JP7406542B2 - Sealed porous composite material, heat insulating material, sound insulating material, and manufacturing method thereof - Google Patents

Sealed porous composite material, heat insulating material, sound insulating material, and manufacturing method thereof Download PDF

Info

Publication number
JP7406542B2
JP7406542B2 JP2021504145A JP2021504145A JP7406542B2 JP 7406542 B2 JP7406542 B2 JP 7406542B2 JP 2021504145 A JP2021504145 A JP 2021504145A JP 2021504145 A JP2021504145 A JP 2021504145A JP 7406542 B2 JP7406542 B2 JP 7406542B2
Authority
JP
Japan
Prior art keywords
closed
composite material
porous composite
weight
total volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021504145A
Other languages
Japanese (ja)
Other versions
JP2021531391A (en
Inventor
鐘金榜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2021531391A publication Critical patent/JP2021531391A/en
Application granted granted Critical
Publication of JP7406542B2 publication Critical patent/JP7406542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • B32B9/025Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch comprising leather
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/046Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0043Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0043Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
    • D06N3/005Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers obtained by blowing or swelling agent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0068Polymeric granules, particles or powder, e.g. core-shell particles, microcapsules
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • A41D31/065Thermally protective, e.g. insulating using layered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/584No clear coat specified at least some layers being let to dry, at least partially, before applying the next layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/08Closed cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/10Composition of foam characterised by the foam pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/02Properties of the materials having acoustical properties
    • D06N2209/025Insulating, sound absorber
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/06Properties of the materials having thermal properties
    • D06N2209/065Insulating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/06Building materials
    • D06N2211/063Wall coverings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • D06N2211/106Footwear
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/125Awnings, sunblinds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/261Body finishing, e.g. headliners
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/08Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/043Footwear

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

発明の詳細な説明Detailed description of the invention

〔技術分野〕
本発明は密閉型多孔質複合材料、断熱材料、遮音材料及びその製造方法に関するものである。
〔Technical field〕
The present invention relates to a closed porous composite material, a heat insulating material, a sound insulating material, and a method for producing the same.

〔技術背景〕
「衣・食・住・行」は、人類文明の誕生以来直面し解決しなければならない最優先のことである。熱帯地域やギリシャなど少数地域を除いて、冬季の防寒問題は常に人々を悩ませてきた。技術発展が今日に至り、人々は動物の毛皮、木綿、ダウンなどを材料に厳しい寒さに耐える服を造ることを学び、なお、これらの服のお陰で人々は真冬日にも長時間屋外に居られるようになったが、これらの服は比較的重い。重い服は手足の自由な動きを妨げる一方、人々の美的感覚にも満たさない。二つ目の欠点は、寒い冬にも美しい身体的ラインをアピールしたい女性にとっては特に大きな悩みことなっている。考えてみろう、もし、「新型断熱材」が広く活用されたら、冬の高寒地帯に雪見に旅出た時、紳士は「新型断熱材」で出来たファションを身に格好よく歩き回り、淑女は「新型断熱材」のファションを身に思い存分撮影することができれば、どんな嬉しことでしょう?
〔発明の内容〕
本発明の実施例は、密閉型多孔質複合材料の製造方法を提供するが、当方法は以下を含む:
1)混合物を用意するが、上記混合物は、水分散型樹脂30-70重量部と、膨張前の熱膨張性微少球10-300重量部と、水50-550重量部と、を含み、上記混合物を攪拌する。
2)担持体を用意する。
3)工程1で得られた混合物を上記担持体上に一層塗布する。
4)上記混合物と上記担持体とを一定時間加熱するが、この過程で上記膨張前の熱膨張性微少球が膨張される。
5)工程3-4を数回繰り返し、多層の上記混合物を含む上記密閉型多孔質複合材料を製造し得る。
[Technical background]
"Food, clothing, shelter, and health" have been the top priorities that must be faced and resolved since the birth of human civilization. With the exception of tropical regions and a few regions such as Greece, winter cold protection has always been a problem for people. As technology has advanced to this day, people have learned to make clothes that can withstand the harsh cold using materials such as animal fur, cotton, and down.These clothes also allow people to stay outside for long periods of time even in the depths of winter. However, these clothes are relatively heavy. While heavy clothing hinders the free movement of limbs, it also does not satisfy people's aesthetic sense. The second drawback is a big problem especially for women who want to show off their beautiful body lines even in the cold winter. Let's think about it, if "new type of insulation material" were widely used, when a gentleman goes out to see the snow in a cold region in winter, he would walk around looking cool wearing fashion made from "new type of insulation material," and a lady would look like " What kind of joy would it be if you could take as many photos as you like wearing the fashion of "New Insulation Materials"?
[Contents of the invention]
Embodiments of the present invention provide a method of manufacturing a closed porous composite material, the method comprising:
1) Prepare a mixture, the above mixture containing 30-70 parts by weight of water-dispersed resin, 10-300 parts by weight of heat-expandable microspheres before expansion, and 50-550 parts by weight of water, Stir the mixture.
2) Prepare a carrier.
3) Apply one layer of the mixture obtained in step 1 onto the support.
4) The mixture and the carrier are heated for a certain period of time, and during this process, the unexpanded thermally expandable microspheres are expanded.
5) Steps 3-4 may be repeated several times to produce the closed porous composite material containing multiple layers of the mixture.

本発明の一つの実施方法に置いて、例えば、上記工程1中の各組成の含有量は、水分散型樹脂40-60重量部と、膨張前の熱膨張性微小球10-50重量部と、水80-350重量部と、である。 In one implementation method of the present invention, for example, the content of each composition in the above step 1 is 40-60 parts by weight of water-dispersed resin, 10-50 parts by weight of heat-expandable microspheres before expansion. , and 80-350 parts by weight of water.

本発明の一つの実施方法に置いて、例えば、上記工程1中の各組成の含有量は、水分散型樹脂45-55重量部と、膨張前の熱膨張性微小球10-30重量部と、水100-250重量部と、である。 In one implementation method of the present invention, for example, the content of each composition in the above step 1 is 45-55 parts by weight of water-dispersed resin, 10-30 parts by weight of heat-expandable microspheres before expansion. , and 100-250 parts by weight of water.

本発明の一つの実施方法に置いて、例えば、上記膨張前の熱膨張性微小球は中空の球形または準球形を呈し、外径は10μm-40μmで、壁厚は1μm-10μmであり、上記壁には熱可塑性または熱硬化性の高分子材料が含まれる。 In one implementation method of the present invention, for example, the thermally expandable microspheres before expansion have a hollow spherical or quasi-spherical shape, an outer diameter of 10 μm to 40 μm, and a wall thickness of 1 μm to 10 μm; The walls include thermoplastic or thermoset polymeric materials.

本発明の一つの実施方法に置いて、例えば、上記水分散型樹脂には二種類の異なる水性ポリウレタンが含まれており、その内、一種は1-25重量部であり、もう一種は49-25重量部である。 In one embodiment of the present invention, for example, the water-dispersed resin contains two different types of water-based polyurethanes, one of which is 1-25 parts by weight and the other 49-parts by weight. 25 parts by weight.

本発明の一つの実施方法に置いて、例えば、上記2種類の異なる水性ポリウレタンは其々、第1アニオン型脂肪族ポリエステルポリウレタン及び第2アニオン型脂肪族ポリエステルポリウレタンであり、その内、上記第1アニオン型脂肪族ポリエステルポリウレタンは10-20重量部であり、好ましくは15重量部である;上記第2アニオン型脂肪族ポリエステルポリウレタンは40-30重量部であり、好ましくは35重量部である。 In one implementation method of the present invention, for example, the two different types of aqueous polyurethanes are a first anionic aliphatic polyester polyurethane and a second anionic aliphatic polyester polyurethane; The anionic aliphatic polyester polyurethane is 10-20 parts by weight, preferably 15 parts by weight; the second anionic aliphatic polyester polyurethane is 40-30 parts by weight, preferably 35 parts by weight.

本発明の一つの実施方法に置いて、例えば、上記工程1の混合物はさらに、0-1重量部の消泡剤と、0-10重量部の硬化剤と、0-10重量部の増粘剤と、0-5重量部のカビ防止剤と、0-2重量部の湿潤レベリング剤と、0-5重量部の感触剤と、0-20重量部の水性カラーペーストとから選ばれる少なくとも一種を含む;好ましくは、上記工程1の混合物はさらに、消泡剤0.1-1重量部と、硬化剤0.1-10重量部と、増粘剤0.1-10重量部と、カビ防止剤0.1-5重量部と、湿潤レベリング剤0.1-2重量部と、感触剤0.1-5重量部と、水性カラーペースト0.1-20重量部と、から選ばれる少なくとも一種を含む。 In one method of carrying out the invention, for example, the mixture of step 1 above further comprises 0-1 parts by weight of an antifoaming agent, 0-10 parts by weight of a curing agent, and 0-10 parts by weight of a thickening agent. at least one selected from the group consisting of a mold inhibitor of 0-5 parts by weight, a moisture leveling agent of 0-2 parts by weight, a feel agent of 0-5 parts by weight, and an aqueous color paste of 0-20 parts by weight. Preferably, the mixture of step 1 above further comprises 0.1-1 parts by weight of an antifoaming agent, 0.1-10 parts by weight of a curing agent, 0.1-10 parts by weight of a thickener, and 0.1-5 parts by weight of a mold inhibitor. 0.1-2 parts by weight of a wet leveling agent, 0.1-5 parts by weight of a touch agent, and 0.1-20 parts by weight of an aqueous color paste.

本発明の一つの実施方法に置いて、例えば、上記工程4中で上記担持体を100 oC-180oCに加熱するが、加熱時間は10-300秒である。好ましくは上記担持体を120 oC -160 oCまでに加熱するが、加熱時間は60-120秒である。好ましくは上記担持体を130 oC -150 oCまでに加熱するが、加熱時間は60-90秒である。好ましくは上記担持体を140 oC -150 oCに加熱するが、加熱時間は60-80秒である。 In one method of implementing the present invention, for example, in step 4, the support is heated to 100 ° C.-180 ° C., and the heating time is 10-300 seconds. Preferably, the support is heated to 120 ° C.-160 ° C., and the heating time is 60-120 seconds. Preferably, the support is heated to 130 o C - 150 o C, and the heating time is 60-90 seconds. Preferably, the support is heated to 140 ° C.-150 ° C., and the heating time is 60-80 seconds.

本発明の一つの実施方法に置いて、例えば、上記水分散型樹脂は、水性ポリウレタン樹脂と、水性アクリル酸樹脂と、水性ポリウレタン改質アクリル酸樹脂と、ブチロニトリル乳液と、ポリクロロプレン乳液と、酢酸ポリビニル乳液と、から選ばれる少なくとも一種を含む。 In one implementation method of the present invention, for example, the water-dispersed resin includes an aqueous polyurethane resin, an aqueous acrylic resin, an aqueous polyurethane-modified acrylic resin, a butyronitrile emulsion, a polychloroprene emulsion, and an acetic acid resin. It contains at least one selected from polyvinyl emulsion.

本発明の一つの実施方法に置いて、例えば、上記硬化剤は、ポリカルボジイミドと、ポリイソシアネートと、密閉型ポリイソシアネートと、エチレンイミンと、アミノ樹脂と、からの少なくとも一種を含む;上記消泡剤は、有機シリコン系消泡剤である;上記湿潤レベリング剤は、有機シリコン系湿潤レベリング剤である;上記触感剤は、高分子量シリコーンと、ワックス粉末と、ワックス乳液と、気相または沈殿法による二酸化ケイ素及びその分散液と、からの少なくとも一種を含む;上記カビ防止剤は、有機又は無機系の水分散型カビ防止剤である;上記増粘剤は、会合型ポリウレタンと、アクリル酸アルカリ膨潤型と、セルロース系増粘剤と、無機系増粘剤と、からの少なくとも一種を含む。 In one implementation method of the present invention, for example, the curing agent includes at least one of polycarbodiimide, polyisocyanate, sealed polyisocyanate, ethyleneimine, and amino resin; The agent is an organosilicon antifoaming agent; the wet leveling agent is an organosilicon wet leveling agent; the tactile agent is a high molecular weight silicone, a wax powder, a wax emulsion, and a vapor phase or precipitation method. The above-mentioned mold inhibitor is an organic or inorganic water-dispersed mold inhibitor; It contains at least one of a swelling type, a cellulose thickener, and an inorganic thickener.

本発明の一つの実施方法に置いて、例えば、上記担持体には、織布と、非織布と、革と、軟質薄膜と、から選ばれる一種又は多種が含まれる。 In one implementation method of the present invention, for example, the carrier includes one or more selected from woven fabrics, non-woven fabrics, leather, and soft thin films.

本発明の一つの実施方法に置いて、例えば、工程4の膨張した後の熱膨張性微小球サイズと工程1の膨張前の熱膨張性微小球サイズとの比は2-10である。 In one method of implementing the invention, for example, the ratio of the thermally expandable microsphere size after expansion in step 4 to the thermally expandable microsphere size before expansion in step 1 is 2-10.

本発明の一つの施方法に置いて、例えば、上記方法により製造し得られた上記密閉型多孔質複合材料は、複数の密閉型空洞及び上記複数の密閉型空洞を互いに分離するポリマー壁を含み、上記密閉型空洞のサイズ範囲は、20μm -800μmであり、好ましくは50μm -300μmであり、より好ましくは60μm -200μmであり、さらに好ましくは80μm -120mであり、上記密閉型空洞の総体積と上記ポリマー壁の総体積との比は3より大きく、好ましくは3.33より大きく、好ましくは16より大きく、好ましくは33より大きく、好ましくは83より大きく、好ましくは166より大きく、好ましくは333より大きく、好ましくは417より大きく、好ましくは556より大きく、好ましくは833より大きく、好ましくは1667より大きい。 In one method of the present invention, the closed porous composite material produced by the method described above includes a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other. , the size range of the closed cavity is 20 μm - 800 μm, preferably 50 μm - 300 μm, more preferably 60 μm - 200 μm, even more preferably 80 μm - 120 m, and the total volume of the closed cavity is the ratio of said polymer wall to the total volume is greater than 3, preferably greater than 3.33, preferably greater than 16, preferably greater than 33, preferably greater than 83, preferably greater than 166, preferably greater than 333; Preferably greater than 417, preferably greater than 556, preferably greater than 833, preferably greater than 1667.

本発明の一つの実施方法に置いて、例えば、上記方法により製造し得られた上記密閉型多孔質複合材料は断熱材料であり、上記断熱材料は複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、を含み、上記断熱材料の厚さが1mmの場合、上記断熱材料のクロー値≧0.20であり、または≧0.40、または≧0.50、または≧0.60、または≧1.0、または≧1.5である。 In one implementation method of the present invention, for example, the closed porous composite material produced by the above method is a heat insulating material, and the heat insulating material has a plurality of closed cavities and a plurality of closed cavities. a polymeric wall separating cavities from each other, and when the thickness of the insulating material is 1 mm, the Claw value of the insulating material is ≧0.20, or ≧0.40, or ≧0.50, or ≧0.60, or ≧1.0; or ≧1.5.

本発明の一つの実施方法に置いて、例えば、上記方法により製造し得られた上記密閉型多孔質複合材料は、複数の密閉型空洞及び上記複数の密閉型空洞を互いに分離するポリマー壁からなり、上記密閉型空洞のサイズ範囲は20μm -800μmであり、好ましくは50μm -300μmであり、より好ましくは60μm -200μmであり、さらに好ましくは80μm -120μmであり、上記密閉型多孔質複合材料の密度は5kg/m3-300kg/ m3であり、好ましくは10kg/m3-200kg/ m3であり、好ましくは20kg/m3-150kg/ m3であり、好ましくは30kg/m3-100kg/ m3であり、好ましくは40kg/m3-90kg/ m3であり、好ましくは50kg/m3-80kg/ m3であり、好ましくは60kg/m3-80kg/ m3である。 In one method of implementing the invention, the closed porous composite material produced by the method described above comprises a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other. , the size range of the closed cavity is 20 μm - 800 μm, preferably 50 μm - 300 μm, more preferably 60 μm - 200 μm, even more preferably 80 μm - 120 μm, and the density of the closed porous composite material is is 5kg/m 3 -300kg/m 3 , preferably 10kg/m 3 -200kg/m 3 , preferably 20kg/m 3 -150kg/m 3 , preferably 30kg/m 3 -100kg/m 3 m3 , preferably 40kg/ m3-90kg / m3 , preferably 50kg/ m3-80kg / m3 , preferably 60kg/ m3-80kg / m3 .

本発明の実施例では密閉型多孔質複合材料を提供し、上記密閉型多孔質複合材料は、複数の密閉型空洞及び上記複数の密閉型空洞を互いに分離するポリマー壁を含み、上記密閉型空洞のサイズ範囲は20μm -800μmであり、好ましくは50μm -300μmであり、より好ましくは60μm -200μmであり、さらに好ましくは80μm -120μmであり、上記密閉型空洞の総体積と上記ポリマー壁の総体積との比は3より大きく、好ましくは3.33より大きく、好ましくは16より大きく、好ましくは33より大きく、好ましくは83より大きく、好ましくは166より大きく、好ましくは333より大きく、好ましくは417より大きく、好ましくは556より大きく、好ましくは833より大きく、好ましくは1667より大きい。 Embodiments of the present invention provide a closed porous composite material, the closed porous composite material comprising a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other, the closed porous composite material comprising: a plurality of closed cavities; The size range of is 20μm -800μm, preferably 50μm -300μm, more preferably 60μm -200μm, even more preferably 80μm -120μm, and the total volume of the closed cavity and the total volume of the polymer wall The ratio of Preferably greater than 556, preferably greater than 833, preferably greater than 1667.

本発明の一つの実施方法に置いて、例えば、上記密閉型多孔質複合材料は、複数の密閉型空洞及び上記複数の密閉型空洞を互いに分離するポリマー壁からなる。 In one implementation of the invention, for example, the closed porous composite material comprises a plurality of closed cavities and a polymeric wall separating the plurality of closed cavities from each other.

本発明の一つの実施方法に置いて、例えば、上記ポリマー壁は上記密閉型空洞の内側向けに熱可塑性または熱硬化性の高分子材料を含み、上記ポリマー壁は上記密閉型空洞の外側向けに水分散型樹脂を含む。 In one implementation of the invention, for example, the polymer wall comprises a thermoplastic or thermosetting polymeric material for the inside of the closed cavity, and the polymer wall for the outside of the closed cavity includes a thermoplastic or thermosetting polymeric material. Contains water-dispersed resin.

本発明の一つの実施方法に置いて、例えば、上記ポリマー壁の厚さは0.01-5μmであり、好ましくは0.02μm -2μmであり、より好ましくは0.03μm -1.0μmであり、さらに好ましくは0.04μm -0.8μmであり、さらに好ましくは0.05μm -0.6μmであり、さらに好ましくは0.1μm -0.5μmである。 In one implementation of the invention, for example, the thickness of the polymer wall is 0.01-5μm, preferably 0.02μm-2μm, more preferably 0.03μm-1.0μm, even more preferably 0.04μm. μm - 0.8 μm, more preferably 0.05 μm - 0.6 μm, even more preferably 0.1 μm - 0.5 μm.

本発明の一つの実施方法に置いて、例えば、上記密閉型空洞の形状には球形と、準球形と、不規則形状と、が含まれる。 In one embodiment of the present invention, the shape of the closed cavity includes, for example, a spherical shape, a quasi-spherical shape, and an irregular shape.

本発明の一つの実施方法に置いて、例えば、上記密閉型空洞は膨張前の熱膨張性微小球の直径を2-10倍に膨張させて得られる。 In one method of implementing the present invention, for example, the closed cavity is obtained by expanding the diameter of the thermally expandable microspheres before expansion by 2-10 times.

本発明の一つの実施方法に置いて、例えば、上記密閉型多孔質複合材料は断熱材料である;上記断熱材料の厚さが0.2mm-3.0mmである場合、上記断熱材料のクロー値は0.1-3.0である。 In one implementation method of the present invention, for example, the closed porous composite material is a heat insulating material; when the thickness of the heat insulating material is 0.2mm-3.0mm, the Crow value of the heat insulating material is 0.1. -3.0.

本発明の一つの実施方法に置いて、例えば、上記ポリマー壁は三層構造を含み、上記三層構造は二つの外層及び上記二つの外層の間に挟まれた中間層を含み、その内、上記二つの外層の素材は同じであり、かつ、上記二つの外層の素材は上記二つの外層の間に挟まれた中間層の素材とは異なる。 In one embodiment of the invention, for example, the polymer wall includes a three-layer structure, the three-layer structure includes two outer layers and an intermediate layer sandwiched between the two outer layers, wherein: The two outer layers are made of the same material, and the material of the two outer layers is different from the material of the intermediate layer sandwiched between the two outer layers.

本発明の一つの実施方法に置いて、例えば、上記担持体は織布と、非織布と、革と、軟質薄膜と、から選ばれる一種又は多種を含む。 In one implementation method of the present invention, for example, the carrier includes one or more selected from woven fabric, non-woven fabric, leather, and soft thin film.

本発明の一つの実施方法に置いて、例えば、上記密閉型多孔質複合材料は担持体及び上記担持体の上に付着している断熱層を含み、上記担持体の厚さは0.1mm-5.0mmであり、上記断熱材の厚さは0.2mm-10mmである。 In one implementation method of the present invention, for example, the closed porous composite material includes a support and a heat insulating layer attached on the support, and the thickness of the support is 0.1 mm-5.0 mm. mm, and the thickness of the heat insulating material is 0.2mm-10mm.

本発明の一つの実施方法に置いて、例えば、上記密閉型多孔質複合材料の上記担持体の二つの表面には其々一層の断熱層が付着しており、上記担持体の厚さは0.1mm-5.0mmであり、何れの上記断熱層の厚さも0.2mm-10mmである。 In one implementation method of the present invention, for example, a heat insulating layer is attached to each of two surfaces of the support of the closed porous composite material, and the thickness of the support is 0.1. mm-5.0 mm, and the thickness of any of the above heat insulating layers is 0.2 mm-10 mm.

本発明の一つの実施方法に置いて、例えば、上記密閉型多孔質複合材料は外層である二層の担持体と、上記二層の担持体の間に挟まれた上記断熱層と、を含み、上記二層の担持体のうち何れの層の担持体の厚さは0.1mm-5.0mmであり、上記断熱層の厚さは0.2mm-10mmである。 In one implementation method of the present invention, for example, the closed porous composite material includes a two-layered carrier as an outer layer, and the heat insulating layer sandwiched between the two-layered carrier. The thickness of either of the two layers of the carrier is 0.1 mm to 5.0 mm, and the thickness of the heat insulating layer is 0.2 mm to 10 mm.

