JP7415757B2 - Ultrasonic flaw detection method for round bar materials - Google Patents

Ultrasonic flaw detection method for round bar materials Download PDF

Info

Publication number
JP7415757B2
JP7415757B2 JP2020070115A JP2020070115A JP7415757B2 JP 7415757 B2 JP7415757 B2 JP 7415757B2 JP 2020070115 A JP2020070115 A JP 2020070115A JP 2020070115 A JP2020070115 A JP 2020070115A JP 7415757 B2 JP7415757 B2 JP 7415757B2
Authority
JP
Japan
Prior art keywords
flaw
round bar
data
flaw echo
flaws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020070115A
Other languages
Japanese (ja)
Other versions
JP2021167730A (en
Inventor
大輔 森
隆夫 湯藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2020070115A priority Critical patent/JP7415757B2/en
Publication of JP2021167730A publication Critical patent/JP2021167730A/en
Application granted granted Critical
Publication of JP7415757B2 publication Critical patent/JP7415757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は丸棒材の超音波探傷方法に関し、特に表面疵と表面直下の丸棒材内部に生じる表層疵を良好に識別して検出できる超音波探傷方法に関するものである。 The present invention relates to an ultrasonic flaw detection method for round bar materials, and more particularly to an ultrasonic flaw detection method that can satisfactorily distinguish and detect surface flaws and surface flaws occurring inside the round bar material immediately below the surface.

丸棒材の表面近くの疵を探傷する場合には図7に示すように探傷用の超音波ビームUbの横波を使用しその屈折角(セクタースキャン角)を45度程度に設定して行う。しかし、この方法では、丸棒材Mの表面に開口する表面疵M1(図6(1))と丸棒材Mの表面直下の内部に生じる表層疵M2(図6(2))からの疵エコー信号(図7(1)、(2))がほほ同じ大きさで同じ時間帯に現れることがあるため、往々にして両者を区別することが困難であった。 When detecting flaws near the surface of a round bar, a transverse wave of the ultrasonic beam Ub for flaw detection is used and its refraction angle (sector scan angle) is set to about 45 degrees, as shown in FIG. However, with this method, scratches from surface flaws M1 (FIG. 6 (1)) that open on the surface of the round bar M and surface flaws M2 (FIG. 6 (2)) that occur inside the round bar M just below the surface. Since the echo signals (FIGS. 7(1) and 7(2)) may appear with almost the same size and at the same time, it is often difficult to distinguish between the two.

そこで、例えば特許文献1では異なるセクタースキャン角を設定して、各セクタースキャン角で得られた疵エコー信号の大きさが所定の閾値を超えたときにそれぞれ表面疵あるいは表層疵があるもと判定する探傷方法が開示されている。 For example, in Patent Document 1, different sector scan angles are set, and when the magnitude of the flaw echo signal obtained at each sector scan angle exceeds a predetermined threshold, it is determined that there is a surface flaw or surface flaw. A flaw detection method is disclosed.

特開2012-225887JP2012-225887

しかし、上記従来の方法では、セクタースキャン角を変更して同様の探傷を繰り返す必要があるために探傷に時間を要し、ラインを流れる丸棒材の探傷を迅速に行えないという問題があった。 However, with the above conventional method, it is necessary to repeat the same flaw detection by changing the sector scan angle, which takes time, and there is a problem that flaw detection cannot be performed quickly on round bars flowing on the line. .

そこで、本発明はこのような課題を解決するもので、表面疵と表層疵を迅速かつ確実に判別できる丸棒材の超音波探傷方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and aims to provide an ultrasonic flaw detection method for round bars that can quickly and reliably distinguish between surface flaws and surface flaws.

