JP7409901B2 - air conditioning duct - Google Patents

air conditioning duct Download PDF

Info

Publication number
JP7409901B2
JP7409901B2 JP2020030063A JP2020030063A JP7409901B2 JP 7409901 B2 JP7409901 B2 JP 7409901B2 JP 2020030063 A JP2020030063 A JP 2020030063A JP 2020030063 A JP2020030063 A JP 2020030063A JP 7409901 B2 JP7409901 B2 JP 7409901B2
Authority
JP
Japan
Prior art keywords
air conditioning
suspension
conditioning duct
response
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020030063A
Other languages
Japanese (ja)
Other versions
JP2021134960A (en
Inventor
孝友 村田
貴史 京井
勇佑 望月
正行 戸泉
元宏 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Sangyo Co Ltd
Original Assignee
Fujimori Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Sangyo Co Ltd filed Critical Fujimori Sangyo Co Ltd
Priority to JP2020030063A priority Critical patent/JP7409901B2/en
Publication of JP2021134960A publication Critical patent/JP2021134960A/en
Application granted granted Critical
Publication of JP7409901B2 publication Critical patent/JP7409901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supports For Pipes And Cables (AREA)
  • Duct Arrangements (AREA)

Description

本発明は、建物などの空調に用いる空調ダクトに関する。 The present invention relates to an air conditioning duct used for air conditioning a building or the like.

オフィスビルなどの建物には、通常、空調ダクトを含む空調設備が設けられている(特許文献1,2等参照)。特許文献1,2には、ダクト内を通る気流による振動を抑制するための空調ダクトの構造が提案されている。これら特許文献1、2のダクト材は、一般的な亜鉛メッキ鋼板によって構成されている。
非特許文献1によれば、空調ダクトは12m以内に1か所、耐震支持を設けることとされている。
BACKGROUND ART Buildings such as office buildings are usually equipped with air conditioning equipment including air conditioning ducts (see Patent Documents 1 and 2, etc.). Patent Documents 1 and 2 propose air conditioning duct structures for suppressing vibrations caused by airflow passing through the duct. The duct materials of these Patent Documents 1 and 2 are made of general galvanized steel sheets.
According to Non-Patent Document 1, an air conditioning duct is required to be provided with seismic support at one location within 12 m.

特開2005-195266号公報Japanese Patent Application Publication No. 2005-195266 特開2010-048449号公報Japanese Patent Application Publication No. 2010-048449

建築設備耐震設計・施工指針2014年版72ページ、一般社団法人日本建築センター刊Building Equipment Seismic Design and Construction Guidelines 2014 Edition 72 pages, published by Japan Building Center, General Incorporated Association

一般的な鋼板製の空調ダクトにおいては、非特許文献1の指針に従って耐震支持が設計・施行されている。しかし、より高い耐震性を有する空調ダクトが求められている。 In general air conditioning ducts made of steel plates, seismic support is designed and implemented according to the guidelines of Non-Patent Document 1. However, there is a demand for air conditioning ducts with higher earthquake resistance.

前記課題を解決するため、本発明は、建物に設けられる空調ダクトであって、
長さ12メートルの吊区間の両端に設定された吊支点が耐震支持構造を介して前記建物に対して吊支持された状態で前記吊支点に長さ方向と直交する横方向の振動が入力された場合、前記吊支点における入力加速度に対する前記吊区間の中央部における応答加速度の応答倍率が最大になる振動の周波数が、2.2Hz~3.0Hzであることを第1特徴とする。
前記応答加速度の応答倍率が最大になる振動の周波数が、2.42Hz~2.83Hzであることが好ましい。
In order to solve the above problems, the present invention provides an air conditioning duct provided in a building, comprising:
Suspension supports set at both ends of a 12-meter-long suspension section are suspended from the building via an earthquake-resistant support structure, and vibrations in a lateral direction perpendicular to the length direction are input to the suspension supports. In this case, the first feature is that the frequency of vibration at which the response magnification of the response acceleration in the central part of the hanging section with respect to the input acceleration at the hanging fulcrum is maximum is 2.2 Hz to 3.0 Hz.
It is preferable that the frequency of vibration at which the response magnification of the response acceleration is maximum is 2.42 Hz to 2.83 Hz.

また、本発明は、建物に設けられる空調ダクトであって、
長さ12メートルの吊区間の両端に設定された吊支点が耐震支持構造を介して前記建物に対して吊支持された状態で前記吊支点に長さ方向と直交する横方向の振動が入力された場合、前記吊支点における入力変位に対する前記吊区間の中央部における応答変位の応答倍率が最大になる振動の周波数が、2.5Hz~3.0Hzであることを第2特徴とする。
前記応答変位の応答倍率が最大になる振動の周波数が、2.56Hz~2.81Hzであることが好ましい。
The present invention also relates to an air conditioning duct provided in a building,
Suspension supports set at both ends of a 12-meter-long suspension section are suspended from the building via an earthquake-resistant support structure, and vibrations in a lateral direction perpendicular to the length direction are input to the suspension supports. In this case, the second feature is that the frequency of vibration at which the response magnification of the response displacement in the central part of the hanging section to the input displacement at the hanging fulcrum is maximum is 2.5 Hz to 3.0 Hz.
It is preferable that the frequency of vibration at which the response magnification of the response displacement is maximum is 2.56 Hz to 2.81 Hz.