本発明の一つの実施方法に置いて、例えば、上記密閉型多孔質複合材料は一層の担持体と、上記担持体の上に付着している上記断熱層と、を含み、上記断熱層は2層以上の多層構造を有する。好ましくは、上記断熱層のうち、上記担持体と直接接触する層を底層断熱層と称し、上記担持体と最長距離の層を面層断熱層と称し、上記底層断熱層と上記面層断熱層との間に位置する層を中間層断熱層と称し、上記底層断熱層中の上記熱膨張性微小球の含有量は、上記面層断熱層及び上記中間層断熱層中の上記熱膨張性微小球の含有量より大きい。 In one method of implementing the present invention, for example, the closed porous composite material includes one layer of a support and the heat insulation layer attached on the support, and the heat insulation layer includes two layers. It has a multilayer structure with more than one layer. Preferably, among the heat insulating layers, the layer that is in direct contact with the carrier is referred to as a bottom heat insulating layer, the layer having the longest distance from the carrier is referred to as a face heat insulating layer, and the bottom heat insulating layer and the face heat insulating layer are preferably The layer located between is called an intermediate heat insulating layer, and the content of the thermally expandable microspheres in the bottom heat insulating layer is equal to the content of the thermally expandable microspheres in the face heat insulating layer and the middle heat insulating layer greater than the content of the sphere.

本発明の一つの実施方法に置いて、例えば、上記底層断熱層は一種の水分散型樹脂を含み、上記面層断熱層は少なくとも二種の違う水分散型樹脂を含む。 In one embodiment of the present invention, for example, the bottom heat insulation layer includes one type of water-dispersed resin, and the top heat insulation layer includes at least two different water-dispersed resins.

本発明の一つの実施方法に置いて、例えば、各断熱層に使われる膨張前の熱膨張性微小球は同じでもよいし、同じでなくてもよい。 In one implementation of the invention, for example, the unexpanded thermally expandable microspheres used in each insulation layer may or may not be the same.

本発明の一つの実施方法に置いて、例えば、複数の上記密閉型多孔質複合材料は接着剤にて一体に接着されるか、または1個または複数の上記密閉型多孔質複合材料を接着剤にて他の材料に接着して一体化させるが、一回の接着に使われる接着剤の量は10g/m2-25g/m2である。好ましくは、上記接着剤はPUR水分反応性接着剤と、ホットメルト接着剤と、水分散型接着剤と、溶媒型接着剤と、から選ばれる少なくとも一種である。 In one method of carrying out the invention, for example, a plurality of the above-mentioned closed porous composite materials are bonded together with an adhesive, or one or more of the above-mentioned closed porous composite materials are bonded together with an adhesive. It is bonded to other materials to integrate it, and the amount of adhesive used for one bonding is 10g/m 2 -25g/m 2 . Preferably, the adhesive is at least one selected from PUR moisture-reactive adhesives, hot melt adhesives, water-dispersed adhesives, and solvent-based adhesives.

本発明の実施例では断熱材を提供するが、上記断熱材は複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、を含み、上記断熱材の厚さが1mmである場合、上記断熱材はクロー値≧0.20、または≧0.40、または≧0.50、または≧0.60、または≧1.0、または≧1.5である。 Embodiments of the present invention provide an insulation material, the insulation material comprising a plurality of sealed cavities and a polymer wall separating the plurality of sealed cavities from each other, the insulation material having a thickness of 1 mm. In some cases, the insulating material has a Crow value ≧0.20, or ≧0.40, or ≧0.50, or ≧0.60, or ≧1.0, or ≧1.5.

本発明の一つの実施方法に置いて、例えば、上記断熱材は複数の密閉型空洞及び上記複数の密閉型空洞を互いに分離するポリマー壁から構成される。 In one implementation of the invention, for example, the insulation is comprised of a plurality of closed cavities and a polymeric wall separating the plurality of closed cavities from each other.

本発明の一つの実施方法に置いて、例えば、上記密閉型空洞のサイズ範囲は20μm -800μmであり、好ましくは50μm -300μmであり、より好ましくは60μm -200μmであり、より好ましくは80μm -120μmである。 In one embodiment of the invention, for example, the size range of the closed cavity is 20 μm - 800 μm, preferably 50 μm - 300 μm, more preferably 60 μm - 200 μm, more preferably 80 μm - 120 μm. It is.

本発明の一つの実施例において、例えば、上記ポリマー壁の厚さは0.01μm -5μmであり、好ましくは0.02μm -2μmであり、より好ましくは0.03μm -1.0μmであり、より好ましくは0.04μm -0.8μmであり、より好ましくは0.05μm -0.6μmであり、より好ましくは0.1μm -0.5μmである。 In one embodiment of the invention, for example, the thickness of the polymer wall is 0.01 μm - 5 μm, preferably 0.02 μm - 2 μm, more preferably 0.03 μm - 1.0 μm, more preferably 0.04 μm. -0.8 μm, more preferably 0.05 μm -0.6 μm, more preferably 0.1 μm -0.5 μm.

本発明の一つの実施方法に置いて、例えば、上記ポリマー壁は三層構造を含み、その内、上記二つの外層の素材は同じであり、かつ、上記二つの外層の素材は上記二つの外層の間に挟まれた中間層の素材とは異なる。 In one implementation method of the invention, for example, the polymer wall has a three-layer structure, in which the two outer layers are made of the same material, and the two outer layers are made of the same material as the two outer layers. It is different from the material of the intermediate layer sandwiched between.

本発明の実施例では密閉型多孔質複合材料を提供するが、上記密閉型多孔質複合材料は複数の密閉型空洞及び上記複数の密閉型空洞を互いに分離するポリマー壁を含み、上記密閉型空洞のサイズ範囲は20μm -800μmであり、好ましくは50μm -300μmであり、より好ましくは60μm -200μmであり、さらに好ましくは80μm -120μmであり、上記密閉型多孔質複合材料の密度は5kg/m3-300kg/ m3であり、好ましくは10kg/m3-200kg/ m3であり、好ましくは20kg/m3-150kg/ m3であり、好ましくは30kg/m3-100kg/ m3であり、好ましくは40kg/m3-90kg/ m3であり、好ましくは50kg/m3-80kg/ m3であり、好ましくは60kg/m3-80kg/ m3である。 Embodiments of the present invention provide a closed porous composite material, the closed porous composite material comprising a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other; The size range of is 20μm -800μm, preferably 50μm -300μm, more preferably 60μm -200μm, even more preferably 80μm -120μm, and the density of the closed porous composite material is 5kg/m 3 -300kg/ m3 , preferably 10kg/ m3 -200kg/ m3 , preferably 20kg/ m3 -150kg/ m3 , preferably 30kg/ m3 -100kg/ m3 , Preferably it is 40kg/m 3 -90kg/m 3 , preferably 50kg/m 3 -80kg/m 3 , preferably 60kg/m 3 -80kg/m 3 .

本発明の一つの実施方法において、例えば、上記密閉型多孔質複合材料は複数の密閉型空洞及び上記複数の密閉型空洞を互いに分離するポリマー壁からなる。 In one method of implementing the invention, for example, the closed porous composite material comprises a plurality of closed cavities and a polymeric wall separating the plurality of closed cavities from each other.

本発明の一つの実施方法において、例えば、上記ポリマー壁の厚さは0.01-5μmであり、好ましくは0.02 μm -2μmであり、より好ましくは0.03μm -1.0μmであり、さらに好ましくは0.04μm -0.8μmであり、さらに好ましくは0.05μm -0.6μmであり、さらに好ましくは0.1μm -0.5μmである。 In one implementation of the invention, for example, the thickness of the polymer wall is 0.01-5 μm, preferably 0.02 μm-2 μm, more preferably 0.03 μm-1.0 μm, even more preferably 0.04 μm- It is 0.8 μm, more preferably 0.05 μm - 0.6 μm, even more preferably 0.1 μm - 0.5 μm.

本発明の一つの実施方法に置いて、例えば、上記ポリマー壁は三層構造を含み、その内、二つの外層の素材は同じであり、かつ、上記二つの外層の素材は上記二つの外層の間に挟まれた中間層の素材とは異なる。 In one embodiment of the present invention, for example, the polymer wall has a three-layer structure, in which the two outer layers are made of the same material, and the two outer layers are made of the same material as the two outer layers. It is different from the material of the intermediate layer sandwiched between.

本発明の一つの実施方法に置いて、例えば、上記密閉型多孔質複合材料の熱伝導係数は0.030w/m.kより小さく、好ましくは、上記密閉型多孔質複合材料の熱伝導係数は0.025w/m.kより小さく、好ましくは、上記密閉型多孔質複合材料の熱伝導係数は0.020w/m.kより小さく、好ましくは、上記密閉型多孔質複合材料の熱伝導係数は0.016w/m.kより小さい。上記熱伝導係数は本出願明細書の実施例26-36で掲載する方法で測定する。 In one embodiment of the invention, for example, the closed porous composite material has a thermal conductivity coefficient of less than 0.030w/m.k, preferably the closed porous composite material has a thermal conductivity coefficient of 0.025w/m.k. m.k, preferably the thermal conductivity coefficient of the closed porous composite material is less than 0.020 w/m.k, preferably the thermal conductivity coefficient of the closed porous composite material is less than 0.016 w/m.k. The above thermal conductivity coefficient is measured by the method described in Examples 26-36 of the specification of the present application.

本発明の実施例では遮音材を提供するが、上記遮音材は前記記載の密閉型多孔質複合材料を含む。 Embodiments of the present invention provide a sound insulation material, the sound insulation material comprising a closed porous composite material as described above.

本発明の実施例では吸音材を提供するが、上記吸音材は前記記載の密閉型多孔質複合材料を含む。 Embodiments of the present invention provide a sound absorbing material, the sound absorbing material comprising a closed porous composite material as described above.

本発明の実施例では服装を提供するが、上記服装は前記記載の密閉型多孔質複合材料を含むか、または上記服装は前記記載の断熱材を含む。 Embodiments of the invention provide an apparel, wherein the apparel includes a closed porous composite material as described above, or the apparel includes an insulating material as described above.

本発明の一つの実施方法において、例えば、上記服装はさらに表生地及び裏生地を含むが、その内、上記密閉型多孔質複合材料または上記断熱材を、上記表生地と上記裏生地との間に設ける。 In one embodiment of the present invention, for example, the garment further includes a front fabric and a lining fabric, wherein the closed porous composite material or the heat insulating material is placed between the outer fabric and the lining fabric. Provided for.

本発明の実施例ではテントを提供するが、上記テントは前記記載の密閉型多孔質複合材料を含むか、または上記テントは前記記載の断熱材を含む。 Embodiments of the present invention provide tents, wherein the tent includes a closed porous composite material as described above, or the tent includes an insulation material as described above.

本発明の一つの実施例では寝袋を提供するが、上記寝袋は前記記載の密閉型多孔質複合材料を含むか、または上記寝袋は前記記載の断熱材を含む。 One embodiment of the invention provides a sleeping bag, the sleeping bag comprising a closed porous composite material as described above, or the sleeping bag comprising an insulating material as described above.

本発明の一つの実施例では靴を提供するが、上記靴の靴面は前記記載の密閉型多孔質複合材料を含むか、または上記靴面は前記記載の断熱材を含む。 One embodiment of the invention provides a shoe, the sole of the shoe comprising a closed porous composite material as described above, or the sole comprising a thermal insulation material as described above.

本発明の一つの実施例では壁紙を提供するが、上記壁紙は前記記載の密閉型多孔質複合材料を含むか、または上記壁紙は前記記載の断熱材を含む。 One embodiment of the invention provides a wallpaper, the wallpaper comprising a closed porous composite material as described above, or the wallpaper comprising a thermal insulation material as described above.

本発明の一つの実施例では車室を提供するが、上記車室は前記記載の密閉型多孔質複合材料を含むか、または上記車室は前記記載の断熱材を含む。 One embodiment of the invention provides a compartment, the compartment comprising a closed porous composite material as described above, or the compartment comprising a thermal insulation material as described above.

本発明の一つの実施例では航空機客室を提供するが、上記航空機客室は前記記載の密閉型多孔質複合材料を含むか、または上記航空機客室は前記記載の断熱材を含む。 One embodiment of the present invention provides an aircraft cabin, the aircraft cabin comprising a closed porous composite material as described above, or the aircraft cabin comprising a thermal insulation material as described above.

本発明の実施例では冷蔵庫を提供するが、上記冷蔵庫は前記記載の密閉型多孔質複合材料を含むか、または上記冷蔵庫は前記記載の断熱材を含む。 Embodiments of the present invention provide a refrigerator, the refrigerator comprising a closed porous composite material as described above, or the refrigerator comprising a thermal insulation material as described above.

〔添付図〕
本発明実施例における技術的解決案を分かりやすく説明するため、以下、実施例の添付図を簡単に紹介する。明らかな事は、以下の説述中の添付図は本発明一部の実施例のみに関わるものであり、本発明を限定するものではない。
[Attached diagram]
In order to clearly explain the technical solutions in the embodiments of the present invention, the accompanying drawings of the embodiments will be briefly introduced below. It is clear that the attached figures in the following description relate only to some embodiments of the invention and are not intended to limit the invention.

図1は、本発明の実施例で使われる膨張前の熱膨張性微小球の顕微鏡写真である;
図2は、本発明の実施例で使われる膨張前の熱膨張性微小球単体の透過電子顕微鏡写真(TEM)である;
図3は、本発明の一実施例で得られた最終製品の顕微鏡写真であり、写真から多くの膨張後の熱膨張性微小球は球形または準球形を呈していることが分かる。
FIG. 1 is a micrograph of thermally expandable microspheres used in the embodiments of the present invention before expansion;
Figure 2 is a transmission electron micrograph (TEM) of a single thermally expandable microsphere before expansion used in an example of the present invention;
FIG. 3 is a microscopic photograph of the final product obtained in one embodiment of the present invention, and it can be seen from the photograph that many of the thermally expandable microspheres after expansion have a spherical or quasi-spherical shape.

図4は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である;
図5は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である;
図6は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である;
図7は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である;
図8は、本発明の一実施例で得られた最終製品のコンピュータ断層撮影写真である;
図9は、本発明の一実施例で得られた最終製品のコンピュータ断層撮影写真である;
図10は、本発明の一実施例で得られた最終製品のコンピュータ断層撮影写真である;
図11―図17は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。
FIG. 4 is a scanning electron micrograph of the final product obtained in one embodiment of the present invention;
FIG. 5 is a scanning electron micrograph of the final product obtained in one embodiment of the present invention;
FIG. 6 is a scanning electron micrograph of the final product obtained in one embodiment of the present invention;
FIG. 7 is a scanning electron micrograph of the final product obtained in one embodiment of the present invention;
FIG. 8 is a computed tomography photograph of the final product obtained in one embodiment of the present invention;
FIG. 9 is a computed tomography photograph of the final product obtained in one embodiment of the present invention;
FIG. 10 is a computed tomography photograph of the final product obtained in one embodiment of the present invention;
Figures 11 to 17 show the wall thicknesses of microspheres in the final products obtained in the examples of the present invention, measured by SEM.

〔実施方法〕
本発明実施例の目的や技術的解決策、およびメリットをより明確にするため、以下、本発明実施例の添付図をもって本発明実施例の技術案を詳しく説明する。当然、取り上げられる実施例は本発明の一部の実施例に過ぎないものの、全部の実施例ではない。取り上げられた本発明の実施例をもとに、当業者の創造的な発想と労働がしないまま得られる凡ゆる実施例は、本発明の保護範囲内に入る。
[Implementation method]
In order to make the objectives, technical solutions, and advantages of the embodiments of the present invention more clear, the technical solutions of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings of the embodiments of the present invention. Naturally, the embodiments mentioned are only some embodiments of the invention, but not all embodiments. Based on the mentioned embodiments of the present invention, any embodiments that can be obtained without the creative ideas and efforts of those skilled in the art fall within the protection scope of the present invention.

特に定義しない限り、本開示で使われる技術用語または科学用語は、本発明が属する該当分野の一般技術者が理解する通常の意味をもつ。特に明記しない限り、本開示における「部」という用語は重量部を指す。 Unless otherwise defined, technical or scientific terms used in this disclosure have their ordinary meanings as understood by one of ordinary skill in the art to which this invention pertains. Unless otherwise specified, the term "parts" in this disclosure refers to parts by weight.

人間は恒温動物であり、人間の身体は常に発熱する熱源である。これら継続的に発生される熱量は継続的に放熱されなければならない。気温が高い夏には身体の熱量拡散が遅くなり、人間は暑さを感じるし、寒い冬には、身体の熱量拡散が早くなり、人間は寒さを感じる。人々は寒さを感じた場合、生活経験をもとに、一般的に服の枚数を増やしたりまたはより分厚い服装を着る。だが、服の枚数を増やしたりまたはより分厚い服装を着ると、どうして防寒対策になるのか?その答えは熱流失の主要経路から考えるべきである。一般的に言えば、熱はお主に三つの経路で流失されるが、熱伝導と、熱対流と、熱放射と、がある。熱放射とは、温度が絶対零度より高いすべての物体が、持続的に周囲の空間に向けて電磁波を放射することを指し、温度が高いほど、放射する総エネルギー量が大きくなり、短波成分も多くなる。服の枚数を増やしたりまたはより分厚い服装を着ることは、熱放射に対しては影響が小さので、主に熱伝導及び熱対流を影響することで防寒目的を実現する。暖かい衣類といえば、熱伝導は暖かい身体から熱を身体と接触している衣類に伝達し、最終的には熱は衣類を介に冷たい大気中に拡散される。熱対流とは、身体表面の空気が受熱した後、周囲の冷たい空気と熱交換することで熱を拡散することである。ならば、衣服の保温性を向上するためには、なるべく熱伝導係数の低い素材で服を造る一方、身体表面の空気と周囲の冷たい空気との熱交換機会をなるべく減らすことである。 Humans are warm-blooded animals, and the human body is a heat source that constantly generates heat. These continuously generated amounts of heat must be continuously dissipated. In the summer, when temperatures are high, the body's heat dissipates more slowly, making humans feel hot; in the cold winter, the body's heat dissipates more quickly, making humans feel colder. When people feel cold, they generally increase the number of layers of clothing or wear thicker clothing based on their life experiences. But how can wearing more layers or thicker clothes help protect you from the cold? The answer should be considered from the main routes of heat loss. Generally speaking, heat is mainly lost in three ways: heat conduction, heat convection, and heat radiation. Thermal radiation refers to the continuous emission of electromagnetic waves by all objects with a temperature higher than absolute zero towards the surrounding space.The higher the temperature, the greater the total amount of energy emitted, and the shorter the shortwave component. There will be more. Increasing the number of layers of clothing or wearing thicker clothing has little effect on heat radiation, so the purpose of cold protection is achieved mainly by affecting heat conduction and heat convection. Speaking of warm clothing, thermal conduction transfers heat from a warm body to clothing that is in contact with the body, and ultimately the heat is dissipated through the clothing into the cooler atmosphere. Heat convection is the process by which the air on the surface of the body receives heat and then exchanges heat with the surrounding cold air to diffuse the heat. Therefore, in order to improve the heat retention of clothing, it is important to make clothing from materials with as low a coefficient of thermal conductivity as possible, while at the same time reducing the opportunities for heat exchange between the air on the body's surface and the surrounding cold air as much as possible.

現在知られている素材の中で、静止空気の熱伝導率が一番に低い。したがって、防寒服は一般的にふわふわな素材を保温材として使うが、例として綿やダウンなどが挙げられる。これらふわふわな素材は空気を大量に携帯しているので、他の緻密な素材に対して優れた保温効果を有する。但し、これら知られている保温材の保温性能はまだ十分でないため、冬季の寒さに耐えるには服を厚く造るので、前記の様々な問題が出ている(手足の動きが妨げたり、人々のおしゃれいズムにも不満が出ている。)
本発明では保温材を提供するが、本材料は主に非伝統的な保温材である有機材料を利用し、なるべく多くの空気を携帯するともに、携帯している空気と外気との間の流通を防ぐということであるが、二つの経路全部が従来の保温材より遥かに優れている保温材である。静止空気の断熱原則により、孔隙率が同じである場合、孔隙サイズが大きいほど、熱伝導係数は大きくなる;互いに繋がっている孔隙は密閉型孔隙より熱伝導係数が高く、密閉型孔隙率が高いほど、熱伝導係数は低くなる。同時に、上記の特徴を有するため、このような材料は保温・断熱だけでなく、他の分野にも幅広く活用できるが、例として遮音・吸音がある。
Among currently known materials, it has the lowest thermal conductivity in still air. Therefore, cold-weather clothing generally uses fluffy materials as insulation, examples of which include cotton and down. These fluffy materials carry a large amount of air, so they have a superior heat retention effect compared to other dense materials. However, the heat retention performance of these known thermal insulation materials is still not sufficient, so clothing must be made thicker to withstand the winter cold, resulting in the various problems mentioned above (such as hindering the movement of limbs and making clothes thicker). There is also dissatisfaction with the stylish rhythm.)
The present invention provides a heat insulating material, and this material mainly uses organic materials, which are non-traditional heat insulating materials, to carry as much air as possible, and to improve the circulation between the carried air and the outside air. Both routes are far superior to conventional insulation materials. According to the still air insulation principle, when the porosity is the same, the larger the pore size, the larger the thermal conductivity coefficient; interconnected pores have a higher thermal conductivity coefficient than closed pores, and the closed porosity is higher. The higher the temperature, the lower the thermal conductivity coefficient. At the same time, because of the above characteristics, such materials can be used not only for heat retention and insulation, but also for a wide range of other fields, such as sound insulation and sound absorption.

テントはアウトドアスポーツに欠かせないものであり、断熱性と保温性とは長期間世界じゅうのテント企業を悩ませてきた技術的課題である。本発明の密閉型多孔質複合材料(当密閉型多孔質複合材料は断熱に用いれば、断熱材になる)の研究成果は、テントの軽量化だけではなく、夏は涼しく、冬は暖かく使うことを可能にする。 Tents are essential for outdoor sports, and insulation and heat retention are technical issues that have long plagued tent companies around the world. The research results of the closed-type porous composite material of the present invention (this closed-type porous composite material becomes a heat insulating material when used for insulation) are not only lightening tents, but also making tents cooler in summer and warmer in winter. enable.

