JP7411161B2 - Energy storage element - Google Patents

Energy storage element Download PDF

Info

Publication number
JP7411161B2
JP7411161B2 JP2020062569A JP2020062569A JP7411161B2 JP 7411161 B2 JP7411161 B2 JP 7411161B2 JP 2020062569 A JP2020062569 A JP 2020062569A JP 2020062569 A JP2020062569 A JP 2020062569A JP 7411161 B2 JP7411161 B2 JP 7411161B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020062569A
Other languages
Japanese (ja)
Other versions
JP2021163583A (en
Inventor
明彦 宮崎
謙太 尾木
佑平 板井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2020062569A priority Critical patent/JP7411161B2/en
Publication of JP2021163583A publication Critical patent/JP2021163583A/en
Application granted granted Critical
Publication of JP7411161B2 publication Critical patent/JP7411161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、蓄電素子に関する。 The present invention relates to a power storage element.

特許文献1には、正極及び負極が絶縁された層状の構造を成し、前記正極及び前記負極はそれぞれ複数枚の正極タブ及び負極タブが積層状態で電極端子と電気的に接続された電極組立体を備える蓄電装置であって、
前記負極は、第1の活物質と前記第1の活物質より質量当たりの容量が大きな第2の活物質とが塗布されて負極活物質層が形成されており、前記負極活物質層は、少なくとも前記負極タブの突出方向におけるタブ側縁部の領域の前記負極活物質層の面積当たりの容量が、前記負極タブの突出方向における中央部の領域の前記負極活物質層の面積当たりの容量より大きくなるように、前記第1の活物質及び前記第2の活物質の混合割合が調整されて塗布されていることを特徴とする蓄電装置、が記載されている。
Patent Document 1 discloses an electrode assembly in which a positive electrode and a negative electrode have an insulated layered structure, and each of the positive electrode and the negative electrode has a plurality of positive electrode tabs and negative electrode tabs stacked and electrically connected to an electrode terminal. A power storage device comprising a three-dimensional structure,
In the negative electrode, a first active material and a second active material having a larger capacity per mass than the first active material are coated to form a negative electrode active material layer, and the negative electrode active material layer includes: At least the capacity per area of the negative electrode active material layer in the tab side edge region in the projecting direction of the negative electrode tab is greater than the capacity per area of the negative electrode active material layer in the central region in the projecting direction of the negative electrode tab. There is described a power storage device characterized in that the first active material and the second active material are applied in such a manner that the mixing ratio of the first active material and the second active material increases.

特開2016-12541号公報Japanese Patent Application Publication No. 2016-12541

本発明の目的は、ハイレートでの充電時に負極における金属の析出が生じることを抑制できる蓄電素子を提供することである。 An object of the present invention is to provide a power storage element that can suppress metal deposition on the negative electrode during high-rate charging.

本発明の一側面に係る蓄電素子は、
正極活物質層を有する正極と、前記正極活物質層と対向する負極活物質層を有する負極とを備え、
前記負極は、シート状の集電基材と、該集電基材の少なくとも一方の面に重なった前記負極活物質層とを有し、
前記集電基材は、本体部と、該本体部から外側へ突出したタブ部とを有し、
前記負極活物質層は、前記本体部と前記タブ部との境界を越えて前記タブ部の一部にも重なり、以下の条件:
(1)前記負極活物質層の単位面積当たりの質量は、前記タブ部では前記本体部よりも大きい;および、
(2)前記負極活物質層の厚さは、前記タブ部では前記本体部よりも厚い;
の少なくとも一方を満たす。
A power storage element according to one aspect of the present invention includes:
A positive electrode having a positive electrode active material layer, and a negative electrode having a negative electrode active material layer facing the positive electrode active material layer,
The negative electrode has a sheet-like current collecting base material and the negative electrode active material layer overlapping at least one surface of the current collecting base material,
The current collecting base material has a main body portion and a tab portion protruding outward from the main body portion,
The negative electrode active material layer crosses the boundary between the main body part and the tab part and overlaps a part of the tab part, and the following conditions are met:
(1) The mass per unit area of the negative electrode active material layer is larger in the tab portion than in the main body portion; and
(2) the thickness of the negative electrode active material layer is thicker in the tab portion than in the main body portion;
satisfies at least one of the following.

本発明の一側面に係る蓄電素子は、ハイレートでの充電時に負極における金属の析出が生じることが抑制されている。 In the electricity storage element according to one aspect of the present invention, metal precipitation on the negative electrode is suppressed during high-rate charging.

図1は、本実施形態に係る蓄電素子の斜視図である。FIG. 1 is a perspective view of a power storage element according to this embodiment. 図2は、本実施形態に係る蓄電素子の巻回型電極体の斜視図である。FIG. 2 is a perspective view of a wound electrode body of a power storage element according to this embodiment. 図3は、積層された負極(集電基材のタブ部)及び正極を厚さ方向に切断した断面図である。FIG. 3 is a cross-sectional view of the laminated negative electrode (tab portion of the current collecting base material) and positive electrode cut in the thickness direction. 図4は、負極の一部を厚さ方向の一方から見た模式図である。FIG. 4 is a schematic diagram of a part of the negative electrode viewed from one side in the thickness direction. 図5は、負極の一部を厚さ方向に切断した断面図である。FIG. 5 is a cross-sectional view of a part of the negative electrode cut in the thickness direction. 図6は、本実施形態に係る蓄電素子を複数備えた蓄電装置の概略図である。FIG. 6 is a schematic diagram of a power storage device including a plurality of power storage elements according to the present embodiment.

始めに、本明細書によって開示される蓄電素子の概要について説明する。 First, an overview of the power storage element disclosed in this specification will be explained.

本発明の一側面に係る蓄電素子1は、
正極活物質層42を有する正極40と、前記正極活物質層42と対向する負極活物質層52を有する負極50とを備え、
前記負極50は、シート状の集電基材51と、該集電基材51の少なくとも一方の面に重なった前記負極活物質層52とを有し、
前記集電基材51は、本体部511と、該本体部511から外側へ突出したタブ部512とを有し、
前記負極活物質層52は、前記本体部511と前記タブ部512との境界を越えて前記タブ部512の一部にも重なり、以下の条件:
(1)前記負極活物質層52の単位面積当たりの質量は、前記タブ部512では前記本体部511よりも大きい;および、
(2)前記負極活物質層52の厚さは、前記タブ部512では前記本体部511よりも厚い;
の少なくとも一方を満たす。
The power storage element 1 according to one aspect of the present invention includes:
A positive electrode 40 having a positive electrode active material layer 42, and a negative electrode 50 having a negative electrode active material layer 52 facing the positive electrode active material layer 42,
The negative electrode 50 includes a sheet-shaped current collecting base material 51 and the negative electrode active material layer 52 overlapping at least one surface of the current collecting base material 51,
The current collecting base material 51 has a main body part 511 and a tab part 512 protruding outward from the main body part 511,
The negative electrode active material layer 52 crosses the boundary between the main body part 511 and the tab part 512 and overlaps a part of the tab part 512 under the following conditions:
(1) The mass per unit area of the negative electrode active material layer 52 is larger in the tab portion 512 than in the main body portion 511; and
(2) the negative electrode active material layer 52 is thicker in the tab portion 512 than in the main body portion 511;
satisfies at least one of the following.

上記蓄電素子1によれば、ハイレートでの充電時に負極における金属の析出が生じることが抑制されている。このような効果が生じる理由は、例えば以下のように推測される。
すなわち、上記の蓄電素子1において、充電時に負極50のタブ部512において電流が集中しやすい。タブ部512に重なった負極活物質層52では、電流集中の影響を受けて金属の析出が起こりやすい。これに対して(1)の場合、負極50のタブ部512における負極活物質層52の単位面積当たりの質量が本体部511よりも大きいことによって、単位面積当たりの負極活物質量がタブ部512でより大きくなっている。これにより、充電時においてLiイオンなどの金属イオンがより多く負極活物質に取り込まれる。従って、負極活物質に取り込まれなかった金属イオンが負極において金属となって析出することを抑制できる。また、(2)の場合、負極50のタブ部512における負極活物質層52の厚さが本体部511よりも厚いことによって、単位面積当たりの負極活物質量がタブ部512でより大きくなっている。よって、同様に、負極における金属の析出が起こることを抑制できる。この抑制は、特にハイレートでの充電時において有効である。ただし、上記理由に限定的に解釈されるものではない。
なお、ハイレートとは、例えば(電池の定格容量を1時間で完全充電させる電流の大きさを1Cと定義した際に)2C以上の充電速度である。
According to the power storage element 1 described above, metal precipitation at the negative electrode is suppressed during high-rate charging. The reason why such an effect occurs is presumed to be as follows, for example.
That is, in the electricity storage element 1 described above, current tends to concentrate at the tab portion 512 of the negative electrode 50 during charging. In the negative electrode active material layer 52 overlapping the tab portion 512, metal deposition is likely to occur due to the influence of current concentration. On the other hand, in the case of (1), the mass per unit area of the negative electrode active material layer 52 in the tab portion 512 of the negative electrode 50 is larger than that in the main body portion 511, so that the amount of negative electrode active material per unit area is smaller than that in the tab portion 512. is larger. As a result, more metal ions such as Li ions are incorporated into the negative electrode active material during charging. Therefore, it is possible to suppress metal ions that have not been incorporated into the negative electrode active material from becoming metal and precipitating in the negative electrode. In the case of (2), since the thickness of the negative electrode active material layer 52 in the tab portion 512 of the negative electrode 50 is thicker than that in the main body portion 511, the amount of negative electrode active material per unit area becomes larger in the tab portion 512. There is. Therefore, metal precipitation at the negative electrode can be similarly suppressed. This suppression is particularly effective during high rate charging. However, this should not be interpreted as being limited to the above reasons.
Note that the high rate is, for example, a charging speed of 2C or more (when the magnitude of the current that completely charges the rated capacity of the battery in one hour is defined as 1C).

ここで、負極50の集電基材51のタブ部512における断面積(A)と、正極活物質層42の表面積(B)との比(B/A)は、30,000以上150,000以下 であってもよい。
これにより、ハイレートでの充電時に負極における金属の析出が生じることをより抑制できる。
Here, the ratio (B/A) of the cross-sectional area (A) at the tab portion 512 of the current collecting base material 51 of the negative electrode 50 to the surface area (B) of the positive electrode active material layer 42 is 30,000 or more and 150,000 The following may be used.
Thereby, it is possible to further suppress metal precipitation at the negative electrode during high-rate charging.

本発明の一実施形態に係る蓄電素子の一例として、非水電解質蓄電素子の構成、非水電解質蓄電装置の構成、及び非水電解質蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。 As an example of a power storage element according to an embodiment of the present invention, a configuration of a non-aqueous electrolyte power storage element, a configuration of a non-aqueous electrolyte power storage device, a method for manufacturing a non-aqueous electrolyte power storage element, and other embodiments will be described in detail. Note that the name of each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.