上記目的を達成するために、本第1発明では、丸棒材(M)の表面、および当該表面直下の表層を含む領域で収束する超音波(Ub)を送信しつつこれを前記丸棒材(M)の周面に沿う方向で走査し、前記丸棒材(M)の表面疵(M1)、ないし表面直下の丸棒材(M)内部に生じる表層疵(M2)で反射して戻る反射超音波を受信して疵エコー信号(Sa1,Sa2)とし、表面疵(M1)と表層疵(M2)の疵エコー信号((Sa1,Sa2)に対応した各デジタル信号のデータ列からピーク値を示すデータを検出して当該ピーク値を示すデータの前後一定数のデータを抽出して、これらのデータから横軸をデータ位置、縦軸をデータ値としてグラフ化した二次元の疵エコー画像(X,Y)を生成し、必要数の前記疵エコー画像(X,Y)を学習データとしてニューラルネットワーク(3)に与えて学習させ、学習済みの前記ニューラルネットワーク(3)に対して新たな前記疵エコー画像(X,Y)を与えて、当該疵エコー画像(X,Y)に対応する疵が前記表面疵(M1)か表層疵(M2)かを判別させる。 In order to achieve the above object, the first invention transmits ultrasonic waves (Ub) that converge in a region including the surface of the round bar (M) and the surface layer immediately below the surface of the round bar (M), and (M) is scanned in the direction along the circumferential surface of the round bar (M), and is reflected back by the surface flaw (M1) of the round bar (M) or the surface flaw (M2) that occurs inside the round bar (M) just below the surface. The reflected ultrasonic waves are received and converted into flaw echo signals (Sa1, Sa2), and the peak value is calculated from the data string of each digital signal corresponding to the flaw echo signals ((Sa1, Sa2) of surface flaws (M1) and surface flaws (M2). A two-dimensional flaw echo image ( X,Y), the necessary number of said flaw echo images (X,Y) are given to the neural network (3) as learning data for learning, and the trained neural network (3) is given a new A flaw echo image (X, Y) is given to determine whether the flaw corresponding to the flaw echo image (X, Y) is the surface flaw (M1) or the surface flaw (M2).

本第1発明においては、疵エコー画像を作成し、当該疵エコー画像によって予め学習させたニューラルネットワークに、新たな疵エコー画像を与えて当該疵エコー画像に対応する疵が表面疵か表層疵かを判別するようにしたから、表面疵と表層疵を迅速かつ確実に判別することができる。 In the first invention, a flaw echo image is created, and a new flaw echo image is given to a neural network trained in advance using the flaw echo image to determine whether the flaw corresponding to the flaw echo image is a surface flaw or a superficial flaw. Since it is possible to distinguish between surface flaws and superficial flaws, it is possible to quickly and reliably distinguish between surface flaws and surface flaws.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を参考的に示すものである。 The above reference numerals in parentheses indicate for reference the correspondence with specific means described in the embodiments to be described later.

以上のように、本発明の丸棒材の超音波探傷方法によれば、表面疵と表層疵を迅速かつ確実に判別することができる。より具体的には、丸棒材が圧延工程、熱処理工程、曲がり矯正工程を経た状態で、その表面が酸化金属である黒錆で覆われた状態のものを対象とすることができる。黒皮材は最表層に黒錆を備えることから、特に表面疵と表層疵等の判別が困難であるが、本発明の方法を適用することで、表面疵と表層疵を迅速かつ確実に判別することが可能となる。 As described above, according to the ultrasonic flaw detection method for round bar materials of the present invention, surface flaws and surface flaws can be quickly and reliably distinguished. More specifically, the object can be a round bar material that has undergone a rolling process, a heat treatment process, and a bend straightening process, and whose surface is covered with black rust, which is an oxidized metal. Since black bark wood has black rust on the outermost layer, it is particularly difficult to distinguish between surface flaws and surface flaws, but by applying the method of the present invention, surface flaws and surface flaws can be quickly and reliably distinguished. It becomes possible to do so.

本発明方法を実施する装置の構成を示す図である1 is a diagram showing the configuration of an apparatus for carrying out the method of the present invention. 疵エコー信号の一例を経時変化を示す図である。FIG. 3 is a diagram showing a change over time of an example of a flaw echo signal. 疵エコー信号をAD変換したデジタル信号のデータ列を示す図である。FIG. 3 is a diagram showing a data string of a digital signal obtained by AD converting a flaw echo signal. デジタル信号をグラフ化した疵エコー画像の一例を示す図である。It is a figure which shows an example of the flaw echo image which graphed a digital signal. 畳み込みニューラルネットワークの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a convolutional neural network. 従来の探傷方法を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a conventional flaw detection method. 従来の探傷方法における疵エコー信号を示す図である。It is a figure which shows the flaw echo signal in the conventional flaw detection method.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。 Note that the embodiments described below are merely examples, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included within the scope of the present invention.