アウトドアスポーツウェアは、環境、気候要因や汗で湿気に触れることがおおいが、伝統的な衣類は湿気が入った場合保温性が激減される。特にダウン防寒服は湿ると保温性を失ってしまう。以下、本文の断熱材に対して、湿り保温実験を実施した。第三者実験を実施した。実施機関:京検頤和(北京)製品質量監督検測センター;適用検査法&判断基準:GB/T11048-2008 A法;受験番号:NB201804008;実験レポート記載:サンプルのクロー値、重量値を測定記録してから、サンプルを水道水が入ってるボール内で3分間完全に濡れるまで漬け込んてから、取り出して30分間陰りで水滴が落ちないまで放置し、手触りが湿った状態で重量を計り、含水率は10%である。再度クロー値を測定し、前回と比較したところ、クロー値は3.6%下がっていた。本文が提供する断熱材は湿った場合でも保温能力があることが明なになった。アウトドアスポーツ愛好者は、本文で提供する断熱材で造られた衣類や装備を使った場合、より安全でエクストリームスポーツに挑戦することができる。 Outdoor sportswear is often exposed to moisture from the environment, climatic factors, and sweat, but traditional clothing's ability to retain heat is drastically reduced when moisture enters. In particular, down winter clothing loses its ability to retain heat when it gets damp. Below, we conducted a wet heat retention experiment on the heat insulating material described in this article. A third party experiment was conducted. Implementing organization: Beijing Yinhe (Beijing) Product Quality Supervision and Inspection Center; Applicable inspection method & judgment standard: GB/T11048-2008 A method; Examination number: NB201804008; Experiment report description: Measure and record the claw value and weight value of the sample After that, soak the sample in a bowl of tap water for 3 minutes until completely wet, then take it out and leave it in the shade for 30 minutes until no water drops fall.Weigh it when it is damp to the touch and calculate the moisture content. is 10%. When we measured the Claw value again and compared it to the previous time, the Claw value had decreased by 3.6%. It has become clear that the insulation material provided in this paper has the ability to retain heat even when wet. Outdoor sports enthusiasts can participate in extreme sports more safely by using clothing and equipment made with the insulating materials provided in this article.

本文の断熱材を-40℃の冷凍庫で30分間冷凍してから取り出し、比較測定をしたところ、本文の断熱材は、厚み、感触、外観になんの変化もなかった。場合によっては設備を屋外に設置したり屋外で使うことがあり、この場合、断熱や保温の必要があるが、本文の断熱材で造った保護装置は従来使われてきた素材より軽くて薄いし、断熱性も保温性も効果的である。 When the insulation material described in this article was frozen in a -40°C freezer for 30 minutes and then taken out for comparative measurements, there was no change in the thickness, feel, or appearance of the insulation material described in this article. In some cases, equipment may be installed or used outdoors, and in this case, insulation and heat retention are necessary, but protective devices made from the insulation materials described in this article are lighter and thinner than conventionally used materials. It is effective in both insulation and heat retention.

自動車を屋外で長時間日の下に駐車すると、車内の温度は非常に高くなる。車のドアを開ける瞬間、熱波が襲わり、座席も熱々となり、車の耐用年数も短縮される。車の屋根、周囲の装飾面、車体の鋼板の間で本文が提供する新型断熱材を適用することで、同等条件で比較して車内の温度を15℃―25℃下げられる。同時に、本文が提供する断熱材からの熱抵抗は冬夏を問わず車の空調の負担を下げるので、燃料の大幅節約とともに、遮音作用もある。 When a car is parked outdoors in the sun for a long time, the temperature inside the car can become very high. The moment you open your car door, a heat wave hits you, heating up your seats and shortening your car's lifespan. By applying the new type of insulation material proposed in this paper between the car roof, surrounding decorative surfaces, and steel plates of the car body, the temperature inside the car can be lowered by 15 to 25 degrees Celsius compared to the same conditions. At the same time, the thermal resistance provided by the insulation material reduces the burden on the car's air conditioning in both winter and summer, resulting in significant fuel savings and sound insulation.

フィートフィット、通気性、軽い、湿りでも保温性をもつため、冬の靴の素材として最適である。本文断熱材への活用は、世界靴デザインとメーカーの技術革新をプッシュし、消費者にとっては冬でも脚を冷え込まずファションナブルを楽しめる真新しい体験であり、より多くの選択肢が増える。 It is ideal as a material for winter shoes because it fits well, is breathable, is lightweight, and retains heat even when wet. Main articleThe use of insulation materials will push the world's shoe design and technological innovations of manufacturers, and for consumers it will be a brand new experience where they can enjoy fashionable feet without getting cold even in winter, and they will have more options.

オーディオ愛好者にとって、本開示の断熱材は、まったく新しい体験を提供している。本開示の断熱材を用いた部屋は遮音効果や吸音効果が大幅に向上される。同時に、騒音を大幅に低減させ、保温効果を高めるので、人々の居住環境がより快適になれる。 For audio enthusiasts, the insulation of the present disclosure offers an entirely new experience. A room using the heat insulating material of the present disclosure has significantly improved sound insulation and sound absorption effects. At the same time, it significantly reduces noise and improves heat retention, making people's living environment more comfortable.

現在、私たちが使っている冷蔵庫は分厚い断熱層のため、冷蔵庫を巨大化している。本開示の断熱材の誕生は、冷蔵庫の断熱層の厚さを60%減らすことができるので、冷蔵庫のキャビンが大きくなる。新しい素材を適用した冷蔵庫は、以前の重くて大きいイメージから一変される。 Currently, the refrigerators we use have thick insulation layers, making them huge. The birth of the insulation material of the present disclosure can reduce the thickness of the insulation layer of the refrigerator by 60%, so that the cabin of the refrigerator becomes larger. Refrigerators made with new materials are completely different from their previous image of being heavy and large.

盗聴は通常、音波による窓ガラスの振動を掴むことで実現する。もし、本開示の断熱材でカーテンを造る場合、盗聴を防ぐだけでなく、断熱効果や保温効果も期待できる。 Eavesdropping is usually accomplished by capturing the vibrations of window glass caused by sound waves. If a curtain is made using the heat insulating material of the present disclosure, it can be expected to not only prevent eavesdropping but also have heat insulation and heat retention effects.

本文の断熱材を冬の防寒手袋で活用することは、保温以外に、指の動きが妨げられないので作業効率が上がる。 Utilizing the insulation material described in this article in winter gloves will not only keep you warm, but will also increase work efficiency because finger movement will not be hindered.

以下、実施例をもって本開示の技術案をさらに詳しく説明する。 Hereinafter, the technical solution of the present disclosure will be explained in more detail using examples.

本開示では下記の測定方法を採択する。
温度差の測定(温度差が大きいほど断熱性がよいことである):
使われた機器や設備:温州漢邦電子有限公司が出品したブランド漢邦HP-2020恒温加熱台、源恒通YHT309四チャンネル温度計、台湾泰仕TES表面接触式網状センサーTP-K03。
In this disclosure, the following measurement method is adopted.
Measurement of temperature difference (the larger the temperature difference, the better the insulation):
Used equipment and equipment: Brand Hanbang HP-2020 constant temperature heating table exhibited by Wenzhou Hanbang Electronics Co., Ltd., Yuan Hengtong YHT309 four-channel thermometer, Taiwan Taishi TES surface contact mesh sensor TP-K03.

測定方法:加熱台の温度を60°Cに設定し、長さ5CM、幅3CMの断熱材サンプルを加熱台に仕込む。測定中、加熱台は始終恒温を維持し、断熱材の一端を移動防止重りで抑えながら、測定を終わらす。 Measurement method: Set the temperature of the heating table to 60°C, and place a sample of insulation material with a length of 5 cm and a width of 3 cm into the heating table. During the measurement, the heating table maintains a constant temperature from beginning to end, and one end of the insulation material is held down with a weight to prevent it from moving until the end of the measurement.

一つのセンサーは加熱台の表面に直接接触し、もう一つのセンサーは加熱台上の断熱材の表面に接触するが、2つのセンサーの間の距離は2CMである。両手でセンサーの取手をしっかりと持ち、源恒通YHT309 四チャンネル温度計が表示する二組の温度値が10秒間安定した時点で、加熱台と断熱材との表面温度および測定時間をそれぞれ記録する。15分ごとに一回測定し、合計4回測定する。 One sensor directly contacts the surface of the heating table, and the other sensor contacts the surface of the insulation material on the heating table, and the distance between the two sensors is 2CM. Hold the sensor handle firmly with both hands, and when the two sets of temperature values displayed by the Minamoto Tsunetsu YHT309 four-channel thermometer stabilize for 10 seconds, record the surface temperature of the heating table and insulation material and the measurement time, respectively. Measure once every 15 minutes for a total of 4 measurements.

加熱台の4回の表面温度を加算した値で、断熱材の4回の表面温度を加算した値を、差し引いた値が温度差である。 The temperature difference is the value obtained by subtracting the value obtained by adding the surface temperature of the heating table four times and the value adding the surface temperature of the insulation material four times.

クロー値の測定:
第三者実施:国家紡織製品質量監督検験センター&京検頤和(北京)製品質量監督検験検測センター検測センター;適用基準:GB/T11048-2008A。
Measuring claw value:
Third-party implementation: National Textile Product Quality Supervision and Testing Center & Jingyuan Yinhe (Beijing) Product Quality Supervision and Testing Center Testing Center; Applicable standard: GB/T11048-2008A.

クロー値の定義:静かに座っている人または脳を使う労働者(代謝発熱量は209.2KJ/m2h)が、室温21℃、相対湿度50%以下、風速0.lm/s以下の環境で快適さを感じた時に、着ている服の熱抵抗値を1cloとする。 Definition of claw value: A person sitting quietly or a worker who uses his or her brain (metabolic calorific value is 209.2KJ/m 2 h) in an environment with a room temperature of 21℃, a relative humidity of 50% or less, and a wind speed of 0.lm/s or less. When you feel comfortable, the thermal resistance value of the clothes you are wearing is 1 clo.

熱伝導係数の測定:Hot disk法を採択する。
熱伝導係数の測定条件:
設備型番:TPS3500
測定モジュール:基本モジュール、単面法
センサー型番:Kapton7577
加熱効率:10mw
測定時間:1s
測定環境温度:26±0.5C
下部ベース材:石英
上部ベース材:ポリスチレン発泡材
本文で使われた商品の組成は下記とおり。水分散型樹脂Leasys3458:アニオン型水性ポリウレタン水性分散体(脂肪族)、固形分含有量約50wt%;水分散型樹脂Impranil DLS:アニオン型脂肪族ポリエステルポリウレタン水性分散体、固形分含有量約50wt%;Impranil 1537:アニオン型脂肪族ポリエステルポリウレタン水性分散体、固形分含有量約60wt%;熱膨張性微小球Expancel 043 DU 80:微小の球状ビニル顆粒であり、微小球はポリマーシェル及びシェルに包まれている気体(一定条件で当気体は膨張可能である)からなり、加熱される場合、気体の内圧が高くなり、熱可塑性シェルが軟化され、微小球の体積が大きくなるが、気体は球内に包まれたままになる;消泡剤BYK 093:ポリエチレングリコール中に分散しているポリシロキサン及び疎水性固体の混合物である;湿潤剤BYK 348:ポリエーテル改質シロキサンであり、非揮発性成分>96 wt%;増粘剤LYOPRINT PTF:アクリル酸系ポリマー分散体である;水生カラーペーストNV 6800:固形分含有量約40wt%の水性分散体である。
Measurement of thermal conductivity coefficient: Adopt the Hot disk method.
Measurement conditions for thermal conductivity coefficient:
Equipment model number: TPS3500
Measurement module: Basic module, single plane sensor Model number: Kapton7577
Heating efficiency: 10mw
Measurement time: 1s
Measurement environment temperature: 26±0.5C
Lower base material: Quartz Upper base material: Polystyrene foam The composition of the products used in this article is as follows. Water-dispersible resin Leasys3458: Anionic aqueous polyurethane dispersion (aliphatic), solids content approximately 50wt%; Water-dispersible resin Impranil DLS: Anionic aliphatic polyester polyurethane aqueous dispersion, solids content approximately 50wt% ;Impranil 1537: Anionic aliphatic polyester polyurethane aqueous dispersion, solid content approximately 60wt%; Expancel 043 DU 80: Thermal expandable microspheres Expancel 043 DU 80: Microspheres are microscopic spherical vinyl granules, and the microspheres are surrounded by a polymer shell and shell. When heated, the internal pressure of the gas increases, the thermoplastic shell softens, and the volume of the microsphere increases, but the gas inside the sphere increases. antifoam BYK 093: a mixture of polysiloxane and hydrophobic solids dispersed in polyethylene glycol; wetting agent BYK 348: a polyether-modified siloxane with non-volatile components >96 wt%; Thickener LYOPRINT PTF: an acrylic acid-based polymer dispersion; Aquatic Color Paste NV 6800: an aqueous dispersion with a solids content of approximately 40 wt%.

実施例1―4、熱膨張性微小球添加量の影響
〔実施例1〕
以下の処方通り各種組成物を準備
水分散型樹脂Leasys3458 100g
熱膨張性微小球Expancel 043 DU 80 40g
脱イオン水 300g
消泡剤BYK 093 0.3g
湿潤剤BYK 348 1g
増粘剤LYOPRINT PTF 1g
水生カラーペーストNV 6800 20g
説明して置きたいことは、本出願の特許請求の範囲における水分散型樹脂の重量部とは、乾重量を指すが、実施例で使われている水分散型樹脂は水を含む水性分散体であるため、その固形分含有量をもとに算出する必要がある。反応系内の水は主に、脱イオン水と、水分散型樹脂と、水性カラーペーストと、由来の水分である。なお、熱膨張性微小球と、消泡剤と、湿潤剤と、増粘剤と、は、その自体の含水量が非常に小さいか、またはその使用量が非常に小さいため、それらが反応系内の水の総量に対する影響は無視してよい。換算後の処方:水分散型樹脂Leasys3458は乾重量50gである;熱膨張性微小球Expancel 043 DU 80は40gである;脱イオン水は300g+50g(水分散型樹脂Leasys3458由来)+12g(水性カラーペーストNV 6800由来)=362gである;消泡剤BYK 093は0.3gである;湿潤剤BYK 348は1gである;増粘剤LYOPRINT PTFは1gである;水性カラーペーストNV 6800は乾重量8gである。以下、各実施例を全部同様な換算式で算出し、説明はこれ限りにする。
Examples 1-4, influence of the amount of thermally expandable microspheres added [Example 1]
Prepare various compositions according to the following formulations Water dispersion resin Leasys3458 100g
Thermal expandable microspheres Expancel 043 DU 80 40g
300g deionized water
Antifoam BYK 093 0.3g
Wetting agent BYK 348 1g
Thickener LYOPRINT PTF 1g
Aquatic Color Paste NV 6800 20g
What I would like to explain is that the parts by weight of the water-dispersible resin in the claims of this application refers to the dry weight, but the water-dispersible resin used in the examples is an aqueous dispersion containing water. Therefore, it is necessary to calculate based on the solid content. The water in the reaction system is mainly derived from deionized water, water-dispersed resin, water-based color paste, and water. Note that thermally expandable microspheres, antifoaming agents, wetting agents, and thickeners either have very low water content or are used in very small amounts, so they do not interfere with the reaction system. The effect on the total amount of water within is negligible. Converted formulation: water-dispersed resin Leasys 3458 has a dry weight of 50 g; thermally expandable microspheres Expancel 043 DU 80 has a dry weight of 40 g; deionized water is 300 g + 50 g (from water-dispersed resin Leasys 3458) + 12 g (water-based from color paste NV 6800) = 362 g; antifoam BYK 093 is 0.3 g; wetting agent BYK 348 is 1 g; thickener LYOPRINT PTF is 1 g; aqueous color paste NV 6800 has a dry weight of 8 g It is. Hereinafter, each example will be calculated using the same conversion formula, and the explanation will be limited to this.

高速攪拌機の攪拌の下、順次、上記組成物を攪拌釜内に添加し、攪拌速度を1000~1500回転/分に設定する。すべての原料を添加し終わったあと、さらに0.5~1時間攪拌する。塗装層施工前に選択的に架橋剤を添加してよいが、上記架橋剤には、例として、ポリカルボジイミドと、ポリイソシアネートと、密閉型ポリイソシアネートと、エチレンイミンと、アミノ樹脂と、が含まれる。 While stirring with a high-speed stirrer, the above compositions are sequentially added into the stirring pot, and the stirring speed is set at 1000 to 1500 revolutions/minute. After all ingredients have been added, stir for an additional 0.5 to 1 hour. A crosslinking agent may be selectively added before applying the coating layer, and examples of the crosslinking agent include polycarbodiimide, polyisocyanate, sealed polyisocyanate, ethyleneimine, and amino resin. It will be done.

上記の処方を厚さ0.28mmの生地の上で実施するが、塗装量(湿重量)は65g/m2であり、140℃の乾燥箱内で1分間乾燥させる。塗装層のサンプル厚さは0.52mmである。その内、Leasys3458は水分散型樹脂の商品名であり、Expancel 043 DU 80は熱膨張性微小球の商品名であり、BYK 093は消泡剤の商品名であり、BYK 348は湿潤剤の商品名であり、LYOPRINT PTFは増粘剤のの商品名であり、NV 6800は水生カラーペーストの商品名である。説明しておきたいことは、上記の具体的な物質は説明するに当たる単なる例に過ぎないものの、本発明を限定するものではない。上記組成物のうち、最も重要な組成物は水分散型樹脂及び膨張前の状態の熱膨張性微小球であり、他の組成物は具体的な活用状況に合わせて省略することができる。加熱中に、膨張前の状態の熱膨張性微小球は膨張し、その体積は2~50倍に膨張するともに、水が蒸発され、最終的には複数(その数は非常に多い)の密閉型球形、密閉型準球形、または密閉型不規則形状(微小球が膨張しながら互いに押し付けて形成された形状)の空洞が重ね合う独立空間構造の集結体が造られるし、このような独立空間構造の集結体は大量の密閉空洞及び上記大量の密閉空洞を互いに分離させるポリマー壁を含み、上記ポリマー壁は密閉型空洞の内側向けに熱可塑性または熱硬化型高分子材料(即ち、熱膨張性微小球由来の材料)を含み、上記ポリマー壁は上記密閉型空洞の外側向けに水分散型樹脂(即ち、上記水分散型樹脂由来の材料)を含む。ほとんどの場合、熱膨張性微小球は十分膨張され、隣接する微小球の壁通しは互いに接触されることで、サンドイッチ構造のポリマー壁を形成し、上記ポリマー壁の二つの外層の材料は同じ(両方とも熱膨張性微小球由来)であり、なお、上記二つの外層の材料は上記二つの外層の間に挟まれる中間層とは異なる材料(水分散型樹脂由来)である。 The above formulation is carried out on a fabric with a thickness of 0.28 mm, with a coating weight (wet weight) of 65 g/m 2 and dried for 1 minute in a drying box at 140°C. The sample thickness of the paint layer is 0.52 mm. Among them, Leasys3458 is the trade name of water-dispersed resin, Expancel 043 DU 80 is the trade name of thermally expandable microspheres, BYK 093 is the trade name of antifoaming agent, and BYK 348 is the wetting agent product. LYOPRINT PTF is the brand name of the thickener, and NV 6800 is the brand name of the aquatic color paste. It should be noted that the above-mentioned specific substances are merely examples for illustrative purposes, but are not intended to limit the present invention. Among the above compositions, the most important components are the water-dispersible resin and the heat-expandable microspheres in a state before expansion, and the other components can be omitted depending on the specific usage situation. During heating, the thermally expandable microspheres in their unexpanded state expand, their volume expands by a factor of 2 to 50, water is evaporated, and they eventually form multiple (and very large) hermetic seals. An aggregate of independent space structures is created in which cavities of a type spherical shape, a closed quasi-spherical shape, or a closed irregular shape (a shape formed by pressing microspheres against each other while expanding) are overlapped, and such independent space structures The assembly includes a mass of closed cavities and a polymer wall separating the mass of closed cavities from each other, the polymer wall containing a thermoplastic or thermoset polymeric material (i.e., thermally expandable microscopic material) for the interior of the closed cavity. The polymer wall includes a water-dispersible resin (i.e., a material derived from the water-dispersible resin) toward the outside of the closed cavity. In most cases, the thermally expandable microspheres are sufficiently expanded that the through-walls of adjacent microspheres are brought into contact with each other to form a sandwiched polymer wall, the two outer layers of the polymer walls having the same material ( Note that the two outer layers are made of a different material (derived from a water-dispersible resin) than the intermediate layer sandwiched between the two outer layers.