<非水電解質蓄電素子の構成>
本発明の実施形態に係る非水電解質蓄電素子(以下、単に「蓄電素子」ともいう。)は、正極40、負極50及びセパレータ60を有する電極体2と、非水電解質と、上記電極体2及び非水電解質を収容する容器と、を備える。電極体2は、通常、複数の正極40及び複数の負極50がセパレータ60を介して積層された積層型、又は、正極40及び負極50がセパレータ60を介して積層された状態で巻回された巻回型(以下、詳細に説明)である。非水電解質は、正極40、負極50及びセパレータ60に含まれた状態で存在する。以下、非水電解質蓄電素子の一例として、非水電解質二次電池(特にリチウムイオン二次電池、以下、単に「二次電池」ともいう。)について説明するが、本発明の適用対象を限定する意図ではない。
<Configuration of non-aqueous electrolyte storage element>
A non-aqueous electrolyte storage device (hereinafter also simply referred to as a "power storage device") according to an embodiment of the present invention includes an electrode body 2 having a positive electrode 40, a negative electrode 50, and a separator 60, a non-aqueous electrolyte, and the electrode body 2. and a container containing a non-aqueous electrolyte. The electrode body 2 is usually a laminated type in which a plurality of positive electrodes 40 and a plurality of negative electrodes 50 are laminated with a separator 60 in between, or a laminated type in which a plurality of positive electrodes 40 and a negative electrode 50 are laminated with a separator 60 in between. It is a wound type (described in detail below). The non-aqueous electrolyte exists in the positive electrode 40, negative electrode 50, and separator 60. A nonaqueous electrolyte secondary battery (particularly a lithium ion secondary battery, hereinafter also simply referred to as a "secondary battery") will be described below as an example of a nonaqueous electrolyte storage element, but the scope of application of the present invention will be limited. Not my intention.

本実施形態の蓄電素子1は、図1及び図2に示すように、巻回された状態の巻回型の電極体2と、電極体2を収容するケース3と、を備える。また、蓄電素子1は、少なくとも一部を露出させた状態でケース3に取り付けられる又はケース3の少なくとも一部によって構成される2つの外部端子(正極端子4及び負極端子5)を備える。電極体2は、ケース3内において、集電部材などを介して各外部端子4,5と接続されている。
本実施形態の蓄電素子1は、ケース3に収容された電極体2を備える。ケース3は、扁平な直方体状であり、一方に向けて開口したケース本体31と、ケース本体31の開口を覆う長細い矩形状の蓋体32とを有する。2つの外部端子4,5は、蓋体32の長辺方向に離間して配置されている。
As shown in FIGS. 1 and 2, the power storage element 1 of this embodiment includes a wound-type electrode body 2 and a case 3 that houses the electrode body 2. Furthermore, the power storage element 1 includes two external terminals (a positive terminal 4 and a negative terminal 5) that are attached to the case 3 in a state where at least a portion thereof is exposed or are constituted by at least a portion of the case 3. The electrode body 2 is connected to each external terminal 4, 5 within the case 3 via a current collecting member or the like.
The power storage element 1 of this embodiment includes an electrode body 2 housed in a case 3. The case 3 has a flat rectangular parallelepiped shape and includes a case body 31 that is open toward one side and a long and narrow rectangular lid 32 that covers the opening of the case body 31. The two external terminals 4 and 5 are spaced apart from each other in the long side direction of the lid body 32.

電極体2は、図2及び図3に示すように、長尺シート状の正極40と、長尺シート状の負極50と、シート状の2つのセパレータ60,60とが重ねられ、さらに巻回されて形成されている。2つのセパレータ60,60は、正極40及び負極50を電気的に絶縁するようにそれぞれ配置されている。本実施形態では、電極体2は、扁平な巻回体である。電極体2の巻回軸方向がケース本体31の開口方向と同じ方向となるように、電極体2がケース3内に配置されている。 As shown in FIGS. 2 and 3, the electrode body 2 includes a long sheet-like positive electrode 40, a long sheet-like negative electrode 50, and two sheet-like separators 60, 60, which are stacked one on top of the other, and are further wound. has been formed. The two separators 60, 60 are arranged to electrically insulate the positive electrode 40 and the negative electrode 50, respectively. In this embodiment, the electrode body 2 is a flat wound body. The electrode body 2 is arranged in the case 3 so that the direction of the winding axis of the electrode body 2 is the same as the opening direction of the case body 31.

電極体2は、帯状の正極40における幅方向の一方の長辺が突出した複数の正極のタブ部412を有する。斯かる複数の正極のタブ部412は、正極基材41(集電基材41)の一部で構成されている。また、電極体2は、同様に、帯状の負極50における幅方向の一方の長辺が突出した複数のタブ部512(負極のタブ部512)を有する。斯かる複数のタブ部512(負極のタブ部512)は、負極基材51(集電基材51)の一部で構成されている。
正極40の複数の正極のタブ部412は、正極40及び負極50が積層する方向に並んで配置されている。負極50の複数のタブ部512(負極のタブ部512)も同様である。また、正極40の複数の正極のタブ部412と負極50の複数のタブ部512(負極のタブ部512)とは、互いに離間した2つの外部端子4,5と同様に、ケース3の蓋体32の長辺方向に離間して配置されている。
The electrode body 2 has a plurality of positive electrode tab portions 412 from which one long side in the width direction of the strip-shaped positive electrode 40 projects. The tab portions 412 of the plurality of positive electrodes are constituted by a part of the positive electrode base material 41 (current collection base material 41). Further, the electrode body 2 similarly includes a plurality of tab portions 512 (negative electrode tab portions 512) in which one long side in the width direction of the strip-shaped negative electrode 50 projects. The plurality of tab portions 512 (negative electrode tab portions 512) are constituted by a part of the negative electrode base material 51 (current collection base material 51).
The plurality of positive electrode tab portions 412 of the positive electrode 40 are arranged in line in the direction in which the positive electrode 40 and the negative electrode 50 are stacked. The same applies to the plurality of tab portions 512 (negative electrode tab portions 512) of the negative electrode 50. Further, the plurality of positive electrode tab portions 412 of the positive electrode 40 and the plurality of tab portions 512 (negative electrode tab portions 512) of the negative electrode 50 are connected to the lid of the case 3 in the same manner as the two external terminals 4 and 5 spaced apart from each other. 32 are spaced apart from each other in the long side direction.

(正極)
正極40は、正極基材41(正極の集電基材41)と、当該正極基材41に直接又は中間層(図示せず)を介して配される正極活物質層42とを有する。本実施形態では、図3に示すように、正極基材41(正極の集電基材41)の両面に正極活物質層42がそれぞれ重ねられている。
正極基材41(正極の集電基材41)は、正極の本体部と、正極の本体部から外側へ突出した正極のタブ部412とを有する。正極活物質層42は、正極の本体部に重なり、正極のタブ部412には重なっていない。正極のタブ部412では、正極基材41(正極の集電基材41)が露出している。
正極活物質層42の端縁は、セパレータ60を介して対向する負極活物質層52の端縁よりも内側に配置されている。
正極活物質層42は、負極活物質層52との間で充放電反応を起こす。
(positive electrode)
The positive electrode 40 includes a positive electrode base material 41 (positive electrode current collecting base material 41), and a positive electrode active material layer 42 disposed on the positive electrode base material 41 directly or via an intermediate layer (not shown). In this embodiment, as shown in FIG. 3, positive electrode active material layers 42 are stacked on both sides of a positive electrode base material 41 (positive electrode current collection base material 41).
The positive electrode base material 41 (positive electrode current collecting base material 41) has a positive electrode main body portion and a positive electrode tab portion 412 protruding outward from the positive electrode main body portion. The positive electrode active material layer 42 overlaps the main body portion of the positive electrode and does not overlap the tab portion 412 of the positive electrode. In the tab portion 412 of the positive electrode, the positive electrode base material 41 (the current collecting base material 41 of the positive electrode) is exposed.
The edge of the positive electrode active material layer 42 is arranged on the inner side of the edge of the negative electrode active material layer 52, which is opposed to the positive electrode active material layer 42 with the separator 60 interposed therebetween.
The positive electrode active material layer 42 causes a charge/discharge reaction with the negative electrode active material layer 52.

正極基材41(集電基材41)は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。正極基材41の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材41としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材41としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085、A3003等が例示できる。 The positive electrode base material 41 (current collection base material 41) has electrical conductivity. Whether or not it has "conductivity" is determined by using a volume resistivity of 10 7 Ω·cm as a threshold value, which is measured in accordance with JIS-H-0505 (1975). As the material of the positive electrode base material 41, metals such as aluminum, titanium, tantalum, stainless steel, or alloys thereof are used. Among these, aluminum or aluminum alloy is preferred from the viewpoint of potential resistance, high conductivity, and cost. Examples of the positive electrode base material 41 include foil, vapor deposited film, etc., and foil is preferable from the viewpoint of cost. Therefore, as the positive electrode base material 41, aluminum foil or aluminum alloy foil is preferable. Examples of aluminum or aluminum alloy include A1085 and A3003 specified in JIS-H-4000 (2014).

正極基材41(集電基材41)の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材41の平均厚さを上記の範囲とすることで、正極基材41の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the positive electrode base material 41 (current collector base material 41) is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, even more preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode base material 41 within the above range, the energy density per volume of the secondary battery can be increased while increasing the strength of the positive electrode base material 41.

中間層は、正極基材41と正極活物質層42との間に配される層である。中間層は、炭素粒子等の導電性を有する粒子を含むことで正極基材41と正極活物質層42との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、樹脂バインダ及び導電性を有する粒子を含む。 The intermediate layer is a layer disposed between the positive electrode base material 41 and the positive electrode active material layer 42. The intermediate layer reduces contact resistance between the positive electrode base material 41 and the positive electrode active material layer 42 by containing conductive particles such as carbon particles. The structure of the intermediate layer is not particularly limited, and includes, for example, a resin binder and conductive particles.

正極活物質層42は、正極活物質を含む。正極活物質層42は、必要に応じて、導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。 The positive electrode active material layer 42 contains a positive electrode active material. The positive electrode active material layer 42 contains optional components such as a conductive agent, a binder, a thickener, and a filler, as necessary.

