing process (step S02) for mixing soft magnetic powder and lubricant, and a binding insulating resin. An insulation treatment step of coating the soft magnetic powder with (step S03), a post-coating mixing step of further mixing a lubricant (step S04), a molding step of pressure molding (step S05), and a heat treatment step of annealing (step S06) It is produced through the process.

(粉末作製工程)
軟磁性粉末は、センダスト(登録商標)等のFeSiAl合金である。この軟磁性粉末は、平均粒径D50とも呼ばれるメジアン径で60μm以上の粒径を有する。そして、この軟磁性粉末は粉砕粉である。即ち、この軟磁性粉末は粉砕法によって作製される。粉砕法では、FeSiAl合金の金属塊をゾークラッシャー、ハンマーミル、アトリションミル、スタンプミル又はボールミル加工等によって機械的に粉砕し、振動櫛等により平均粒径D50で60μm以上の粒径となるように、ふるい分ける。
(Powder production process)
The soft magnetic powder is a FeSiAl alloy such as Sendust (registered trademark). This soft magnetic powder has a median particle size, also called average particle size D50, of 60 μm or more. This soft magnetic powder is a pulverized powder. That is, this soft magnetic powder is produced by a pulverization method. In the pulverization method, a metal lump of FeSiAl alloy is mechanically pulverized by a zoe crusher, hammer mill, attrition mill, stamp mill, or ball mill, etc., and then crushed using a vibrating comb or the like to obtain a particle size of 60 μm or more with an average particle size D50. Then, sieve.

FeSiAl合金は、元来、高い透磁率を有するが、メジアン径で粒径60μm以上及び粉砕粉の条件が加わると、圧粉磁心の初透磁率を飛躍的に向上させる。尚、初透磁率は、直流印加磁界を限りなくゼロに近づけた状態における透磁率である。 FeSiAl alloy originally has high magnetic permeability, but when conditions such as a median particle size of 60 μm or more and pulverized powder are added, the initial magnetic permeability of the dust core is dramatically improved. Note that the initial magnetic permeability is the magnetic permeability in a state where the DC applied magnetic field is brought as close to zero as possible.

この理由は、推測であり、これに限られないが、粒径60μm以上とすることによって、粉末内に発生する反磁界が良好に低減していると考えられる。反磁界とは磁性体の内部に、磁性体が発生する磁界とは逆方向の磁界が発生する現象であり、反磁界は、磁性体内部に発生する磁界の一部を打ち消してしまう。そのため、反磁界の低減によって、必要な磁束密度Bを発生させるための磁場Hが小さくて済み、磁場Hに反比例する透磁率が上昇したものと考えられる。 Although the reason for this is speculation and is not limited to this, it is thought that by setting the particle size to 60 μm or more, the demagnetizing field generated within the powder is reduced favorably. A diamagnetic field is a phenomenon in which a magnetic field is generated inside a magnetic material in a direction opposite to the magnetic field generated by the magnetic material, and the diamagnetic field cancels out a portion of the magnetic field generated inside the magnetic material. Therefore, it is considered that by reducing the demagnetizing field, the magnetic field H required to generate the necessary magnetic flux density B is small, and the magnetic permeability, which is inversely proportional to the magnetic field H, increases.

また、この理由についても推測であり、これに限られないが、FeSiAl合金は粉砕粉とすることで扁平形状を採る。扁平方向に対して粉砕粉は大きくなることで反磁場を低減することができる。そして、その扁平方向に磁束が流れるようにプレス成形するため、磁束の流れに対して透磁率が大きくなるものと考えられる。 Further, although the reason for this is speculation and is not limited to this, the FeSiAl alloy takes on a flat shape when it is pulverized. The demagnetizing field can be reduced by making the crushed powder larger in the flat direction. Since the press molding is performed so that the magnetic flux flows in the flat direction, it is thought that the magnetic permeability increases with respect to the flow of the magnetic flux.

(被覆前混合工程)
被覆前混合工程は、結着性絶縁樹脂で軟磁性粉末を被覆する前に実行される。後述のように絶縁処理工程では、結着性絶縁樹脂の混合工程と、加熱による乾燥工程を経るが、詳細には、乾燥工程前に潤滑剤が混合されればよい。先に潤滑剤を混合し、後に結着性絶縁樹脂を混合してもよいし、潤滑剤と結着性絶縁樹脂を同時に混合してもよい。
(Pre-coating mixing process)
The pre-coating mixing step is performed before coating the soft magnetic powder with the binding insulating resin. As will be described later, in the insulation treatment step, a binding insulating resin mixing step and a drying step by heating are performed, but in detail, a lubricant may be mixed before the drying step. The lubricant may be mixed first and the binding insulating resin may be mixed later, or the lubricant and the binding insulating resin may be mixed at the same time.

潤滑剤としては、ステアリン酸、ステアリン酸塩、ステアリン酸石鹸、エチレンビスステアラマイド、エチレンビスステアレートアミドなどのワックスを使用できる。潤滑剤の添加量は、軟磁性合金粉末に対して0.2以上0.7wt%以下とする。 As a lubricant, waxes such as stearic acid, stearate, stearic acid soap, ethylene bis stearamide, ethylene bis stearate amide, etc. can be used. The amount of lubricant added is 0.2 or more and 0.7 wt% or less based on the soft magnetic alloy powder.

潤滑剤の混合量を0.2wt%以上とすると、更に初透磁率が向上する。好ましくは、潤滑剤の混合量は0.3wt%以上であり、更に初透磁率は向上する。特に好ましくは、潤滑剤の混合量は0.4wt%以上であり、初透磁率はピークに達する。粉砕粉同士の滑りが向上するので、軟磁性粉末の密度が向上し、成形密度が高くなると考えられる。 When the amount of lubricant mixed is 0.2 wt% or more, the initial magnetic permeability is further improved. Preferably, the mixing amount of the lubricant is 0.3 wt% or more, and the initial magnetic permeability is further improved. Particularly preferably, the amount of lubricant mixed is 0.4 wt% or more, and the initial magnetic permeability reaches its peak. It is thought that since the sliding between the pulverized powders is improved, the density of the soft magnetic powder is improved and the compacted density is increased.

但し、潤滑剤の混合量を0.7wt%超とすると、良好な初透磁率は得られるが、初透磁率のピークから降下し始める。その理由は、潤滑剤が結着性絶縁樹脂に入り込むこともあり、潤滑剤が圧粉磁心に残留してしまい、圧粉磁心に占める軟磁性粉末の割合を寧ろ低下させるためと考えられる。 However, if the mixing amount of the lubricant exceeds 0.7 wt%, a good initial magnetic permeability can be obtained, but the initial magnetic permeability starts to drop from its peak. The reason for this is thought to be that the lubricant sometimes enters the binding insulating resin and remains in the powder magnetic core, which actually reduces the proportion of soft magnetic powder in the powder magnetic core.