前記空調ダクトは、硬質発泡樹脂を主材として含むことが好ましい。
硬質発泡樹脂の成分としては、ポリイソシアネート、ポリオレフィンなどが挙げられる。
前記硬質発泡樹脂は、空調ダクトの実部(空調路を除く部分)の断面の少なくとも半分以上を占め、好ましくは8割以上を占め、より好ましくは9割以上を占める。
Preferably, the air conditioning duct contains a hard foamed resin as a main material.
Components of the rigid foam resin include polyisocyanate, polyolefin, and the like.
The hard foam resin occupies at least half of the cross section of the real part (excluding the air conditioning path) of the air conditioning duct, preferably 80% or more, and more preferably 90% or more.

本発明によれば、耐震性の高い空調ダクトを提供できる。 According to the present invention, an air conditioning duct with high earthquake resistance can be provided.

図1は、本発明の一実施形態に係る空調ダクトを含む空調設備の側面図である。FIG. 1 is a side view of an air conditioning facility including an air conditioning duct according to an embodiment of the present invention. 図2は、図1のII-II線に沿う、前記空調設備の断面図である。FIG. 2 is a cross-sectional view of the air conditioning equipment taken along line II-II in FIG. 図3は、実施例及び比較例における応答加速度の最大応答倍率と周波数との関係の測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of the relationship between the maximum response magnification of the response acceleration and the frequency in the example and the comparative example. 図4は、実施例及び比較例における応答変位の最大応答倍率と周波数との関係の測定結果を示すグラフである。FIG. 4 is a graph showing the measurement results of the relationship between the maximum response magnification of response displacement and frequency in Examples and Comparative Examples. 図5(a)は、実施例における、揺れの強さを220galに設定したときの周波数に対する応答倍率の測定結果を示すグラフである。FIG. 5(a) is a graph showing the measurement results of the response magnification with respect to frequency when the shaking strength is set to 220 gal in the example. 図5(b)は、実施例における、揺れの強さを240galに設定したときの周波数に対する応答倍率の測定結果を示すグラフである。FIG. 5(b) is a graph showing the measurement results of the response magnification with respect to frequency when the shaking strength is set to 240 gal in the example.

以下、本発明の一実施形態を図面にしたがって説明する。
図1に示すように、例えばオフィスビルなどの建物Bには、空調ダクト1を含む空調設備が設置されている。空調ダクト1は、一列に並べられた複数のダクト部材11と、隣接するダクト部材11を連ねる連接部材12を含む。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, air conditioning equipment including an air conditioning duct 1 is installed in a building B such as an office building. The air conditioning duct 1 includes a plurality of duct members 11 arranged in a line and a connecting member 12 that connects adjacent duct members 11.

図2に示すように、各ダクト部材11は、例えば四角形断面の角筒状になっている。ダクト部材11の4つの壁部11aの互いに隣接する縁部が斜め45°にカットされ、隣接する壁部11aどうしが直角に接合されている。 As shown in FIG. 2, each duct member 11 has, for example, a rectangular tube shape with a quadrangular cross section. The mutually adjacent edges of the four wall portions 11a of the duct member 11 are cut diagonally at 45°, and the adjacent wall portions 11a are joined at right angles.

ダクト部材11の主材、ひいては空調ダクト1の主材は、好ましくは硬質発泡樹脂である。硬質発泡樹脂製の空調ダクト1は、グラスウール製の空調ダクトと比べて固く、鉄板製の空調ダクトと比べて軽量である。
硬質発泡樹脂の成分としては、ポリイソシアヌレート、ポリオレフィン、ウレタン、フェノールなどが挙げられ、好ましくはポリイソシアヌレートである。
硬質発泡樹脂は、少なくとも自立性及び保形性を有し、さらに断熱性、自己消化性に富んでいることが好ましい。
硬質発泡樹脂の気泡構造は、独立気泡であることが好ましい。
前記硬質発泡樹脂の吸水量は、好ましくは2g/100cm以下である。
前記硬質発泡樹脂の透湿係数は、好ましくは2ng/(m・s・Pa)以下である。
前記硬質発泡樹脂の密度は、好ましくは20kg/m~50kg/m程度あり、より好ましくは34kg/mである。
The main material of the duct member 11, and by extension the main material of the air conditioning duct 1, is preferably a hard foamed resin. The air conditioning duct 1 made of hard foamed resin is harder than an air conditioning duct made of glass wool, and lighter than an air conditioning duct made of iron plate.
Components of the rigid foam resin include polyisocyanurate, polyolefin, urethane, phenol and the like, with polyisocyanurate being preferred.
It is preferable that the hard foamed resin has at least self-supporting properties and shape-retaining properties, and is further rich in heat insulating properties and self-extinguishing properties.
The cell structure of the rigid foam resin is preferably a closed cell.
The water absorption amount of the hard foamed resin is preferably 2 g/100 cm 2 or less.
The moisture permeability coefficient of the hard foamed resin is preferably 2 ng/(m 2 ·s · Pa) or less.
The density of the hard foamed resin is preferably about 20 kg/m 3 to 50 kg/m 3 , more preferably 34 kg/m 3 .