正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LixMn、LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO,Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層42においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The positive electrode active material can be appropriately selected from known positive electrode active materials. As a positive electrode active material for a lithium ion secondary battery, a material that can insert and release lithium ions is usually used. Examples of the positive electrode active material include a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure, a lithium transition metal composite oxide having a spinel type crystal structure, a polyanion compound, a chalcogen compound, and sulfur. Examples of lithium transition metal composite oxides having α-NaFeO type 2 crystal structure include Li[Li x Ni (1-x) ]O 2 (0≦x<0.5), Li[Li x Ni γ Co ( 1-x-γ )]O 2 (0≦x<0.5, 0<γ<1), Li[Li x Co (1-x) ]O 2 (0≦x<0.5), Li[ Li x Ni γ Mn (1-x-γ) ]O 2 (0≦x<0.5, 0<γ<1), Li[Li x Ni γ Mn β Co (1-x-γ-β) ] O 2 (0≦x<0.5, 0<γ, 0<β, 0.5<γ+β<1), Li[Li x Ni γ Co β Al (1-x-γ-β) ]O 2 ( Examples include 0≦x<0.5, 0<γ, 0<β, 0.5<γ+β<1). Examples of the lithium transition metal composite oxide having a spinel crystal structure include LixMn 2 O 4 and Li x Ni γ Mn (2-γ) O 4 . Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, and the like. Examples of chalcogen compounds include titanium disulfide, molybdenum disulfide, molybdenum dioxide, and the like. Atoms or polyanions in these materials may be partially substituted with atoms or anion species of other elements. The surfaces of these materials may be coated with other materials. In the positive electrode active material layer 42, one type of these materials may be used alone, or two or more types may be used in combination.

正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層42の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径 」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。 The positive electrode active material is usually particles (powder). The average particle size of the positive electrode active material is preferably, for example, 0.1 μm or more and 20 μm or less. By setting the average particle size of the positive electrode active material to be equal to or larger than the above lower limit, manufacturing or handling of the positive electrode active material becomes easier. By setting the average particle size of the positive electrode active material to be less than or equal to the above upper limit, the electronic conductivity of the positive electrode active material layer 42 is improved. In addition, when using a composite of a positive electrode active material and another material, let the average particle diameter of the composite be the average particle diameter of the positive electrode active material. "Average particle size" is based on the particle size distribution measured by laser diffraction/scattering method on a diluted solution of particles diluted with a solvent, in accordance with JIS-Z-8825 (2013). -2 (2001), meaning the value at which the volume-based cumulative distribution calculated in accordance with 2001 is 50%.

粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 A pulverizer, classifier, etc. are used to obtain powder with a predetermined particle size. Examples of the pulverization method include methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, swirling jet mill, or sieve. At the time of pulverization, wet pulverization in which water or an organic solvent such as hexane is present can also be used. As for the classification method, a sieve, a wind classifier, etc. may be used, both dry and wet, as necessary.

正極活物質層42における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層42の高エネルギー密度化と製造性を両立できる。 The content of the positive electrode active material in the positive electrode active material layer 42 is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less. By setting the content of the positive electrode active material within the above range, it is possible to achieve both high energy density and manufacturability of the positive electrode active material layer 42.

(任意成分)
導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛化炭素、非黒鉛化炭素、グラフェン系炭素等が挙げられる。非黒鉛化炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
(optional ingredient)
The conductive agent is not particularly limited as long as it is a conductive material. Examples of such conductive agents include carbonaceous materials, metals, conductive ceramics, and the like. Examples of the carbonaceous material include graphitized carbon, non-graphitized carbon, graphene-based carbon, and the like. Examples of non-graphitized carbon include carbon nanofibers, pitch-based carbon fibers, carbon black, and the like. Examples of carbon black include furnace black, acetylene black, Ketjen black, and the like. Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerene. Examples of the shape of the conductive agent include powder, fiber, and the like. As the conductive agent, one type of these materials may be used alone, or two or more types may be used in combination. Further, these materials may be used in combination. For example, a composite material of carbon black and CNT may be used. Among these, carbon black is preferred from the viewpoint of electronic conductivity and coatability, and acetylene black is particularly preferred.

導電剤を使用する場合、正極活物質層42における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、二次電池のエネルギー密度を高めることができる。 When using a conductive agent, the content of the conductive agent in the positive electrode active material layer 42 is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the content of the conductive agent within the above range, the energy density of the secondary battery can be increased.

バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。なかでも、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)等の溶剤系バインダが好ましい。 Examples of binders include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacrylic, polyimide, etc.; ethylene-propylene-diene rubber (EPDM), sulfone. Examples include elastomers such as chemically modified EPDM, styrene butadiene rubber (SBR), and fluororubber; polysaccharide polymers, and the like. Among these, solvent-based binders such as fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.) are preferred.

バインダを使用する場合、正極活物質層42におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。 When using a binder, the content of the binder in the positive electrode active material layer 42 is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder within the above range, the active material can be stably held.

増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。増粘剤を使用する場合、正極活物質層42における増粘剤の含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、正極活物質層42が上記増粘剤を含まない態様で好ましく実施され得る。 Examples of the thickener include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group that reacts with lithium or the like, this functional group may be deactivated in advance by methylation or the like. When using a thickener, the content of the thickener in the positive electrode active material layer 42 is preferably 8% by mass or less, more preferably 5% by mass or less. The technology disclosed herein can be preferably implemented in an embodiment in which the positive electrode active material layer 42 does not contain the above-mentioned thickener.

フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。フィラーを使用する場合、正極活物質層42におけるフィラーの含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、正極活物質層42が上記フィラーを含まない態様で好ましく実施され得る。 The filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate, magnesium hydroxide, calcium hydroxide, and hydroxide. Hydroxides such as aluminum, carbonates such as calcium carbonate, poorly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Examples include substances derived from mineral resources such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof. When using a filler, the content of the filler in the positive electrode active material layer 42 is preferably 8% by mass or less, more preferably 5% by mass or less. The technology disclosed herein can be preferably implemented in an embodiment in which the positive electrode active material layer 42 does not contain the filler.

正極活物質層42は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer 42 is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners, It may be contained as a component other than filler.

(負極)
負極50は、負極基材51(負極の集電基材51)と、当該負極基材51に直接又は中間層を介して配される負極活物質層52とを有する。中間層の構成は特に限定されず、例えば上記正極40で例示した構成から選択することができる。
(Negative electrode)
The negative electrode 50 includes a negative electrode base material 51 (negative electrode current collecting base material 51), and a negative electrode active material layer 52 disposed on the negative electrode base material 51 directly or via an intermediate layer. The configuration of the intermediate layer is not particularly limited, and can be selected from the configurations exemplified for the positive electrode 40, for example.

本実施形態では、図3に示すように、負極基材51(負極の集電基材51)の両面に負極活物質層52がそれぞれ重ねられている。
負極基材51(負極の集電基材51)は、本体部511と、本体部511から外側へ突出したタブ部512(負極のタブ部512)とを有する。負極活物質層52は、例えば図4に示すように、本体部511の全体に重なり、また、本体部511とタブ部512との境界を越えてタブ部512の一部にも重なっている。タブ部512の大部分では、負極基材51(負極の集電基材51)が露出している。
負極活物質層52の端縁は、セパレータ60を介して対向する正極活物質層42の端縁よりも外側に配置されている。
In this embodiment, as shown in FIG. 3, negative electrode active material layers 52 are stacked on both sides of a negative electrode base material 51 (negative electrode current collection base material 51).
The negative electrode base material 51 (negative electrode current collecting base material 51) has a main body part 511 and a tab part 512 (negative electrode tab part 512) protruding outward from the main body part 511. For example, as shown in FIG. 4, the negative electrode active material layer 52 overlaps the entire body portion 511, and also overlaps a portion of the tab portion 512 across the boundary between the body portion 511 and the tab portion 512. In most of the tab portion 512, the negative electrode base material 51 (negative electrode current collection base material 51) is exposed.
The edge of the negative electrode active material layer 52 is arranged on the outer side of the edge of the positive electrode active material layer 42 that faces the negative electrode active material layer 52 with the separator 60 interposed therebetween.

本実施形態では、下記の(1)及び(2)の少なくともいずれか一方が満たされる。
(1)負極活物質層52の単位面積当たりの質量は、タブ部512では本体部511よりも大きい。
(2)負極活物質層52の厚さは、タブ部512では本体部511よりも厚い。
上記の蓄電素子1において、充電時に負極50のタブ部512において電流が集中しやすい。タブ部512に重なった負極活物質層52では、電流集中の影響を受けて金属の析出が起こりやすい。これに対して(1)の場合、負極50のタブ部512における負極活物質層52の単位面積当たりの質量が本体部511よりも大きいことによって、単位面積当たりの負極活物質量がタブ部512でより大きくなっている。これにより、充電時においてLiイオンなどの金属イオンがより多く負極活物質に取り込まれる。従って、負極活物質に取り込まれなかった金属イオンが負極において金属となって析出することを抑制できる。また、(2)の場合、負極50のタブ部512における負極活物質層52の厚さが本体部511よりも厚いことによって、単位面積当たりの負極活物質量がタブ部512でより大きくなっている。よって、同様に、負極における金属の析出が起こることを抑制できる。この抑制は、特にハイレートでの充電時において有効である。
In this embodiment, at least one of the following (1) and (2) is satisfied.
(1) The mass per unit area of the negative electrode active material layer 52 is larger in the tab portion 512 than in the main body portion 511.
(2) The thickness of the negative electrode active material layer 52 is thicker in the tab portion 512 than in the main body portion 511.
In the electricity storage element 1 described above, current tends to concentrate at the tab portion 512 of the negative electrode 50 during charging. In the negative electrode active material layer 52 overlapping the tab portion 512, metal deposition is likely to occur due to the influence of current concentration. On the other hand, in the case of (1), the mass per unit area of the negative electrode active material layer 52 in the tab portion 512 of the negative electrode 50 is larger than that in the main body portion 511, so that the amount of negative electrode active material per unit area is smaller than that in the tab portion 512. is larger. As a result, more metal ions such as Li ions are incorporated into the negative electrode active material during charging. Therefore, it is possible to suppress metal ions that have not been incorporated into the negative electrode active material from becoming metal and precipitating in the negative electrode. In the case of (2), since the thickness of the negative electrode active material layer 52 in the tab portion 512 of the negative electrode 50 is thicker than that in the main body portion 511, the amount of negative electrode active material per unit area becomes larger in the tab portion 512. There is. Therefore, metal precipitation at the negative electrode can be similarly suppressed. This suppression is particularly effective during high rate charging.