(絶縁処理工程)
結着性絶縁樹脂は、絶縁性を有し、軟磁性粉末の粒子間の電気的絶縁性を確保し、圧粉磁心の渦電流損失を低下させる。この結着性絶縁樹脂は、バインダー作用も兼ね備えて、成形時の保形性を高め、更には焼鈍後の成形体の強度をより強固なものとする。また、この結着性絶縁樹脂は、バインダー作用を兼ねる備えることで、軟磁性粉末の密度を向上させ、圧粉磁心の透磁率を上げる。
(Insulation treatment process)
The binding insulating resin has insulating properties, ensures electrical insulation between particles of the soft magnetic powder, and reduces eddy current loss in the dust core. This binding insulating resin also has a binder function, improves shape retention during molding, and further strengthens the strength of the molded product after annealing. In addition, this binding insulating resin also has a binder function, thereby improving the density of the soft magnetic powder and increasing the magnetic permeability of the dust core.

結着性絶縁樹脂としては、シリコーンレジンを使用することができる。シリコーンレジンは、シロキサン結合(Si-O―Si)を主骨格に持つ樹脂であり、可撓性に優れた絶縁層を形成することができる。シリコーンレジンとしては、典型的には、メチル系、メチルフェニル系、プロピルフェニル系、エポキシ樹脂変性系、アルキッド樹脂変性系、ポリエステル樹脂変性系、ゴム系等を用いることができる。 Silicone resin can be used as the binding insulating resin. Silicone resin is a resin having a siloxane bond (Si--O--Si) as its main skeleton, and can form an insulating layer with excellent flexibility. As the silicone resin, typically, a methyl type, methylphenyl type, propylphenyl type, epoxy resin modified type, alkyd resin modified type, polyester resin modified type, rubber type, etc. can be used.

この中でも特に、メチルフェニル系のシリコーンレジンを用いた場合、加熱減量が少なく、耐熱性に優れた絶縁層を形成することができる。メチルフェニル系シリコーン樹脂は、Si上の官能基が、メチル基またはフェニル基となっている。メチルフェニル系シリコーン樹脂は、350℃程度でSi基に直結しているメチル基が熱分解し、その後、シリカ(SiO2)層として軟磁性粉末の表面に残り、緻密で強固なバインダーとなるため、圧環強度に優れている。また、形成されたシリカ層は絶縁膜であるため絶縁性にも優れており、渦電流損を低減させることができ、磁気特性が向上する。なお、ガラス粉末等を使用しないので、製造コストが極端に高騰することはない。 Among these, in particular, when a methylphenyl silicone resin is used, it is possible to form an insulating layer with little heat loss and excellent heat resistance. In the methylphenyl silicone resin, the functional group on Si is a methyl group or a phenyl group. In methylphenyl-based silicone resin, the methyl group directly connected to the Si group thermally decomposes at around 350°C, and then remains on the surface of the soft magnetic powder as a silica (SiO2) layer, forming a dense and strong binder. Excellent radial crushing strength. Further, since the formed silica layer is an insulating film, it has excellent insulation properties, can reduce eddy current loss, and improve magnetic properties. Furthermore, since no glass powder or the like is used, the manufacturing cost will not rise significantly.

絶縁処理工程では、まず、この結着性絶縁樹脂と軟磁性粉末との混合工程を経る。結着性絶縁樹脂は、軟磁性合金粉末に対して1.0以上3.0wt%以下の割合で混合する。1.0wt%未満であると絶縁性に劣り、軟磁性粉末に適度な電気抵抗を付与することができない。また、3.0wt%超であると、密度低下による最大磁束密度及び透磁率の低下、ヒステリシス損失の増加による磁気特性が低下する問題が発生する。 In the insulation treatment step, first, the binding insulating resin and soft magnetic powder are mixed together. The binding insulating resin is mixed with the soft magnetic alloy powder at a ratio of 1.0 to 3.0 wt%. If it is less than 1.0 wt%, the insulation properties will be poor and it will not be possible to impart appropriate electrical resistance to the soft magnetic powder. Moreover, if it exceeds 3.0 wt%, there will occur problems such as a decrease in maximum magnetic flux density and magnetic permeability due to a decrease in density, and a decrease in magnetic properties due to an increase in hysteresis loss.

絶縁処理工程では、混合工程の後、加熱による乾燥工程を有する。乾燥工程では、特に限定はされないが70以上300℃以下の温度環境下に2時間程度晒しておくとよい。尚、被覆前混合工程での潤滑剤の混合は、遅くとも、この乾燥工程の前までに実行しておく。 The insulation treatment process includes a drying process by heating after the mixing process. In the drying step, although not particularly limited, it is preferable to expose the material to a temperature environment of 70° C. or more and 300° C. or less for about 2 hours. Note that the mixing of the lubricant in the pre-coating mixing step is performed at the latest before this drying step.

その他の結着性絶縁樹脂としてはシリコーンオリゴマーが挙げられる。また、結着性絶縁樹脂としてシリコーンレジンとシリコーンオリゴマーの混合が用いられてもよい。シリコーンオリゴマーとしては、アルコキシシリル基を有し、反応性官能基を有さないメチル系、メチルフェニル系のものや、アルコキシシリル基及び反応性官能基を有するエポキシ系、エポキシメチル系、メルカプト系、メルカプトメチル系、アクリルメチル系、メタクリルメチル系、ビニルフェニル系、又はアルコキシシリル基ではなく、反応性官能基を有する脂環式エポキシ系等を用いることができる。特に、メチル系またはメチルフェニル系のシリコーンオリゴマーを用いることで厚く硬い絶縁層を形成することができる。また、シリコーンオリゴマー層の形成のしやすさを考慮して、粘度の比較的低いメチル系、メチルフェニル系を用いてもよい。シリコーンオリゴマーの添加量は、軟磁性粉末に対して0.25以上2.0wt%以下が望ましく、乾燥工程での温度は25以上300℃以下で2時間程度の熱処理を行うことが望ましい。 Other binding insulating resins include silicone oligomers. Further, a mixture of silicone resin and silicone oligomer may be used as the binding insulating resin. Examples of silicone oligomers include methyl-based and methylphenyl-based ones that have an alkoxysilyl group and no reactive functional group; epoxy-based, epoxymethyl-based, and mercapto-based ones that have an alkoxysilyl group and a reactive functional group; Instead of mercaptomethyl, acrylicmethyl, methacrylmethyl, vinylphenyl, or alkoxysilyl groups, an alicyclic epoxy having a reactive functional group or the like can be used. In particular, a thick and hard insulating layer can be formed by using a methyl-based or methylphenyl-based silicone oligomer. Furthermore, in consideration of ease of forming a silicone oligomer layer, a methyl type or methyl phenyl type having a relatively low viscosity may be used. The amount of silicone oligomer added is desirably 0.25 or more and 2.0 wt % or less based on the soft magnetic powder, and the temperature in the drying step is preferably 25 or more and 300° C. or less for about 2 hours.