〔実施例2-4〕
実施例2-4の操作は実施例1と同じであるが、熱膨張性微小球の含有量を調整した。実施例1-4の処方は下表の通り:
[Example 2-4]
The operations in Examples 2-4 were the same as in Example 1, but the content of thermally expandable microspheres was adjusted. The formulation of Examples 1-4 is as shown in the table below:

論理的に、熱膨張性微小球の用量が多いほど、塗装層の厚さが厚くなり、塗装層内の密閉型空洞の体積占め率が大きくなるともに、塗装層の温度差も大きくなり、熱抵抗性も向上されつつある。だが、熱膨張性微小球の用量が多い場合、乾塗装層の付着力が悪化する問題が伴うため、実施例1の正規化温度差(「正規化温度差」は同じ塗装厚さでの断熱性を示めすため、「温度差」よりも正確に断熱性の良さを表す。)は逆に実施例2より小さくなっている。実施例2、3、4の実験結果を比較:同じ塗装量(湿重量)の場合、微小球含有量が高いほど、温度差は大きく(断熱性もよくなりつつ)なる。水分散型樹脂Leasys 3458が微小球を包む力は普通で、熱膨張性微小球の用量が水分散型樹脂の包む力の限界を超えた場合、微小球の用量が多いほど、塗装層の堅牢度は悪化しつつ、表面粉化も酷くなる一方である(塗装層堅牢度への評価に関して、以下の順に左から右へ行くほどよくなる:悪い>やや悪い>やや良い>良い、衣類の製品において塗装層堅牢度は、やや良いまたは良いぐらいであれば合格とし、その他の活用では、例として建物壁の保温材の場合は塗装層堅牢度はやや悪い乃至悪いレベルでも使うことができる)。「正規化温度差」データーのみを見た場合、微小球の用量は10g、20g、30g全部で悪くない断熱性が得られた。 Logically, the higher the dose of thermally expandable microspheres, the thicker the coating layer, the larger the volume fraction of the closed cavity in the coating layer, and the larger the temperature difference in the coating layer. Resistance is also being improved. However, if the dose of thermally expandable microspheres is large, there is a problem that the adhesion of the dry coating layer deteriorates, so the normalized temperature difference in Example 1 (the "normalized temperature difference" is the thermal insulation with the same coating thickness). In contrast, it is smaller than in Example 2. Comparing the experimental results of Examples 2, 3, and 4: For the same coating amount (wet weight), the higher the microsphere content, the larger the temperature difference (and the better the insulation). The wrapping force of water-dispersed resin Leasys 3458 on microspheres is normal, and if the dose of thermally expandable microspheres exceeds the limit of wrapping force of water-dispersed resin, the higher the dose of microspheres, the more solid the coating layer. (Regarding the evaluation of paint layer fastness, it gets better as you go from left to right in the following order: Bad > Fairly bad > Fairly good > Good, for clothing products. If the paint layer fastness is slightly good or good, it is considered acceptable; for other applications, for example, in the case of a heat insulating material for building walls, the paint layer fastness can be used even if the paint layer fastness is at a slightly poor to poor level.) Looking only at the "normalized temperature difference" data, the microspheres at doses of 10g, 20g, and 30g all provided good insulation.

〔実施例5-7〕
異なる水分散型樹脂の塗装層堅牢度への影響
実施例5-7の製造手順は実施例1と同じであるが、水分散型樹脂の種類及び割合を調整している。実施例5-7の処方は下記通り:
[Example 5-7]
Effects of different water-dispersible resins on coating layer fastness The manufacturing procedure of Examples 5-7 is the same as that of Example 1, but the type and proportion of water-dispersible resins are adjusted. The formulation for Examples 5-7 is as follows:

一種の水分散型樹脂Leasys3458(実施例5)を単独採択した場合と比較して、二種類の水分散型樹脂Impranil DLSとImpranil 1537とを混合した処方(実施例6)の場合、微小球を包む力が明らかに向上され、塗装層堅牢度が増強された。塗装層堅牢度が増強されたため、サンプルを成形した後、膨張性微小球はほとんど脱落していないし、実施例6で製造されたサンプルの温度差は実施例5製造されたサンプルより明らかに大きい。同時に、実施例6と7とを比較すれば、他の条件が同じまたは大きな差がない場合、微小球含有量が高いほど、サンプルの塗装厚さは厚くなり、温度差も大きくなるため、熱抵抗性(断熱性)もよりよくなる。 Compared to the case where a type of water-dispersible resin Leasys 3458 (Example 5) was adopted alone, the formulation of a mixture of two types of water-dispersible resins Impranil DLS and Impranil 1537 (Example 6) made it easier to form microspheres. The wrapping power was clearly improved and the fastness of the coating layer was enhanced. Because of the enhanced coating layer fastness, the expandable microspheres hardly fell off after the samples were molded, and the temperature difference of the samples produced in Example 6 was obviously larger than that of the samples produced in Example 5. At the same time, if we compare Examples 6 and 7, if other conditions are the same or there is no big difference, the higher the microsphere content, the thicker the coating thickness of the sample and the larger the temperature difference, so the heat Resistance (insulation) is also better.

〔実施例8-12〕
水の添加量の差の熱抵抗への影響及び断熱材の組成並びに構造
実施例8-12の製造手順は実施例1と同じであるが、水の用量を調整した。実施例8-12の処方は下記通り:
[Example 8-12]
The influence of the difference in the amount of water added on the thermal resistance, the composition of the insulation material, and the manufacturing procedure of structural examples 8-12 were the same as in Example 1, but the amount of water was adjusted. The formulation for Examples 8-12 is as follows:

実施例8-12の結果を比較する。組成物の視点からみると、水と増粘剤との用量が違う以外に、他の組成物の用量も同じであり、塗装量(湿重量)も同じであり、そして乾燥条件も同じである。水の用量は実施例8から実施例12の順に徐々に減少しているので、増粘剤の用量もそれに伴って減少している;実施例11及び12では水を添加しておらず、そして、実施例12の熱膨張性微小球の用量は実施例11の2倍である。実施例8-11の結果比較から分かるように、塗装量(湿重量)が同じである場合、塗装サンプルの厚さ(即ち、乾いたあとベース生地以外の製品厚さ)は先ず厚くなってから、その後薄く(実施例8、9、10の順に増加されるが、実施例11では減少している)なり、温度差は塗装サンプルの厚さと同じ傾向を呈している。実施例8、9、10の順に増加されることは、水の用量が下がると、乾いた組成物の量が相対的に増加されるので、塗装量(湿重量)が同じであっても最終塗装サンプルの厚さは厚くなり、温度差が大きくなり、断熱効果も増強される。だが、実施例11と実施例10とを比較した場合、水の量をさらに削減した場合、最終塗装サンプルの厚さは薄くなり、温度差も小さくなり、この結果は上記傾向に反している。この現象を理解するには、上記メカズムのなかで水の役割を調べる必要がある。上記組成物のなかで最も重要な2つの組成物は、水分散型樹脂及び熱膨張性微小球であり、水の役割はその次に重要である。熱膨張性微小球の役割は、それを加熱熱膨させると密閉型空洞が大量に形成され、微小球は熱膨しながら水分散型樹脂の体積を大きく伸ばし、熱膨張性微小球及び水分散型樹脂の体積密度が低くなり、断熱性が向上される;だが、熱膨張性微小球だけあってはいけないので、微小球らを接着して一定の機械的強度をもつ一体(例として一定厚さの平らな層を形成)にしてから、初めて具体的に活用することができる(例として衣類の断熱層として用いるとか、または建築内壁の断熱層として用いる)。水分散型樹脂はこの役割を果たすものである。水の役割は主に二つ:一つ目は水分散型樹脂を希釈し、膨張中の熱膨張性微小球に対する水分散型樹脂からの束縛を減らすことで、熱膨張性微小球をより自由にさせ、十分熱膨できるようにする;二つ目は水分散型樹脂の固形分含有量を減らし、水分散型樹脂の高い熱伝導性のため熱抵抗が下がることを防ぐ。想定できるように、一切水を添加しない場合(水分散型樹脂およびカラーペーストからの少量の水しかない)、二つの問題がありえる:一つ目は、熱膨張性微小球が膨張中に水分散性樹脂に過度に付着されたり、阻害されて、十分かつ自由に膨張できなくなり、微小球の膨張が阻害されるため水分散性樹脂を伸ばしたり分散させる能力が低下し、微小球の空洞も最大化されないため、微小球の断熱作用を十分果たせなくなる;二つ目は、水分散型樹脂の高い熱伝導性のため断熱能力が低下する:水の使用量が減るということは、水分散型樹脂の用量を増やさざるを得ないが、水分散型樹脂の熱伝導係数が高くため、その用量の増加は必然的に熱伝導性能が高くなるので、断熱性が低下することに繋がる。上記要因を考慮すると、実施例11の状況は理解しやすくなる。実施例11では水を完全に添加しないため、一部の微小球は水分散型樹脂の束縛を受けすぎて、密集したまま十分膨張されずに、水分散型樹脂の含有量が大きくなり断熱性が下がるので、塗装量(湿重量)が同じである場合でも、最終塗装サンプルの厚さは逆に薄くなり、温度差も小さくなっている。 Compare the results of Examples 8-12. From a composition point of view, apart from the different doses of water and thickener, the doses of other compositions are the same, the coating weight (wet weight) is the same, and the drying conditions are the same. . Since the water dose gradually decreases from Example 8 to Example 12, the thickener dose also decreases accordingly; in Examples 11 and 12 no water is added, and , the dose of thermally expandable microspheres in Example 12 is twice that of Example 11. As can be seen from the comparison of results in Example 8-11, when the amount of coating (wet weight) is the same, the thickness of the coating sample (i.e., the thickness of the product other than the base fabric after drying) first becomes thicker, then , then becomes thinner (increasing in the order of Examples 8, 9, and 10, but decreasing in Example 11), and the temperature difference exhibits the same trend as the thickness of the painted sample. The increase in the order of Examples 8, 9, and 10 means that when the water dosage decreases, the amount of dry composition increases relatively, so even if the coating amount (wet weight) is the same, the final The thickness of the painted sample is increased, the temperature difference is increased, and the insulation effect is also enhanced. However, when comparing Example 11 and Example 10, when the amount of water is further reduced, the thickness of the final coated sample becomes thinner and the temperature difference becomes smaller, which is contrary to the above-mentioned trend. To understand this phenomenon, it is necessary to investigate the role of water in the above mechanism. The two most important components among the above compositions are the water-dispersible resin and the heat-expandable microspheres, with the role of water being the second most important. The role of thermally expandable microspheres is that when they are heated and thermally expanded, a large amount of closed cavities are formed, and as the microspheres thermally expand, the volume of the water-dispersible resin is greatly expanded, and the thermally expandable microspheres and water-dispersed The volume density of the mold resin is lowered, and the heat insulation properties are improved; however, it is not possible to have only heat-expandable microspheres, so the microspheres are glued together to form a unit with a certain mechanical strength (for example, a certain thickness). Only after forming a flat layer of heat can it be put to practical use (for example, as a heat-insulating layer for clothing, or as a heat-insulating layer for the interior walls of a building). Water-dispersed resins play this role. Water has two main roles: the first is to dilute the water-dispersible resin, reducing the constraint from the water-dispersing resin on the expanding thermally expandable microspheres, making the thermally expandable microspheres more free. The second is to reduce the solids content of the water-dispersed resin to prevent the thermal resistance from decreasing due to the high thermal conductivity of the water-dispersed resin. As can be expected, if no water is added (only a small amount of water from the water-dispersible resin and color paste), there are two possible problems: first, the thermally expandable microspheres are water-dispersed during expansion; If the water-dispersible resin is excessively attached or inhibited, it will not be able to fully and freely expand, and the expansion of the microspheres will be inhibited, reducing the ability to stretch and disperse the water-dispersible resin, and the cavities of the microspheres will also be maximized. The second reason is that the water-dispersed resin has a high thermal conductivity, which reduces its insulation ability: reducing the amount of water used means that the water-dispersed resin However, since the water-dispersible resin has a high thermal conductivity coefficient, an increase in the amount inevitably increases the heat conductive performance, leading to a decrease in the heat insulation properties. Considering the above factors, the situation of Example 11 becomes easier to understand. In Example 11, water was not completely added, so some of the microspheres were too constrained by the water-dispersed resin and did not expand sufficiently while remaining densely packed, resulting in a large content of water-dispersed resin and poor insulation properties. As a result, even if the amount of coating (wet weight) is the same, the thickness of the final coated sample becomes thinner and the temperature difference also becomes smaller.

実施例8~12の「正規化温度差」というデーターから、他の条件が同じまたは類似している場合、水の添加量が200gおよび300gの場合の断熱効果は一番よい。一般に、水分散型樹脂(湿重量)100重量部あたり比較的良い水の添加量は150~350重量部である。 From the "normalized temperature difference" data of Examples 8 to 12, when other conditions are the same or similar, the insulation effect is the best when the amount of water added is 200 g and 300 g. Generally, a relatively good amount of water to be added is 150 to 350 parts by weight per 100 parts by weight of water-dispersible resin (wet weight).

さらに製品の構造および組成物を調査する。図1は、本発明の実施例で使われる膨張前の熱膨張性微小球の顕微鏡写真である。本発明の実施例で使われる熱膨張性微小球は、Expancel 043 DU 80であり、その平均粒径サイズは約16μm -24μmであり、その球壁の材料は熱可塑性または熱硬化性高分子材料であり、加熱で膨張されるし、直径は元の直径の2~10倍まで大きくなる。熱膨張性微小球単体の形状は図2を参照する。図1から分かるように、膨張前の熱膨張性微小球は規則的な球形または準球形顆粒状を呈する。図2から分かるように、微小球単体は球形に近い楕円形を呈し、その長軸(外径)長さは24.2μmであり、短軸(外径)長さは22.6μmであり、壁厚は約5μmである。説明して置きたいことは、もし、他の素材またはサイズの熱膨張性微小球を採用する場合、関連構造および素材は変化されるが、これらの内容(微小球の具体的材料および構造)は、本発明の保護範囲を制限するものと理解されるべきではない。 Further investigate the structure and composition of the product. FIG. 1 is a micrograph of thermally expandable microspheres used in the embodiments of the present invention before expansion. The thermally expandable microspheres used in the embodiments of the present invention are Expancel 043 DU 80, the average particle size of which is about 16μm -24μm, and the material of the sphere wall is thermoplastic or thermosetting polymer material. It expands when heated, and its diameter increases by 2 to 10 times its original diameter. See Figure 2 for the shape of a single thermally expandable microsphere. As can be seen from FIG. 1, the thermally expandable microspheres before expansion have a regular spherical or quasi-spherical granule shape. As can be seen from Figure 2, a single microsphere exhibits an elliptical shape close to a sphere, with a major axis (outer diameter) length of 24.2 μm, a short axis (outer diameter) length of 22.6 μm, and a wall thickness. is approximately 5 μm. I would like to explain that if thermally expandable microspheres of other materials or sizes are adopted, the related structures and materials will change; , shall not be understood as limiting the protection scope of the present invention.

実施例10で得られた最終製品の顕微鏡写真を図3で示す。図3の写真から分かるように、膨張後の熱膨張性微小球は規則的な球形または準球形を呈している。局部的には、微小球通しが互に酷く押し合い、熱膨後の微小球は不規則な外形を呈することもある。説明上の便利をはかり、本文記載のなかで規則的な球形に対する「サイズ」とは、その直径をさす;本文記載のなかで準球形または不規則な形状に対する「サイズ」とは、当種類の準球形または不規則な形状の体積に相当する球形の直径をさす。図3を図1と比較してわかるように、加熱膨張後、微小球体積は数倍増大され、その球壁は薄くなり透明に至る。 A micrograph of the final product obtained in Example 10 is shown in FIG. As can be seen from the photograph in Figure 3, the thermally expandable microspheres after expansion have a regular spherical or quasi-spherical shape. Locally, the microsphere threads may press against each other severely, and the microspheres may exhibit an irregular external shape after thermal expansion. For convenience of explanation, "size" in the text for regular spherical shapes refers to its diameter; "size" in the text for quasi-spherical or irregular shapes refers to the diameter of the regular spherical shape; Refers to the diameter of a sphere that corresponds to the volume of a quasi-spherical or irregular shape. As can be seen by comparing Figure 3 with Figure 1, after heating and expansion, the microsphere volume increases several times, and the sphere wall becomes thinner and becomes transparent.

〔実施例13-17〕
乾燥温度の差が結果に与える影響
実施例13-17の製造手順は実施例1と同じであるが、乾燥温度を調整している。実施例13-17の処方は下記通り:
[Example 13-17]
Effect of difference in drying temperature on results The manufacturing procedure of Examples 13-17 was the same as Example 1, but the drying temperature was adjusted. The formulation for Examples 13-17 is as follows:

上記表の結果からわかるように、処方も塗装量(湿重量)も一致する前提で、塗装層の厚さ及び断熱性(温度差)は乾燥温度に関係している。温度が低いほど、乾燥後塗装層の膜厚は薄くなり、保温性が悪化(熱膨張性微小球の膨張不足)する;温度を140 °C -150 °Cまで上げた場合、塗装層の厚さも温度差も最高になるので、最適な施工温度は140 °C -150 °Cである。説明して置きたいことは、この最適温度範囲は、乾燥設備および使われる熱膨張性微小球の成分並びに構造と関係している。本実施例で使われた熱膨張性微小球はExpancel 043 DU 80であるが、もし、他の乾燥設備および/または熱膨張性微小球を使った場合、その最適施工温度範囲は変化する可能性がある。 As can be seen from the results in the above table, the thickness and heat insulation properties (temperature difference) of the coating layer are related to the drying temperature, provided that the formulation and coating amount (wet weight) are the same. The lower the temperature, the thinner the coating layer becomes after drying, and the heat retention deteriorates (insufficient expansion of thermally expandable microspheres); when the temperature is raised to 140 °C -150 °C, the coating layer thickness decreases. The optimum construction temperature is 140 °C -150 °C, as this also maximizes the temperature difference. It should be explained that this optimum temperature range is related to the drying equipment and the composition and structure of the thermally expandable microspheres used. The thermally expandable microspheres used in this example were Expancel 043 DU 80, but if other drying equipment and/or thermally expandable microspheres are used, the optimal application temperature range may change. There is.

実施例17で得られた最終製品の走査型電子顕微鏡写真は図4-7で示す。その内、図4は直接得られた製品のSEM写真であり、図5は製品のSEM写真をさらに拡大したものである;図6は切開した製品のSEM写真であり、図7は切開した製品のSEM写真をさらに拡大したものである。図4-5から分かるように、大部分の膨張後の熱膨張性微小球の直径は100μm前後である。説明しておきたいことは、図の右下にある目盛は定規全体の長さをさす。図4を例とし、最左の白線から最右の白線までは500μmを代表するので、隣り合う二つの白線の間の距離は50μmである。図4の左上に見える繊維状の物は基材中の繊維であり、断熱材のものではない。ベース生地としてポリエステル糸を使っているが、熱伝導性が強いため、よりよい断熱効果をえるため、微小球が膨張したあとはベース生地を全面被覆するようにする。膨張性微小球のサイズは複数の要素に影響されるが、例として膨張性微小球の組成物と構造に影響されたり、膨張中の加熱温度や時間に影響されたり、そして各組成物の割合などに影響される。そして、膨張後の微小球サイズはさらに多くの要素に影響されるが、例として個別位置の受熱不足による微小球の膨張不十分があれば、個別位置の受熱過剰による微小球の膨張過剰や、個別微小球の構造上の欠如(例えば内部ガスの漏洩)のため全く膨張されないことがある。したがって、よく発泡された材料でも、個別的にサイズが特に大きいまたは特に小さい微小球が存在し、例として図4からわかるように、ほとんどの微小球サイズは50μm-150μmの間であるが、なかにはサイズが20μm前後の小さい微小球もあれば、サイズが250μmの大きい微小球もある。図4-6からわかるように、膨張後の微小球は緊密に集中しており、微小球通しは水分散型樹脂で接着されているため、微小球と微小球との間に出来た空間も多くは密閉されていることが推測できる。図4、図5からわかるように、極小数の熱膨張性微小球が破裂している(例、図4左下の角および図5右下の角)。理想的であれば、個々の熱膨張性微小球が全数十分膨張し、かつ、破裂しない(従って内部空間の密閉が成り立つ)。だが、加熱中には制御できない要素もあり、例えば局部の過剰加熱または個別の微小球自体の欠如があげられる。ただし、このような個別の微小球の破裂は、最終製品の断熱性能に根本的な影響を与えないと考えるが、その理由は下記の2点:1)破裂した微小球の割合が非常に小さい、図4から1%未満であるはずだ;2)個別の微小球が破裂した場合でも、周囲の他の大量の微小球が過密状態になっているため、その破裂した微小球の内部空間を再び閉じてしまう。したがって、事実上、本開示の実施例により密閉型多孔質複合材料を製造する過程において、加熱温度が高すぎず、加熱時間が長すぎない限り、ほとんどまたは大部分の微小球が破裂されないようにすれば、比較的よい断熱効果を得ることができる。これ以外に宣言したいことは、実施例17の製品のSEM写真は、本開示の実施プロセスを説明するための単なる例であり、本発明を限定するものと理解されてはならない。熱膨張性微小球の素材と組成、膨張過程の加熱温度と加熱時間、各組成物の比率などの要素を変更すると、得られる最終製品中の微小球のサイズ及び形状は全部変わる可能性がある。 A scanning electron micrograph of the final product obtained in Example 17 is shown in Figure 4-7. Among them, Figure 4 is a SEM photograph of the directly obtained product, Figure 5 is a further enlarged SEM photograph of the product; Figure 6 is a SEM photograph of the cut product, and Figure 7 is the cut product. This is a further enlarged SEM photograph. As can be seen from Figure 4-5, the diameter of most of the thermally expandable microspheres after expansion is around 100 μm. What I would like to explain is that the scale at the bottom right of the diagram indicates the entire length of the ruler. Using FIG. 4 as an example, the distance from the leftmost white line to the rightmost white line represents 500 μm, so the distance between two adjacent white lines is 50 μm. The fibrous material visible in the upper left of Figure 4 is the fiber in the base material, not the insulation material. Polyester thread is used as the base fabric, but since it has strong thermal conductivity, it is necessary to completely cover the base fabric after the microspheres expand to achieve a better insulation effect. The size of the expandable microspheres is influenced by several factors, including the composition and structure of the expandable microspheres, the heating temperature and time during expansion, and the proportion of each composition. etc. The size of the microsphere after expansion is influenced by many more factors, but for example, if the microsphere is insufficiently expanded due to insufficient heat reception at individual locations, it may be overexpanded due to excessive heat reception at individual locations, Due to structural deficiencies in the individual microspheres (eg internal gas leakage), they may not be expanded at all. Therefore, even in a well-foamed material, there will be microspheres that are individually particularly large or particularly small in size; as can be seen for example in Figure 4, most microsphere sizes are between 50 μm and 150 μm, but some There are small microspheres with a size of around 20 μm, and there are large microspheres with a size of 250 μm. As can be seen from Figure 4-6, the microspheres after expansion are tightly concentrated, and since the microspheres are glued with water-dispersible resin, there are also spaces between the microspheres. It can be assumed that many of them are sealed. As can be seen from Figures 4 and 5, a minimal number of thermally expandable microspheres are ruptured (eg, the lower left corner of Figure 4 and the lower right corner of Figure 5). Ideally, all of the individual thermally expandable microspheres expand sufficiently and do not burst (therefore, the internal space is sealed). However, there are also factors that cannot be controlled during heating, such as local overheating or lack of individual microspheres themselves. However, we believe that the rupture of such individual microspheres does not fundamentally affect the thermal insulation performance of the final product, due to the following two reasons: 1) The proportion of ruptured microspheres is very small. , should be less than 1% from Figure 4; 2) Even if an individual microsphere ruptures, the internal space of the ruptured microsphere is It closes again. Therefore, in the process of manufacturing a closed porous composite material according to embodiments of the present disclosure, most or most of the microspheres are not ruptured unless the heating temperature is too high and the heating time is not too long. By doing so, a relatively good heat insulation effect can be obtained. In addition, we would like to declare that the SEM photograph of the product of Example 17 is merely an example to explain the implementation process of the present disclosure, and should not be understood as limiting the present invention. Changing factors such as the material and composition of the thermally expandable microspheres, the heating temperature and heating time during the expansion process, and the ratio of each composition can all change the size and shape of the microspheres in the final product. .