各ダクト部材11の長さは、好ましくは100mm~3000mm程度である。
ダクト部材11の外寸の幅は、好ましくは200mm~1550mm程度である。
ダクト部材11の外寸の高さは、200mm~1550mm程度である。
壁部11aの厚みは、好ましくは10mm~50mm程度であり、より好ましくは20mm程度である。
壁部11aの1mあたりの重さは、好ましくは0.5kg/m~1.5kg/m程度であり、より好ましくは1.0kg/mある。
The length of each duct member 11 is preferably about 100 mm to 3000 mm.
The outer width of the duct member 11 is preferably about 200 mm to 1550 mm.
The external height of the duct member 11 is approximately 200 mm to 1550 mm.
The thickness of the wall portion 11a is preferably about 10 mm to 50 mm, more preferably about 20 mm.
The weight per 1 m 2 of the wall portion 11a is preferably about 0.5 kg/m 2 to 1.5 kg/m 2 , more preferably 1.0 kg/m 2 .

ダクト部材11の熱伝導率は、好ましくは0.010W/m・K~0.030W/m・K程度であり、より好ましくは0.020W/m・Kである。 The thermal conductivity of the duct member 11 is preferably about 0.010 W/m·K to 0.030 W/m·K, more preferably 0.020 W/m·K.

図2に示すように、ダクト部材11の内面及び外面は、好ましくはアルミニウムなどの金属シート13によって被覆されている。
図1に示すように、隣接するダクト部材11の間に連接部材12(ニップル)が設けられている。連接部材12は、ダクト部材11の内周面の形状に合わせた長方形の短筒形状になっている。連接部材12の材質は、亜鉛、鉄、アルミなどの金属である。好ましくは、連接部材12は亜鉛鋼板によって構成されている。
連接部材12の厚みは、好ましくは1mm程度以下であり、より好ましくは0.8mmである。
空調ダクト1の長さ方向に沿う、連接部材12の幅寸法W12は、好ましくはW12=30mm~300mm程度であり、より好ましくは60mmである。
As shown in FIG. 2, the inner and outer surfaces of the duct member 11 are preferably covered with a metal sheet 13, such as aluminum.
As shown in FIG. 1, a connecting member 12 (nipple) is provided between adjacent duct members 11. The connecting member 12 has a short rectangular tube shape that matches the shape of the inner peripheral surface of the duct member 11. The material of the connecting member 12 is metal such as zinc, iron, or aluminum. Preferably, the connecting member 12 is constructed from a galvanized steel plate.
The thickness of the connecting member 12 is preferably about 1 mm or less, more preferably 0.8 mm.
The width W 12 of the connecting member 12 along the length direction of the air conditioning duct 1 is preferably about 30 mm to 300 mm, more preferably 60 mm.

連接部材12は、前記隣接するダクト部材11に跨っている。連接部材12の前記長さ方向の約半分が、前記隣接する2つのダクト部材11のうち一方の内周に嵌め込まれている。連接部材12の前記長さ方向の残り約半分が、前記隣接する2つのダクト部材11のうち他方の内周に嵌め込まれている。好ましくは、連結部材とダクト部材11とは、接着剤(図示省略)によって接合されている。かつ、隣接するダクト部材11の対向端面どうしが接着剤(図示省略)によって接合されている。さらに、前記隣接するダクト部材11の外周には、これらダクト部材11に跨るようにアルミ粘着テープ15が巻かれている。 The connecting member 12 straddles the adjacent duct members 11 . Approximately half of the connecting member 12 in the length direction is fitted into the inner periphery of one of the two adjacent duct members 11. Approximately the remaining half of the connecting member 12 in the length direction is fitted into the inner periphery of the other of the two adjacent duct members 11. Preferably, the connecting member and the duct member 11 are bonded together using an adhesive (not shown). In addition, opposing end surfaces of adjacent duct members 11 are bonded to each other with an adhesive (not shown). Further, an aluminum adhesive tape 15 is wrapped around the outer periphery of the adjacent duct members 11 so as to span these duct members 11.

図1に示すように、空調ダクト1は、吊支持手段20によって天井スラブや天井鉄骨等の天井材2に吊支持されている。吊支持手段20は、耐震支持構造21と、中間支持構造30を含む。耐震支持構造21は、空調ダクト1の長さ方向に12m間隔置き、又は12m以下の間隔置きに配置されている。図2に示すように、耐震支持構造21は、例えば一対の吊りボルト22と、支持梁23と、ブレース材24を含む。各吊りボルト22が天井材2から鉛直に垂下されている。一対の吊りボルト22の下端部に支持梁23が水平に架け渡されている。天井材2と吊りボルト22の下端部との間にブレース材24が斜めに架け渡されている。吊りボルト22とブレース材24の下端部どうしが連結金具26を介して連結されている。ブレース材24の中間部にはターンバックル25が設けられている。
耐震支持構造21は、建物Bに対して揺れにくく、耐震性が付与されている。
なお、図1においては、ブレース材24の図示が省略されている。
As shown in FIG. 1, the air conditioning duct 1 is suspended from a ceiling material 2 such as a ceiling slab or a ceiling steel frame by a suspension support means 20. The suspension support means 20 includes an earthquake-resistant support structure 21 and an intermediate support structure 30. The earthquake-resistant support structures 21 are arranged at intervals of 12 m in the length direction of the air conditioning duct 1, or at intervals of 12 m or less. As shown in FIG. 2, the earthquake-resistant support structure 21 includes, for example, a pair of hanging bolts 22, a support beam 23, and a brace member 24. Each hanging bolt 22 is suspended vertically from the ceiling material 2. A support beam 23 is horizontally spanned across the lower ends of the pair of hanging bolts 22. A brace member 24 is diagonally spanned between the ceiling member 2 and the lower end of the hanging bolt 22. The lower ends of the hanging bolt 22 and the brace member 24 are connected to each other via a connecting fitting 26. A turnbuckle 25 is provided in the middle part of the brace material 24.
The earthquake-resistant support structure 21 is resistant to shaking relative to the building B and is provided with earthquake resistance.
Note that in FIG. 1, illustration of the brace material 24 is omitted.