更に絶縁処理工程では、結着性絶縁樹脂と共に絶縁材料を軟磁性粉末に混合してもよい。絶縁材料としてはシランカップリング剤が挙げられる。シランカップリング剤としては、アミノシラン系、エポキシシラン系、イソシアヌレート系のシランカップリング剤を使用することができ、特に、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレートが好ましい。シランカップリング剤の添加量は0.25以上1.0wt%以下が望ましく、乾燥工程での温度は25以上200℃以下で2時間程度の熱処理を行うことが望ましい。 Furthermore, in the insulation treatment step, an insulating material may be mixed with the soft magnetic powder together with the binding insulating resin. Examples of the insulating material include silane coupling agents. As the silane coupling agent, aminosilane-based, epoxysilane-based, and isocyanurate-based silane coupling agents can be used, and in particular, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, tris -(3-trimethoxysilylpropyl)isocyanurate is preferred. The amount of the silane coupling agent added is preferably 0.25 or more and 1.0 wt% or less, and the temperature in the drying step is preferably 25 or more and 200° C. or less for about 2 hours.

複数種類の結着性絶縁樹脂、1種類以上の結着性絶縁樹脂と絶縁材料、又は複数種類の結着性絶縁樹脂と絶縁材料を軟磁性粉末に混合する場合、軟磁性粉末の外側に単一層として付着させてもよいし、種類毎に各層に分かれて軟磁性粉末の外側に積層されてもよい。また、軟磁性粉末に積層される各層のうちの一部の層は、複数種類の結着性絶縁樹脂の混合層や、1種類以上の結着性絶縁樹脂と絶縁材料の混合層となっていてもよい。例えば、シランカップリング剤とシリコーンレジンが単一層を形成し、軟磁性合金粉末の外側に付着していてもよいし、シランカップリング剤とシリコーンレジンが別々の層を形成し、軟磁性合金粉末の外側に積層されて付着していてもよい。シリコーンオリゴマーとシリコーンレジンが単一層を形成し、軟磁性合金粉末の外側に付着していてもよいし、シリコーンオリゴマーとシリコーンレジンが別々の層を形成し、軟磁性合金粉末の外側に積層されて付着していてもよい。 When mixing multiple types of binding insulating resins, one or more types of binding insulating resins and insulating materials, or multiple types of binding insulating resins and insulating materials into soft magnetic powder, a single layer is added to the outside of the soft magnetic powder. It may be deposited as a single layer, or it may be divided into layers for each type and laminated on the outside of the soft magnetic powder. In addition, some of the layers laminated on the soft magnetic powder are a mixed layer of multiple types of binding insulating resin, or a mixed layer of one or more types of binding insulating resin and an insulating material. You can. For example, the silane coupling agent and silicone resin may form a single layer and adhere to the outside of the soft magnetic alloy powder, or the silane coupling agent and silicone resin may form separate layers and adhere to the outside of the soft magnetic alloy powder. It may be laminated and attached to the outside of the . The silicone oligomer and silicone resin may form a single layer and adhere to the outside of the soft magnetic alloy powder, or the silicone oligomer and silicone resin may form separate layers and are laminated on the outside of the soft magnetic alloy powder. It may be attached.

(被覆後混合工程)
被覆後混合工程は、絶縁処理工程の後、成形工程前に実行される。潤滑剤は、被覆前混合工程と同種でも異種でもよい。この被覆後混合工程で潤滑剤を追加することで、圧粉磁心の初透磁率は更に向上する。
(Mixing process after coating)
The post-coating mixing step is performed after the insulation treatment step and before the molding step. The lubricant may be the same or different from the pre-coating mixing step. By adding a lubricant in this post-coating mixing step, the initial permeability of the powder magnetic core is further improved.

尚、メジアン径で粒径60μm以上のFeSiAl合金の粉砕粉を圧粉磁心の軟磁性粉末とすることによって得られる初透磁率の向上、及び被覆前混合工程によって得られる初透磁率の向上と比べると、被覆後混合工程による初透磁率の向上効果は限られるため、目的とする初透磁率に応じて、被覆後混合工程を省いてもよい。但し、被覆後混合工程を経て潤滑剤を追加することで、成形時の上パンチを離型させる際の抜き圧が低減する。潤滑剤の混合量は、軟磁性粉末に対して0.1以上0.3wt%程度が好ましい。被覆前混合工程に加えて、0.3wt%の潤滑剤を追加することで抜き圧をほぼゼロにすることができる。 In addition, compared with the improvement in initial magnetic permeability obtained by using pulverized powder of FeSiAl alloy with a median particle size of 60 μm or more as the soft magnetic powder of the powder magnetic core, and the improvement in initial magnetic permeability obtained by the pre-coating mixing process. Since the effect of improving the initial magnetic permeability by the post-coating mixing step is limited, the post-coating mixing step may be omitted depending on the desired initial magnetic permeability. However, by adding a lubricant through the mixing process after coating, the removal pressure when releasing the upper punch during molding is reduced. The mixing amount of the lubricant is preferably about 0.1 to 0.3 wt% based on the soft magnetic powder. In addition to the pre-coating mixing step, the addition of 0.3 wt% lubricant can reduce the extraction pressure to nearly zero.

ここで、被覆後混合工程では、被覆前混合工程よりも少ない量の潤滑剤を混合する。換言すると、被覆後混合工程は省かれるか、又は被覆前混合工程では、被覆後混合工程よりも多くの潤滑剤を混合する。 Here, in the post-coating mixing step, a smaller amount of lubricant is mixed than in the pre-coating mixing step. In other words, the post-coating mixing step is either omitted or more lubricant is mixed in the pre-coating mixing step than in the post-coating mixing step.