上記(1)の条件が満たされる場合、本体部511に重なる負極活物質層52の単位面積当たりの質量(目付量)W2は、タブ部512に重なる負極活物質層52の単位面積当たりの質量W1よりも小さければよく(すなわちW1>W2であればよく)、特に限定されない。W2は、負極基材51の両面に負極活物質層52がそれぞれ形成されている場合、片方の面に重なる負極活物質層52の単位面積当たりの質量(2層分の単位面積当たりの質量の半分の値)である。W2は、例えば、面積100cm当たり、0.1g/100cm以上であることが適当であり、通常は0.2g/100cm以上、典型的には0.3g/100cm以上である。W2は、好ましくは0.40g/100cm以上、より好ましくは0.45g/100cm以上、さらに好ましくは0.48g/100cm以上である。いくつかの態様において、W2は、0.50g/100cm以上であってもよく、0.52g/100cm以上であってもよい。また、W2は、例えば、1.0g/100cm以下とすることができる。W2は、好ましくは0.8g/100cm以下、より好ましくは0.7g/100cm以下、さらに好ましくは0.65g/100cm以下である。いくつかの態様において、W2は、0.60g/100cm以下であってもよく、0.55g/100cm以下であってもよい。なお、上記W2の値は、本体部511全体に重なる負極活物質層52の質量を面積100cm当たりの質量で表したものである。本体部511全体に重なる負極活物質層52の面積は、所定の大きさを有するが任意であり、「g/100cm」という単位は、本体部511全体に重なる負極活物質層52の面積と直接的な関係を有しない。 When the above condition (1) is satisfied, the mass per unit area (fabric weight) W2 of the negative electrode active material layer 52 overlapping the main body part 511 is the mass per unit area of the negative electrode active material layer 52 overlapping the tab part 512. It is not particularly limited as long as it is smaller than W1 (that is, W1>W2). When the negative electrode active material layers 52 are formed on both sides of the negative electrode base material 51, W2 is the mass per unit area of the negative electrode active material layer 52 overlapping on one surface (the mass per unit area of two layers). half the value). For example, W2 is suitably 0.1 g/100 cm 2 or more per 100 cm 2 of area, usually 0.2 g/100 cm 2 or more, typically 0.3 g/100 cm 2 or more. W2 is preferably 0.40 g/100 cm 2 or more, more preferably 0.45 g/100 cm 2 or more, even more preferably 0.48 g/100 cm 2 or more. In some embodiments, W2 may be 0.50 g/100 cm 2 or more, or 0.52 g/100 cm 2 or more. Further, W2 can be, for example, 1.0 g/100 cm 2 or less. W2 is preferably 0.8 g/100 cm 2 or less, more preferably 0.7 g/100 cm 2 or less, even more preferably 0.65 g/100 cm 2 or less. In some embodiments, W2 may be 0.60 g/100 cm 2 or less, or 0.55 g/100 cm 2 or less. Note that the above value of W2 represents the mass of the negative electrode active material layer 52 that overlaps the entire main body portion 511 in terms of mass per 100 cm 2 of area. The area of the negative electrode active material layer 52 that overlaps the entire main body portion 511 has a predetermined size, but is arbitrary, and the unit “g/100cm 2 ” is the area of the negative electrode active material layer 52 that overlaps the entire main body portion 511. There is no direct relationship.

上記(1)の条件が満たされる場合、タブ部512に重なる負極活物質層52の単位面積当たりの質量W1は、本体部511に重なる負極活物質層52の単位面積当たりの質量W2よりも大きければよく、特に限定されない。W1は、負極基材51の両面に負極活物質層52が形成されている場合、片方の面に重なる負極活物質層52の単位面積当たりの質量(2層分の単位面積当たりの質量の半分の値)である。
いくつかの態様において、タブ部512に重なる負極活物質層52の単位面積当たりの質量W1と、本体部511に重なる負極活物質層52の単位面積当たりの質量W2とが、下記式(I)を満たす。
1.0<W1/W2≦1.2 式(I)
上記式(I)が満たされることによって、ハイレートでの充電時に負極における金属の析出が生じることをより確実に抑制できる。ここに開示される技術は、例えば、W1とW2との関係が、
1.005≦W1/W2≦1.150 式(II)、
さらには、1.008≦W1/W2≦1.100 式(III)、
特には、1.010≦W1/W2≦1.050 式(IV)である態様で実施され得る。
なお、W1は、タブ部512の一部に負極活物質層52が重なっている部分の面積で、その部分に重なった負極活物質層52の質量を除することで求められる。従って、W1を算出するための面積は、比較的狭いが任意であり、100cmに限定されない。
When the above condition (1) is satisfied, the mass W1 per unit area of the negative electrode active material layer 52 overlapping the tab portion 512 must be larger than the mass W2 per unit area of the negative electrode active material layer 52 overlapping the main body portion 511. Good, but not particularly limited. When the negative electrode active material layers 52 are formed on both sides of the negative electrode base material 51, W1 is the mass per unit area of the negative electrode active material layer 52 overlapping on one surface (half the mass per unit area of two layers). ).
In some embodiments, the mass W1 per unit area of the negative electrode active material layer 52 overlapping the tab portion 512 and the mass W2 per unit area of the negative electrode active material layer 52 overlapping the main body portion 511 are expressed by the following formula (I). satisfy.
1.0<W1/W2≦1.2 Formula (I)
By satisfying the above formula (I), it is possible to more reliably suppress metal precipitation on the negative electrode during high-rate charging. In the technology disclosed herein, for example, the relationship between W1 and W2 is
1.005≦W1/W2≦1.150 formula (II),
Furthermore, 1.008≦W1/W2≦1.100 formula (III),
In particular, it can be implemented in an embodiment where 1.010≦W1/W2≦1.050 formula (IV).
Note that W1 is the area of the portion where the negative electrode active material layer 52 overlaps with a portion of the tab portion 512, and is determined by dividing the mass of the negative electrode active material layer 52 overlapping that portion. Therefore, the area for calculating W1 is relatively small but arbitrary, and is not limited to 100 cm 2 .

上記(1)の条件を満たす場合、好ましい一態様では、タブ部512に重なる負極活物質層52の平均厚さは、本体部511に重なる負極活物質層52の平均厚さよりも厚い。すなわち、負極活物質層52の単位面積当たりの質量は、タブ部512では本体部511よりも大きく、かつ、負極活物質層52の平均厚さ(負極基材51の両面に負極活物質層52が形成されている場合は各層の平均厚さの合計値)は、タブ部512では本体部511よりも厚い。斯かる態様において、負極活物質層52の平均厚さを本体部511よりもタブ部512において厚くするためには、例えば、合剤組成物をタブ部512においてより多く塗布する一方で、本体部511においてより少なく塗布するとよい。このようにすれば、同一の合剤組成物を用いて、上記W2<W1の関係を満たす負極活物質層52を簡易に形成することができる。この場合、負極活物質層52の全体において単位体積当たりの負極活物質の質量が同じであってもよい。また、負極活物質層52の全体において単位体積当たりの負極活物質層の質量が同じであってもよい。 When the above condition (1) is satisfied, in a preferred embodiment, the average thickness of the negative electrode active material layer 52 overlapping the tab portion 512 is thicker than the average thickness of the negative electrode active material layer 52 overlapping the main body portion 511. That is, the mass per unit area of the negative electrode active material layer 52 is larger in the tab portion 512 than in the main body portion 511, and the average thickness of the negative electrode active material layer 52 (the negative electrode active material layer 52 on both sides of the negative electrode base material 51 is formed, the sum of the average thicknesses of the respective layers) is thicker in the tab portion 512 than in the main body portion 511. In such an embodiment, in order to make the average thickness of the negative electrode active material layer 52 thicker in the tab portion 512 than in the main body portion 511, for example, while applying more of the mixture composition in the tab portion 512, It is better to apply less amount in 511. In this way, the negative electrode active material layer 52 satisfying the above relationship W2<W1 can be easily formed using the same mixture composition. In this case, the mass of the negative electrode active material per unit volume may be the same throughout the negative electrode active material layer 52. Further, the mass of the negative electrode active material layer per unit volume may be the same throughout the negative electrode active material layer 52.

上記(1)の条件が満たされる場合、他の好ましい一態様では、本体部511に重なる負極活物質層52の厚さと、タブ部512に重なる負極活物質層52の厚さとが略同じである。例えば負極活物質層52の全体において厚さが同じであっても、負極活物質層52の単位体積当たりの質量が本体部511よりもタブ部512において大きいことによって、負極活物質層52の単位面積当たりの質量が本体部511よりもタブ部512において大きくなっていてもよい。かかる態様において、同じ厚さで形成された負極活物質層52の単位面積当たりの質量を本体部511よりもタブ部512において大きくするためには、例えば、負極活物質の含有量がより多い合剤組成物をタブ部512に塗布する一方で、タブ部における厚さと同じ厚さになるように、負極活物質の含有量がより少ない合剤組成物を本体部511に塗布するとよい。 When the above condition (1) is satisfied, in another preferred embodiment, the thickness of the negative electrode active material layer 52 overlapping the main body portion 511 and the thickness of the negative electrode active material layer 52 overlapping the tab portion 512 are approximately the same. . For example, even if the thickness of the entire negative electrode active material layer 52 is the same, because the mass per unit volume of the negative electrode active material layer 52 is larger in the tab portion 512 than in the main body portion 511, the unit of the negative electrode active material layer 52 is The mass per area may be larger in the tab portion 512 than in the main body portion 511. In this embodiment, in order to make the mass per unit area of the negative electrode active material layer 52 formed with the same thickness larger in the tab portion 512 than in the main body portion 511, for example, if the content of the negative electrode active material is higher, While applying the agent composition to the tab portion 512, it is preferable to apply a mixture composition containing a smaller amount of negative electrode active material to the main body portion 511 so as to have the same thickness as the thickness in the tab portion.

これに対して、上記(2)の条件が満たされる場合、例えば図5に示すように、負極活物質層52の最大厚さは、タブ部512では本体部511よりも厚い。タブ部512においては、負極活物質層52の少なくとも一部の厚さが本体部511よりも厚ければよく、例えば図5に示すように、タブ部512の先端へ向けて次第に薄くなっていてもよい。一方、負極活物質層52の厚さは、例えば段差を有するように、タブ部512において本体部511よりも厚くなっていてもよい。 On the other hand, when the above condition (2) is satisfied, for example, as shown in FIG. 5, the maximum thickness of the negative electrode active material layer 52 is thicker in the tab portion 512 than in the main body portion 511. In the tab portion 512, the thickness of at least a portion of the negative electrode active material layer 52 only needs to be thicker than the main body portion 511, and for example, as shown in FIG. Good too. On the other hand, the thickness of the negative electrode active material layer 52 may be thicker in the tab portion 512 than in the main body portion 511 so as to have a step, for example.