図4、図5が示すように、SEM写真は最終製品の表面形状しか表示できない。もし、最終製品の内部構造を知るには、製品を切開するしかないが、図6と図7とが示すとおりである。図6と図7とからわかるように、大量の微小球は膨張後密集しており、ほぼ全空間を占めている。個々の微小球の内部空間は密閉されているため、微小球内部のガスは流通しない。そして、大量の微小球は窮屈に密集しているため、微小球の間に出来た大部分の空間も事実上密閉しており、結果的に最終製品中のほぼ全てのガスは密閉空間内に閉じ込まれ、自由に移動できず、空気の移動による熱エネルギーの伝達や空気の対流による熱損失を解消している。ただし、切開後の製品の形状を観測したら、切断中の機械的力によって微小球の横断面が変形するため、微小球横断面の形状は実際の製品の内部にある微小球の形状に対して変形している問題がでていた。自然状態での最終製品内部の微小球の形状を呈するため、発明者はコンピュータ断層撮影(Computed Tomography,CT)の方法を使い、実施例17の製品内部形状を呈するが、図8-10の示すとおりである。図8、図9、図10は実施例17の製品内部の違う場所で実施した無侵襲測定であるため、自然状態での最終製品の内部構造を反映している。図8-10からわかるように、大部分の微小球は楕円形球状であり、その内、酷く押し付けられた位置は不規則な形状を呈し、ほぼすべての空間が膨張後の微小球に充満されている。図10は、2つの膨張後の微小球選び、それらのサイズを正確に測定したが、2つの微小球の短軸サイズは其々63.94μm(左上)と54.53μm(中央位置)である。対応する長軸サイズは全部100μm -200μm範囲内に入るはずであり、図10からわかるように、ほとんどの微小球サイズはこの範囲内にあるが、当然なかには格別なサイズもあって、大きい微小球サイズは300μm -500μm内であり、小さい微小球サイズは20μm -30μm内である。説明したいことは、もし、選んだ膨張前の熱膨張性微小球の粒径がExpancel043DU80と異なる場合、最終的に膨張後の微小球直径が大きく違うこともありえる。 As shown in Figures 4 and 5, SEM photographs can only display the surface shape of the final product. The only way to find out the internal structure of the final product is to cut it open, as shown in Figures 6 and 7. As can be seen from FIGS. 6 and 7, a large number of microspheres are densely packed after expansion and occupy almost the entire space. Since the internal space of each microsphere is sealed, gas inside the microsphere does not circulate. Since a large number of microspheres are tightly packed together, most of the spaces created between the microspheres are effectively sealed, and as a result, almost all the gas in the final product is contained within the sealed space. It is confined and cannot move freely, eliminating heat energy transfer through air movement and heat loss through air convection. However, when observing the shape of the product after cutting, the cross section of the microsphere will be deformed by the mechanical force during cutting, so the shape of the cross section of the microsphere will be different from the shape of the microsphere inside the actual product. I had a problem with it being deformed. In order to exhibit the shape of microspheres inside the final product in its natural state, the inventor used the method of computed tomography (CT) to exhibit the internal shape of the product of Example 17, as shown in Figure 8-10. That's right. Figures 8, 9, and 10 are non-invasive measurements performed at different locations inside the product of Example 17, and therefore reflect the internal structure of the final product in its natural state. As can be seen from Figure 8-10, most of the microspheres are elliptical spheres, and the positions where they are severely pressed have an irregular shape, and almost all the space is filled with expanded microspheres. ing. In Figure 10, two expanded microspheres were selected and their sizes were accurately measured, and the short axis sizes of the two microspheres are 63.94 μm (top left) and 54.53 μm (center position), respectively. The corresponding long axis sizes should all fall within the range of 100 μm - 200 μm, and as can be seen from Figure 10, most microsphere sizes are within this range, but of course there are some exceptional sizes, such as large microspheres. The size is within 300μm -500μm, and the small microsphere size is within 20μm -30μm. What I would like to explain is that if the particle size of the selected thermally expandable microspheres before expansion is different from Expancel043DU80, the final diameter of the microspheres after expansion may be significantly different.

〔実施例18〕
多層施工プロセスで多層断熱材を製造
ベース層は、厚さ0.28mm、密度68.5g/m2のベース生地を採用し、まず、ベース生地上に下塗り混合物を一層塗布し、Expancel 043DU80に設定されている膨張不可能な温度内で乾燥させたあと、乾いた下塗り混合物の上に上塗り混合物を一層塗布する。下塗り混合物および上塗り混合物の処方は下記とおり:
下塗り処方の各成分の割合:
水分散型樹脂Impranil DLS 100
熱膨張性微小球Expancel 043 DU 80 40
脱イオン水 300
消泡剤BYK 093 0.3
湿潤剤BYK348 1.0
増粘剤LYOPRINT PTF 1.0
水性カラーペーストNV 6800 20
上塗り処方の各成分の割合:
水分散型樹脂Impranil DLS 30
水分散型樹脂Impranil 1537 70
熱膨張性微小球Expancel 043 DU 80 20
脱イオン水 200
消泡剤BYK 093 0.3
湿潤剤BYK348 1.0
増粘剤LYOPRINT PTF 0.5
水性カラーペーストNV 6800 20
実施例1の操作方法を参照に、高速攪拌機の剪断作用下で、順次、上記処方とおりに各種組成物を混合釜に添加し、すべての物質を添加し終わってからさらに0.5-1時間撹拌することで、下塗り混合物と、上塗り混合物と、を個別に製造し得る。施工前には選択的に架橋剤を添加してよい。
[Example 18]
Producing multi-layer insulation with multi-layer construction process The base layer adopts the base fabric with a thickness of 0.28mm and a density of 68.5g/ m2 , firstly, one layer of primer mixture is applied on the base fabric, and then set in Expancel 043DU80. After drying at a non-swellable temperature, a layer of the topcoat mixture is applied over the dried basecoat mixture. The formulations for the basecoat mixture and topcoat mixture are as follows:
Proportions of each component in the primer formulation:
Water dispersion resin Impranil DLS 100
Thermal expandable microspheres Expancel 043 DU 80 40
Deionized water 300
Antifoam BYK 093 0.3
Wetting agent BYK348 1.0
Thickener LYOPRINT PTF 1.0
Water-based color paste NV 6800 20
Proportion of each component in topcoat formulation:
Water dispersion resin Impranil DLS 30
Water dispersible resin Impranil 1537 70
Thermal expandable microspheres Expancel 043 DU 80 20
Deionized water 200
Antifoam BYK 093 0.3
Wetting agent BYK348 1.0
Thickener LYOPRINT PTF 0.5
Water-based color paste NV 6800 20
Referring to the operating method of Example 1, under the shearing action of a high-speed stirrer, various compositions were added to the mixing pot according to the above recipe one after another, and after all the substances were added, the mixture was further stirred for 0.5-1 hour. This allows the basecoat mixture and the topcoat mixture to be manufactured separately. A crosslinking agent may be selectively added before construction.

下塗り処方物を、厚さ0.28 mm、密度68.5 g/m2のベース生地上に塗布し、塗装量(湿重量)は65±5g g/m2であり、100℃の乾燥箱内で1分間乾燥させる。乾燥後(底層断熱層が得られる)、下塗りの上に上塗りを塗布するが、塗装量(湿重量)は130g±5g/m2であり、140℃の乾燥箱内で1分間乾燥させる(面層断熱層が得られる)。ベース生地と、塗装層サンプルと、の総厚さは0.9mmであり、温度差は10.5 °Cであり、塗装層堅牢度は優れており、表面粉化もなく、二回塗布は塗装層を厚くしクロー値をあげた。塗装層の堅牢度は主に上塗りに左右されるので、底層断熱層では堅牢度への配慮を適切に下げ、断熱性をあげることだけに集中してよいため、底層断熱層での熱膨張性微小球の用量を増やしたりまたは異なる規格の熱膨張性微小球を選択することができるし、なお、水分散型樹脂も一種だけにしてよい。 The basecoat formulation was applied onto a base fabric with a thickness of 0.28 mm and a density of 68.5 g/ m2 , with a coating weight (wet weight) of 65 ± 5 g g/ m2 , for 1 min in a dry box at 100 °C. dry. After drying (to obtain the bottom heat insulating layer), a topcoat is applied on top of the basecoat, the amount of coating (wet weight) is 130g ± 5g/ m2 , and it is dried for 1 minute in a drying box at 140℃ ( layer insulation layer). The total thickness of the base fabric and the paint layer sample is 0.9mm, the temperature difference is 10.5 °C, the fastness of the paint layer is excellent, there is no surface powdering, and the double application is I made it thicker and increased the claw value. The fastness of the paint layer mainly depends on the top coat, so you can appropriately reduce the consideration of fastness for the bottom heat insulating layer and concentrate only on increasing the heat insulation, so the thermal expansion property of the bottom heat insulating layer can be reduced. The dosage of microspheres can be increased or a different specification of thermally expandable microspheres can be selected, and only one type of water-dispersible resin can be used.

〔実施例19-24〕
製造ラインでの実験結果
実施例19-24での混合物の製造手順は実施例1と同じであるが、実施例19-24での塗装設備は前の設備と完全に違い、工業製造ラインに近いもので、塗装サンプルのクロー値も測定できる(クロー値の測定を、国家紡織質量監督検験センターの測定機器で実施する場合60CM*60CM大きさを必要とする)。実施例19-24の処方は下記とおり:
[Example 19-24]
Experimental Results on Production Line The production procedure of the mixture in Example 19-24 is the same as in Example 1, but the coating equipment in Example 19-24 is completely different from the previous equipment and is closer to an industrial production line. It is also possible to measure the claw value of paint samples (when measuring the claw value with the measuring equipment of the National Textile Quality Supervision and Testing Center, the size is 60CM*60CM). The formulation for Examples 19-24 is as follows:

実験室のサンプル塗装設備と、生産ラインに近い塗装設備との違いは下記とおり:実験室のサンプル塗装設備はA4紙サイズのサンプルしか塗装できないし、乾燥も箱型乾燥箱である。生産ラインに近い(「パイロットテスト」とも呼ぶ)設備では上下ブロアー式の乾燥機である;生産ラインに近い設備は連続生産を行い、テンションや塗布量もより均等に制御できるし、製造し得るサンプルのサイズも大きく、専用機器で熱抵抗も測定できる。生産ラインに近い設備で実施する目的は、本文が提供する案で実際に製品製造をした際の状況を確認し、本案の現実的な活用価値を証明することである。 The differences between the sample painting equipment in the laboratory and the painting equipment near the production line are as follows: The sample painting equipment in the laboratory can only paint A4 paper size samples, and it is dried in a box-shaped drying box. Equipment close to the production line (also called "pilot test") is a top-and-bottom blower type dryer; equipment close to the production line performs continuous production, which allows for more even control of tension and application amount, and allows for better control of the samples that can be produced. It is also large in size, and its thermal resistance can be measured using specialized equipment. The purpose of conducting the test in equipment close to the production line is to confirm the actual product manufacturing situation using the proposal provided in this text and to prove the practical value of this proposal.

生産ラインに近い設備における処方の出方を検証し、堅牢度及び実験条件が違う;同じ150 °Cでも、風量が違う(生産ラインに近い設備では加熱にファンを使い、熱量の高い高温蒸気またはサーマルオイルに加熱された熱い空気を、サンプルの表面に吹き付け塗装層を加熱するので、同じ温度でも加熱熱量は風量に直接関わっており、加熱熱量はまた微小球の発泡に関係しており、進んではクロー値に影響を与える。通常、加熱熱量が高いほど、膨張が良くなり、クロー値も大きくなりつつある;但し、加熱熱量が高すぎでも微小球が膨張しすぎて破裂に繋がり、クロー値が下がる)。熱膨張性微小球の設定膨張限界を超えない限り、風量が大きいほど、厚さは厚くなり、熱抵抗はよくなりつつある。クロー値の最高値は、風量が70%で、乾燥温度が160 °Cの時点でえられた;だが、温度が160 °C以上になった場合、塗装サンプルの厚さはそれ以上厚くならず、熱抵抗は逆に低くなった(つまり、微小球が膨張しすぎて、一部の微小球が破裂した可能性がり、帰って熱抵抗が下がっている)。 We verified how the formulation was produced in equipment close to the production line, and the fastness and experimental conditions were different; even at the same 150 °C, the air volume was different (equipment close to the production line uses a fan for heating, and uses high-temperature steam or Hot air heated by thermal oil is sprayed onto the surface of the sample to heat the coating layer, so even at the same temperature, the amount of heating heat is directly related to the air volume, and the amount of heating heat is also related to the foaming of the microspheres. Normally, the higher the amount of heating heat, the better the expansion, and the larger the Crow value; however, if the amount of heating heat is too high, the microspheres expand too much, leading to rupture, and the Crow value decreases). As long as the set expansion limit of the thermally expandable microspheres is not exceeded, the larger the air volume, the thicker the thickness and the better the thermal resistance. The highest claw value was obtained at an air flow of 70% and a drying temperature of 160 °C; however, when the temperature rose above 160 °C, the thickness of the painted sample did not increase any further. On the contrary, the thermal resistance became lower (in other words, the microspheres expanded too much, and some of them may have burst, returning to a lower thermal resistance).

上記実施例の結果に対して比較分析した結果は以下のとおり。 The results of comparative analysis with respect to the results of the above examples are as follows.

実施例19と、実施例20と、を比較する。表5からわかるように、実施例19と、実施例20と、の反応物の処方や乾燥条件などは全て同じであり、その区別は実施例19の塗装量(乾重量)は6.05 g/m2であるに対して、実施例20の塗装量(乾重量)は16.15 g/m2であるが、最終的には塗装サンプルの厚さの違いに繋がっている。実施例20の塗装量(乾重量)が多いため、塗装サンプルの厚さも厚くなり、クロー値もより高くなっている。処方及び乾燥条件が同じである場合、塗装量(乾重量)が大きいほど、水分散型樹脂の含有量が高くなり、水の含有量も高くなる;水の揮発と微小球の膨張は両方とも吸熱プロセスのため、乾燥条件が同じでも、微小球の膨張能力は弱くなり、密度は高くなるので、実施例19のほうがより十分に発泡され、低密度になっており、実施例20は高密度になっている。 Example 19 and Example 20 will be compared. As can be seen from Table 5, the recipe of reactants and drying conditions of Example 19 and Example 20 are all the same, and the difference is that the coating amount (dry weight) of Example 19 is 6.05 g/m 2 , the coating amount (dry weight) of Example 20 was 16.15 g/m 2 , but this ultimately led to a difference in the thickness of the coating samples. Since the coating amount (dry weight) of Example 20 is large, the thickness of the coating sample is also thicker, and the claw value is also higher. For the same formulation and drying conditions, the higher the coating weight (dry weight), the higher the water-dispersible resin content and the higher the water content; both water volatilization and microsphere expansion are Due to the endothermic process, the expansion ability of the microspheres is weaker and the density is higher even under the same drying conditions, so Example 19 is more fully foamed and has a lower density, while Example 20 has a higher density. It has become.

実施例20と、実施例21と、を比較する。実施例20と、実施例21と、の区別は、乾燥条件にあり、他は全部同じである。実施例20の乾燥条件は150°Cで、1分間の70%の上下送風量である;実施例21の乾燥条件は150°Cで、1分間の50%の上下送風量である;送風量が大きいほど、十分に発泡される。サンプル塗装層の乾膜の厚さおよびクロー値の観点から、実施例20の塗装層サンプルの厚さがより厚く、クロー値および正規化クロー値もより高いので、その乾燥条件がより良好であることを示している。他の条件が同じである場合、乾燥条件が良好であるほど、微小球はより十分に膨張されるため、実施例20の塗装層密度は実施例21の塗装層密度より低い。説明しておきたいことは、実施例20と実施例21の塗装量(乾重量)には微量の差があるが、その原因は、処方と塗装条件が全く同じであっても、最終的に基材上に塗布される塗装量(乾重量)には微量の差が出ているが、この差による製品の断熱性能への影響はほんの少し(たとえば、実施例20と、実施例21と、の塗装量(乾重量)の差はわずかの2%である)て、無視できる。実施例23と実施例24にも同じ現象が出ている。 Example 20 and Example 21 will be compared. The difference between Example 20 and Example 21 lies in the drying conditions, and everything else is the same. The drying conditions for Example 20 are 150°C and 70% vertical air flow per minute; the drying conditions for Example 21 are 150°C and 50% vertical air flow for 1 minute; air flow The larger the value, the more foamed the foam will be. In terms of the dry film thickness and claw value of the sample coating layer, the coating layer sample of Example 20 has a thicker thickness, and the claw value and normalized claw value are also higher, so its drying conditions are better. It is shown that. Other things being equal, the coating layer density of Example 20 is lower than the coating layer density of Example 21 because the better the drying conditions, the more fully the microspheres are expanded. What I would like to explain is that there is a slight difference in the amount of coating (dry weight) between Example 20 and Example 21, but the reason for this is that even though the formulation and coating conditions are exactly the same, the final difference Although there is a slight difference in the amount of paint applied to the base material (dry weight), this difference has only a small effect on the heat insulation performance of the product (for example, between Example 20 and Example 21, The difference in coating weight (dry weight) is only 2%) and can be ignored. The same phenomenon occurs in Examples 23 and 24.

実施例20と、実施例22と、を比較する。実施例20の塗装量(乾重量)は16.15 g/m2で、乾燥温度は150 °C、70%の上下送風量、乾燥時間は1分間である;実施例22の塗装量(乾重量)は23.3 g/m2で、乾燥温度は160 °C、70%の上下送風量、乾燥時間は1分間である;他の条件は同じである。実施例22の塗装量(乾重量)が比較的多いため、一般的に、実施例22の断熱効果及びクロー値に対する期待が高い。しかし、両者の塗装サンプル厚さとクロー値を比較したら、実施例20の塗装サンプル厚さとクロー値が大幅に高いことが見えてきた。主な原因は、実施例22の乾燥温度が高すぎたため、最終製品で比較的多くの微小球が破裂され、塗装層の乾膜厚さが薄くなり、断熱効果も逆に下がっている。実施例22の塗装量(乾重量)は増やされ、塗装層の中部に位置する微小球の膨張抵抗が大きくなり、膨張不十分となった;同時に、高すぎる温度は外層微小球の破裂に繋がり、実施例22は実施例20に対して密度が高くなり、断熱効果は下がっている。 Example 20 and Example 22 will be compared. The coating amount (dry weight) of Example 20 is 16.15 g/m 2 , the drying temperature is 150 °C, 70% vertical air flow, and the drying time is 1 minute; the coating amount (dry weight) of Example 22 is 23.3 g/ m2 , drying temperature is 160 °C, 70% vertical air flow, and drying time is 1 min; other conditions are the same. Since the coating amount (dry weight) of Example 22 is relatively large, expectations are generally high for the heat insulation effect and claw value of Example 22. However, when comparing the coating sample thickness and claw value of both, it became clear that the coating sample thickness and claw value of Example 20 were significantly higher. The main reason was that the drying temperature in Example 22 was too high, which caused a relatively large number of microspheres to burst in the final product, resulting in a thin dry film thickness of the coating layer and a decrease in the heat insulation effect. The coating amount (dry weight) of Example 22 was increased, and the expansion resistance of the microspheres located in the middle of the coating layer was increased, resulting in insufficient expansion; at the same time, too high temperature led to the bursting of the outer layer microspheres. In Example 22, the density is higher than in Example 20, and the heat insulation effect is lower.

実施例20と、実施例23と、を比較する。実施例23は実施例20より微小球の含有量が50%高いし、塗装量(乾重量)は55%高いが、実施例23の塗装サンプルの厚さ及びクロー値は両方とも実施例20より低い。膨張性微小球の用量も多く、塗装量(乾重量)も多いなかで、実施例23の断熱効果は実施例20に対して改善されてないが、原因は実施例23の製品での微小球は膨張不十分であった。乾燥過程での水分の揮発と、混合物の加熱と、微小球の膨張と、はすべて吸熱過程であるのに、塗装量(乾重量)を増やしたにも関わらず、それに応じて乾燥強度を上げなかったため、実施例23の最終製品中の微小球は膨張不十分となり、塗装の乾膜厚さもクロー値も高くない。 Example 20 and Example 23 will be compared. Example 23 has a 50% higher microsphere content and a 55% higher coating weight (dry weight) than Example 20, but both the thickness and claw value of the painted sample of Example 23 are lower than that of Example 20. low. Although the amount of expandable microspheres was large and the amount of coating (dry weight) was also large, the insulation effect of Example 23 was not improved compared to Example 20, but this was due to the microspheres in the product of Example 23. was insufficiently expanded. Although the volatilization of water, the heating of the mixture, and the expansion of the microspheres during the drying process are all endothermic processes, even though the amount of coating (dry weight) has been increased, the drying strength has been increased accordingly. As a result, the microspheres in the final product of Example 23 were insufficiently expanded, and the dry film thickness and claw value of the coating were not high.

実施例23と、実施例24と、を比較する。実施例23と、実施例24と、の違いは、実施例24の乾燥温度が実施例23より10°C高い。前の実施例20と実施例23との比較でわかるように、実施例23で乾燥不足だったので、実施例24で乾燥温度をあげたら、塗装サンプルは厚もクロー値(正規化クロー値込み)も向上されたので、処方が同じてある場合、実施例24の乾燥条件が優れていることを確認した。 Example 23 and Example 24 will be compared. The difference between Example 23 and Example 24 is that the drying temperature of Example 24 is 10°C higher than that of Example 23. As can be seen from the comparison between Example 20 and Example 23, Example 23 was insufficiently dried, so when the drying temperature was increased in Example 24, the thickness of the painted sample decreased to the Crow value (normalized Crow value included). ) was also improved, confirming that the drying conditions of Example 24 were superior when the formulations were the same.