その理由は、被覆前混合工程の潤滑剤と被覆後混合工程の潤滑剤の用途の違いによる。被覆前混合工程の潤滑材は、結着性絶縁被膜内に混在することにより、成形工程時の粉砕粉間の滑り性を向上させて軟磁性粉末を高密度化し、透磁率を向上させる。一方、被覆後混合工程の潤滑材は、金型側面の滑り性を更に良くするものであり、また金型への焼き付き防止と軟磁性粉末の滑りを良くするために用いられる。従って、透磁率の向上に必須の被覆前混合工程の潤滑剤は、相対的に必須ではない被覆後混合工程の潤滑剤よりも多くする必要がある。 The reason for this is the difference in the usage of the lubricant used in the pre-coating mixing process and the lubricant used in the post-coating mixing process. The lubricant used in the pre-coating mixing step is mixed in the binding insulating coating, thereby improving the slipperiness between the pulverized powder during the molding step, increasing the density of the soft magnetic powder, and improving the magnetic permeability. On the other hand, the lubricant used in the post-coating mixing step is used to further improve the slipperiness of the side surface of the mold, and is also used to prevent seizure of the mold and to improve the slippage of the soft magnetic powder. Therefore, it is necessary to use more lubricant in the pre-coating mixing step, which is essential for improving magnetic permeability, than in the post-coating mixing step, which is relatively indispensable.

(成型工程)
成形工程では、絶縁被覆された軟磁性粉末を加圧成形することにより、成形体を形成する。成形時の圧力は10~20ton/cmであり、平均で12~15ton/cm程度が好ましい。被覆後混合工程を経ていると、成形時の上パンチを離型させる際の抜き圧が低減し、軟磁性粉末が金型への焼き付きくことも防止され、成形体の品質が向上する。
(molding process)
In the molding step, a molded body is formed by pressure molding the insulatingly coated soft magnetic powder. The pressure during molding is 10 to 20 ton/cm 2 , preferably about 12 to 15 ton/cm 2 on average. If the mixing step is carried out after coating, the ejection pressure when releasing the upper punch during molding is reduced, the soft magnetic powder is prevented from sticking to the mold, and the quality of the molded product is improved.

(熱処理工程)
熱処理工程では、成型体を焼鈍して歪を除去する。加熱環境の温度帯としては、650℃以上850℃以下が好ましい。650℃未満であると、歪除去の効果が限定的となる。850℃超であると、結着性絶縁樹脂の被覆層が破壊され、渦電流損失の低減効果が減殺される。
(Heat treatment process)
In the heat treatment step, the molded body is annealed to remove strain. The temperature range of the heating environment is preferably 650°C or higher and 850°C or lower. If the temperature is less than 650°C, the effect of strain removal will be limited. If the temperature exceeds 850° C., the coating layer of the binding insulating resin is destroyed, and the effect of reducing eddy current loss is diminished.

熱処理工程は、大気中などの酸素雰囲気中で行っても良い。大気中などの酸化雰囲気中で熱処理が行われると、Si基に直結しているメチル基が熱分解する。その後、シリカ(SiO2)層として、軟磁性粉末表面に残り、これが強固なバインダーかつ絶縁膜となる。また、緻密で強固なシリカ層となるため、高温で熱処理をおこなっても絶縁性が劣化しないで、酸化などによるヒステリシス損失の増加が起きない。また、大気中で熱処理を行うことにより、熱分解してメチル基が炭素として残ることがないので、機械的強度が改善出来る。 The heat treatment step may be performed in an oxygen atmosphere such as in the air. When heat treatment is performed in an oxidizing atmosphere such as in the air, the methyl groups directly bonded to the Si groups are thermally decomposed. Thereafter, a silica (SiO2) layer remains on the surface of the soft magnetic powder, and this becomes a strong binder and insulating film. Furthermore, since the silica layer is dense and strong, the insulation properties do not deteriorate even when heat-treated at high temperatures, and hysteresis loss does not increase due to oxidation or the like. Furthermore, by performing heat treatment in the atmosphere, mechanical strength can be improved because methyl groups do not remain as carbon due to thermal decomposition.

但し、熱処理工程は、不活性雰囲気中又は還元雰囲気中で行ってもよい。不活性雰囲気及び還元雰囲気中は、反応性ガスが低量であり、不活性ガス又は中性ガスで満たされた雰囲気である。反応性ガスは、酸素、水蒸気又は炭素ガス等である。不活性ガスは、アルゴンやヘリウム等である。中性ガスは、窒素やアンモニア等である。不活性雰囲気中で熱処理工程を行っても、圧粉磁心は良好な初透磁率を得られる。 However, the heat treatment step may be performed in an inert atmosphere or a reducing atmosphere. Inert and reducing atmospheres are atmospheres with low amounts of reactive gases and filled with inert or neutral gases. The reactive gas is oxygen, water vapor, carbon gas, or the like. The inert gas is argon, helium, or the like. Neutral gases include nitrogen and ammonia. Even if the heat treatment process is performed in an inert atmosphere, the powder magnetic core can obtain a good initial permeability.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail based on Examples. Note that the present invention is not limited to the following examples.

(実施例1乃至8)
軟磁性粉末として、粉砕法により得られたFeSiAl合金の粉砕粉を用いた。この粉砕粉は、目開き120μmの櫛でふるい分けされることにより、平均粒子経D50が91.2μmであった。尚、この粉砕粉は、平均粒径D10では32.4μm、平均粒径D90では127.7μmであった。
(Examples 1 to 8)
As the soft magnetic powder, pulverized FeSiAl alloy powder obtained by a pulverization method was used. This pulverized powder was sieved with a comb with an opening of 120 μm, and had an average particle size D50 of 91.2 μm. Note that this pulverized powder had an average particle size D10 of 32.4 μm and an average particle size D90 of 127.7 μm.

この軟磁性粉末を用いて下表1に示す条件により、実施例1乃至8及び比較例1の圧粉磁心を作製した。尚、表中、雰囲気の項目の「Air」は大気雰囲気を示す。
(表1)

Figure 0007418194000001
Using this soft magnetic powder, powder magnetic cores of Examples 1 to 8 and Comparative Example 1 were produced under the conditions shown in Table 1 below. In addition, in the table, "Air" in the atmosphere item indicates the atmospheric atmosphere.
(Table 1)
Figure 0007418194000001

表1に示すように、被覆前混合工程では、軟磁性粉末に対して実施例1乃至8及び比較例1に応じた混合量で潤滑剤を添加し、潤滑剤と軟磁性粉末とを混合した。潤滑剤としては、実施例1乃至8及び比較例1において、エチレンビスステアラマイド(Acrawax(登録商標))を用いた。 As shown in Table 1, in the pre-coating mixing step, a lubricant was added to the soft magnetic powder in a mixing amount according to Examples 1 to 8 and Comparative Example 1, and the lubricant and the soft magnetic powder were mixed. . As the lubricant, ethylene bisstearamide (Acrawax (registered trademark)) was used in Examples 1 to 8 and Comparative Example 1.