上記(2)の条件が満たされる場合、本体部511に重なる負極活物質層52の平均厚さT2は、タブ部512に重なる負極活物質層52の平均厚さT1よりも薄ければよく(すなわちT2<T1であればよく)、特に限定されない。T2は、負極基材51の両面に負極活物質層52が形成されている場合、各層の平均厚さの合計値である。T2(平均厚さの合計値)は、例えば、50μm以上であることが適当であり、通常は70μm以上、典型的には80μm以上である。T2は、好ましくは90μm以上、より好ましくは100μm以上、さらに好ましくは110μm以上である。いくつかの態様において、T2は、115μm以上であってもよく、120μm以上であってもよい。また、T2は、例えば、250μm以下とすることができる。T2は、好ましくは200μm以下、より好ましくは180μm以下、さらに好ましくは160μm以下である。いくつかの態様において、T2(平均厚さの合計値)は、150μm以下であってもよく、140μm以下であってもよい。 When the above condition (2) is satisfied, the average thickness T2 of the negative electrode active material layer 52 overlapping the main body portion 511 only needs to be thinner than the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 ( In other words, it is sufficient that T2<T1), and is not particularly limited. When the negative electrode active material layers 52 are formed on both sides of the negative electrode base material 51, T2 is the total value of the average thickness of each layer. T2 (total average thickness) is, for example, suitably 50 μm or more, usually 70 μm or more, typically 80 μm or more. T2 is preferably 90 μm or more, more preferably 100 μm or more, even more preferably 110 μm or more. In some embodiments, T2 may be greater than or equal to 115 μm, or greater than or equal to 120 μm. Further, T2 can be, for example, 250 μm or less. T2 is preferably 200 μm or less, more preferably 180 μm or less, even more preferably 160 μm or less. In some embodiments, T2 (total average thickness) may be 150 μm or less, or 140 μm or less.

上記(2)の条件が満たされる場合、タブ部512に重なる負極活物質層52の平均厚さT1は、本体部511に重なる負極活物質層52の平均厚さT2よりも厚ければよく、特に限定されない。T1は、負極基材51の両面に負極活物質層52が形成されている場合、各層の平均厚さの合計値である。いくつかの態様において、タブ部512に重なる負極活物質層52の平均厚さT1と、本体部511に重なる負極活物質層52の平均厚さT1との差(すなわち、T1-T2)は、例えば0.05μm以上であり、典型的には0.1μm以上である。また、T1-T2は、例えば20μm以下(典型的には10μm以下)であってもよく、例えば5μm以下)であってもよい。
なお、平均厚さは、ランダムに選んだ少なくとも5ケ所の厚さの測定値を平均することによって算出される。本体部511に重なる負極活物質層52の平均厚さT2は、本体部511の中央部分に重なる負極活物質層52の厚さを測定することによって求められる。一方、タブ部512に重なる負極活物質層52の平均厚さT1は、本体部511とタブ部512との境界Cから、負極活物質層52の端縁Bまでの中間点における厚さを測定し、複数の測定値を平均することで求められる。換言すると、平均厚さT1の測定部位は、負極活物質層52がタブ部512において重なった領域の中央部位である。
When the above condition (2) is satisfied, the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 only needs to be thicker than the average thickness T2 of the negative electrode active material layer 52 overlapping the main body portion 511, Not particularly limited. When the negative electrode active material layers 52 are formed on both sides of the negative electrode base material 51, T1 is the total value of the average thickness of each layer. In some embodiments, the difference between the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 and the average thickness T1 of the negative electrode active material layer 52 overlapping the main body portion 511 (i.e., T1−T2) is as follows: For example, it is 0.05 μm or more, typically 0.1 μm or more. Further, T1-T2 may be, for example, 20 μm or less (typically 10 μm or less), for example, 5 μm or less).
Note that the average thickness is calculated by averaging thickness measurements at at least five randomly selected locations. The average thickness T2 of the negative electrode active material layer 52 overlapping the main body part 511 is determined by measuring the thickness of the negative electrode active material layer 52 overlapping the central part of the main body part 511. On the other hand, the average thickness T1 of the negative electrode active material layer 52 overlapping the tab portion 512 is determined by measuring the thickness at the midpoint from the boundary C between the main body portion 511 and the tab portion 512 to the edge B of the negative electrode active material layer 52. It is calculated by averaging multiple measurements. In other words, the part where the average thickness T1 is measured is the central part of the region where the negative electrode active material layers 52 overlap in the tab part 512.

上記(2)の条件が満たされる場合、負極活物質層52の平均厚さを本体部511よりもタブ部512において厚くするためには、例えば、合剤組成物をタブ部512においてより多く塗布する一方で、本体部511においてより少なく塗布するとよい。この場合、負極活物質層52の全体において単位体積当たりの負極活物質の質量が同じであってもよい。また、負極活物質層52の全体において単位体積当たりの質量が同じであってもよい。 When the above condition (2) is satisfied, in order to make the average thickness of the negative electrode active material layer 52 thicker in the tab portion 512 than in the main body portion 511, for example, more of the mixture composition is applied to the tab portion 512. On the other hand, it is preferable to apply less amount in the main body portion 511. In this case, the mass of the negative electrode active material per unit volume may be the same throughout the negative electrode active material layer 52. Further, the entire negative electrode active material layer 52 may have the same mass per unit volume.

本実施形態の蓄電素子1では、負極50の集電基材51のタブ部512における断面積(A)と、正極活物質層42の表面積(B)との比(B/A)が、30,000以上150,000以下であってもよい。
詳しくは、本体部511及びタブ部512に重なった負極活物質層52との間で充放電反応を起こす正極活物質層42の表面積(B)と、上記の充放電反応に伴う電流が通る負極50の集電基材51のタブ部512における断面積(A)との比(B/A)は、30,000以上150,000以下(例えば30,000以上125,000以下)であってもよい。
斯かる構成により、ハイレートでの充電時に負極における金属の析出が生じることをより抑制できる。
In the electricity storage element 1 of this embodiment, the ratio (B/A) of the cross-sectional area (A) at the tab portion 512 of the current collecting base material 51 of the negative electrode 50 to the surface area (B) of the positive electrode active material layer 42 is 30. ,000 or more and 150,000 or less.
Specifically, the surface area (B) of the positive electrode active material layer 42 that causes a charging/discharging reaction with the negative electrode active material layer 52 overlapping the main body portion 511 and the tab portion 512, and the negative electrode through which current accompanying the charging/discharging reaction described above passes. Even if the ratio (B/A) to the cross-sectional area (A) of the tab portion 512 of the current collecting base material 51 of No. 50 is 30,000 or more and 150,000 or less (for example, 30,000 or more and 125,000 or less) good.
With such a configuration, it is possible to further suppress metal precipitation on the negative electrode during high-rate charging.

上記のタブ部512における断面積とは、タブ部512と外部端子5とをつなぐためにタブ部512に取り付けられた集電部材が、タブ部512に接触している部分の断面積である。例えば、集電部材としての集電クリップでタブ部512が挟み込まれている場合、図5に示すように、タブ部512が集電クリップで挟み込まれた部分(Zで示す)の断面積を採用する。
また、本実施形態の蓄電素子1のように、1つの集電基材51が複数のタブ部512を有する場合、タブ部512における断面積(A)は、各タブ部512の断面積の総面積(合計面積)となる。このときの正極活物質層42の表面積(B)は、対象とした各タブ部512を通る電流を生じさせる正極活物質層42の総面積である。この場合、各タブ部512の平均断面積(すなわち、各タブ部512の断面積の総面積を各タブ部512の個数で割った値)は、特に限定されないが、0.003cm以上0.006cm以下であってもよく、好ましくは0.004cm以上0.005cm以下である。また、1つのタブ部512あたりの正極活物質層42の表面積(すなわち、正極活物質層42の総面積をタブ部512の個数で割った値)は、特に限定されないが、100cm以上750cm以下であってもよく、好ましくは120cm以上700cm以下である。
なお、電極体が、上述したいわゆる積層型である場合は、セパレータを介して対向する各正極と各負極とにおいて、上記の比(B/A)が算出される。セパレータを介して対向する少なくとも1組の正極及び負極が、上記の比(B/A)の数値範囲を満たしてもよい。好ましくは、すべての正極及び負極について、上記の比(B/A)の数値範囲が満たされる。
The above cross-sectional area of the tab portion 512 is the cross-sectional area of the portion where the current collecting member attached to the tab portion 512 for connecting the tab portion 512 and the external terminal 5 is in contact with the tab portion 512. For example, when the tab portion 512 is sandwiched between current collecting clips serving as current collecting members, the cross-sectional area of the portion (indicated by Z) where the tab portion 512 is sandwiched between the current collecting clips is adopted as shown in FIG. do.
Moreover, when one current collection base material 51 has a plurality of tab parts 512 like the electricity storage element 1 of this embodiment, the cross-sectional area (A) of the tab part 512 is the total cross-sectional area of each tab part 512. area (total area). The surface area (B) of the positive electrode active material layer 42 at this time is the total area of the positive electrode active material layer 42 that causes a current to flow through each targeted tab portion 512. In this case, the average cross-sectional area of each tab portion 512 (that is, the value obtained by dividing the total cross-sectional area of each tab portion 512 by the number of each tab portion 512) is not particularly limited, but is 0.003 cm 2 or more. 006 cm 2 or less, preferably 0.004 cm 2 or more and 0.005 cm 2 or less. Further, the surface area of the positive electrode active material layer 42 per one tab portion 512 (that is, the value obtained by dividing the total area of the positive electrode active material layer 42 by the number of tab portions 512) is not particularly limited, but is 100 cm 2 or more and 750 cm 2 It may be below, preferably 120 cm 2 or more and 700 cm 2 or less.
Note that when the electrode body is of the so-called laminated type described above, the above ratio (B/A) is calculated for each positive electrode and each negative electrode that face each other with a separator in between. At least one set of a positive electrode and a negative electrode facing each other with a separator in between may satisfy the above numerical range of the ratio (B/A). Preferably, the above numerical range of the ratio (B/A) is satisfied for all the positive electrodes and negative electrodes.

負極基材51は、導電性を有する。負極基材51の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム 等の金属又はこれらの合金が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材51としては、箔、蒸着膜等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材51としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。 The negative electrode base material 51 has electrical conductivity. As the material of the negative electrode base material 51, metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, or alloys thereof are used. Among these, copper or copper alloy is preferred. Examples of the negative electrode base material 51 include foil, vapor deposited film, etc., and foil is preferable from the viewpoint of cost. Therefore, as the negative electrode base material 51, copper foil or copper alloy foil is preferable. Examples of copper foil include rolled copper foil, electrolytic copper foil, and the like.

負極基材51の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材51の平均厚さを上記の範囲とすることで、負極基材51の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode base material 51 is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, even more preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode base material 51 within the above range, the energy density per volume of the secondary battery can be increased while increasing the strength of the negative electrode base material 51.