図1には本発明の超音波探傷方法を実施する装置の構成を示す。図1において、金属製丸棒材Mの外周面に対向させてフェーズドアレイ探触子1が設けられている。フェーズドアレイ探触子1では、多数の超音波振動子(図示略)が丸棒材Mの外周に倣って湾曲する送受信面1aを形成するように公知の構造で隣接配置されており、隣接する所定数の超音波振動子を、コンピュータを内蔵した制御装置2から出力される所定の時間差を有する励振信号で振動させることによって、本実施形態では略45度のセクタースキャン角を有し丸棒材の表面およびその直下の表層を含む領域で収束する斜角探傷用超音波たる横波超音波ビームUbを生成している。そして振動させる所定数の超音波振動子の範囲を順次移動させることによって、約90度の角度範囲Dで横波超音波ビームUbを走査して、この範囲にある表面疵M1および表層疵M2からの反射超音波をフェーズドアレイ探触子1で再び受信して、疵エコー信号として制御装置2へ出力している。 FIG. 1 shows the configuration of an apparatus for carrying out the ultrasonic flaw detection method of the present invention. In FIG. 1, a phased array probe 1 is provided facing the outer circumferential surface of a metal round bar M. In the phased array probe 1, a large number of ultrasonic transducers (not shown) are arranged adjacently in a known structure so as to form a transmitting/receiving surface 1a curved along the outer circumference of a round bar M. In this embodiment, by vibrating a predetermined number of ultrasonic transducers with excitation signals having a predetermined time difference output from a control device 2 with a built-in computer, a round bar material having a sector scan angle of approximately 45 degrees is produced. A transverse ultrasonic beam Ub, which is an ultrasonic wave for oblique flaw detection, is generated that converges in a region including the surface and the surface layer immediately below the surface. By sequentially moving the range of a predetermined number of vibrating ultrasonic transducers, the transverse ultrasonic beam Ub is scanned in an angular range D of about 90 degrees, and surface flaws M1 and surface flaws M2 within this range are removed. The reflected ultrasonic waves are received again by the phased array probe 1 and output to the control device 2 as a flaw echo signal.

なお、丸棒材Mの全周について表面疵M1および表層疵M2を検出する場合には、同様の構成のフェーズドアレイ探触子1を丸棒材Mの全周に沿って複数(4つ)設けるか、丸棒材Mを回転させ、ないしフェーズドアレイ探触子1を丸棒材M周りに旋回させる。 In addition, when detecting surface flaws M1 and surface flaws M2 around the entire circumference of the round bar M, a plurality (4) of phased array probes 1 having a similar configuration are installed along the entire circumference of the round bar M. Alternatively, the round bar M may be rotated, or the phased array probe 1 may be rotated around the round bar M.

図2(1)には表面疵があった場合の疵エコー信号Sa1の経時波形を示し、図2(2)には表層疵があった場合の疵エコー信号Sa2の経時波形を示し、これら疵エコー信号Sa1,Sa2は制御装置2内に設けられたAD変換回路(図示略)に入力する。AD変換回路は疵エコー信号Sa1,Sa2の正負の最大振幅範囲をカバーできる入力レンジを有し、図3に示すような、疵エコー信号Sa1,Sa2はAD変換回路で、所定サンプリング時間毎の振幅に応じた数列(データ列)からなるデジタル信号Sd(図3)に変換される。なお、図3は8ビットのAD変換回路を使用した場合のデジタル信号Sdの一例である。 Figure 2 (1) shows the waveform of the flaw echo signal Sa1 over time when there is a surface flaw, and Figure 2 (2) shows the waveform of the flaw echo signal Sa2 over time when there is a surface flaw. The echo signals Sa1 and Sa2 are input to an AD conversion circuit (not shown) provided within the control device 2. The AD conversion circuit has an input range that can cover the maximum positive and negative amplitude range of the flaw echo signals Sa1 and Sa2, and as shown in FIG. It is converted into a digital signal Sd (FIG. 3) consisting of a number sequence (data sequence) corresponding to . Note that FIG. 3 is an example of the digital signal Sd when an 8-bit AD conversion circuit is used.