図2に示すように、空調ダクト1が、一対の吊りボルト22の間に通され、支持梁23上に載せられて吊支持されている。
空調ダクト1における、耐震支持構造21との接触部が、吊支点1aを構成している。吊支点1aは、耐震支持構造21を介して、天井材2を含む建物Bに吊支持されている。空調ダクト1における、長さ方向に隣接する2つの吊支点1aどうしの間の部分が、吊区間1bを構成している。
As shown in FIG. 2, the air conditioning duct 1 is passed between a pair of hanging bolts 22, placed on a support beam 23, and suspended.
A contact portion of the air conditioning duct 1 with the earthquake-resistant support structure 21 constitutes a suspension support point 1a. The suspension fulcrum 1 a is suspended and supported by the building B including the ceiling material 2 via an earthquake-resistant support structure 21 . A portion of the air conditioning duct 1 between two longitudinally adjacent suspension supports 1a constitutes a suspension section 1b.

図1に示すように、吊区間1bには、1又は複数の中間支持構造30が互いに前記長さ方向に間隔を置いて配置されている。中間支持構造30は、一対の吊りボルト32と、支持梁33を含む。一対の吊りボルト32が、空調ダクト1を挟んで両側(図1の紙面手前及び紙面奥)に設けられ、天井材2から鉛直に垂下されている。一対の吊りボルト32の下端部どうし間に支持梁33が水平に架け渡されている。
支持梁33上に空調ダクト1が載せられている。
As shown in FIG. 1, one or more intermediate support structures 30 are arranged at intervals in the length direction in the hanging section 1b. The intermediate support structure 30 includes a pair of suspension bolts 32 and a support beam 33. A pair of hanging bolts 32 are provided on both sides of the air conditioning duct 1 (on the front and back of the page in FIG. 1), and are vertically suspended from the ceiling material 2. A support beam 33 is horizontally spanned between the lower ends of the pair of hanging bolts 32.
The air conditioning duct 1 is placed on the support beam 33.

かかる空調ダクト1において、前記吊区間1bの長さが実際又は仮に12メートルであるものとして、その両端の吊支点1aに長さ方向と直交する横方向の振動が入力された場合、吊支点1aにおける入力加速度に対する吊区間1bの中央部1cにおける応答加速度の応答倍率が最大になる振動の周波数は、2.2Hz~3.0Hzであり、好ましくは2.4Hz~2.85Hzである。また、吊支点1aにおける入力変位に対する吊区間1bの中央部1cにおける応答変位の応答倍率が最大になる振動の周波数は、2.5Hz~3.0Hzであり、好ましくは2.55Hz~2.85Hzである。
一般的な建物の固有振動数は1Hz程度である。したがって、空調ダクト1によればは、高い耐震性能を得られる。
In this air conditioning duct 1, assuming that the length of the hanging section 1b is actually or hypothetically 12 meters, if a vibration in a lateral direction perpendicular to the length direction is input to the hanging supports 1a at both ends, the hanging supports 1a The frequency of the vibration at which the response magnification of the response acceleration in the central portion 1c of the suspension section 1b with respect to the input acceleration is maximum is 2.2Hz to 3.0Hz, preferably 2.4Hz to 2.85Hz. Further, the frequency of vibration at which the response magnification of the response displacement in the central portion 1c of the suspension section 1b to the input displacement at the suspension support point 1a is maximum is 2.5Hz to 3.0Hz, preferably 2.55Hz to 2.85Hz. It is.
The natural frequency of a typical building is about 1 Hz. Therefore, according to the air conditioning duct 1, high seismic performance can be obtained.

本発明は、前記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
例えば、ダクト部材11の断面形状ひいては空調ダクト1の断面形状は、正方形、長方形の四角形に限らず、他の多角形でもよく、円形でもよい。
吊区間1bにおける中間支持構造30の数は1つだけでもよい。中間支持構造30を省略してもよい。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit thereof.
For example, the cross-sectional shape of the duct member 11 and the cross-sectional shape of the air conditioning duct 1 are not limited to squares or rectangles, but may be other polygons or circular.
The number of intermediate support structures 30 in the hanging section 1b may be only one. The intermediate support structure 30 may be omitted.