負極活物質層52は、負極活物質を含む。負極活物質層52は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記正極40で例示した材料から選択できる。バインダを使用する場合、エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)等の水系バインダを用いることが好ましい。負極活物質層52におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。増粘剤を使用する場合、負極活物質層52における増粘剤の含有量は、0.5質量%以上8質量%以下が好ましく、1質量%以上5質量%以下がより好ましい。導電剤を使用する場合、負極活物質層52における導電剤の含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、負極活物質層52が上記導電剤を含まない態様で好ましく実施され得る。フィラーを使用する場合、負極活物質層52におけるフィラーの含有量は、8質量%以下が好ましく、5質量%以下がより好ましい。ここで開示される技術は、負極活物質層52が上記フィラーを含まない態様で好ましく実施され得る。 The negative electrode active material layer 52 contains a negative electrode active material. The negative electrode active material layer 52 contains optional components such as a conductive agent, a binder, a thickener, and a filler, as necessary. Optional components such as a conductive agent, a binder, a thickener, and a filler can be selected from the materials exemplified for the positive electrode 40 above. When a binder is used, it is preferable to use a water-based binder such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, or styrene-butadiene rubber (SBR). The binder content in the negative electrode active material layer 52 is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder within the above range, the active material can be stably held. When using a thickener, the content of the thickener in the negative electrode active material layer 52 is preferably 0.5% by mass or more and 8% by mass or less, and more preferably 1% by mass or more and 5% by mass or less. When using a conductive agent, the content of the conductive agent in the negative electrode active material layer 52 is preferably 8% by mass or less, more preferably 5% by mass or less. The technique disclosed herein can be preferably implemented in an embodiment in which the negative electrode active material layer 52 does not contain the above-mentioned conductive agent. When using a filler, the content of the filler in the negative electrode active material layer 52 is preferably 8% by mass or less, more preferably 5% by mass or less. The technique disclosed herein can be preferably implemented in an embodiment in which the negative electrode active material layer 52 does not contain the filler.

負極活物質層52は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba、等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The negative electrode active material layer 52 is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W and other transition metal elements are used as negative electrode active materials, conductive agents, and binders. , thickeners, and fillers.

負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTiO1、LiTiO、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層52においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The negative electrode active material can be appropriately selected from known negative electrode active materials. As a negative electrode active material for a lithium ion secondary battery, a material that can insert and release lithium ions is usually used. Examples of negative electrode active materials include metal Li; metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide, Ti oxide, and Sn oxide; Li 4 Ti 5 O1 2 , Examples include titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphoric acid compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon); It will be done. Among these materials, graphite and non-graphitic carbon are preferred. In the negative electrode active material layer 52, one type of these materials may be used alone, or two or more types may be used in combination.

「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。 "Graphite" refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane of 0.33 nm or more and less than 0.34 nm before charging and discharging or in a discharge state, as determined by X-ray diffraction. Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferred from the viewpoint of being able to obtain a material with stable physical properties.

「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。 "Non-graphitic carbon" refers to a carbon material whose average lattice spacing (d 002 ) of the (002) plane is 0.34 nm or more and 0.42 nm or less, as determined by X-ray diffraction before charging and discharging or in a discharge state. say. Examples of non-graphitic carbon include non-graphitizable carbon and easily graphitizable carbon. Examples of the non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, alcohol-derived materials, and the like.

ここで、「放電状態」とは、負極活物質として炭素材料を含む負極50を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態をいう。開回路状態での金属Li対極の電位は、Liの酸化還元電位とほぼ等しいため、上記単極電池における開回路電圧は、Liの酸化還元電位に対する炭素材料を含む負極50の電位とほぼ同等である。つまり、上記単極電池における開回路電圧が0.7V以上であることは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。 Here, the "discharge state" refers to a state in which the open circuit voltage is 0.7 V or more in a monopolar battery using the negative electrode 50 containing a carbon material as the negative electrode active material as the working electrode and metal Li as the counter electrode. . Since the potential of the metal Li counter electrode in an open circuit state is approximately equal to the oxidation-reduction potential of Li, the open-circuit voltage in the monopolar battery is approximately equal to the potential of the negative electrode 50 containing the carbon material with respect to the oxidation-reduction potential of Li. be. In other words, if the open circuit voltage of the monopolar battery is 0.7 V or more, it means that a sufficient amount of lithium ions, which can be intercalated and released during charging and discharging, is released from the carbon material that is the negative electrode active material. .

「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。 "Non-graphitizable carbon" refers to a carbon material in which the above d 002 is 0.36 nm or more and 0.42 nm or less.

「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。 "Graphitizable carbon" refers to a carbon material in which the above d 002 is 0.34 nm or more and less than 0.36 nm.

負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、負極活物質層52の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び粉級方法は、例えば、上記正極40で例示した方法から選択できる。負極活物質が金属Li等の金属である場合、負極活物質は、箔状であってもよい。 The negative electrode active material is usually particles (powder). The average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. When the negative electrode active material is a carbon material, a titanium-containing oxide, or a polyphosphoric acid compound, the average particle size thereof may be 1 μm or more and 100 μm or less. When the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like, the average particle size thereof may be 1 nm or more and 1 μm or less. By setting the average particle size of the negative electrode active material to be equal to or larger than the above lower limit, manufacturing or handling of the negative electrode active material becomes easier. By setting the average particle size of the negative electrode active material to be equal to or less than the above upper limit, the electronic conductivity of the negative electrode active material layer 52 is improved. A pulverizer, classifier, etc. are used to obtain powder with a predetermined particle size. The pulverization method and powder-grading method can be selected from, for example, the methods exemplified for the positive electrode 40 above. When the negative electrode active material is a metal such as metal Li, the negative electrode active material may be in the form of a foil.

負極活物質層52における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層52の高エネルギー密度化と製造性を両立できる。 The content of the negative electrode active material in the negative electrode active material layer 52 is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less. By setting the content of the negative electrode active material within the above range, it is possible to achieve both high energy density and manufacturability of the negative electrode active material layer 52.

(セパレータ)
セパレータ60は、公知のセパレータの中から適宜選択できる。セパレータ60として、例えば、基材層のみからなるセパレータ60、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータ60の基材層の材質としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの材質の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータ60の基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータ60の基材層として、これらの樹脂を複合した材料を用いてもよい。
(Separator)
The separator 60 can be appropriately selected from known separators. As the separator 60, for example, a separator 60 consisting of only a base material layer, a separator in which a heat resistant layer containing heat resistant particles and a binder is formed on one or both surfaces of the base material layer, etc. can be used. Examples of the material for the base layer of the separator 60 include woven fabric, nonwoven fabric, and porous resin film. Among these materials, a porous resin film is preferred from the viewpoint of strength, and a nonwoven fabric is preferred from the viewpoint of liquid retention of the nonaqueous electrolyte. The material for the base layer of the separator 60 is preferably polyolefin, such as polyethylene or polypropylene, from the viewpoint of a shutdown function, and preferably polyimide, aramid, etc. from the viewpoint of oxidative decomposition resistance. A composite material of these resins may be used as the base material layer of the separator 60.

耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃に加熱したときの質量減少が5%以下であるものが好ましく、1気圧の空気雰囲気下で800℃に加熱したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、チタン酸バリウム、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子1の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500°C in an air atmosphere of 1 atm, and when heated to 800°C in an air atmosphere of 1 atm. It is more preferable that the mass reduction is 5% or less. Inorganic compounds are examples of materials whose mass loss is less than a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, barium titanate, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, aluminosilicate; magnesium hydroxide, water Hydroxides such as calcium oxide and aluminum hydroxide; Nitrides such as aluminum nitride and silicon nitride; Carbonates such as calcium carbonate; Sulfates such as barium sulfate; Hardly soluble ionic crystals such as calcium fluoride and barium fluoride Covalent crystals such as silicon and diamond; Substances derived from mineral resources such as talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof. . As the inorganic compound, these substances may be used alone or in combination, or two or more types may be used in combination. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of power storage element 1.

セパレータ60の空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。 The porosity of the separator 60 is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance. Here, "porosity" is a value based on volume, and means a value measured with a mercury porosimeter.

セパレータ60として、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータ60として、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。 As the separator 60, a polymer gel composed of a polymer and a non-aqueous electrolyte may be used. Examples of the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like. Use of polymer gel has the effect of suppressing liquid leakage. As the separator 60, a porous resin film or nonwoven fabric as described above and a polymer gel may be used in combination.

(非水電解質)
非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
(Nonaqueous electrolyte)
The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes. A non-aqueous electrolyte may be used as the non-aqueous electrolyte. The nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent.

非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。 The non-aqueous solvent can be appropriately selected from known non-aqueous solvents. Examples of the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic esters, phosphoric esters, sulfonic esters, ethers, amides, and nitriles. As the non-aqueous solvent, compounds in which some of the hydrogen atoms contained in these compounds are replaced with halogens may be used.

環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。 Examples of cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and the like. Among these, EC is preferred.

鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。 Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC is preferred.

非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 As the nonaqueous solvent, it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a cyclic carbonate and a chain carbonate together. By using a cyclic carbonate, it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte. By using chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low. When a cyclic carbonate and a chain carbonate are used together, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate: chain carbonate) is preferably in the range of, for example, 5:95 to 50:50.

電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。 The electrolyte salt can be appropriately selected from known electrolyte salts. Examples of electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts, and the like. Among these, lithium salts are preferred.

リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Examples of lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN(SO 2 F) 2 , LiSO 3 CF 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 Halogenated hydrocarbon groups such as C2F5 ) 2 , LiN( SO2CF3 )( SO2C4F9 ) , LiC( SO2CF3 ) 3 , LiC ( SO2C2F5 ) 3, etc. Examples include lithium salts with Among these, inorganic lithium salts are preferred, and LiPF 6 is more preferred.

非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。 The content of the electrolyte salt in the nonaqueous electrolyte is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, and 0.3 mol/dm 3 or more and 2.0 mol/dm at 20° C. and 1 atmosphere. It is more preferably 3 or less, even more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less. By setting the content of the electrolyte salt within the above range, the ionic conductivity of the non-aqueous electrolyte can be increased.

非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸エステル;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt. Examples of additives include oxalate esters such as lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), and lithium bis(oxalate)difluorophosphate (LiFOP); biphenyl, alkylbiphenyl, terphenyl, Aromatic compounds such as partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; the above aromatics such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene, etc. Partial halides of group compounds; halogenated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole; succinic anhydride, glutaric anhydride, anhydride Maleic acid, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, propane sultone, propene sultone, butane sultone, methyl methanesulfonate, busulfan, methyl toluenesulfonate, Dimethyl sulfate, ethylene sulfate, sulfolane, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis(2,2-dioxo-1,3,2-dioxathiolane), 4 -Methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyl disulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate, mono Examples include lithium fluorophosphate. These additives may be used alone or in combination of two or more.

非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additive contained in the nonaqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less based on the mass of the entire nonaqueous electrolyte. It is more preferable if it is present, more preferably from 0.2% by mass to 5% by mass, and particularly preferably from 0.3% by mass to 3% by mass. By setting the content of the additive within the above range, capacity retention performance or cycle performance after high-temperature storage can be improved, and safety can be further improved.

非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。 A solid electrolyte may be used as the non-aqueous electrolyte, or a non-aqueous electrolyte and a solid electrolyte may be used together.