割合が同じである場合、塗装密度は事実上微小球の発泡程度を反映する。密度が低いほど、微小球の発泡程度が進んでいるため、クロー値も高くなりつつであることが予想できる。実施例20と21、20と22、23と24、は全部上記規則を反映している。但し、実施例19はこの規則に反しているようだが、原因は実施例19の塗装量(乾重量)が小さすぎて、塗装層の膜厚が薄くなるすぎ、機器で測定する際に膜層の微孔が破れ空気が対流(熱損失に繋がっているからだ)したため、実施例19の例外も前記規則に反していると理解してはならない。 If the proportions are the same, the coating density effectively reflects the degree of foaming of the microspheres. It can be expected that the lower the density, the more advanced the degree of foaming of the microspheres, and therefore the higher the claw value. Examples 20 and 21, 20 and 22, 23 and 24 all reflect the above rules. However, Example 19 seems to violate this rule, and the reason is that the amount of coating (dry weight) in Example 19 is too small, and the thickness of the coating layer is too thin. The exception of Example 19 should not be understood as a violation of the above rule, since the micropores in the sample were ruptured and air was convected (leading to heat loss).

最終製品中の密閉空洞の総体積とポリマー壁の総体積との比を確定するためには、微小球の直径を知る以外にも、微小球の壁厚範囲を分かる必要がある。図11-図17は、SEMにて測定した微小球の壁厚であり、その内、図11は実施例19由来であり;図12-図13は実施例25由来であり;図14-図15は実施例24由来であり;図16-図17は実施例21由来である。前の図3-図10からわかるように、最終製品中の微小球通しのサイズ差がわりに大きいが、原因は、各微小球の発泡程度は複数の要因に影響されるが、これらの要因としては微小球シェルであるポリマー樹脂の厚さや微小球の内部に囲まれている熱膨張ガスの量等を挙げられる。微小球の発泡程度が異なるため、最終製品の各微小球の壁厚が異なることも想定できるし、図11-図17の結果はこの点を裏付けている。例えば、図16と図17は全部実施例21の製品を観測したものであるが、壁厚は300nm以上から700nm以上まで変化している。だが、観測結果からわかるように、十分発泡した製品の壁厚は、一般的に、発泡不十分な製品の壁厚より薄い。これも理解し易いもので、微小球の発泡が十分であるほど、大きく膨張されるので、壁厚はより薄くなる。現在の条件では、最終製品中の膨張した微小球の正確な平均壁厚が得られないため、図11-図17で壁厚の分布範囲を掴むことができる。図13を例に、ポリマー壁は2つの層に分かれており、中央の黒線に区分けされている。両側の壁は、隣り合い、且つ、接触している二つの膨張後の微小球由来であり、なお、中央の暗色区間は水分散型樹脂由来である。請求項に記載の「ポリマー壁の厚さ」とは、2層の隣接する微小球の壁と、中央の水分散型樹脂と、の総厚さを指す。事実上、断熱材としては、上記ポリマー壁の3層構造に対して区分しないまま一体として扱うことができるが、原因は、加熱中に、上記の3層のポリマーは既に互いに融合され一体化しているからである;一方、微小球由来のポリマーであろうと、水分散型樹脂由来のポリマーであろうと、その熱伝導係数には大きい差がないし、しかも、空気の熱伝導係数をはるかに上回るため、断熱材にとっては、上記の三層構造のポリマー壁を一つの全体として扱うことは技術的にも合理的である。最適の断熱効果を得るため、本発明の発明者は、密閉型多孔質複合材料の内部空間を可能な限り密封させる一方、ポリマーの用量(ポリマーの由来は熱膨張性微小球由来と水分散性樹脂由来を問わず下げる)を最小化する必要があることに気づいた。したがって、上記の三層構造のポリマー壁を、本開示に対する制限として理解すべきではなく、上記の二つの目標達成(可能な限り多くの密閉空間を造るが、ポリマーの用量はなるべく下げる)を目指す限り、様々な方法で実現することができる。たとえば、そのもの自体が粘性をもつ熱膨張性微小球を使うことで、水分散型樹脂を使わないようにするが、そうすると最終製品には隣接する微小球由来の二層のポリマーしか含まれない。とは言え(技術的にも上記ポリマー壁の内部構造を区別する必要はない)、最終製品中の密閉空洞の総体積とポリマー壁の総体積との比を確定するため、個々の膨張した微小球の壁厚の範囲を知る必要がある(図13を例に、つまり、中央の黒線に区切られた両側の壁厚である;なお、中央の黒線は非常に細いし、事実上、中央の黒線である水分散型樹脂は両側の微小球の壁厚に算入された)。図11-図17で得られた個々の微小球の壁厚寸法は以下のとおり:44.9nm、48.2nm、81.9nm、96.6nm、95.9nm、149nm、78.9nm、89nm、102nm、351nm(図16の二層の微小球壁通しの堺は不明確)、314nm、325nm。図8、図9が示すように、大部分の微小球は膨張後互いに接触し、平面図には多くの交差点がある。図11-図17の微小球の壁厚への測定は、上記の交差点から最多距離である中央の位置で測定した値である。 In addition to knowing the diameter of the microsphere, it is necessary to know the range of wall thickness of the microsphere in order to determine the ratio of the total volume of the closed cavity to the total volume of the polymer wall in the final product. Figures 11-17 show the wall thickness of microspheres measured by SEM, of which Figure 11 is derived from Example 19; Figures 12-13 are derived from Example 25; Figure 14-Figure 15 is from Example 24; FIGS. 16-17 are from Example 21. As can be seen from the previous Figures 3 to 10, the size difference between the microspheres in the final product is relatively large, but this is because the degree of foaming of each microsphere is influenced by multiple factors. The factors include the thickness of the polymer resin that is the microsphere shell and the amount of thermal expansion gas surrounded inside the microsphere. Since the degree of foaming of the microspheres is different, it can be assumed that the wall thickness of each microsphere in the final product is different, and the results shown in Figures 11-17 support this point. For example, although FIGS. 16 and 17 are all observations of the product of Example 21, the wall thickness varies from 300 nm or more to 700 nm or more. However, as observed, the wall thickness of well-foamed products is generally thinner than that of poorly foamed products. This is also easy to understand; the more the microspheres are foamed, the more they are expanded and the thinner the wall thickness will be. Since the current conditions do not provide an accurate average wall thickness of the expanded microspheres in the final product, Figures 11-17 can give an idea of the wall thickness distribution range. Taking Figure 13 as an example, the polymer wall is divided into two layers, separated by a black line in the center. The walls on both sides are from two expanded microspheres that are adjacent and in contact, and the dark section in the center is from a water-dispersed resin. "Polymer wall thickness" in the claims refers to the total thickness of the walls of two adjacent microsphere layers and the water-dispersed resin in the center. In fact, as a heat insulating material, the three-layer structure of the polymer wall can be treated as a single piece without being differentiated, but the reason is that during heating, the three layers of polymer have already been fused together and integrated. On the other hand, whether it is a polymer derived from microspheres or a polymer derived from water-dispersed resin, there is no big difference in their thermal conductivity coefficients, and moreover, the thermal conductivity coefficient is much higher than that of air. For insulation materials, it is technically reasonable to treat the above-mentioned three-layer polymer wall as one whole. In order to obtain an optimal thermal insulation effect, the inventors of the present invention have determined that the internal space of the closed porous composite material is sealed as much as possible, while the amount of polymer (the origin of the polymer is thermally expandable microspheres and water dispersible) It was realized that it was necessary to minimize the amount of carbon dioxide (lowering) regardless of the origin of the resin. Therefore, the three-layered polymer wall described above should not be understood as a limitation to the present disclosure, which aims to achieve the above two goals (creating as much enclosed space as possible, but with as low a dose of polymer as possible). However, it can be realized in various ways. For example, by using thermally expandable microspheres that are themselves viscous, they avoid the use of water-dispersible resins, but the final product contains only two layers of polymer from adjacent microspheres. However, in order to determine the ratio between the total volume of the closed cavity and the total volume of the polymer wall in the final product (technically speaking, it is not necessary to distinguish between the internal structure of the polymer wall), it is necessary to We need to know the range of the wall thickness of the sphere (take Figure 13 as an example, that is, the wall thickness on both sides separated by the central black line; note that the central black line is very thin, and in effect The water-dispersed resin, which is the black line in the center, was included in the wall thickness of the microspheres on both sides). The wall thickness dimensions of the individual microspheres obtained in Figures 11-17 are as follows: 44.9nm, 48.2nm, 81.9nm, 96.6nm, 95.9nm, 149nm, 78.9nm, 89nm, 102nm, 351nm (Figure 16 The wavelength of the two-layer microsphere through the wall is unclear), 314 nm, and 325 nm. As Figures 8 and 9 show, most of the microspheres touch each other after expansion, and there are many intersections in the top view. The wall thickness measurements of the microspheres in FIGS. 11 to 17 are the values measured at the center position, which is the greatest distance from the above-mentioned intersection.

仮に、膨張後の熱膨張性微小球が規則的な丸い球状であり、その球状の直径が100μm(実施例で観測された膨張後の熱膨張性微小球の多くは直径が100μm前後)で、微小球単体の平均壁厚が5μmである場合、最終製品中の密閉空洞と壁との体積比は次のように計出:球単体の表面面積はS =4πr2= 4 * 3.14 * 50 * 50 = 31400である、ならば1個の球壁の体積はV=S*h(厚さ)=157000 μm3である;球内空洞の体積はV=πr3*4/3=3.14*50*50*50*4/3=523333 μm3である。ならば、球内空洞の体積と球壁の体積との比はV:V=523333/157000=3.33倍である。もし、平均壁厚が1μmであれば、上記倍数は16.67になる;もし、平均壁厚が0.5 μmであれば、上記倍数は33.3になる;もし、平均壁厚が0.2 μmであれば、上記倍数は83.3になる;もし、平均壁厚が0.1 μmであれば、上記倍数は166.7になる;もし、平均壁厚が0.05μmであれば、上記倍数は333.3になる;もし、平均壁厚が0.04μmであれば、上記倍数は416.7になる;もし、平均壁厚が0.03μmであれば、上記倍数は555.6になる;もし、平均壁厚が0.02μmであれば、上記倍数は833.3になる;もし、平均壁厚が0.01μmであれば、上記倍数は1666.7になる。注意必要なことは、上記の計算では、微小球通しに形成された空間の体積を考慮してないため、実際に、断熱材料空洞総体積とポリマー壁体積との比は、上記の推定値より大きい。また、本発明の実施例で測定された壁厚データからみて、0.01μmの平均壁厚は本発明の実施例で使われた微小球の膨張限界に近いことがわかるし、したがって、空洞体積と球壁体積との比1666.7も上限に近い。上記計算から、本発明の実施例で得られた製品の空洞体積と球壁体積との比は2000以下であることが推定できる。だが、もし、他のもっと大きい膨張倍数の微小球を採択した場合、空洞体積と球壁体積との比は2000を突破する可能性もある。 Suppose that the thermally expandable microspheres after expansion are regular round spheres with a diameter of 100 μm (most of the thermally expandable microspheres observed in the examples have a diameter of around 100 μm), If the average wall thickness of a single microsphere is 5 μm, the volume ratio of the closed cavity to the wall in the final product is calculated as follows: The surface area of a single sphere is S =4πr 2 = 4 * 3.14 * 50 * 50 = 31400, then the volume of one sphere wall is V wall = S * h (thickness) = 157000 μm 3 ; the volume of the cavity in the sphere is V cave = πr 3 *4/3 = 3.14 *50*50*50*4/3=523333 μm3 . Then, the ratio of the volume of the spherical cavity to the volume of the spherical wall is V cavity : V wall = 523333/157000 = 3.33 times. If the average wall thickness is 1 μm, the above multiple will be 16.67; if the average wall thickness is 0.5 μm, the above multiple will be 33.3; if the average wall thickness is 0.2 μm, the above multiple will be The multiple will be 83.3; if the average wall thickness is 0.1 μm, the above multiple will be 166.7; if the average wall thickness is 0.05 μm, the above multiple will be 333.3; if the average wall thickness is If the average wall thickness is 0.04 μm, the above multiple will be 416.7; if the average wall thickness is 0.03 μm, the above multiple will be 555.6; if the average wall thickness is 0.02 μm, the above multiple will be 833.3. ; If the average wall thickness is 0.01 μm, the above multiple will be 1666.7. It is important to note that the above calculation does not take into account the volume of the space formed through the microspheres, so the ratio of the total volume of the insulation material cavity to the polymer wall volume is actually smaller than the estimated value above. big. Also, from the wall thickness data measured in the examples of the present invention, it can be seen that the average wall thickness of 0.01 μm is close to the expansion limit of the microspheres used in the examples of the present invention, and therefore, the cavity volume and The ratio of 1666.7 to the sphere wall volume is also close to the upper limit. From the above calculation, it can be estimated that the ratio of the cavity volume to the spherical wall volume of the product obtained in the example of the present invention is 2000 or less. However, if other microspheres with larger expansion factors are adopted, the ratio of cavity volume to sphere wall volume may exceed 2000.

〔実施例25〕
多層塗布プロセスで多層断熱材を製造―生産ラインテスト
実施方法は実施例18を参照しているが、製造規模を拡大して、本文の案を実際の大規模生産に持ち込んだ場合の性能をテストする。厚さ:0.15mm、密度:33.3 g/m2のベース生地を使い、まずベース生地の上に下塗り混合物を一層塗布し、温度と乾燥時間をExpancel 043 DU80膨張前微小球が膨張しない温度に設定し乾燥させてから、既に乾いた下塗り混合物の上に上塗り混合物を塗布する。下塗り混合物及び上塗り混合物の処方は下記通り:
下塗り処方中の各組成物の割合:
水性樹脂Imprail DLS 100
熱膨張性微小球Expancel 043 DU 80 40
脱イオン水 300
消泡剤BYK 093 0.3
湿潤剤BYK348 1.0
増粘剤LYOPRINT PTF 1.0
水性カラーペーストNV 6800 20
上塗り処方中の各組成物の割合:
水性樹脂Impranil DLS 30
水性樹脂Impranil 1537 70
熱膨張性微小球Expancel 043 DU 80 20
脱イオン水 200
消泡剤BYK 093 0.3
湿潤剤BYK348 1.0
増粘剤LYOPRINT PTF 0.5
水性カラーペーストNV 6800 20
実施例1の操作方法を参照に、高速攪拌機の剪断作用下で、上記処方とおりに各種組成物を順次混合釜内に添加し、すべての原料を添加し終わってからさらに0.5-1時間撹拌し、塗布前には選択的に架橋剤を添加してよい。
[Example 25]
Manufacture multi-layer insulation material using multi-layer coating process - Production line test implementation method refers to Example 18, but the production scale is expanded to test the performance when the idea in this text is brought into actual large-scale production. do. Using a base fabric with thickness: 0.15 mm and density: 33.3 g/ m2 , first apply one layer of the primer mixture on the base fabric, and set the temperature and drying time to a temperature that does not allow the Expancel 043 DU80 pre-expanded microspheres to expand. and dry, then apply the topcoat mixture over the already dry basecoat mixture. The formulation of the basecoat mixture and topcoat mixture is as follows:
Proportion of each composition in the primer formulation:
Water-based resin Imprail DLS 100
Thermal expandable microspheres Expancel 043 DU 80 40
Deionized water 300
Antifoam BYK 093 0.3
Wetting agent BYK348 1.0
Thickener LYOPRINT PTF 1.0
Water-based color paste NV 6800 20
Proportion of each composition in the topcoat formulation:
Water-based resin Impranil DLS 30
Water-based resin Impranil 1537 70
Thermal expandable microspheres Expancel 043 DU 80 20
Deionized water 200
Antifoam BYK 093 0.3
Wetting agent BYK348 1.0
Thickener LYOPRINT PTF 0.5
Water-based color paste NV 6800 20
Referring to the operating method of Example 1, under the shearing action of a high-speed stirrer, various compositions were sequentially added into the mixing pot according to the above recipe, and after all the raw materials had been added, the mixture was further stirred for 0.5-1 hour. , a crosslinking agent may be selectively added before coating.

下塗り処方を厚さ0.15mmのベース生地上に塗布し、塗布量は(湿重量)65±5g/m2とし、100℃の乾燥箱内で1分間乾燥する。乾燥後、下塗りを基盤に上塗りを塗布するが、塗布量は(湿重量)130±5g/m2とし、150℃の乾燥箱内で1分間乾燥させる。ベース生地及び塗装サンプルの総厚さは0.55mm -0.6mm(従って塗装層の厚さは0.40mm -0.45mmである)であり、クロー値は0.605(1mmの塗布層厚さに正規化したクロー値は1.34-1.51である)であり、塗装層堅牢度は良好で、表面粉化もない。当実験組みの断熱塗装層の密度は75.6kg/m3である。2回塗布は、塗布の厚さとクロー値とを増やしているが、下塗り塗布液と上塗り塗布液とを個別に塗布した場合の厚さを加算した値よりは小さい。塗布層の堅牢度は、主に上塗りに左右される。塗布層の堅牢度は主に上塗りに左右るされるため、底層断熱層では堅牢度を引き下げ、その断熱性の向上だけに集中すればよいので、底層断熱層での熱膨張性微小球の用量を増やすことができるし、しかも水分散性樹脂も一種のみにすることができる。二回塗布するプロセスは下塗り微小球が膨張する際に抵抗があがるため、膨張能力はある程度の影響をうけるし、微小球の含有量及び塗布量を増やすことは、断熱効果が改善される。注:クロー値は第三者提供:京検頤和(北京)製品質量監督検験検測センター。測定番号:NB201805006。 The undercoat formulation is applied onto a base fabric with a thickness of 0.15 mm, with a coating amount (wet weight) of 65 ± 5 g/m 2 , and dried for 1 minute in a drying box at 100 °C. After drying, apply a topcoat based on the undercoat, with a coating amount (wet weight) of 130±5g/m 2 and dry in a drying box at 150℃ for 1 minute. The total thickness of the base fabric and paint sample is 0.55mm -0.6mm (thus the paint layer thickness is 0.40mm -0.45mm) and the claw value is 0.605 (normalized to a coated layer thickness of 1mm). The value is 1.34-1.51), the fastness of the coating layer is good, and there is no surface powdering. The density of the heat-insulating coating layer in this experimental set was 75.6 kg/m 3 . Two coats increases the coating thickness and claw value, but it is smaller than the sum of the thicknesses when the base coat and top coat are applied separately. The fastness of the applied layer depends primarily on the topcoat. Since the fastness of the coating layer mainly depends on the topcoat, it is necessary to reduce the fastness in the bottom insulation layer and concentrate only on improving its insulation properties, so the dosage of thermally expandable microspheres in the bottom insulation layer can be increased, and moreover, the number of water-dispersible resins can be reduced to only one type. The double coating process increases the resistance when the primer microspheres expand, so the expansion ability is affected to some extent, and increasing the microsphere content and coating amount improves the heat insulation effect. Note: Crow values are provided by a third party: Jingken Yinhe (Beijing) Product Quality Supervision Inspection Testing Center. Measurement number: NB201805006.

実際の活用では、接着剤にて複数の密閉型多孔質複合材料を一体に接着するか、または接着剤にて一つまたは複数の密閉型多孔質複合材料を他の材料に接着して一体化することができる。例として、接着剤で実施例25で製造した2層の製品を「表合わせ」(つまり塗装層通しを顔合わせにする)に接着し、二つの外層はベース生地で、中間層は密閉型多孔質材料(断熱材料)である「サンドイッチ」構造の製品(担持体面と担持体面を合わせる接着方法で複合材にすることもできる)に仕上げる。接着は無錫諾爾特機械有限公司出品のホットメルト接着機を採用し、接着剤はPUR湿気反応型ホットメルト接着剤を採用し、接着剤の用量は乾重量15g/m2とし、接着複合で得られた上記「サンドイッチ」構造製品の総厚さは1.21mmであり、クロー値は1.11である。二層を接着したあとクロー値が向上されたことは、二層を接着複合させると厚さが増えるにつれ断熱性が向上されたことを説明している。密閉型多孔質複合材料は、他の材料と接着し複合材にすることもで、密閉型多孔質複合材料の活用分野を拡大することができる。注:クロー値測定機関:京検頤和(北京)製品質量監督検験検測センター測定実施。測定番号:NB201805004。 In practical applications, multiple closed porous composite materials are bonded together using adhesives, or one or more closed porous composite materials are bonded to other materials using adhesives. can do. As an example, the two layers of the product produced in Example 25 are glued together "face-to-face" (i.e. with the paint layers facing each other), the two outer layers being base fabric and the middle layer being a closed porous layer. The material (insulating material) is finished into a product with a "sandwich" structure (it can also be made into a composite material by bonding the carrier surfaces together). The hot melt adhesive machine exhibited by Wuxi Nuer Special Machinery Co., Ltd. was used for adhesion, and the adhesive was PUR moisture-reactive hot melt adhesive, and the amount of adhesive was 15 g/m 2 in dry weight. The total thickness of the above-mentioned "sandwich" construction product is 1.21 mm and the Crow value is 1.11. The improved Claw value after bonding the two layers explains that the thermal insulation improved with increasing thickness when bonding the two layers together. Closed porous composite materials can also be bonded with other materials to form composite materials, expanding the range of applications for closed porous composite materials. Note: Claw value measurement institution: Jingken Yinhe (Beijing) Product Quality Supervision and Inspection Testing Center. Measurement number: NB201805004.

本文の密閉型多孔質複合材料を吸音材または遮音材として使える。吸音材と遮音材との区別は、素材の吸音とは音源側へ反射する音響エネルギーの大きさに着目しており、反射音のエネルギーを小さくすることを目的とする。素材の遮音とは音源側から別の側に透過する音響エネルギーの大きさに着目しており、透過音のエネルギーを小さくすることを目的とする。吸音材による入射音響エネルギーへの減衰と吸収は、一般的に10分の数程度しかないため、その吸音能力、つまり、吸音係数は小数で表すことができる;ところが、遮音材は入射音響エネルギーを10-3~10-4までまたはそれ以上に減衰させることができる。記述の便宜をはかり、その遮音量をデシベル計量法で表す。 The closed porous composite material described in this article can be used as a sound absorbing or sound insulating material. The distinction between sound absorbing materials and sound insulating materials is that the sound absorption of materials focuses on the amount of acoustic energy reflected toward the sound source, and the purpose is to reduce the energy of reflected sound. Sound insulation of materials focuses on the amount of acoustic energy transmitted from the sound source side to another side, and aims to reduce the energy of transmitted sound. Since the attenuation and absorption of incident acoustic energy by sound-absorbing materials is generally only a few tenths, its sound-absorbing capacity, or sound absorption coefficient, can be expressed as a decimal; however, sound-insulating materials It can be attenuated by 10 -3 to 10 -4 or more. For convenience of description, the amount of insulation is expressed using the decibel measurement method.