ここで、前述した図7(1)(2)に示した疵エコー信号では、反射強度の波形を絶対値で換算しているため正の波形と負の波形の各々を表しておらず、波形の変化を認識しにくいため疵の判定精度に影響が出てしまう。これに対して、図3に示したデジタル信号Sdでは、絶対値では換算しておらず、信号値が正の疵エコー信号Sa1,Sa2と負の疵エコー信号Sa1,Sa2の双方を反映していることから、図7(1)(2)の疵エコー信号と比較すると波形の変化が認識しやすい。 Here, in the flaw echo signals shown in FIGS. 7(1) and 7(2), the waveform of the reflected intensity is converted into an absolute value, so it does not represent the positive waveform and negative waveform, and the waveform Since it is difficult to recognize changes in the flaws, the accuracy of flaw determination is affected. On the other hand, the digital signal Sd shown in FIG. 3 is not converted into an absolute value, and the signal value reflects both the positive flaw echo signals Sa1, Sa2 and the negative flaw echo signals Sa1, Sa2. Therefore, the change in waveform is easier to recognize when compared with the flaw echo signals in FIGS. 7(1) and 7(2).

制御装置2内では、表面疵と表層疵の疵エコー信号Sa1,Sa2に対応した各デジタル信号のデータ列からピーク値を示すデータを検出して、当該ピークデータの前後各50個(すなわち100個)のデータを抽出する。そして、これらのデータから、図4(1)、(2)に示すような、横軸をデータ位置、縦軸をデータ値としてグラフ化した二次元の疵エコー画像X,Yを生成する。なお、疵エコー画像X,Yは図2に示したアナログの疵エコー信号Sa1,Sa2のX´領域、Y´領域に対応している。 In the control device 2, data indicating a peak value is detected from the data string of each digital signal corresponding to the flaw echo signals Sa1 and Sa2 of surface flaws and surface flaws, and 50 data (i.e. 100 data) are detected before and after the peak data. ). From these data, two-dimensional flaw echo images X and Y, which are graphed with the horizontal axis representing the data position and the vertical axis representing the data value, as shown in FIGS. 4(1) and 4(2), are generated. Note that the flaw echo images X and Y correspond to the X' and Y' areas of the analog flaw echo signals Sa1 and Sa2 shown in FIG. 2, respectively.

制御装置2内には、図4に示すような、適当数の畳み込み層31とプーリング層32、および全結合層33を有する公知の構成の畳み込みニューラルネットワーク(CNN)3が構成されており、表面疵と表層疵の各疵エコー信号Sa1,Sa2から生成された上記疵エコー画像X,YをCNNに学習画像として与えて学習させる。 In the control device 2, a convolutional neural network (CNN) 3 having a known configuration including an appropriate number of convolution layers 31, pooling layers 32, and fully connected layers 33 as shown in FIG. 4 is configured. The flaw echo images X and Y generated from the flaw echo signals Sa1 and Sa2 of the flaw and surface flaw are given to the CNN as learning images for learning.

本実施形態では表面疵の学習画像を149枚、表層疵の学習画像を130枚与えて所定のパラメータ値で学習させた。続いて学習させたCNN3に、表面疵の新たな疵エコー画像X,Yであるテスト画像を154枚、表層疵の新たな疵エコー画像X,Yであるテスト画像を132枚与えてそれぞれのテスト正解率を得た。これによると表面疵に対する正解率は94.8%、表層疵に対する正解率は88.6%であった。これを表1(a)に示す。 In this embodiment, 149 learning images of surface flaws and 130 learning images of surface flaws were provided to perform learning using predetermined parameter values. Next, the trained CNN3 was given 154 test images that are new flaw echo images X and Y of surface flaws, and 132 test images that are new flaw echo images X and Y of surface flaws, and each test was performed. I got the correct answer rate. According to this, the accuracy rate for surface flaws was 94.8%, and the accuracy rate for surface flaws was 88.6%. This is shown in Table 1(a).