固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば15℃~25℃)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、及び酸窒化物固体電解質、ポリマー固体電解質等が挙げられる。 The solid electrolyte can be selected from any material that has ionic conductivity, such as lithium, sodium, and calcium, and is solid at room temperature (for example, 15° C. to 25° C.). Examples of the solid electrolyte include sulfide solid electrolytes, oxide solid electrolytes, oxynitride solid electrolytes, polymer solid electrolytes, and the like.

硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12、等が挙げられる。 Examples of the sulfide solid electrolyte in the case of a lithium ion secondary battery include Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5 , Li 10 Ge-P 2 S 12 , and the like. .

本実施形態の蓄電素子1の形状については特に限定されるものではなく、例えば、円筒型電池、ラミネートフィルム型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
図1に角型電池の一例としての蓄電素子1(非水電解質蓄電素子)を示す。セパレータ60を挟んで巻回された正極40及び負極50を有する電極体2が角型のケース(容器)3に収納される。正極40は正極リード(図示せず)を介して正極端子4と電気的に接続されている。負極50は負極リード(図示せず)を介して負極端子5と電気的に接続されている。
The shape of the power storage element 1 of this embodiment is not particularly limited, and examples thereof include a cylindrical battery, a laminate film battery, a square battery, a flat battery, a coin battery, a button battery, and the like.
FIG. 1 shows a power storage element 1 (non-aqueous electrolyte power storage element) as an example of a square battery. An electrode body 2 having a positive electrode 40 and a negative electrode 50 wound together with a separator 60 in between is housed in a square case (container) 3. The positive electrode 40 is electrically connected to the positive electrode terminal 4 via a positive electrode lead (not shown). The negative electrode 50 is electrically connected to the negative electrode terminal 5 via a negative electrode lead (not shown).

<非水電解質蓄電装置の構成>
本実施形態の蓄電素子1は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子1を集合して構成した蓄電ユニット10(バッテリーモジュール)として搭載することができる。この場合、蓄電装置に含まれる少なくとも一つの蓄電素子1に対して、本発明の技術が適用されていればよい。
図6に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット10をさらに集合した蓄電装置100の一例を示す。蓄電装置100は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット10を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット10又は蓄電装置100は、一以上の蓄電素子1の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<Configuration of non-aqueous electrolyte power storage device>
The power storage element 1 of this embodiment is used as a power source for automobiles such as electric vehicles (EVs), hybrid vehicles (HEVs), and plug-in hybrid vehicles (PHEVs), power sources for electronic devices such as personal computers and communication terminals, or for power storage. It can be installed in a power source or the like as a power storage unit 10 (battery module) configured by collecting a plurality of power storage elements 1. In this case, the technology of the present invention may be applied to at least one power storage element 1 included in the power storage device.
FIG. 6 shows an example of a power storage device 100 in which a power storage unit 10 in which two or more electrically connected power storage elements 1 are assembled is further assembled. Power storage device 100 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 10, and the like. The power storage unit 10 or the power storage device 100 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements 1.

<非水電解質蓄電素子の製造方法>
本実施形態の蓄電素子1の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体2を準備することと、非水電解質を準備することと、電極体2及び非水電解質を容器に収容することと、を備える。電極体2を準備することは、正極40及び負極50を準備することと、正極40及び負極50を、セパレータ60を介して積層又は巻回することにより電極体2を形成することとを備える。
<Method for manufacturing non-aqueous electrolyte storage element>
A method for manufacturing the electricity storage element 1 of this embodiment can be appropriately selected from known methods. The manufacturing method includes, for example, preparing the electrode body 2, preparing a non-aqueous electrolyte, and accommodating the electrode body 2 and the non-aqueous electrolyte in a container. Preparing the electrode body 2 includes preparing the positive electrode 40 and the negative electrode 50, and forming the electrode body 2 by laminating or winding the positive electrode 40 and the negative electrode 50 with the separator 60 in between.

非水電解質を容器に収容することは、公知の方法から適宜選択できる。例えば、非水電解質に非水電解液を用いる場合、容器に形成された注入口から非水電解液を注入した後、注入口を封止すればよい。 The method of accommodating the non-aqueous electrolyte in the container can be appropriately selected from known methods. For example, when a nonaqueous electrolyte is used as the nonaqueous electrolyte, the injection port may be sealed after the nonaqueous electrolyte is injected through an injection port formed in the container.

<その他の実施形態>
尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
<Other embodiments>
Note that the power storage element of the present invention is not limited to the above embodiments, and various changes may be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique. Additionally, some of the configurations of certain embodiments may be deleted. Furthermore, well-known techniques can be added to the configuration of a certain embodiment.

上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。 In the above embodiment, a case has been described in which the power storage element 1 is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the power storage element can be changed arbitrarily. be. The present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.

上記実施形態では、正極40及び負極50がセパレータ60を介して積層された電極体について説明したが、電極体は、セパレータ60を備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。 In the above embodiment, an electrode body in which the positive electrode 40 and the negative electrode 50 are stacked with the separator 60 in between is described, but the electrode body does not need to include the separator 60. For example, the positive electrode and the negative electrode may be in direct contact with each other with a non-conductive layer formed on the active material layer of the positive electrode or the negative electrode.

上記実施形態では、いわゆる巻回型の電極体について詳しく説明したが、電極体は、シート状の正極、シート状のセパレータ、及びシート状の負極が繰り返し積み重なって構成された積層型であってもよい。 In the above embodiment, a so-called wound type electrode body has been described in detail, but the electrode body may also be a laminated type in which a sheet-shaped positive electrode, a sheet-shaped separator, and a sheet-shaped negative electrode are repeatedly stacked. good.

以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The invention is not limited to the following examples.

以下に示すようにして、非水電解質二次電池(リチウムイオン二次電池)を製造した。 A non-aqueous electrolyte secondary battery (lithium ion secondary battery) was manufactured as shown below.

(実施例1)
本例に係るリチウムイオン二次電池は、正極活物質層を有する正極と、正極活物質層と対向する負極活物質層を有する負極とを備える。正極及び負極は、それぞれ、シート状の集電基材と、該集電基材の両面に重なった活物質層とを有する。
(1)正極の作製
溶媒:N-メチル-2-ピロリドン(NMP)
導電剤:カーボンブラック(4.0質量部)
活物質(LiNi0.6Co0.2Mn0.2)の粒子:(94.5質量部)
バインダ:PVDF(1.5質量部)
上記の原料を混合し、混練することで、正極用の合剤組成物を調製した。調製した正極用の合剤組成物を、乾燥後の正極活物質層の単位面積当たりの質量(目付量)が1.7g/100cm となるように、アルミニウム箔(厚さ12μmの正極の集電基材)の両面にそれぞれ塗布した。加熱による乾燥後、ロールプレスを行った。その後、真空乾燥して、水分等を除去した。プレス後の活物質層(1層分)の厚さは、51μmであった。単位体積当たりの正極活物質層の質量は、3.3g/cmであった。
(Example 1)
The lithium ion secondary battery according to this example includes a positive electrode having a positive electrode active material layer, and a negative electrode having a negative electrode active material layer facing the positive electrode active material layer. The positive electrode and the negative electrode each have a sheet-like current collecting base material and an active material layer overlapping both sides of the current collecting base material.
(1) Preparation of positive electrode Solvent: N-methyl-2-pyrrolidone (NMP)
Conductive agent: carbon black (4.0 parts by mass)
Particles of active material (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ): (94.5 parts by mass)
Binder: PVDF (1.5 parts by mass)
A mixture composition for a positive electrode was prepared by mixing and kneading the above raw materials. The prepared mixture composition for a positive electrode was placed on aluminum foil (a collection of positive electrodes with a thickness of 12 μm) so that the mass per unit area (fabric weight) of the positive electrode active material layer after drying was 1.7 g/100 cm2. It was applied to both sides of the electronic base material). After drying by heating, roll pressing was performed. Thereafter, it was vacuum dried to remove moisture and the like. The thickness of the active material layer (one layer) after pressing was 51 μm. The mass of the positive electrode active material layer per unit volume was 3.3 g/cm 3 .

(2)負極の作製
溶媒:水
活物質:粒子状の非晶質炭素(難黒鉛化炭素)(97.4質量部)
バインダ:SBR(2.0質量部)
増粘剤:CMC(0.6質量部)
上記の原料を混合し、混練することで、負極用の合剤組成物を調製した。調製した負極用の合剤組成物を、銅箔(厚さ8μmの負極の集電基材)の両面にそれぞれ塗布した。なお、銅箔の本体部に重なる負極活物質層の単位面積当たりの質量(目付量、1層分)が0.539g/100cm となるように塗布した。加熱による乾燥後、ロールプレスを行った。その後、真空乾燥して、水分等を除去した。プレス後の活物質層の厚さは、61μm(1層分)、すなわち122μm(2層分)であった。単位体積当たりの負極活物質層の質量は、0.9g/cmであった。
負極の集電基材は、本体部(中央部)と、該本体部から外側へ突出したタブ部とを有する。負極活物質層は、本体部とタブ部との境界を越えてタブ部の一部にも重なる。この例では、負極活物質層の単位面積当たりの質量が、タブ部において本体部よりも大きくなるように設定した負極を作製した。
なお、負極の作製において、合剤組成物をタブ部においてより多く塗布することによって、タブ部に重なる負極活物質層の単位面積当たりの質量を大きくし、また、タブ部に重なる負極活物質層の平均厚さを厚くした。
(2) Preparation of negative electrode Solvent: Water Active material: Particulate amorphous carbon (non-graphitizable carbon) (97.4 parts by mass)
Binder: SBR (2.0 parts by mass)
Thickener: CMC (0.6 parts by mass)
A mixture composition for a negative electrode was prepared by mixing and kneading the above raw materials. The prepared mixture composition for a negative electrode was applied to both sides of a copper foil (current collector base material for a negative electrode having a thickness of 8 μm). The negative electrode active material layer overlapping the main body of the copper foil was coated so that the mass per unit area (fabric weight, one layer) was 0.539 g/100 cm 2 . After drying by heating, roll pressing was performed. Thereafter, it was vacuum dried to remove moisture and the like. The thickness of the active material layer after pressing was 61 μm (one layer), that is, 122 μm (two layers). The mass of the negative electrode active material layer per unit volume was 0.9 g/cm 3 .
The current collecting base material of the negative electrode has a main body (center part) and a tab part protruding outward from the main body. The negative electrode active material layer also overlaps a part of the tab portion beyond the boundary between the main body portion and the tab portion. In this example, a negative electrode was produced in which the mass per unit area of the negative electrode active material layer was set to be larger in the tab portion than in the main body portion.
In addition, in producing the negative electrode, by applying more of the mixture composition on the tab portion, the mass per unit area of the negative electrode active material layer overlapping the tab portion can be increased, and the mass per unit area of the negative electrode active material layer overlapping the tab portion can be increased. The average thickness of

(3)セパレータ(セパレータ基材)
セパレータ基材として厚さが14μmのポリエチレン製微多孔膜を用いた。このセパレータ基材のみでセパレータを構成した。
(3) Separator (separator base material)
A microporous polyethylene membrane having a thickness of 14 μm was used as a separator base material. A separator was constructed using only this separator base material.