被覆前混合工程での潤滑剤の混合を経て、絶縁処理工程に移り、実施例1乃至8及び比較例1に共通の結着性絶縁樹脂を混合し、加熱乾燥した。即ち、実施例1乃至8及び比較例1とも、軟磁性粉末に対して1.2wt%の割合でシリコーンレジンを添加し、混合した。そして、150℃の温度雰囲気中に2時間晒した。 After mixing the lubricant in the pre-coating mixing step, the insulating treatment step was carried out, where the binding insulating resin common to Examples 1 to 8 and Comparative Example 1 was mixed and dried by heating. That is, in both Examples 1 to 8 and Comparative Example 1, silicone resin was added and mixed at a ratio of 1.2 wt% to the soft magnetic powder. Then, it was exposed to an atmosphere at a temperature of 150° C. for 2 hours.

被覆前混合工程を経た後、乾燥後の混合物を目開き250μmの篩に通した。そして、被覆後混合工程に移り、潤滑剤としてエチレンビスステアラマイド(Acrawax)を添加して混合した。実施例1乃至8及び比較例1とも、潤滑剤は、軟磁性粉末に対して0.3wt%の割合で添加した。 After the pre-coating mixing step, the dried mixture was passed through a sieve with an opening of 250 μm. Then, after coating, a mixing step was carried out, and ethylene bisstearamide (Acrawax) was added as a lubricant and mixed. In both Examples 1 to 8 and Comparative Example 1, the lubricant was added at a ratio of 0.3 wt% to the soft magnetic powder.

成形工程に移り、実施例1乃至8及び比較例1とも、金型を用いて、室温状況下において15ton/cmで加圧成形した。最後に、熱処理工程に移った。成形体を大気雰囲気の加熱環境に置き、6時間かけて700℃まで昇温し、700℃を2時間保つ温度プロファイルを用いて加熱した。最終的に、外径16.5mm、内径11.0mm及び高さ5mmのトロイダル状の圧粉磁心が得られた。 Moving on to the molding process, both Examples 1 to 8 and Comparative Example 1 were pressure molded at 15 ton/cm 2 at room temperature using a mold. Finally, we moved on to the heat treatment process. The molded body was placed in an atmospheric heating environment, and heated using a temperature profile in which the temperature was raised to 700° C. over 6 hours and the temperature was maintained at 700° C. for 2 hours. Finally, a toroidal powder magnetic core having an outer diameter of 16.5 mm, an inner diameter of 11.0 mm, and a height of 5 mm was obtained.

実施例1乃至8及び比較例1の圧粉磁心の密度(g/cc)、成形工程における離型時の抜き圧(ton)、鉄損Pcv、ヒステリシス損失Phv、渦電流損失Pev、初透磁率μ(0kA/m)、及び直流を重畳させて磁界の強さが5kA/mの時の透磁率μ(5kA/m)を測定した。 Density (g/cc) of powder magnetic cores of Examples 1 to 8 and Comparative Example 1, ejection pressure (ton) during mold release in the molding process, iron loss Pcv, hysteresis loss Phv, eddy current loss Pev, initial magnetic permeability μ (0 kA/m), and the magnetic permeability μ (5 kA/m) when the magnetic field strength was 5 kA/m by superimposing direct current.

密度(g/cc)は、見かけ密度である。圧粉磁心の外径、内径、及び高さを測り、これらの値から各圧粉成形体の体積(cm)を、π×(外径-内径)×高さに基づき算出した。そして、圧粉磁心の重量を測定し、測定した重量を算出した体積で除して密度を算出した。抜き圧(ton)は、圧粉磁心を金型から抜き出す際の荷重を測定した。 Density (g/cc) is apparent density. The outer diameter, inner diameter, and height of the powder magnetic core were measured, and from these values, the volume (cm 3 ) of each powder compact was calculated based on π×(outer diameter 2 − inner diameter 2 )×height. Then, the weight of the dust core was measured, and the density was calculated by dividing the measured weight by the calculated volume. The ejection pressure (ton) was measured by the load when ejecting the dust core from the mold.

透磁率μの測定に際し、圧粉磁心にφ0.5mmの銅線を17ターン巻回した。損失の測定に際しては、圧粉磁心にφ0.5mmの銅線を1次巻線として17ターン巻回し、また2次巻線として17ターン巻回した。そして、LCRメータ(アジレントテクノロジー:4284A)を使用することで、10kHz、1.0Vにおける各磁界の強さのインダクタンスから透磁率μ(0kA/m)及び透磁率μ(5kA/m)を算出した。また、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY-8219)を用いて、周波数が100kHz及び最大磁束密度Bmが100mTの測定条件にて鉄損Pcv(kw/m)の測定を行った。 When measuring the magnetic permeability μ, a copper wire with a diameter of 0.5 mm was wound 17 turns around the powder magnetic core. When measuring the loss, a powder magnetic core was wound with 17 turns of a copper wire having a diameter of 0.5 mm as a primary winding, and 17 turns as a secondary winding. Then, by using an LCR meter (Agilent Technologies: 4284A), magnetic permeability μ (0 kA/m) and magnetic permeability μ (5 kA/m) were calculated from the inductance of each magnetic field strength at 10 kHz and 1.0 V. . In addition, iron loss Pcv (kw/m 3 ) was measured using a BH analyzer (Iwatsu Keizoku Co., Ltd.: SY-8219), which is a magnetic measuring instrument, under measurement conditions of a frequency of 100 kHz and a maximum magnetic flux density Bm of 100 mT. I did it.

更に、鉄損Pcvの測定結果からヒステリシス損失Phv(kw/m)と渦電流損失Pe(kw/m)とを算出した。ヒステリシス損失Phv(kw/m)と渦電流損失Pe(kw/m)は、鉄損Pcvの周波数曲線を次の(1)~(3)式で最小2乗法により、ヒステリシス損失係数(Kh)、渦電流損失係数(Ke)を算出することで行った。
Pcv =Kh×f+Ke×f・・(1)
Phv =Kh×f・・(2)
Pev =Ke×f・・(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f :周波数
Phv :ヒステリシス損失
Pev :渦電流損失
Furthermore, hysteresis loss Phv (kw/m 3 ) and eddy current loss Pe (kw/m 3 ) were calculated from the measurement results of iron loss Pcv. The hysteresis loss Phv (kw/m 3 ) and the eddy current loss Pe (kw/m 3 ) are determined by calculating the hysteresis loss coefficient (Kh ), and calculated the eddy current loss coefficient (Ke).
Pcv =Kh×f+Ke×f 2 ...(1)
Phv=Kh×f...(2)
Pev = Ke×f 2 ...(3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Phv: Hysteresis loss Pev: Eddy current loss

比較例1並びに実施例1乃至8の密度(g/cc)、抜き圧(ton)、鉄損Pcv、ヒステリシス損失Phv、渦電流損失Pev及び透磁率μの測定結果を下表2に示す。
(表2)

Figure 0007418194000002
The measurement results of density (g/cc), evacuation pressure (ton), iron loss Pcv, hysteresis loss Phv, eddy current loss Pev, and magnetic permeability μ of Comparative Example 1 and Examples 1 to 8 are shown in Table 2 below.
(Table 2)
Figure 0007418194000002

また、上表2に従って、図2及び図3のグラフを作成した。図2は、被覆前混合工程における潤滑剤の混合量と初透磁率との関係を示すグラフである。図3は、被覆前混合工程における潤滑剤の混合量と鉄損との関係を示すグラフである。 In addition, the graphs in FIGS. 2 and 3 were created according to Table 2 above. FIG. 2 is a graph showing the relationship between the amount of lubricant mixed in the pre-coating mixing step and the initial magnetic permeability. FIG. 3 is a graph showing the relationship between the amount of lubricant mixed in the pre-coating mixing step and iron loss.