これに対して、参考例として、表面疵と表層疵の疵エコー信号に対応した各デジタル信号のデータ列の、ピークデータの前後各50個をそのまま学習データ列としてCNN3に与えた場合には、上記学習画像におけるパラメータ値と同一値で学習を繰り返しても、表1(b)に示すように、学習結果の正解率は82.4%にしかならず、またテストデータ列に対するテスト正解率も表面疵で83.8%、表層疵で83.3%と、いずれも疵エコー画像を与えた場合に比してテスト正解率は劣ったものになる。 On the other hand, as a reference example, if 50 pieces of data before and after the peak data of each digital signal data string corresponding to the flaw echo signals of surface flaws and surface layer flaws are directly fed to CNN3 as learning data strings, Even if learning is repeated with the same parameter values as in the above learning image, the correct answer rate of the learning result is only 82.4%, as shown in Table 1 (b), and the test correct answer rate for the test data string also has surface defects. The test accuracy rate was 83.8% for surface defects and 83.3% for superficial defects, both of which were inferior to the case where a defect echo image was provided.

上記実施形態では、制御装置内のコンピュータにデジタル信号のデータ列を取り込んでグラフ化することによって疵エコー画像を得るようにしたが、例えばオシロスコープで得られたアナログの疵エコー信号の必要領域X´,Y´を写真撮影する等の手段で疵エコー画像を得るようにしても良い。 In the above embodiment, the flaw echo image is obtained by importing the data string of the digital signal into the computer in the control device and graphing it, but for example, the required area , Y' may be photographed to obtain a flaw echo image.

1…フェーズドアレイ探触子、2…制御装置、3…畳み込みニューラルネットワーク、M…丸棒材、M1…表面疵、M2…表層疵、Sa1,Sa2…疵エコー信号、Ub…横波超音波ビーム(斜角探傷用超音波)、X,Y…疵エコー画像。 1... Phased array probe, 2... Control device, 3... Convolutional neural network, M... Round bar, M1... Surface flaw, M2... Surface flaw, Sa1, Sa2... Flaw echo signal, Ub... Transverse wave ultrasonic beam ( Ultrasound for oblique flaw detection), X, Y...Flaw echo image.

Claims (1)

丸棒材の表面、および当該表面直下の表層を含む領域で収束する超音波を送信しつつこれを前記丸棒材の周面に沿う方向で走査し、前記丸棒材の表面疵、ないし表面直下の丸棒材内部に生じる表層疵で反射して戻る反射超音波を受信して疵エコー信号とし、表面疵と表層疵の疵エコー信号に対応した各デジタル信号のデータ列からピーク値を示すデータを検出して当該ピーク値を示すデータの前後一定数のデータを抽出して、これらのデータから横軸をデータ位置、縦軸をデータ値としてグラフ化した二次元の疵エコー画像を生成し、必要数の前記疵エコー画像を学習データとしてニューラルネットワークに与えて学習させ、学習済みの前記ニューラルネットワークに対して新たな前記疵エコー画像を与えて、当該疵エコー画像に対応する疵が前記表面疵か表層疵かを判別させることを特徴とする丸棒材の超音波探傷方法。 Ultrasonic waves that converge on the surface of the round bar material and a region including the surface layer immediately below the surface are transmitted and scanned in a direction along the circumferential surface of the round bar material to detect surface flaws or surface defects of the round bar material. The reflected ultrasonic waves that are reflected from the surface flaws that occur inside the round bar material directly below are received and returned as flaw echo signals, and the peak values are shown from the data string of each digital signal corresponding to the flaw echo signals of surface flaws and surface flaws. Detects the data, extracts a certain number of data before and after the data that indicates the peak value, and generates a two-dimensional flaw echo image from these data, which is graphed with the horizontal axis as the data position and the vertical axis as the data value. , give a necessary number of said flaw echo images as learning data to a neural network for learning, give a new said flaw echo image to said neural network that has already been trained, and check that the flaw corresponding to said flaw echo image is on said surface. An ultrasonic flaw detection method for round bar material, characterized by determining whether it is a flaw or a surface flaw.
JP2020070115A 2020-04-09 2020-04-09 Ultrasonic flaw detection method for round bar materials Active JP7415757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020070115A JP7415757B2 (en) 2020-04-09 2020-04-09 Ultrasonic flaw detection method for round bar materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020070115A JP7415757B2 (en) 2020-04-09 2020-04-09 Ultrasonic flaw detection method for round bar materials

Publications (2)