実施例を説明する。本発明が以下の実施例に限定されるものではない。
ダクト部材11を14個用意し、これらを一列に連ねて、空調ダクト1のサンプルを作製した。
ダクト部材11の各壁部11aとしては、ポリイソシアヌレートフォーム(硬質発泡樹脂)からなる主部にアルミニウム箔13を被覆したボードを用いた。
前記ボードの厚みは20mmであった。
前記ボードの重さは1.0kg/mであった。
ダクト部材11の断面形状は正方形とした。
ダクト部材11の内面の高さは500mm、内面の幅は500mmであった。
ダクト部材11の長さは910mmであった。
14個のダクト部材11からなる空調ダクト1の長さは12740mmであった。
隣接するダクト部材11の内面に連接部材12(ニップル)を跨らせ、ダクト部材11の内面と連接部材12との間、及び前記隣接するダクト部材11の端面どうし間にはコーキング材を塗布した。更に隣接するダクト部材11の外面に跨るようにアルミ粘着テープ15を巻き付けた。
An example will be explained. The present invention is not limited to the following examples.
Fourteen duct members 11 were prepared and arranged in a row to produce a sample of the air conditioning duct 1.
As each wall portion 11a of the duct member 11, a board whose main portion was made of polyisocyanurate foam (hard foamed resin) and covered with aluminum foil 13 was used.
The thickness of the board was 20 mm.
The weight of the board was 1.0 kg/ m2 .
The duct member 11 had a square cross-sectional shape.
The height of the inner surface of the duct member 11 was 500 mm, and the width of the inner surface was 500 mm.
The length of the duct member 11 was 910 mm.
The length of the air conditioning duct 1 consisting of 14 duct members 11 was 12,740 mm.
A connecting member 12 (nipple) was placed across the inner surface of the adjacent duct member 11, and caulking material was applied between the inner surface of the duct member 11 and the connecting member 12, and between the end surfaces of the adjacent duct members 11. . Further, an aluminum adhesive tape 15 was wrapped so as to span the outer surface of the adjacent duct member 11.

このようにして作製した硬質発泡樹脂空調ダクト1の両端部を吊支点1aとして耐震支持構造を介して、鉄骨桁からなる天井材に吊支持させた。
両端の吊支点1aどうしの間隔は、12000mmであった。
耐震支持構造は、4つのアングル材で四角形に組まれた剛フレームと、3つのアングル材でコ字状に組まれた保持フレームとで構成した。空調ダクト1の端部を剛フレーム内に通すとともに該剛フレームの下フレーム材(支持梁23(図2)に相当)の上面に載せた。さらに、保持フレームを空調ダクト1の上面及び両側面に宛がい、かつ該保持フレームの下端部を前記下フレーム材に連結して固定した。
両端の吊支点1a間に5つの中間支持構造30を2000mm間隔で設置し、各中間支持構造30の支持梁33に空調ダクト1を載せた。
Both ends of the hard foam resin air conditioning duct 1 produced in this way were used as suspension supports 1a, and the duct was suspended from a ceiling material made of a steel girder via an earthquake-resistant support structure.
The distance between the hanging supports 1a at both ends was 12,000 mm.
The earthquake-resistant support structure consisted of a rigid frame made up of four angle pieces in a rectangular shape, and a holding frame made up of three angle pieces in a U-shape. The end of the air conditioning duct 1 was passed through the rigid frame and placed on the upper surface of the lower frame material (corresponding to the support beam 23 (FIG. 2)) of the rigid frame. Further, a holding frame was placed on the upper surface and both sides of the air conditioning duct 1, and the lower end of the holding frame was connected and fixed to the lower frame material.
Five intermediate support structures 30 were installed at intervals of 2000 mm between the hanging supports 1a at both ends, and the air conditioning duct 1 was placed on the support beam 33 of each intermediate support structure 30.

前記剛フレームは、天井材に対して、空調ダクト1の長さ方向と直交する横方向へ往復移動可能とし、該剛フレームの上フレーム材と天井材との間に加振機を介在させた。
加振機として、株式会社サンエス製永久磁石振動加振器SSV125LSを用いた。
吊区間1bの中央部1cには、変位計及び加速度計を設けた。
変位計として、オプテックス・エフエー株式会社製レーザー変位計CD5-W2000を用いた。
加速度計として、株式会社東京測器研究所製小型低容量加速度計ARF-100Aを用いた。
加振機、変位計及び加速度計の出力を記録する記録計として、株式会社キーエンス製データロガーNR-600を用いた。
The rigid frame is capable of reciprocating with respect to the ceiling material in a lateral direction perpendicular to the length direction of the air conditioning duct 1, and a vibrator is interposed between the upper frame material of the rigid frame and the ceiling material. .
As the vibration exciter, a permanent magnet vibration exciter SSV125LS manufactured by San-S Co., Ltd. was used.
A displacement meter and an accelerometer were provided in the central portion 1c of the suspended section 1b.
As a displacement meter, a laser displacement meter CD5-W2000 manufactured by Optex FA Co., Ltd. was used.
As the accelerometer, a small low capacity accelerometer ARF-100A manufactured by Tokyo Sokki Kenkyusho Co., Ltd. was used.
A data logger NR-600 manufactured by Keyence Corporation was used as a recorder to record the outputs of the vibrator, displacement meter, and accelerometer.

加振機によって、剛フレーム22をスイープ加振した。すなわち、吊支点1aに横方向の振動を入力し、その振動周波数を変化させた。
両端の加振機の位相及び振動周波数が互いに一致するように同期させた。
揺れの強さは、80galから260galまで、20gal置きに設定した。
振動周波数のスイープ範囲は表1の通りであった。
The rigid frame 22 was vibrated in a sweep manner by a vibrator. That is, lateral vibration was inputted to the hanging fulcrum 1a, and the vibration frequency was changed.
The vibrators at both ends were synchronized so that the phases and vibration frequencies matched each other.
The strength of the shaking was set at every 20 gal from 80 gal to 260 gal.
The sweep range of vibration frequency was as shown in Table 1.