表2及び図2に示すように、実施例1乃至8の圧粉磁心は、比較例1の圧粉磁心と比べて初透磁率が向上し、130以上になっていることが確認された。即ち、軟磁性粉末をメジアン径で粒径60μm以上である91.2μmのFeSiAl合金の粉砕粉とし、当該粉砕粉を絶縁樹脂で被覆する前に0.2wt%以上の割合で潤滑剤を混合すると、初透磁率が向上することが確認された。 As shown in Table 2 and FIG. 2, it was confirmed that the powder magnetic cores of Examples 1 to 8 had improved initial permeability compared to the powder magnetic core of Comparative Example 1, reaching 130 or more. That is, if the soft magnetic powder is a 91.2 μm FeSiAl alloy pulverized powder with a median particle size of 60 μm or more, and a lubricant is mixed at a ratio of 0.2 wt% or more before coating the pulverized powder with an insulating resin. It was confirmed that the initial magnetic permeability was improved.

また、表2及び図2に示すように、実施例2乃至6の圧粉磁心は、実施例1、7及び8の圧粉磁心と比べて初透磁率が向上し、140以上になっていることが確認された。即ち、絶縁処理工程前に0.3wt%以上0.7wt%以下の割合で潤滑剤を混合すると、初透磁率が更に向上することが確認された。 Moreover, as shown in Table 2 and FIG. 2, the powder magnetic cores of Examples 2 to 6 have improved initial permeability compared to the powder magnetic cores of Examples 1, 7, and 8, and are 140 or more. This was confirmed. That is, it was confirmed that the initial magnetic permeability was further improved when a lubricant was mixed at a ratio of 0.3 wt% or more and 0.7 wt% or less before the insulation treatment step.

また、表2及び図2に示すように、実施例3乃至5の圧粉磁心は、実施例1、2、6、7及び8の圧粉磁心と比べて初透磁率が向上し、150以上になっていることが確認された。即ち、絶縁処理工程前に0.4以上0.7wt%以下の割合で潤滑剤を混合すると、初透磁率が更に向上することが確認された。 Moreover, as shown in Table 2 and FIG. 2, the powder magnetic cores of Examples 3 to 5 have improved initial permeability compared to the powder magnetic cores of Examples 1, 2, 6, 7, and 8, and are 150 or more. It was confirmed that . That is, it was confirmed that the initial magnetic permeability was further improved when a lubricant was mixed at a ratio of 0.4 to 0.7 wt% before the insulation treatment step.

尚、表2及び図3に示すように、比較例1に対して実施例1乃至8を比べるとわかるように、絶縁処理工程前に潤滑剤を軟磁性粉末と混合しても鉄損Pcvに大きな変化はない。従って、軟磁性粉末をメジアン径で粒径60μm以上のFeSiAl合金の粉砕粉とし、当該粉砕粉を絶縁樹脂で被覆する前に0.2wt%以上の割合で潤滑剤を混合しても、磁気特性に悪影響なく初透磁率を向上させることが確認された。 As shown in Table 2 and FIG. 3, when comparing Examples 1 to 8 with Comparative Example 1, it can be seen that even if the lubricant is mixed with the soft magnetic powder before the insulation treatment process, the iron loss Pcv does not change. There are no major changes. Therefore, even if the soft magnetic powder is a pulverized FeSiAl alloy powder with a median particle size of 60 μm or more, and a lubricant is mixed at a ratio of 0.2 wt% or more before coating the pulverized powder with an insulating resin, the magnetic properties It was confirmed that the initial magnetic permeability was improved without any negative effects.

(実施例9乃至13)
次に、下表3の条件に従って実施例9乃至13の圧粉磁心を作製した。
(表3)

Figure 0007418194000003
(Examples 9 to 13)
Next, powder magnetic cores of Examples 9 to 13 were produced according to the conditions shown in Table 3 below.
(Table 3)
Figure 0007418194000003

表3に示すように、実施例9乃至13の圧粉磁心は、被覆前混合工程において、潤滑剤の混合量を軟磁性粉末に対して0.6wt%に統一して添加し、潤滑剤と軟磁性粉末とを混合した。一方、実施例9乃至13の圧粉磁心は、被覆後混合工程において混合される潤滑剤の混合量を変化させた。その他の作製方法及び条件は実施例1乃至8と同一である。 As shown in Table 3, in the powder magnetic cores of Examples 9 to 13, in the pre-coating mixing step, the amount of lubricant was uniformly added to the soft magnetic powder at 0.6 wt%. and soft magnetic powder. On the other hand, in the powder magnetic cores of Examples 9 to 13, the amount of lubricant mixed in the post-coating mixing step was varied. Other manufacturing methods and conditions are the same as Examples 1 to 8.

実施例9乃至13の圧粉磁心について、密度(g/cc)、成形工程中の離型時の抜き圧(ton)、鉄損Pcv、ヒステリシス損失Phv、渦電流損失Pev、初透磁率μ(0kA/m)、及び透磁率μ(5kA/m)を測定した。その結果を下表4に示す。
(表4)

Figure 0007418194000004
Regarding the powder magnetic cores of Examples 9 to 13, the density (g/cc), the ejection pressure (ton) during mold release during the molding process, the iron loss Pcv, the hysteresis loss Phv, the eddy current loss Pev, and the initial magnetic permeability μ( 0 kA/m) and magnetic permeability μ (5 kA/m). The results are shown in Table 4 below.
(Table 4)
Figure 0007418194000004

また、上表4に従って、図4及び図5のグラフを作成した。図4は、被覆後混合工程における潤滑剤の混合量と初透磁率との関係を示すグラフである。図5は、被覆後混合工程における潤滑剤の混合量と抜き圧との関係を示すグラフである。 In addition, the graphs shown in FIGS. 4 and 5 were created according to Table 4 above. FIG. 4 is a graph showing the relationship between the amount of lubricant mixed in the post-coating mixing step and the initial magnetic permeability. FIG. 5 is a graph showing the relationship between the amount of lubricant mixed and the extraction pressure in the post-coating mixing step.