(4)非水電解液の調製
非水電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、エチルメチルカーボネートを、いずれも1体積部ずつ混合した溶媒を用い、この非水溶媒に、塩濃度が1.2mol/dmとなるようにLiPFを溶解させ、非水電解液を調製した。
(4) Preparation of non-aqueous electrolyte The non-aqueous electrolyte prepared by the following method was used. As a non-aqueous solvent, a mixture of 1 part by volume of propylene carbonate and ethyl methyl carbonate was used, and LiPF 6 was dissolved in this non-aqueous solvent so that the salt concentration was 1.2 mol/dm 3 . A non-aqueous electrolyte was prepared.

(5)ケース内への電極体の配置
上記の正極、上記の負極、上記の非水電解液、セパレータ、及びケースを用いて、一般的な方法によってリチウムイオン二次電池を組み立てた。
まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋体を取り付けた。上記の非水電解液を、ケースの蓋体に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
(5) Arranging the electrode body in the case A lithium ion secondary battery was assembled by a general method using the above positive electrode, the above negative electrode, the above nonaqueous electrolyte, the separator, and the case.
First, a sheet-like material in which a separator was laminated and arranged between the positive electrode and the negative electrode was wound. Next, the wound electrode body was placed inside a case body of an aluminum rectangular battery case. Subsequently, the positive electrode and the negative electrode were electrically connected to each of the two external terminals. Furthermore, a lid was attached to the case body. The above-mentioned non-aqueous electrolyte was injected into the case through a liquid injection port formed in the lid of the case. Finally, the case was sealed by sealing the liquid injection port of the case.

(実施例2~5)
表1に示す構成に変えた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Examples 2 to 5)
A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the configuration was changed to that shown in Table 1.

(比較例1~4)
表1に示す構成に変えた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Comparative Examples 1 to 4)
A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the configuration was changed to that shown in Table 1.

<ハイレート充電時における金属析出の評価>
それぞれの電池の定格容量まで1時間で完全充電できる電流の大きさ(電流値)を1Cと定義した。このように電流値を定義したうえで、3Cの電流値で上限電圧(本例においては4.32V)まで定電流充電し、1/3Cの電流値で下限電圧(本例においては2.4V)まで定電流放電する充放電試験を10サイクル行った。その後、電池を解体して負極表面の金属(Li)析出の有無を確認した。
<Evaluation of metal deposition during high-rate charging>
The magnitude of the current (current value) that can fully charge each battery to its rated capacity in one hour was defined as 1C. After defining the current value in this way, constant current charging is performed at a current value of 3C to the upper limit voltage (4.32V in this example), and at a current value of 1/3C to the lower limit voltage (2.4V in this example). ) A charge/discharge test was conducted for 10 cycles with constant current discharge. Thereafter, the battery was disassembled and the presence or absence of metal (Li) precipitation on the surface of the negative electrode was confirmed.

実施例1~5、及び、比較例1~4のリチウムイオン二次電池について上記評価を行った結果を表1に示す。 Table 1 shows the results of the above evaluation for the lithium ion secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 4.

表1から把握されるように、実施例の蓄電素子は、ハイレートでの充電時に負極における金属の析出が生じることが抑制されていた。一方、比較例の蓄電素子は、ハイレートでの充電時に負極における金属の析出が生じた。 As can be seen from Table 1, in the electricity storage elements of Examples, metal precipitation at the negative electrode was suppressed during high rate charging. On the other hand, in the electricity storage element of the comparative example, metal precipitation occurred on the negative electrode during high-rate charging.

1:蓄電素子(非水電解質二次電池)、
2:電極体、
3:ケース、 31:ケース本体、 32:蓋体、
4:正極端子、 5:負極端子、
40:正極、
41:正極の集電基材(正極基材)、 42:正極活物質層、 412:正極のタブ部、
50:負極、
51:負極の集電基材(負極基材)、 511:本体部、 512:タブ部(負極のタブ部)、
52:負極活物質層、
60:セパレータ、
10:蓄電ユニット、 100:蓄電装置。
1: Energy storage element (non-aqueous electrolyte secondary battery),
2: electrode body,
3: Case, 31: Case body, 32: Lid body,
4: Positive terminal, 5: Negative terminal,
40: positive electrode,
41: Current collecting base material of positive electrode (positive electrode base material), 42: Positive electrode active material layer, 412: Tab portion of positive electrode,
50: negative electrode,
51: negative electrode current collecting base material (negative electrode base material), 511: main body part, 512: tab part (negative electrode tab part),
52: negative electrode active material layer,
60: separator,
10: Power storage unit, 100: Power storage device.

Claims (2)

正極活物質層を有する正極と、前記正極活物質層と対向する負極活物質層を有する負極とを備え、
前記負極は、シート状の集電基材と、該集電基材の少なくとも一方の面に重なった前記負極活物質層とを有し、
前記集電基材は、本体部と、該本体部から外側へ突出したタブ部とを有し、
前記負極活物質層は、前記本体部と前記タブ部との境界を越えて前記タブ部の一部にも重なり、以下の条件:
(1)前記負極活物質層の単位面積当たりの質量は、前記タブ部では前記本体部よりも大きい;および、
(2)前記負極活物質層の厚さは、前記タブ部では前記本体部よりも厚い;
の少なくとも一方を満たす、蓄電素子。
A positive electrode having a positive electrode active material layer, and a negative electrode having a negative electrode active material layer facing the positive electrode active material layer,
The negative electrode has a sheet-like current collecting base material and the negative electrode active material layer overlapping at least one surface of the current collecting base material,
The current collecting base material has a main body portion and a tab portion protruding outward from the main body portion,
The negative electrode active material layer crosses the boundary between the main body part and the tab part and overlaps a part of the tab part, and the following conditions are met:
(1) The mass per unit area of the negative electrode active material layer is larger in the tab portion than in the main body portion; and
(2) the thickness of the negative electrode active material layer is thicker in the tab portion than in the main body portion;
A power storage element that satisfies at least one of the following.
前記集電基材の前記タブ部における断面積(A)と、前記正極活物質層の表面積(B)との比(B/A)は、
30,000以上150,000以下 である、請求項1に記載の蓄電素子。
The ratio (B/A) of the cross-sectional area (A) at the tab portion of the current collecting base material to the surface area (B) of the positive electrode active material layer is:
The energy storage element according to claim 1, wherein the energy storage element is 30,000 or more and 150,000 or less.
JP2020062569A 2020-03-31 2020-03-31 Energy storage element Active JP7411161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020062569A JP7411161B2 (en) 2020-03-31 2020-03-31 Energy storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020062569A JP7411161B2 (en) 2020-03-31 2020-03-31 Energy storage element

Publications (2)

Publication Number Publication Date
JP2021163583A JP2021163583A (en) 2021-10-11
JP7411161B2 true JP7411161B2 (en) 2024-01-11

Family

ID=78005012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020062569A Active JP7411161B2 (en) 2020-03-31 2020-03-31 Energy storage element

Country Status (1)

Country Link
JP (1) JP7411161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000515A (en) * 2022-06-16 2022-09-02 深圳新宙邦科技股份有限公司 Lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172879A (en) 2005-12-19 2007-07-05 Gs Yuasa Corporation:Kk Battery and its manufacturing method
JP2010080392A (en) 2008-09-29 2010-04-08 Toshiba Corp Electrode for battery and method of manufacturing the same
JP2010102962A (en) 2008-10-23 2010-05-06 Mazda Motor Corp Secondary battery
WO2013054593A1 (en) 2011-10-14 2013-04-18 日立マクセルエナジー株式会社 Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery
JP2015146232A (en) 2014-01-31 2015-08-13 株式会社豊田自動織機 Method for manufacturing electrode, and electrode
WO2017047353A1 (en) 2015-09-14 2017-03-23 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172879A (en) 2005-12-19 2007-07-05 Gs Yuasa Corporation:Kk Battery and its manufacturing method
JP2010080392A (en) 2008-09-29 2010-04-08 Toshiba Corp Electrode for battery and method of manufacturing the same
JP2010102962A (en) 2008-10-23 2010-05-06 Mazda Motor Corp Secondary battery
WO2013054593A1 (en) 2011-10-14 2013-04-18 日立マクセルエナジー株式会社 Sheet-shaped electrode fabrication method, sheet-shaped electrode, and lithium-ion secondary battery
JP2015146232A (en) 2014-01-31 2015-08-13 株式会社豊田自動織機 Method for manufacturing electrode, and electrode
WO2017047353A1 (en) 2015-09-14 2017-03-23 日立マクセル株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2021163583A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP7411161B2 (en) Energy storage element
CN115516660A (en) Positive electrode for electricity storage element and electricity storage element
WO2021200373A1 (en) Power storage element
WO2023224071A1 (en) Nonaqueous electrolyte power storage element
US20240186514A1 (en) Nonaqueous electrolyte energy storage device
WO2023190422A1 (en) Positive electrode for non-aqueous electrolyte power storage element, and non-aqueous electrolyte power storage element comprising same
WO2023248769A1 (en) Active material particles, electrode, power storage element and power storage device
WO2022181516A1 (en) Nonaqueous electrolyte power storage element
WO2022239861A1 (en) Electric power storage element
WO2022249667A1 (en) Nonaqueous electrolyte power storage element and power storage device
JP7463746B2 (en) Energy storage element
WO2023171796A1 (en) Negative electrode, power storage element, and power storage device
US20240055662A1 (en) Nonaqueous electrolyte energy storage device, electronic device, and automobile
WO2021100858A1 (en) Electricity storage element and electricity storage device
WO2023199942A1 (en) Non-aqueous electrolyte storage element
WO2023074559A1 (en) Power storage element
WO2023100801A1 (en) Nonaqueous electrolyte power storage element, device, and method for using nonaqueous electrolyte power storage element
WO2022230835A1 (en) Nonaqueous-electrolyte electricity storage element
WO2023189140A1 (en) Positive electrode for power storage element, power storage element, and power storage device
WO2024010016A1 (en) Non-aqueous electrolyte storage element, device, method for using non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element
US20230155180A1 (en) Energy storage device, method for manufacturing the same and energy storage apparatus
JP2023150728A (en) Electrode for laminated power storage element, and laminated power storage element
JP2024001780A (en) Positive electrode and non-aqueous electrolyte power storage element
JP2024031129A (en) Non-aqueous electrolyte storage element and method for manufacturing the non-aqueous electrolyte storage element
JP2023117881A (en) Non-aqueous electrolyte storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7411161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150