吊区間1bの中央部1cにおける応答加速度を前記加速度計によって計測し、吊支点1aにおける入力加速度に対する応答倍率(応答加速度/入力加速度)を算出し、該加速度応答倍率が最大になる振動周波数を求めた。
結果を表1及び図3、図5に示す。
Measure the response acceleration at the central part 1c of the suspension section 1b with the accelerometer, calculate the response multiplier (response acceleration/input acceleration) for the input acceleration at the suspension support point 1a, and find the vibration frequency at which the acceleration response multiplier is maximum. Ta.
The results are shown in Table 1 and FIGS. 3 and 5.

また、吊区間1bの中央部1cにおける応答変位を前記変位計によって計測し、吊支点1aにおける入力変位に対する応答倍率(応答変位/入力変位)を算出し、該変位応答倍率が最大になる振動周波数を求めた。
結果を表1及び図4~図5に示す。なお、260galにおいては、中央部1c付近のダクト部材が圧縮変形されてアルミテープ15の断裂が起きた。
Further, the response displacement at the central portion 1c of the hanging section 1b is measured by the displacement meter, the response magnification (response displacement/input displacement) for the input displacement at the suspension support point 1a is calculated, and the vibration frequency at which the displacement response magnification is maximum is calculated. I asked for
The results are shown in Table 1 and FIGS. 4 and 5. Note that at 260 gal, the duct member near the central portion 1c was compressively deformed and the aluminum tape 15 was torn.

Figure 0007409901000001
Figure 0007409901000001

[比較例1]
比較例1として、グラスウールボード(厚み25mm)を主材とし、その内面をガラス不織布で覆い、外面をアルミニウム箔で覆ったグラスウール空調ダクトを用意した。グラスウール空調ダクトの断面形状は実施例1の硬質発泡樹脂空調ダクトと同じ正方形であり、内面の高さ寸法及び幅寸法は500mmであった。
グラスウール空調ダクトを、実施例1の硬質発泡樹脂空調ダクトと同様に、吊支持した状態でスイープ加振した。
そして、吊支点における入力加速度に対する吊区間の中央部における応答加速度の応答倍率が最大になる振動周波数を求めた。結果を表2及び図3に示す。
また、吊支点における入力変位に対する吊区間の中央部における応答変位の応答倍率が最大になる振動周波数を求めた。結果を表2及び図4に示す。なお、200gal以上の揺れになると、中央部付近で圧縮変形が起きてアルミテープの断裂が起きた。
実施例1の硬質発泡樹脂空調ダクトによれば、グラスウール空調ダクトより高い耐震性を有することが確認された。
[Comparative example 1]
As Comparative Example 1, a glass wool air conditioning duct was prepared in which the main material was a glass wool board (thickness 25 mm), the inner surface was covered with a glass nonwoven fabric, and the outer surface was covered with aluminum foil. The cross-sectional shape of the glass wool air conditioning duct was the same square as the hard foam resin air conditioning duct of Example 1, and the height and width of the inner surface were 500 mm.
Similar to the hard foam resin air conditioning duct of Example 1, the glass wool air conditioning duct was subjected to sweeping vibration in a suspended state.
Then, the vibration frequency at which the response magnification of the response acceleration in the central part of the suspension section to the input acceleration at the suspension support point was maximized was determined. The results are shown in Table 2 and Figure 3.
In addition, the vibration frequency at which the response magnification of the response displacement in the central part of the suspension section to the input displacement at the suspension support point was maximized was determined. The results are shown in Table 2 and FIG. 4. In addition, when shaking exceeded 200 gal, compressive deformation occurred near the center, causing the aluminum tape to break.
It was confirmed that the hard foam resin air conditioning duct of Example 1 had higher earthquake resistance than the glass wool air conditioning duct.

Figure 0007409901000002
Figure 0007409901000002

[比較例2]
比較例2として、亜鉛メッキ鋼板(厚み0.6mm)を主材とする鉄板空調ダクトを用意した。鉄板空調ダクトの断面形状は正方形であり、内面の高さ寸法及び幅寸法は500mmであった。
鉄板空調ダクトを、実施例1の硬質発泡樹脂空調ダクトと同様に、吊支持した状態でスイープ加振した。
そして、吊支点における入力加速度に対する吊区間の中央部における応答加速度の応答倍率が最大になる振動周波数を求めた。結果を表3及び図3に示す。
また、吊支点における入力変位に対する吊区間の中央部における応答変位の応答倍率が最大になる振動周波数を求めた。結果を表3及び図4に示す。
[Comparative example 2]
As Comparative Example 2, a steel plate air conditioning duct whose main material was a galvanized steel plate (thickness: 0.6 mm) was prepared. The cross-sectional shape of the iron plate air conditioning duct was square, and the height and width of the inner surface were 500 mm.
Similar to the hard foam resin air conditioning duct of Example 1, the iron plate air conditioning duct was subjected to sweep vibration while being suspended.
Then, the vibration frequency at which the response magnification of the response acceleration in the central part of the suspension section to the input acceleration at the suspension support point was maximized was determined. The results are shown in Table 3 and Figure 3.
In addition, the vibration frequency at which the response magnification of the response displacement in the central part of the suspension section to the input displacement at the suspension support point was maximized was determined. The results are shown in Table 3 and Figure 4.