表4に示すように、実施例9乃至13は、被覆後混合工程における潤滑剤の混合量がゼロから0.30wt%以下で変更されている。そして、表4及び図4に示すように、被覆後混合工程の有無に関わらず、被覆前混合工程の経ることで初透磁率は向上していることが確認された。 As shown in Table 4, in Examples 9 to 13, the amount of lubricant mixed in the post-coating mixing step was changed from zero to 0.30 wt% or less. As shown in Table 4 and FIG. 4, it was confirmed that the initial magnetic permeability was improved by the pre-coating mixing process, regardless of the presence or absence of the post-coating mixing process.

また、表4及び図5に示すように、実施例9乃至13を比較するとわかるように、被覆後混合工程において潤滑剤を0.1wt%以上混合すると、抜き圧が低下することが確認された。そして、被覆後混合工程での潤滑剤の混合量を増やすと抜き圧が低下していくことが確認された。また、表2の実施例3乃至8に示すように、被覆後混合工程での潤滑剤の混合量を軟磁性粉末に対して0.30wt%とし、且つ被覆前混合工程での潤滑剤の混合量を、被覆後混合工程の潤滑剤よりも多く、軟磁性粉末に対して0.4wt%以上にすると、抜き圧をゼロにできることが確認された。 Furthermore, as shown in Table 4 and Figure 5, when comparing Examples 9 to 13, it was confirmed that when 0.1 wt% or more of lubricant was mixed in the post-coating mixing process, the evacuation pressure decreased. . It was also confirmed that when the amount of lubricant mixed in the post-coating mixing step was increased, the extraction pressure decreased. In addition, as shown in Examples 3 to 8 in Table 2, the amount of lubricant mixed in the post-coating mixing step was 0.30 wt% with respect to the soft magnetic powder, and the lubricant was mixed in the pre-coating mixing step. It was confirmed that if the amount of the lubricant was larger than that of the lubricant used in the post-coating mixing process, and was 0.4 wt % or more based on the soft magnetic powder, the extraction pressure could be reduced to zero.

(実施例14乃至20)
次に、実施例14乃至20の圧粉磁心を作製した。実施例14乃至20の製造条件を下表5に示す。下表5に示すように、実施例14乃至20の圧粉磁心は、主に、FeSiAl合金の粉砕粉の粒径が異なる。尚、表中、「N2」は窒素雰囲気を示す。
(表5)

Figure 0007418194000005
(Examples 14 to 20)
Next, powder magnetic cores of Examples 14 to 20 were produced. The manufacturing conditions of Examples 14 to 20 are shown in Table 5 below. As shown in Table 5 below, the dust cores of Examples 14 to 20 differ mainly in the particle size of the crushed FeSiAl alloy powder. In addition, in the table, "N2" indicates a nitrogen atmosphere.
(Table 5)
Figure 0007418194000005

ここで、目開き250μm、目開き168μm、目開き150μm及び目開き120μmの櫛によって得られた粉砕粉において、平均粒径D50、平均粒径D10及び平均粒径は、下表6の通りであった。
(表6)

Figure 0007418194000006
Here, the average particle size D50, average particle size D10, and average particle size of the pulverized powder obtained with the combs with mesh openings of 250 μm, 168 μm, 150 μm, and 120 μm are as shown in Table 6 below. Ta.
(Table 6)
Figure 0007418194000006

この実施例14乃至20の圧粉磁心の密度(g/cc)、成形工程中の離型時の抜き圧(ton)、鉄損Pcv、ヒステリシス損失Phv、渦電流損失Pev、初透磁率μ(0kA/m)、及び透磁率μ(5kA/m)を測定した。その結果を下表7に示す。
(表7)

Figure 0007418194000007
The density (g/cc) of the powder magnetic cores of Examples 14 to 20, the ejection pressure (ton) during mold release during the molding process, the iron loss Pcv, the hysteresis loss Phv, the eddy current loss Pev, and the initial permeability μ( 0 kA/m) and magnetic permeability μ (5 kA/m). The results are shown in Table 7 below.
(Table 7)
Figure 0007418194000007

また、上表7に従って、図6のグラフを作成した。図6は、軟磁性粉末をふるい分ける櫛の目開きと初透磁率μ(0kA/m)との関係を示すグラフである。 In addition, the graph in FIG. 6 was created according to Table 7 above. FIG. 6 is a graph showing the relationship between the opening of the comb that sieves the soft magnetic powder and the initial magnetic permeability μ (0 kA/m).

表7及び図6に示すように、実施例14乃至20の初透磁率に大きな変化はない。即ち、FeSiAl合金の粉砕粉の粒径をメジアン径(平均粒径D50)で60μm以上とすれば、大きな初透磁率を獲得できることが確認された。また、実施例14乃至17と実施例18乃至20との比較によりわかるように、熱処理工程の雰囲気に初透磁率が影響されないことも確認された。 As shown in Table 7 and FIG. 6, there is no significant change in the initial magnetic permeability of Examples 14 to 20. That is, it was confirmed that a large initial magnetic permeability can be obtained by setting the median particle size (average particle size D50) of the pulverized powder of FeSiAl alloy to 60 μm or more. Further, as can be seen from the comparison between Examples 14 to 17 and Examples 18 to 20, it was confirmed that the initial magnetic permeability was not affected by the atmosphere of the heat treatment process.

特に、実施例1乃至20の全てについて比べて見ると、FeSiAl合金の粉砕粉の粒径をメジアン径(平均粒径D50)で60μm以上とし、被覆前混合工程において、潤滑剤の混合量を軟磁性粉末に対して0.4以上0.7wt%以下とすると、透磁率は140を超えて、少なくとも144以上となることが確認された。初透磁率が140以上の圧粉磁心をリアクトルやインダクタ等のコイルに用いることで、これらコイルは低電流及び低周波数領域で高いインダクタンスを得ることができる。 In particular, when comparing all of Examples 1 to 20, the particle size of the FeSiAl alloy pulverized powder was set to be 60 μm or more in median diameter (average particle size D50), and the amount of lubricant mixed was softened in the pre-coating mixing process. It was confirmed that when the amount is 0.4 or more and 0.7 wt% or less based on the magnetic powder, the magnetic permeability exceeds 140 and becomes at least 144 or more. By using a powder magnetic core with an initial magnetic permeability of 140 or more for coils such as reactors and inductors, these coils can obtain high inductance in low current and low frequency regions.