上記二種類の材料の素材上の差:吸音材の入射音響エネルギーに対する反射が非常に小さいということは、音響エネルギーはこのような素材に入り易く透過し易い。このような素材は多孔質で、鬆の入った通気性をもつものであることが想像できる。こういう物は典型的な多孔質吸音材であり、一般的に、これらはプロセス上繊維状、顆粒状または発泡材を利用して形成された多孔性構造である;その構造特徴は、材料中に大量かつ互いに貫通している微孔が表面から内部に至るまで入っており、一定の通気性も持っている。音波が多孔材の表面に入射された際、微孔内空気の振動を起こすが、摩擦抵抗と、空気の粘性抵抗と、熱伝導と、の作用により、音響エネルギーのかなりの部分が熱エネルギーに変換されることで、吸音作用を果たすことになる。 Difference in material between the above two types of materials: The fact that the sound absorbing material reflects very little incident acoustic energy means that acoustic energy easily enters and passes through such materials. It can be imagined that such a material is porous and has air permeability. These are typical porous sound absorbing materials, which are generally porous structures formed using fibrous, granular, or foamed materials in the process; their structural characteristics are It has a large number of mutually penetrating micropores extending from the surface to the inside, giving it a certain level of breathability. When a sound wave is incident on the surface of a porous material, it causes the air within the micropores to vibrate, but due to the effects of frictional resistance, viscous resistance of the air, and thermal conduction, a significant portion of the acoustic energy is converted into thermal energy. This conversion results in a sound absorbing effect.

遮音材の場合、透過音のエネルギーを低減し、音の伝播を遮断するためには、吸音材のような多孔質で、鬆の入った通気性をもつものであってはならない。それとは逆に重くて緻密なものであるべく、鋼板や亜鉛板、レンガ壁などのような材料が挙げられる。遮音材の材質は緻密で穴とか隙間とかがなく、比較的重みをもつことが要求される。このような遮音材は緻密な材質のため、音響エネルギーを吸収したり通過することが難しくなり、反射される部分が多いので、吸音性は良くない。 In the case of sound insulating materials, in order to reduce the energy of transmitted sound and block sound propagation, it must not be porous or have air permeability like sound absorbing materials. On the other hand, materials that are heavy and dense include steel plates, zinc plates, and brick walls. The material of the sound insulation material must be dense, have no holes or gaps, and be relatively heavy. Since such sound insulation materials are dense materials, it is difficult for them to absorb or pass sound energy, and there are many areas where it is reflected, so the sound absorption properties are not good.

上記分析からわかるように、本文の密閉型多孔質複合材料は、上記遮音材と吸音材の多孔性と、遮音と吸音に必要な一体構造の特性と、を兼備しているため、遮音性の並びに吸音性を兼備している。 As can be seen from the above analysis, the closed-type porous composite material described in this article has both the porosity of the sound insulating material and the sound absorbing material, and the characteristics of an integrated structure necessary for sound insulation and sound absorption, so it has excellent sound insulation properties. It also has sound absorption properties.

〔実施例26-31〕
微小球添加量の差が齎す熱伝導係数への影響
[Example 26-31]
Effect of difference in the amount of microspheres added on the thermal conductivity coefficient

熱伝導係数の測定方法はHot disk法を採用し、熱伝導係数の測定条件:
設備型番:TPS3500
測定モジュール:基本モジュール、単面法
センサー型番:Kapton7577
加熱効率:10mw
測定時間:1s
測定の環境温度:26±0.5C
下部材質:石英
上部材質:ポリスチレン発泡材
上記測定結果への分析は下記とおり:
実施例31は、通常のポリウレタン塗装であり、組成物内には膨張性微小球を添加してないため、塗装層の厚さは塗装だけに関係しているが、50g/m2の湿塗装量は小さい値であるため、乾燥後の最終塗装層は非常に薄く、基材を含む塗装サンプルの総厚さは基板自体の厚さとほぼ同じてある。基材とポリウレタン塗装膜は両方とも中味が詰まっているポリマー材料であるため、熱伝導率は非常に高く、0.2093w/m.kに達している。
The hot disk method is used to measure the heat transfer coefficient, and the measurement conditions for the heat transfer coefficient are:
Equipment model number: TPS3500
Measurement module: Basic module, single plane sensor Model number: Kapton7577
Heating efficiency: 10mw
Measurement time: 1s
Environmental temperature of measurement: 26±0.5C
Bottom material: Quartz Top material: Polystyrene foam Analysis of the above measurement results is as follows:
Example 31 is a normal polyurethane coating, and since no expandable microspheres are added in the composition, the thickness of the coating layer is related only to the coating, but a wet coating of 50 g/m 2 Due to the small value of the amount, the final coating layer after drying is very thin and the total thickness of the coating sample including the substrate is approximately the same as the thickness of the substrate itself. Since both the base material and the polyurethane coating are solid polymer materials, the thermal conductivity is very high, reaching 0.2093w/mk.

処方内に膨張性微小球を添加したあと、膨張性微小球が受熱後に膨張したので、塗装層の厚さは著しく厚くなり、しかも添加する微小球量の増加につれ増えつつである(実施例26-30);微小球を添加したもう一つの結果は、塗装膜内に大量の密閉型気泡が生成されるため、塗装膜の熱伝導係数を効果的に低減させることができる(例26~30);だが、微小球の添加量を一定量まで増やした際、微小球は発泡中に互いに押し付け、乾燥するときエネルギーへの奪い合いが発生し、十分に膨張されず、継続して熱伝導係数をさげることができない。微小球の添加量が20-30重量部である際、最低の熱伝導係数を表した。 After adding the expandable microspheres into the formulation, the expandable microspheres expanded after receiving heat, so the thickness of the coating layer became significantly thicker, and was increasing as the amount of added microspheres increased (Example 26) -30); Another result of adding microspheres is that a large amount of closed air bubbles are generated within the paint film, which can effectively reduce the thermal conductivity coefficient of the paint film (Examples 26-30 ); However, when the amount of microspheres added was increased to a certain amount, the microspheres pressed against each other during foaming and competed for energy during drying, resulting in insufficient expansion and a continuous decrease in the thermal conductivity coefficient. I can't lower it. When the amount of microspheres added was 20-30 parts by weight, the lowest thermal conductivity coefficient was exhibited.

以上の説明は、本発明に対する例示的な実施方法だけであり、本発明の保護範囲を限定するためのものではないため、本発明の保護範囲は添付の特許請求の範囲で確定される。 The above description is only an exemplary implementation of the present invention, and is not intended to limit the protection scope of the present invention, so the protection scope of the present invention is determined by the appended claims.

本出願では、2018年9月10日、中国で特許出願した出願番号201811051379.3の優先権を主張し、中国で出願した上記特許の開示内容全文を引用することで本出願の一部として編み込む。 This application claims priority to Application No. 201811051379.3, which was filed in China on September 10, 2018, and incorporates it as a part of this application by quoting the entire disclosure content of the above patent filed in China.

図1は、本発明の実施例で使われる膨張前の熱膨張性微小球の顕微鏡写真である。FIG. 1 is a micrograph of thermally expandable microspheres used in the embodiments of the present invention before expansion. 図2は、本発明の実施例で使われる膨張前の熱膨張性微小球単体の透過電子顕微鏡写真(TEM)である。FIG. 2 is a transmission electron micrograph (TEM) of a single thermally expandable microsphere used in an example of the present invention before expansion. 図3は、本発明の一実施例で得られた最終製品の顕微鏡写真であり、写真から多くの膨張後の熱膨張性微小球は球形または準球形を呈していることが分かる。FIG. 3 is a microscopic photograph of the final product obtained in one embodiment of the present invention, and it can be seen from the photograph that many of the thermally expandable microspheres after expansion have a spherical or quasi-spherical shape. 図4は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である。FIG. 4 is a scanning electron micrograph of the final product obtained in one example of the present invention. 図5は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である。FIG. 5 is a scanning electron micrograph of the final product obtained in one example of the present invention. 図6は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である。FIG. 6 is a scanning electron micrograph of the final product obtained in one example of the present invention. 図7は、本発明の一実施例で得られた最終製品の走査型電子顕微鏡写真である。FIG. 7 is a scanning electron micrograph of the final product obtained in one example of the present invention. 図8は、本発明の一実施例で得られた最終製品のコンピュータ断層撮影写真である。FIG. 8 is a computed tomography photograph of the final product obtained in one embodiment of the present invention. 図9は、本発明の一実施例で得られた最終製品のコンピュータ断層撮影写真である。FIG. 9 is a computed tomography photograph of the final product obtained in one embodiment of the present invention. 図10は、本発明の一実施例で得られた最終製品のコンピュータ断層撮影写真である。FIG. 10 is a computed tomography photograph of the final product obtained in one embodiment of the present invention. 図11は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。FIG. 11 shows the wall thickness of microspheres in the final product obtained in the example of the present invention measured by SEM. 図12は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。FIG. 12 shows the wall thickness of microspheres in the final product obtained in the example of the present invention, measured by SEM. 図13は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。FIG. 13 shows the wall thickness of microspheres in the final product obtained in the example of the present invention measured by SEM. 図14は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。FIG. 14 shows the wall thickness of microspheres in the final product obtained in the example of the present invention measured by SEM. 図15は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。FIG. 15 shows the wall thickness of microspheres in the final product obtained in the example of the present invention, measured by SEM. 図16は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。FIG. 16 shows the wall thickness of microspheres in the final product obtained in the example of the present invention measured by SEM. 図17は、SEMにて測定した本発明の実施例で得られた最終製品中の微小球の壁厚である。FIG. 17 shows the wall thickness of microspheres in the final product obtained in the example of the present invention measured by SEM.

Claims (74)