Figure 0007409901000003
Figure 0007409901000003

比較例1、2のダクトにおいては、加速度応答倍率が最大となる振動周波数、及び変位応答倍率が最大となる振動周波数が共に1Hzから2Hzの間であり、一般的な建物の固有振動数に近く、揺れやすいと言える。
これに対し、実施例1の硬質発泡樹脂空調ダクトによれば、加速度応答倍率が最大となる振動周波数が約2.2Hz以上、変位応答倍率が最大となる振動周波数が約2.4Hz以上であり、一般的な建物の固有振動数(1Hz程度)から大きくずれており、揺れを抑えられることが確認された。さらに、図5(a)及び同図(b)から明らかな通り、実施例1の硬質発泡樹脂空調ダクトにおいては、振動周波数が1.5Hz程度の場合、中央部1cの変位応答倍率は2以下であり、グラスウール空調ダクトの3分の1以下の変位に抑えられることが確認された。
In the ducts of Comparative Examples 1 and 2, the vibration frequency at which the acceleration response multiplier is maximum and the vibration frequency at which the displacement response multiplier is maximum are both between 1 Hz and 2 Hz, which are close to the natural frequencies of general buildings. , it can be said that it is easy to shake.
On the other hand, according to the hard foam resin air conditioning duct of Example 1, the vibration frequency at which the acceleration response magnification is maximum is approximately 2.2 Hz or more, and the vibration frequency at which the displacement response magnification is maximum is approximately 2.4 Hz or more. , which deviates significantly from the natural frequency of a typical building (approximately 1Hz), confirming that shaking can be suppressed. Furthermore, as is clear from FIGS. 5(a) and 5(b), in the hard foam resin air conditioning duct of Example 1, when the vibration frequency is approximately 1.5 Hz, the displacement response magnification of the central portion 1c is 2 or less. It was confirmed that the displacement could be suppressed to one-third or less of that of a glass wool air conditioning duct.

本発明は、例えば建物の空調用のダクトに適用できる。 The present invention can be applied to, for example, air conditioning ducts in buildings.

B 建物
1 空調ダクト
1a 吊支点
1b 吊区間
1c 中央部
2 天井材
11 ダクト部材
11a 壁部
12 連接部材
12 寸法
13 金属シート
15 アルミ粘着テープ
20 吊支持手段
21 耐震支持構造(支持構造)
22 吊りボルト
23 支持梁
24 ブレース材
30 中間支持構造
32 吊りボルト
33 支持梁
B Building 1 Air conditioning duct 1a Hanging support 1b Hanging section 1c Central part 2 Ceiling material 11 Duct member 11a Wall part 12 Connecting member W 12 dimensions 13 Metal sheet 15 Aluminum adhesive tape 20 Hanging support means 21 Earthquake-resistant support structure (support structure)
22 Hanging bolt 23 Support beam 24 Brace material 30 Intermediate support structure 32 Hanging bolt 33 Support beam

Claims (4)

建物に設けられる空調ダクトであって、
長さ12メートルの吊区間の両端に設定された吊支点が耐震支持構造を介して前記建物に対して吊支持され、かつ前記耐震支持構造の水平な支持梁の上面に載せられただけで固定はされていない状態で前記吊支点に長さ方向と直交する横方向の振動が入力された場合、前記吊支点における入力加速度に対する前記吊区間の中央部における応答加速度の応答倍率が最大になる振動の周波数が、2.2Hz~3.0Hzであり、
密度20kg/m ~50kg/m の硬質発泡樹脂を主材として含み、外寸幅200mm~1550mm、外寸高さ200mm~1550mm、壁厚10mm~50mm、壁1m あたりの重さ0.5kg/m ~1.5kg/m の四角形断面の角筒状である空調ダクト。
An air conditioning duct installed in a building,
Suspension supports set at both ends of a 12-meter-long suspension section are suspended from the building via an earthquake-resistant support structure, and fixed simply by being placed on the top surface of the horizontal support beam of the earthquake-resistant support structure. When vibration in a lateral direction perpendicular to the length direction is input to the suspension support point in a state where the suspension is not suspended, the vibration that maximizes the response multiplier of the response acceleration at the center of the suspension section relative to the input acceleration at the suspension support point. The frequency of is 2.2Hz to 3.0Hz,
Contains hard foamed resin with a density of 20 kg/m 3 to 50 kg/m 3 as the main material, external dimensions width 200 mm to 1550 mm, external dimensions height 200 mm to 1550 mm, wall thickness 10 mm to 50 mm , weight per 1 m 2 of wall 0. The air conditioning duct is a rectangular cylinder with a square cross section weighing 5kg/m 2 to 1.5kg/m 2 .
前記応答加速度の応答倍率が最大になる振動の周波数が、2.42Hz~2.83Hzである請求項1に記載の空調ダクト。 The air conditioning duct according to claim 1, wherein the frequency of vibration at which the response magnification of the response acceleration is maximum is 2.42Hz to 2.83Hz. 建物に設けられる空調ダクトであって、
長さ12メートルの吊区間の両端に設定された吊支点が耐震支持構造を介して前記建物に対して吊支持され、かつ前記耐震支持構造の水平な支持梁の上面に載せられただけで固定はされていない状態で前記吊支点に長さ方向と直交する横方向の振動が入力された場合、前記吊支点における入力変位に対する前記吊区間の中央部における応答変位の応答倍率が最大になる振動の周波数が、2.5Hz~3.0Hzであり、
密度20kg/m ~50kg/m の硬質発泡樹脂を主材として含み、外寸幅200mm~1550mm、外寸高さ200mm~1550mm、壁厚10mm~50mm、壁1m あたりの重さ0.5kg/m ~1.5kg/m の四角形断面の角筒状である空調ダクト。
An air conditioning duct installed in a building,
Suspension supports set at both ends of a 12-meter-long suspension section are suspended from the building via an earthquake-resistant support structure, and fixed simply by being placed on the top surface of the horizontal support beam of the earthquake-resistant support structure. When vibration in a lateral direction perpendicular to the length direction is input to the suspension support in a state where the suspension is not suspended, the vibration that maximizes the response magnification of the response displacement at the center of the suspension section to the input displacement at the suspension support The frequency of is 2.5Hz to 3.0Hz,
Contains hard foamed resin with a density of 20 kg/m 3 to 50 kg/m 3 as the main material, external dimensions width 200 mm to 1550 mm, external dimensions height 200 mm to 1550 mm, wall thickness 10 mm to 50 mm , weight per 1 m 2 of wall 0. The air conditioning duct is a rectangular cylinder with a square cross section weighing 5kg/m 2 to 1.5kg/m 2 .
前記応答変位の応答倍率が最大になる振動の周波数が、2.56Hz~2.81Hzである請求項3に記載の空調ダクト。 The air conditioning duct according to claim 3, wherein the frequency of vibration at which the response magnification of the response displacement is maximum is 2.56Hz to 2.81Hz.
JP2020030063A 2020-02-26 2020-02-26 air conditioning duct Active JP7409901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030063A JP7409901B2 (en) 2020-02-26 2020-02-26 air conditioning duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030063A JP7409901B2 (en) 2020-02-26 2020-02-26 air conditioning duct