(他の実施形態)
以上、本発明の実施形態及び実施例は例として提示したものであって、上記実施形態及び実施例に限定されるものではない。上記実施形態及び実施例は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。そして、実施形態、実施例及びその変形は本発明の範囲に含まれるものである。
(Other embodiments)
The embodiments and examples of the present invention have been presented as examples, and the present invention is not limited to the above embodiments and examples. The embodiments and examples described above can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. The embodiments, examples, and modifications thereof are included within the scope of the present invention.

Claims (4)

メジアン径で粒径87.2μm以上91.2μm以下のFeSiAl合金の粉砕粉を、絶縁樹脂で被覆する絶縁処理工程と、
前記絶縁処理工程前に、前記FeSiAl合金の粉砕粉に対して0.4wt%以上0.6wt%以下の割合で潤滑剤を混合する被覆前混合工程と、
前記絶縁樹脂で被覆された前記FeSiAl合金の粉砕粉を所定形状の成形体に加圧成形する成形工程と、
前記成形体を大気雰囲気下で焼鈍する熱処理工程と、
前記絶縁処理工程の後、及び前記成形工程の前に、前記絶縁樹脂で被覆された前記FeSiAl合金の粉砕粉に更に潤滑剤を混合する被覆後混合工程と、
を含み、
前記被覆前混合工程では、前記被覆後混合工程より多くの潤滑剤を混合すること、
を特徴とする圧粉磁心の製造方法。
An insulation treatment step of coating pulverized FeSiAl alloy powder with a median particle size of 87.2 μm or more and 91.2 μm or less with an insulating resin;
Before the insulation treatment step, a pre-coating mixing step of mixing a lubricant in a proportion of 0.4 wt% or more and 0.6 wt% or less with respect to the pulverized powder of the FeSiAl alloy;
a molding step of press-molding the pulverized powder of the FeSiAl alloy coated with the insulating resin into a molded body of a predetermined shape;
a heat treatment step of annealing the molded body in an atmospheric atmosphere ;
After the insulation treatment step and before the molding step, a post-coating mixing step of further mixing a lubricant into the pulverized powder of the FeSiAl alloy coated with the insulating resin;
including;
mixing more lubricant in the pre-coating mixing step than in the post-coating mixing step;
A method for producing a dust core characterized by:
前記絶縁処理工程は、加熱による乾燥工程を含み、
前記被覆前混合工程では、遅くとも前記乾燥工程の前までに潤滑剤を混合すること、
を特徴とする請求項1記載の圧粉磁心の製造方法。
The insulation treatment step includes a drying step by heating,
In the pre-coating mixing step, mixing a lubricant at least before the drying step;
The method for manufacturing a powder magnetic core according to claim 1, characterized in that:
前記被覆後混合工程は、潤滑剤を前記FeSiAl合金の粉砕粉に対して0.1以上0.3wt%以下の割合で混合すること、
を特徴とする請求項1又は2記載の圧粉磁心の製造方法。
In the post-coating mixing step, a lubricant is mixed with the pulverized powder of the FeSiAl alloy at a ratio of 0.1 to 0.3 wt%;
The method for manufacturing a powder magnetic core according to claim 1 or 2, characterized in that:
圧粉磁心の初透磁率を150以上にすること、
を特徴とする請求項1記載の圧粉磁心の製造方法。
Making the initial permeability of the powder magnetic core 150 or more ,
The method for manufacturing a powder magnetic core according to claim 1 , characterized in that:
JP2019221685A 2019-12-06 2019-12-06 Manufacturing method of powder magnetic core Active JP7418194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019221685A JP7418194B2 (en) 2019-12-06 2019-12-06 Manufacturing method of powder magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019221685A JP7418194B2 (en) 2019-12-06 2019-12-06 Manufacturing method of powder magnetic core

Publications (2)

Publication Number Publication Date
JP2021093405A JP2021093405A (en) 2021-06-17
JP7418194B2 true JP7418194B2 (en) 2024-01-19

Family

ID=76312634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221685A Active JP7418194B2 (en) 2019-12-06 2019-12-06 Manufacturing method of powder magnetic core

Country Status (1)

Country Link
JP (1) JP7418194B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337127B2 (en) 2021-09-06 2023-09-01 株式会社タムラ製作所 Method for manufacturing dust core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219159A (en) 2009-03-13 2010-09-30 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221204A (en) * 1982-06-18 1983-12-22 Tohoku Metal Ind Ltd Production of iron-silicon-aluminum magnetic alloy compact core
JPH06275452A (en) * 1993-03-19 1994-09-30 Tdk Corp Manufacture of dust core
JP2015005581A (en) * 2013-06-19 2015-01-08 株式会社タムラ製作所 Powder-compact magnetic core, and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219159A (en) 2009-03-13 2010-09-30 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same

Also Published As

Publication number Publication date
JP2021093405A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US7682695B2 (en) Dust core with specific relationship between particle diameter and coating thickness, and method for producing same
JP5522173B2 (en) Composite magnetic body and method for producing the same
JP6262504B2 (en) Powder core using soft magnetic powder and method for producing the powder core
KR20160132840A (en) Magnetic core, coil component and magnetic core manufacturing method
JP2019151909A (en) Soft magnetic material, powder magnetic core, and manufacturing method of powder magnetic core
JP6213809B2 (en) Powder magnetic core, coil component using the same, and method for manufacturing powder magnetic core
TW201738908A (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
JP7418194B2 (en) Manufacturing method of powder magnetic core
JP6578266B2 (en) Soft magnetic material, dust core using soft magnetic material, and method for manufacturing dust core
JP7066586B2 (en) Manufacturing method of composite magnetic material, metal composite core, reactor, and metal composite core
JP6477124B2 (en) Soft magnetic metal dust core, and reactor or inductor
JP6571146B2 (en) Soft magnetic material, dust core using soft magnetic material, reactor using dust core, and method for manufacturing dust core
JP6545734B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP7307603B2 (en) Powder magnetic core and method for manufacturing powder magnetic core
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2014116527A (en) Method for manufacturing dust core
JP7194098B2 (en) Method for manufacturing dust core
JP7405659B2 (en) A powder compact, a method for producing a powder compact, and a method for producing a powder magnetic core;
JP7418483B2 (en) Manufacturing method of powder magnetic core
JP7202333B2 (en) Powder magnetic core and its manufacturing method
JP7377076B2 (en) Manufacturing method of powder magnetic core
JP6713018B2 (en) Soft magnetic material, dust core, and method for manufacturing dust core
JP7337112B2 (en) Soft magnetic powder and dust core
JP7337127B2 (en) Method for manufacturing dust core
JP2022119404A (en) Powder for dust core and dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220815

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220816

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221028

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7418194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150