密閉型多孔質複合材料の製造方法であり、その内、上記方法は、以下の1)~4)を含み、任意で以下の5)を含む:
1)混合物を用意するが、上記混合物は、水分散型樹脂30-70重量部と、膨張前の熱膨張性微少球10-300重量部と、水100-550重量部と、を含み、上記混合物を攪拌し、
2)担持体を用意し、
3)工程1で得られた混合物を上記担持体上に一層塗布し、
4)上記混合物と、上記担持体と、を一定時間加熱するが、この過程で、上記膨張前の熱膨張性微少球が膨張されるし、
5)工程3-4を数回繰り返し、多層の上記混合物を含む上記密閉型多孔質複合材料を製造するが、
上記密閉型多孔質複合材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、を含み、上記密閉型空洞のサイズ範囲は20μm-800μmであり、上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は16より大きく、
上記ポリマー壁は、上記密閉型空洞の内側向けに熱可塑性または熱硬化性の高分子材料と、上記密閉型空洞の外側向けに水分散型樹脂と、からなり;
上記密閉型多孔質複合材料の熱伝導係数は、0.020w/m.kより小さい、製造方法。
A method for producing a closed porous composite material, in which the above method includes the following 1) to 4), and optionally the following 5):
1) Prepare a mixture, the above mixture containing 30-70 parts by weight of water-dispersed resin, 10-300 parts by weight of thermally expandable microspheres before expansion, and 100-550 parts by weight of water, Stir the mixture;
2) Prepare a carrier,
3) Applying a layer of the mixture obtained in step 1 on the above carrier,
4) The mixture and the carrier are heated for a certain period of time, and in this process, the unexpanded thermally expandable microspheres are expanded;
5) Repeat steps 3-4 several times to produce the closed porous composite material containing multiple layers of the mixture,
The closed porous composite material includes a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other, wherein the closed cavities have a size range of 20 μm-800 μm, and the closed cavities have a size range of 20 μm-800 μm; the ratio between the total volume of the cavity and the total volume of the polymer wall is greater than 16;
the polymer wall comprises a thermoplastic or thermosetting polymeric material for the inside of the closed cavity and a water-dispersible resin for the outside of the closed cavity;
A manufacturing method in which the thermal conductivity coefficient of the closed porous composite material is less than 0.020w/mk.
請求項1に記載の方法において、その内、上記工程1中の各組成物の含有量は、水分散型樹脂40-60重量部と、膨張前の熱膨張性微小球10-50重量部と、水100-350重量部と、である製造方法。 In the method according to claim 1, the content of each composition in step 1 is 40-60 parts by weight of water-dispersed resin, 10-50 parts by weight of heat-expandable microspheres before expansion. , and 100-350 parts by weight of water. 請求項1または2に記載の方法において、その内、上記工程1中の各組成物の含有量は、水分散型樹脂45-55重量部と、膨張前の熱膨張性微小球10-30重量部と、水100-250重量部と、である製造方法。 3. The method according to claim 1, wherein the content of each composition in step 1 is 45-55 parts by weight of water-dispersed resin and 10-30 parts by weight of heat-expandable microspheres before expansion. and 100-250 parts by weight of water. 請求項1または2に記載の方法において、その内、上記膨張前の熱膨張性微小球は中空の球形または準球形を呈し、外径は10μm-40μmであり、壁厚は1μm-10μmであり、上記壁には熱可塑性または熱硬化性の高分子材料が含まれる製造方法。 The method according to claim 1 or 2, wherein the thermally expandable microspheres before expansion have a hollow spherical or quasi-spherical shape, an outer diameter of 10 μm to 40 μm, and a wall thickness of 1 μm to 10 μm. , the manufacturing method in which the wall includes a thermoplastic or thermosetting polymeric material. 請求項1-4の何れの一項に記載の方法において、その内、上記水分散型樹脂には二種類の異なる水性ポリウレタンが含まれており、その内、一種は1-25重量部であり、もう一種は49-25重量部である製造方法。 The method according to any one of claims 1 to 4, wherein the water-dispersed resin contains two different types of aqueous polyurethanes, one of which is present in an amount of 1 to 25 parts by weight. , the other method is 49-25 parts by weight. 請求項5に記載の方法において、その内、上記2種類の異なる水性ポリウレタンは、其々、第1アニオン型脂肪族ポリエステルポリウレタンと、第2アニオン型脂肪族ポリエステルポリウレタンと、であり、その内、上記第1アニオン型脂肪族ポリエステルポリウレタンは10-20重量部であり;上記第2アニオン型脂肪族ポリエステルポリウレタンは40-30重量部である製造方法。 6. The method according to claim 5, wherein the two different types of aqueous polyurethanes are a first anionic aliphatic polyester polyurethane and a second anionic aliphatic polyester polyurethane; The first anionic aliphatic polyester polyurethane is 10-20 parts by weight; the second anionic aliphatic polyester polyurethane is 40-30 parts by weight. 請求項1-6の何れの一項に記載の方法において、その内、上記工程1の混合物は、さらに、消泡剤0-1重量部と、硬化剤0-10重量部と、増粘剤0-10重量部と、カビ防止剤0-5重量部と、湿潤レベリング剤0-2重量部と、感触剤0-5重量部と、水性カラーペースト0-20重量部と、からの少なくとも一種を含む製造方法。 7. The method according to claim 1, wherein the mixture in step 1 further comprises 0-1 parts by weight of an antifoaming agent, 0-10 parts by weight of a curing agent, and a thickening agent. 0-10 parts by weight, 0-5 parts by weight of a mold inhibitor, 0-2 parts by weight of a moisture leveling agent, 0-5 parts by weight of a touch agent, and 0-20 parts by weight of an aqueous color paste. manufacturing methods including. 請求項1-7の何れの一項に記載の方法において、その内、上記工程4中で上記担持体を100oC-180oCまでに加熱するが、加熱時間は10-300秒である製造方法。 The method according to any one of claims 1 to 7, wherein the support is heated to 100 o C to 180 o C in step 4, and the heating time is 10 to 300 seconds. Production method. 請求項1-8の何れの一項に記載の方法において、その内、上記水分散型樹脂は、水性ポリウレタン樹脂と、水性アクリル酸樹脂と、水性ポリウレタン改質アクリル酸樹脂と、ブチロニトリル乳液と、ポリクロロプレン乳液と、酢酸ポリビニル乳液と、からの少なくとも一種を含む製造方法。 The method according to any one of claims 1 to 8, wherein the water-dispersed resin includes an aqueous polyurethane resin, an aqueous acrylic resin, an aqueous polyurethane-modified acrylic resin, and a butyronitrile emulsion. A manufacturing method comprising at least one of a polychloroprene emulsion and a polyvinyl acetate emulsion. 請求項7に記載の方法において、その内、上記硬化剤は、ポリカルボジイミドと、ポリイソシアネートと、密閉型ポリイソシアネートと、エチレンイミンと、アミノ樹脂と、からの少なくとも一種を含み;上記消泡剤は、有機シリコン系消泡剤であるり;上記湿潤レベリング剤は、有機シリコン系湿潤レベリング剤であり;上記感触剤は、高分子量有機シリコーンと、ワックス粉末と、ワックス乳液と、気相または沈殿法による二酸化ケイ素及びその分散液と、からの少なくとも一種を含み;上記カビ防止剤は、有機又は無機系の水分散型カビ防止剤であり;上記増粘剤は、会合型ポリウレタンと、アクリル酸アルカリ膨潤型と、セルロース系増粘剤と、無機系増粘剤と、からの少なくとも一種を含む製造方法。 8. The method according to claim 7, wherein the curing agent includes at least one selected from polycarbodiimide, polyisocyanate, encapsulated polyisocyanate, ethyleneimine, and amino resin; and the antifoaming agent. is an organosilicon-based antifoaming agent; the moisture leveling agent is an organic silicone-based moisture leveling agent; the touch agent is a high molecular weight organic silicone, wax powder, wax emulsion, gas phase or precipitate. The above-mentioned mold inhibitor is an organic or inorganic water-dispersed mold inhibitor; the thickener contains associative polyurethane and acrylic acid. A manufacturing method comprising at least one of an alkali-swellable thickener, a cellulose thickener, and an inorganic thickener. 請求項1-10の何れの一項に記載の方法において、その内、上記担持体には、織布と、非織布と、革と、軟質薄膜と、からの一種又は多種が含まれる製造方法。 The method according to any one of claims 1 to 10, wherein the carrier includes one or more of woven fabrics, non-woven fabrics, leather, and soft thin films. Method. 請求項1に記載の方法において、その内、工程4の膨張した後の熱膨張性微小球サイズと、工程1の膨張前の熱膨張性微小球サイズと、の比は2-10である製造方法。 The method according to claim 1, wherein the ratio of the thermally expandable microsphere size after expansion in step 4 to the thermally expandable microsphere size before expansion in step 1 is 2-10. Method. 請求項1-12の何れの一項に記載の方法において、その内、上記密閉型多孔質複合材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、を含み、上記密閉型空洞のサイズ範囲は50μm-300μmであり、上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、16より大きい製造方法。 13. A method according to any one of claims 1 to 12, wherein the closed porous composite material comprises a plurality of closed cavities and a polymeric wall separating the plurality of closed cavities from each other. and the size range of the closed cavity is 50 μm-300 μm, and the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 16. 請求項1-12の何れの一項に記載の方法において、その内、上記密閉型多孔質複合材料は断熱材料であり、上記断熱材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、を含み、上記断熱材料の厚さが1mmの場合、上記断熱材料のクロー値はクロー値≧0.50、または≧0.60、または≧1.0、または≧1.5である製造方法。 13. The method according to any one of claims 1 to 12, wherein the closed porous composite material is a heat insulating material, and the heat insulating material has a plurality of closed cavities and a plurality of closed cavities. and a polymer wall separating them from each other, and when the thickness of the insulating material is 1 mm, the Claw value of the insulating material is ≧0.50, or ≧0.60, or ≧1.0, or ≧1.5. 請求項1-12の何れの一項に記載の方法において、その内、上記密閉型多孔質複合材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、から構成されており、上記密閉型空洞のサイズ範囲は20μm-800μmであり、上記密閉型多孔質複合材料の密度は5kg/m3-300kg/m3である製造方法。 13. A method according to any one of claims 1-12, wherein the closed porous composite material comprises a plurality of closed cavities and a polymeric wall separating the plurality of closed cavities from each other. The method is characterized in that the size range of the closed cavity is 20μm-800μm, and the density of the closed porous composite material is 5kg/m 3 -300kg/m 3 . 密閉型多孔質複合材料であり、その内、上記密閉型多孔質複合材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、を含み、上記密閉型空洞のサイズ範囲は、20μm-800μmであり、上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は16より大きく、上記ポリマー壁の厚さは0.01μm-5μmであり、
上記ポリマー壁は、上記密閉型空洞の内側向けに熱可塑性または熱硬化性の高分子材料と、上記密閉型空洞の外側向けに水分散型樹脂と、からなり;
上記密閉型多孔質複合材料の熱伝導係数は、0.020w/m.kより小さい、密閉型多孔質複合材料。
a closed porous composite material, wherein the closed porous composite material includes a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other; the size range is 20 μm-800 μm, the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 16, and the thickness of the polymer wall is 0.01 μm-5 μm;
the polymer wall comprises a thermoplastic or thermosetting polymeric material for the inside of the closed cavity and a water-dispersible resin for the outside of the closed cavity;
The closed porous composite material has a thermal conductivity coefficient of less than 0.020w/mk.
請求項16に記載の密閉型多孔質複合材料において、その内、上記密閉型多孔質複合材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、から構成される密閉型多孔質複合材料。 17. The closed porous composite material according to claim 16, wherein the closed porous composite material is comprised of a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other. Closed porous composite material. 請求項16または17に記載の密閉型多孔質複合材料において、その内、上記ポリマー壁の厚さは0.02μm-2μmである密閉型多孔質複合材料。 The closed porous composite material according to claim 16 or 17, wherein the thickness of the polymer wall is 0.02 μm-2 μm. 請求項16または17に記載の密閉型多孔質複合材料において、その内、上記密閉型空洞の形状には球形と、準球形と、不規則形状と、が含まれる密閉型多孔質複合材料。 The closed porous composite material according to claim 16 or 17, wherein the shape of the closed cavity includes a spherical shape, a quasi-spherical shape, and an irregular shape. 請求項16または17に記載の密閉型多孔質複合材料において、その内、上記密閉型空洞は膨張前の熱膨張性微小球の直径を2-10倍に膨張させて得られる密閉型多孔質複合材料。 The closed porous composite material according to claim 16 or 17, wherein the closed cavity is a closed porous composite material obtained by expanding the diameter of thermally expandable microspheres before expansion by 2 to 10 times. material. 請求項16または17に記載の密閉型多孔質複合材料において、その内、上記密閉型多孔質複合材料は断熱材料であり、上記断熱材料の厚さが0.2mm-3.0mmである場合、上記断熱材料のクロー値は0.1-3.0である密閉型多孔質複合材料。 The closed porous composite material according to claim 16 or 17, wherein the closed porous composite material is a heat insulating material, and when the thickness of the heat insulating material is 0.2 mm to 3.0 mm, the heat insulating material Closed porous composite material whose claw value is 0.1-3.0. 請求項16または17に記載の密閉型多孔質複合材料において、その内、上記ポリマー壁は三層構造を含み、上記三層構造は、二つの外層と、上記二つの外層の間に挟まれた中間層と、を含み、その内、上記二つの外層の素材は同じであり、かつ、上記二つの外層の素材は上記二つの外層の間に挟まれた中間層の素材とは異なる密閉型多孔質複合材料。 The closed porous composite material according to claim 16 or 17, wherein the polymer wall includes a three-layer structure, and the three-layer structure is sandwiched between two outer layers. an intermediate layer, in which the two outer layers are made of the same material, and the two outer layers are made of a closed type porous material sandwiched between the two outer layers, and the material of the two outer layers is different from the material of the intermediate layer sandwiched between the two outer layers. quality composite material. 密閉型多孔質複合材料であり、その内、上記密閉型多孔質複合材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、を含み、上記密閉型空洞のサイズ範囲は20μm-800μmであり、上記密閉型多孔質複合材料の密度は5kg/m3-100kg/m3であり、
上記ポリマー壁は三層構造からなり、上記三層構造は二つの外層及び上記二つの外層の間に挟まれた中間層からなり、ここで、上記二つの外層の素材は同じであり、かつ、上記二つの外層の素材は上記二つの外層の間に挟まれた中間層の素材とは異なり;
上記密閉型多孔質複合材料の熱伝導係数は、0.020w/m.kより小さい、密閉型多孔質複合材料。
a closed porous composite material, wherein the closed porous composite material includes a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other; The size range is 20μm-800μm, and the density of the above closed porous composite material is 5kg/ m3-100kg / m3 ,
The polymer wall consists of a three-layer structure, the three-layer structure consists of two outer layers and an intermediate layer sandwiched between the two outer layers, where the materials of the two outer layers are the same, and The materials of the two outer layers are different from the material of the intermediate layer sandwiched between the two outer layers;
The closed porous composite material has a thermal conductivity coefficient of less than 0.020w/mk.
請求項23に記載の密閉型多孔質複合材料において、その内、上記密閉型多孔質複合材料は、複数の密閉型空洞と、上記複数の密閉型空洞を互いに分離するポリマー壁と、から構成される密閉型多孔質複合材料。 24. The closed porous composite material of claim 23, wherein the closed porous composite material is comprised of a plurality of closed cavities and a polymer wall separating the plurality of closed cavities from each other. Closed porous composite material. 請求項23に記載の密閉型多孔質複合材料において、その内、上記ポリマー壁の厚さは0.01-5μmである密閉型多孔質複合材料。 The closed porous composite material according to claim 23, wherein the thickness of the polymer wall is 0.01-5 μm. 請求項16-25の何れの一項に記載の密閉型多孔質複合材料において、その内、上記密閉型多孔質複合材料の熱伝導係数は0.016w/m.kより小さい密閉型多孔質複合材料。 The closed porous composite material according to any one of claims 16 to 25, wherein the closed porous composite material has a thermal conductivity coefficient of less than 0.016w/m.k. 上記第1アニオン型脂肪族ポリエステルポリウレタンは15重量部であり、上記第2アニオン型脂肪族ポリエステルポリウレタンは35重量部である、請求項6に記載の製造方法。 7. The manufacturing method according to claim 6, wherein the first anionic aliphatic polyester polyurethane is 15 parts by weight and the second anionic aliphatic polyester polyurethane is 35 parts by weight. 上記工程1の混合物は、さらに、消泡剤0.1-1重量部と、硬化剤0.1-10重量部と、増粘剤0.1-10重量部と、カビ防止剤0.1-5重量部と、湿潤レベリング剤0.1-2重量部と、感触剤0. 1-5重量部と、水性カラーペースト0.1-20重量部と、からの少なくとも一種を含む、請求項7に記載の製造方法。 The mixture of step 1 above further contains 0.1-1 parts by weight of an antifoaming agent, 0.1-10 parts by weight of a curing agent, 0.1-10 parts by weight of a thickener, 0.1-5 parts by weight of a mold inhibitor, and a moisture leveling agent. 8. The manufacturing method according to claim 7, comprising at least one of 0.1-2 parts by weight of an agent, 0.1-5 parts by weight of a touch agent, and 0.1-20 parts by weight of an aqueous color paste. 上記工程4中で、上記担持体を120℃-160℃までに加熱するが、加熱時間は60-120秒である、請求項8に記載の製造方法。 9. The manufacturing method according to claim 8, wherein in step 4, the support is heated to 120°C to 160°C for a heating time of 60 to 120 seconds. 上記工程4中で、上記担持体を130℃-150℃までに加熱するが、加熱時間は60-90秒である、請求項8に記載の製造方法。 9. The manufacturing method according to claim 8, wherein in step 4, the support is heated to 130°C to 150°C for a heating time of 60 to 90 seconds. 上記工程4中で、上記担持体を140℃-150℃までに加熱するが、加熱時間は60-80秒である、請求項8に記載の製造方法。 9. The manufacturing method according to claim 8, wherein in step 4, the support is heated to 140°C to 150°C for a heating time of 60 to 80 seconds. 上記密閉型空洞のサイズ範囲は60μm-200μmである、請求項13に記載の製造方法。 The manufacturing method according to claim 13, wherein the size range of the closed cavity is 60 μm-200 μm. 上記密閉型空洞のサイズ範囲は80μm-120μmである、請求項13に記載の製造方法。 14. The manufacturing method according to claim 13, wherein the size range of the closed cavity is 80 μm-120 μm. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、33より大きい、請求項13に記載の製造方法。 14. The method of claim 13, wherein the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 33. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、83より大きい、請求項13に記載の製造方法。 14. The method of claim 13, wherein the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 83. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、166より大きい、請求項13に記載の製造方法。 14. The method of claim 13, wherein the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 166. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、333より大きい、請求項13に記載の製造方法。 14. The method of claim 13, wherein the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 333. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、417より大きい、請求項13に記載の製造方法。 14. The method of claim 13, wherein the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 417. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、556より大きい、請求項13に記載の製造方法。 14. The method of claim 13, wherein the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 556. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は、833より大きい、請求項13に記載の製造方法。 14. The method of claim 13, wherein the ratio of the total volume of the closed cavity to the total volume of the polymer wall is greater than 833. 上記密閉型空洞のサイズ範囲は50μm-300μmである、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the size range of the closed cavity is 50 μm-300 μm. 上記密閉型空洞のサイズ範囲は60μm-200μmである、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the size range of the closed cavity is 60 μm-200 μm. 上記密閉型空洞のサイズ範囲は80μm-120μmである、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the size range of the closed cavity is 80 μm-120 μm. 上記密閉型多孔質複合材料の密度は10kg/m3-200kg/m3である、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the density of the closed porous composite material is 10 kg/m 3 -200 kg/m 3 . 上記密閉型多孔質複合材料の密度は20kg/m3-150kg/m3である、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the density of the closed porous composite material is 20 kg/m 3 -150 kg/m 3 . 上記密閉型多孔質複合材料の密度は30kg/m3-100kg/m3である、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the density of the closed porous composite material is 30 kg/m 3 -100 kg/m 3 . 上記密閉型多孔質複合材料の密度は40kg/m3-90kg/m3である、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the closed porous composite material has a density of 40 kg/m 3 -90 kg/m 3 . 上記密閉型多孔質複合材料の密度は50kg/m3-80kg/m3である、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the density of the closed porous composite material is 50 kg/m 3 -80 kg/m 3 . 上記密閉型多孔質複合材料の密度は60kg/m3-80kg/m3である、請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the density of the closed porous composite material is 60 kg/m 3 -80 kg/m 3 . 上記密閉型空洞のサイズ範囲は、50μm-300μmである、請求項16に記載の密閉型多孔質複合材料。 The closed porous composite material according to claim 16, wherein the size range of the closed cavity is 50 μm-300 μm. 上記密閉型空洞のサイズ範囲は、60μm-200μmである、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material according to claim 16, wherein the size range of the closed cavity is 60 μm-200 μm. 上記密閉型空洞のサイズ範囲は、80μm-120μmである、請求項16に記載の密閉型多孔質複合材料。 The closed porous composite material according to claim 16, wherein the size range of the closed cavity is 80 μm-120 μm. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は33より大きい、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material of claim 16, wherein the ratio of the total volume of the closed cavities to the total volume of the polymeric walls is greater than 33. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は83より大きい、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material of claim 16, wherein the ratio of the total volume of the closed cavities to the total volume of the polymer walls is greater than 83. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は166より大きい、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material of claim 16, wherein the ratio of the total volume of the closed cavities to the total volume of the polymeric walls is greater than 166. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は333より大きい、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material of claim 16, wherein the ratio of the total volume of the closed cavities to the total volume of the polymer walls is greater than 333. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は417より大きい、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material of claim 16, wherein the ratio of the total volume of the closed cavities to the total volume of the polymeric walls is greater than 417. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は556より大きい、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material of claim 16, wherein the ratio of the total volume of the closed cavities to the total volume of the polymeric walls is greater than 556. 上記密閉型空洞の総体積と、上記ポリマー壁の総体積と、の比は833より大きい、請求項16に記載の密閉型多孔質複合材料。 17. The closed porous composite material of claim 16, wherein the ratio of the total volume of the closed cavities to the total volume of the polymeric walls is greater than 833. 上記ポリマー壁の厚さは、0.03μm-1.0μmである、請求項18に記載の密閉型多孔質複合材料。 The closed porous composite material according to claim 18, wherein the thickness of the polymer wall is 0.03 μm-1.0 μm. 上記ポリマー壁の厚さは、0.04μm-0.8μmである、請求項18に記載の密閉型多孔質複合材料。 Closed porous composite material according to claim 18, wherein the thickness of the polymer wall is 0.04 μm-0.8 μm. 上記ポリマー壁の厚さは、0.05μm-0.6μmである、請求項18に記載の密閉型多孔質複合材料。 Closed porous composite material according to claim 18, wherein the thickness of the polymer wall is 0.05 μm-0.6 μm. 上記ポリマー壁の厚さは、0.1μm-0.5μmである、請求項18に記載の密閉型多孔質複合材料。 Closed porous composite material according to claim 18, wherein the thickness of the polymer wall is 0.1 μm-0.5 μm. 上記密閉型空洞のサイズ範囲は50μm-300μmである、請求項23に記載の密閉型多孔質複合材料。 24. The closed porous composite material according to claim 23, wherein the size range of the closed cavities is 50 μm-300 μm. 上記密閉型空洞のサイズ範囲は60μm-200μmである、請求項23に記載の密閉型多孔質複合材料。 24. The closed porous composite material according to claim 23, wherein the size range of the closed cavities is 60 μm-200 μm. 上記密閉型空洞のサイズ範囲は80μm-120μmである、請求項23に記載の密閉型多孔質複合材料。 24. The closed porous composite material according to claim 23, wherein the size range of the closed cavities is 80 μm-120 μm. 上記密閉型多孔質複合材料の密度は30kg/m3-100kg/m3である、請求項23に記載の密閉型多孔質複合材料。 24. The closed porous composite material according to claim 23, wherein the density of the closed porous composite material is 30 kg/m <3> -100 kg/m <3> . 上記密閉型多孔質複合材料の密度は40kg/m3-90kg/m3である、請求項23に記載の密閉型多孔質複合材料。 The closed porous composite material according to claim 23, wherein the density of the closed porous composite material is 40 kg/m 3 -90 kg/m 3 . 上記密閉型多孔質複合材料の密度は50kg/m3-80kg/m3である、請求項23に記載の密閉型多孔質複合材料。 The closed porous composite material according to claim 23, wherein the density of the closed porous composite material is 50 kg/m 3 -80 kg/m 3 . 上記密閉型多孔質複合材料の密度は60kg/m3-80kg/m3である、請求項23に記載の密閉型多孔質複合材料。 The closed porous composite material according to claim 23, wherein the density of the closed porous composite material is 60 kg/m 3 -80 kg/m 3 . 上記ポリマー壁の厚さは0.03μm-1.0μmである、請求項25に記載の密閉型多孔質複合材料。 26. The closed porous composite material according to claim 25, wherein the polymer wall thickness is between 0.03 μm and 1.0 μm. 上記ポリマー壁の厚さは0.04μm-0.8μmである、請求項25に記載の密閉型多孔質複合材料。 Closed porous composite material according to claim 25, wherein the thickness of the polymer wall is 0.04 μm-0.8 μm. 上記ポリマー壁の厚さは0.05μm-0.6μmである、請求項25に記載の密閉型多孔質複合材料。 Closed porous composite material according to claim 25, wherein the thickness of the polymer wall is 0.05 μm-0.6 μm. 上記ポリマー壁の厚さは0.1μm-0.5μmである、請求項25に記載の密閉型多孔質複合材料。
Closed porous composite material according to claim 25, wherein the thickness of the polymer wall is 0.1 μm-0.5 μm.
JP2021504145A 2018-09-10 2019-09-09 Sealed porous composite material, heat insulating material, sound insulating material, and manufacturing method thereof Active JP7406542B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811051379.3A CN109137537B (en) 2018-09-10 2018-09-10 Closed porous composite material, heat insulating material, sound insulating material, and method for producing same
CN201811051379.3 2018-09-10
PCT/CN2019/104980 WO2020052524A1 (en) 2018-09-10 2019-09-09 Closed porous composite material, thermal insulation material, sound insulation material, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021531391A JP2021531391A (en) 2021-11-18
JP7406542B2 true JP7406542B2 (en) 2023-12-27

Family

ID=64824165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021504145A Active JP7406542B2 (en) 2018-09-10 2019-09-09 Sealed porous composite material, heat insulating material, sound insulating material, and manufacturing method thereof

Country Status (6)

Country Link
US (1) US11814784B2 (en)
EP (1) EP3816341A4 (en)
JP (1) JP7406542B2 (en)
KR (1) KR20210024163A (en)
CN (1) CN109137537B (en)
WO (1) WO2020052524A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137537B (en) 2018-09-10 2020-03-27 钟金榜 Closed porous composite material, heat insulating material, sound insulating material, and method for producing same
CN112143212B (en) * 2019-06-28 2023-04-07 德莎欧洲股份公司 Composition, foam substrate, backing, adhesive tape and application thereof
KR102479069B1 (en) * 2020-04-09 2022-12-16 코오롱인더스트리 주식회사 Adhesive composition for tire cord, tire cord, and tire
JP7395747B2 (en) * 2020-04-09 2023-12-11 コーロン インダストリーズ インク Adhesive composition for tire cords, tire cords and tires
EP4075117B1 (en) * 2021-04-14 2024-05-01 MTU Aero Engines AG Method and device for characterizing a coating
KR102455302B1 (en) * 2021-10-25 2022-10-18 배정주 Sound Absorption Composite For Sound Isolation Using Shear Thickening Fluid And Method For Manufacturing It
CN116641236A (en) * 2023-03-09 2023-08-25 东华大学 Hollow closed-cell foam coating with heat preservation and heat insulation effects and composite fiber fabric thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501625A (en) 2002-05-15 2006-01-12 キャボット コーポレイション Heat resistant insulating composite and method of manufacturing the same
JP2008051123A (en) 2006-08-22 2008-03-06 Ebara Ballard Corp Stretchable thermal and noise insulation sheet and its manufacturing method
WO2008022936A3 (en) 2006-08-22 2008-04-17 Lanxess Deutschland Gmbh Dressed leather
JP2015120867A (en) 2013-01-28 2015-07-02 株式会社リコー Porous body, manufacturing method therefor, and continuous manufacturing device therefor
CN107722339A (en) 2017-10-31 2018-02-23 浙江昶丰新材料有限公司 A kind of aqueous polyurethane composition and by its waterborne polyurethane foaming body for being formed of preparation and preparation method thereof
JP2020527635A (en) 2017-07-18 2020-09-10 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Dielectric heating of effervescent composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW490373B (en) * 2000-10-23 2002-06-11 Matsushita Electric Works Ltd Laminate with a peelable top layer and method of peeling off the top layer from the laminate
JP4849993B2 (en) * 2006-08-14 2012-01-11 日東電工株式会社 Adhesive sheet, method for producing the same, and method for cutting laminated ceramic sheet
CN102229709B (en) * 2011-05-16 2013-02-27 四川大学 Nontoxic, odorless and recoverable environmentally-friendly polyurethane foaming material and preparation method thereof
JP6140491B2 (en) * 2012-08-07 2017-05-31 日東電工株式会社 Double-sided adhesive sheet and portable electronic device
CN103710995B (en) * 2013-12-11 2016-08-17 江西铭川科技实业有限公司 Waterborne synthetic leather and production line, production method
CN103753913B (en) * 2014-01-07 2016-01-20 奕东电子(常熟)有限公司 A kind of shockproof, anti-skidding, antistatic protection pad pasting
US9738788B1 (en) * 2014-05-26 2017-08-22 Hrl Laboratories, Llc Nanoparticle-coated multilayer shell microstructures
KR20170007396A (en) * 2014-06-18 2017-01-18 아사히 가세이 겐자이 가부시키가이샤 Phenol resin foam and method for manufacturing same
EP3233994A4 (en) * 2014-12-21 2018-08-22 Palziv Ein Hanatziv Agricultural Co-operative Society Ltd. Polymer foam sheet and barrier layer composite
CN105386327B (en) * 2015-10-16 2017-12-08 浙江禾欣新材料有限公司 High physical property can emboss the manufacture method of dry method environmental protection sofa artificial leather
CN106671634B (en) 2017-01-12 2018-08-24 东莞市天熠皮业科技股份有限公司 A kind of production technology preparing cladding using laser marking machine
CN106801111B (en) 2017-01-12 2019-12-13 东莞市天熠新材料科技股份有限公司 Production process for preparing embossed leather material by using high-strength press
CN106591504B (en) 2017-01-12 2019-11-26 东莞市天熠新材料科技股份有限公司 A kind of production technology preparing cladding using numerical control cutting machine
CN107447536A (en) * 2017-06-16 2017-12-08 安踏(中国)有限公司 A kind of thermal fabric and its preparation technology
CN107401060B (en) 2017-07-05 2020-08-04 兰州科天新材料股份有限公司 Preparation method of water-based bass with compression-resistant high-resilience performance
CN108084484B (en) * 2017-12-26 2020-08-25 山东大学 Lightweight conductive heat-insulation composite material and preparation method and system thereof
CN109137537B (en) 2018-09-10 2020-03-27 钟金榜 Closed porous composite material, heat insulating material, sound insulating material, and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501625A (en) 2002-05-15 2006-01-12 キャボット コーポレイション Heat resistant insulating composite and method of manufacturing the same
JP2008051123A (en) 2006-08-22 2008-03-06 Ebara Ballard Corp Stretchable thermal and noise insulation sheet and its manufacturing method
WO2008022936A3 (en) 2006-08-22 2008-04-17 Lanxess Deutschland Gmbh Dressed leather
JP2015120867A (en) 2013-01-28 2015-07-02 株式会社リコー Porous body, manufacturing method therefor, and continuous manufacturing device therefor
JP2020527635A (en) 2017-07-18 2020-09-10 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Dielectric heating of effervescent composition
CN107722339A (en) 2017-10-31 2018-02-23 浙江昶丰新材料有限公司 A kind of aqueous polyurethane composition and by its waterborne polyurethane foaming body for being formed of preparation and preparation method thereof

Also Published As

Publication number Publication date
US20210292964A1 (en) 2021-09-23
KR20210024163A (en) 2021-03-04
US11814784B2 (en) 2023-11-14
EP3816341A1 (en) 2021-05-05
CN109137537B (en) 2020-03-27
EP3816341A4 (en) 2021-10-06
JP2021531391A (en) 2021-11-18
CN109137537A (en) 2019-01-04
WO2020052524A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP7406542B2 (en) Sealed porous composite material, heat insulating material, sound insulating material, and manufacturing method thereof
Mondal Phase change materials for smart textiles–An overview
CN104015414A (en) Aerogel composite fabric utilizing aqueous adhesive and preparation method thereof
CN201399931Y (en) Fabric for shoes and boots
CN103866579A (en) Ventilating waterproof moisture-permeable wet-process coating fabric, and processing method and application thereof
CN104029429A (en) Aerogel composite cloth taking hot melt adhesive as binder and preparation method for composite cloth
WO2015079637A1 (en) Skin material
CN101693414A (en) Vamp material and method for preparing same
TWM510336U (en) Fabric structure with comfort, cooled feeling and constant temperature
CN203801826U (en) Compound fabric for warm-keeping clothes
Li et al. Asymmetrical Emissivity and Wettability in Stitching Treble Weave Metafabric for Synchronous Personal Thermal‐Moisture Management
CN205475821U (en) Multi -functional glass wall
US20180320307A1 (en) Composite aerogel coating for textile applications
CN105297473A (en) Thermoregulation glove leather and preparation method thereof
CN107641453B (en) Preparation method of air-permeable, windproof and moisture-permeable coating
RU2779210C1 (en) Composite material with closed pores, heat-insulating material, soundproof material and their manufacturing method
CN209320415U (en) A kind of aeroge insulation garment
CN203427417U (en) Waterproof heat insulation fabric
KR101376343B1 (en) Multi-layer texiles coated with aerogel for insulation.
CN205742822U (en) A kind of homoiothermic wallpaper
JP4163682B2 (en) Moisture transpiration composite material and its product
CN110306352A (en) A kind of preparation process of double-face leather clothing leather
Hu The use of smart materials in cold weather apparel
CN116118286A (en) Composite material for clothing heat preservation and preparation method thereof
TWM582968U (en) Wrap yarn structure with cool feeling

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

R150 Certificate of patent or registration of utility model

Ref document number: 7406542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150