Publications (2)

Publication Number Publication Date
JP2021134960A JP2021134960A (en) 2021-09-13
JP7409901B2 true JP7409901B2 (en) 2024-01-09

Family

ID=77660802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030063A Active JP7409901B2 (en) 2020-02-26 2020-02-26 air conditioning duct

Country Status (1)

Country Link
JP (1) JP7409901B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247944A (en) 2006-03-15 2007-09-27 Sanki Eng Co Ltd Construction method of duct
JP2011085348A (en) 2009-10-16 2011-04-28 Shimizu Corp Construction method of ceiling hanging-type air conditioning equipment and air conditioning duct device used in the same
JP2016080154A (en) 2014-10-22 2016-05-16 特許機器株式会社 Isolation structure of hanging device
JP2019113265A (en) 2017-12-25 2019-07-11 フジモリ産業株式会社 Air conditioning duct device
JP2019113266A (en) 2017-12-25 2019-07-11 フジモリ産業株式会社 Air conditioning duct device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247944A (en) 2006-03-15 2007-09-27 Sanki Eng Co Ltd Construction method of duct
JP2011085348A (en) 2009-10-16 2011-04-28 Shimizu Corp Construction method of ceiling hanging-type air conditioning equipment and air conditioning duct device used in the same
JP2016080154A (en) 2014-10-22 2016-05-16 特許機器株式会社 Isolation structure of hanging device
JP2019113265A (en) 2017-12-25 2019-07-11 フジモリ産業株式会社 Air conditioning duct device
JP2019113266A (en) 2017-12-25 2019-07-11 フジモリ産業株式会社 Air conditioning duct device

Also Published As

Publication number Publication date
JP2021134960A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
CN102089484B (en) Wall and ceiling sound damping mounts and channels
US2270825A (en) Sound-absorbing structure
JP5128486B2 (en) Active / passive distributed absorber for vibration and sound radiation suppression
CN102287578A (en) Spring-rubber vibration isolating hanging frame for damping vibration and reducing noise for warm ventilation pipe
JP6308770B2 (en) Construction method of hollow double wall
JP5242464B2 (en) building
JP7409901B2 (en) air conditioning duct
JP4880087B2 (en) Panel floor structure and building structure
JP7512555B2 (en) Noise reduction structure and method
JP4546290B2 (en) Base isolation structure and construction method for structures
JP2007177516A (en) Base isolation bearing device
JP6164469B2 (en) Suspended ceiling structure
JP6826406B2 (en) Floor structure and ceiling structure
JP7207901B2 (en) Impact noise reduction structure and impact noise reduction method
JP2810927B2 (en) Damping beam
EP1111147A2 (en) Structure of an arched and thermally and acoustically insulated monolithic panel, particularly useful for the roofing of industrial and civil buildings and the like
CN203066313U (en) Floor structure capable of reducing impact sound
RU2678735C1 (en) Sound isolating, vibration isolating, thermal isolating enclosing structure
JP3807163B2 (en) Damping device for building structure
JPH09111902A (en) Thermal insulation interior finishing wall panel
JP6904711B2 (en) Ceiling members and ceiling structure
WO2020050276A1 (en) Floor structure
SE533801C2 (en) Device for suspension of ceiling elements
JP5026870B2 (en) Sound insulation wall structure with earthquake resistance
JP2023125560A (en) building floor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7409901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150