Publication Number Publication Date
JP2021167730A JP2021167730A (en) 2021-10-21
JP7415757B2 true JP7415757B2 (en) 2024-01-17

Family

ID=78079613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020070115A Active JP7415757B2 (en) 2020-04-09 2020-04-09 Ultrasonic flaw detection method for round bar materials

Country Status (1)

Country Link
JP (1) JP7415757B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541765A (en) 2006-06-30 2009-11-26 ヴイ・アンド・エム・フランス Non-destructive inspection for pipes, especially during production or in the finished state
JP2011506992A (en) 2007-12-21 2011-03-03 ヴイ・アンド・エム・フランス Non-destructive inspection for pipes, especially during production or in the finished state
JP2012225887A (en) 2011-04-22 2012-11-15 Daido Steel Co Ltd Ultrasonic flaw detection method for round bar material
JP2013156104A (en) 2012-01-30 2013-08-15 Hitachi Ltd Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welded part
JP2016200566A (en) 2015-04-14 2016-12-01 積水化学工業株式会社 Degradation testing method and layer thickness testing method of multilayer body, and degradation testing apparatus and layer thickness testing apparatus of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153744A (en) * 1985-12-27 1987-07-08 Tokyo Keiki Co Ltd Probe rotating type ultrasonic flaw detection apparatus
JPS62162958A (en) * 1986-01-13 1987-07-18 Mitsubishi Electric Corp Ultrasonic flaw detecting method
JPS62194454A (en) * 1986-02-20 1987-08-26 Nippon Steel Corp Method for inspecting flaw of steel pipe welded part
JPH0333652A (en) * 1989-06-30 1991-02-13 Hitachi Ltd Ultrasonic inspection method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541765A (en) 2006-06-30 2009-11-26 ヴイ・アンド・エム・フランス Non-destructive inspection for pipes, especially during production or in the finished state
JP2011506992A (en) 2007-12-21 2011-03-03 ヴイ・アンド・エム・フランス Non-destructive inspection for pipes, especially during production or in the finished state
JP2012225887A (en) 2011-04-22 2012-11-15 Daido Steel Co Ltd Ultrasonic flaw detection method for round bar material
JP2013156104A (en) 2012-01-30 2013-08-15 Hitachi Ltd Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welded part
JP2016200566A (en) 2015-04-14 2016-12-01 積水化学工業株式会社 Degradation testing method and layer thickness testing method of multilayer body, and degradation testing apparatus and layer thickness testing apparatus of the same

Also Published As

Publication number Publication date
JP2021167730A (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
JP5824858B2 (en) Method and apparatus for imaging structure of welded portion
JP2010527015A5 (en)
JP4792440B2 (en) Pipe weld inspection system
US10921291B2 (en) Method for inspecting a weld seam
CN107356670A (en) A kind of ultrasonic phase array weld defect detection method based on oblique incidence
JP2004279144A (en) Ultrasonic inspection method and device
JP6058284B2 (en) Ultrasonic flaw detection apparatus and method
JP7415757B2 (en) Ultrasonic flaw detection method for round bar materials
JP6290748B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
CN108663434A (en) A kind of coarse grain material total focus detection method of phased array supersonic defectoscope
WO2008010711A1 (en) System and method for measuring on a wall of a pipeline with the aid of at least one ultrasonic beam
KR102014947B1 (en) Apparatus and method for evaluating effect of dead elements in a phased array ultrasonic probe
Boehm et al. Advanced crack shape analysis using SAFT
Kapoor et al. On parameters affecting the sensitivity of ultrasonic testing of tubes: experimental and simulation
JP5456367B2 (en) Phased array aperture synthesis processing method
US6295677B1 (en) Method for inspecting liquid filled pipes using magnetostrictive sensors
CN113256566A (en) Pipeline weld defect identification method
JP6761780B2 (en) Defect evaluation method
Lukacs et al. Grating-lobe Suppression through Angular Weighting for Laser Induced Phased Arrays
JP2019174239A (en) Ultrasonic flaw detection method
JP2023081401A (en) Ultrasonic flaw detection method for round bar material
JP2021139821A (en) Ultrasonic flaw detection method for round bar material
Zhang et al. Ultrasonic flaw recognition by multi-angle phased array data integration
RU2395802C1 (en) Method of ultrasound control over butt-welded seams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150