JP7405378B2 - Displacement measurement method and displacement measurement system - Google Patents

Displacement measurement method and displacement measurement system Download PDF

Info

Publication number
JP7405378B2
JP7405378B2 JP2022009637A JP2022009637A JP7405378B2 JP 7405378 B2 JP7405378 B2 JP 7405378B2 JP 2022009637 A JP2022009637 A JP 2022009637A JP 2022009637 A JP2022009637 A JP 2022009637A JP 7405378 B2 JP7405378 B2 JP 7405378B2
Authority
JP
Japan
Prior art keywords
positioning
satellite signal
satellite
observation point
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022009637A
Other languages
Japanese (ja)
Other versions
JP2022050685A (en
Inventor
範洋 山口
喬 横島
信明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Marine Science and Technology NUC
Shimizu Corp
Original Assignee
Tokyo University of Marine Science and Technology NUC
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64275099&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7405378(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo University of Marine Science and Technology NUC, Shimizu Corp filed Critical Tokyo University of Marine Science and Technology NUC
Priority to JP2022009637A priority Critical patent/JP7405378B2/en
Publication of JP2022050685A publication Critical patent/JP2022050685A/en
Application granted granted Critical
Publication of JP7405378B2 publication Critical patent/JP7405378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、衛星測位システムを用いた変位計測方法および変位計測システムに関し、特に構造物等を含めた比較的安定した物体の側面の変位計測のための精度向上技術および精度向上システムに関するものである。 The present invention relates to a displacement measurement method and a displacement measurement system using a satellite positioning system, and in particular to an accuracy improvement technique and accuracy improvement system for measuring the displacement of the side of a relatively stable object including a structure. .

従来、衛星測位システムによる構造物の変位等計測に際しては、一般に米国のGPS(Global Positioning System:衛星測位システム)衛星を利用する方法が主流であった。例えば、構造物の周辺地盤の固定点に設置したGPS受信機と、構造物上の観測点に設置したGPS受信機との間の相対測位により、構造物の変位等を計測する方法が知られている(例えば、特許文献1、2を参照)。しかし、米国のGPS衛星の数にも限りがあり、利用に際して以下のような制約や課題がある。 Conventionally, when measuring the displacement of a structure using a satellite positioning system, the mainstream method has generally been to use American GPS (Global Positioning System) satellites. For example, there is a known method of measuring the displacement of a structure by relative positioning between a GPS receiver installed at a fixed point on the ground surrounding the structure and a GPS receiver installed at an observation point on the structure. (For example, see Patent Documents 1 and 2). However, the number of GPS satellites in the United States is limited, and there are restrictions and issues when using them, such as the following.

(1)測位解析に必要なGPS衛星を捕捉するために衛星測位機器からの仰角を15°以上に保つことが必要である。
(2)そのため、構造物等が過密で上空視野を確保し難い都市部などでは、衛星測位機器の設置場所は構造物等の屋上に限定される。すなわち構造物等の屋上周辺の変位計測しかできない。
(3)しかし屋上にも様々な設備が配置され、衛星測位機器の設置場所は制限される。
(4)仮に屋上に衛星測位機器を設置できたとしても、屋上の他の設備や周辺のビルのマルチパスの影響を受け正確な変位計測を妨げるおそれがある。
(1) In order to capture GPS satellites necessary for positioning analysis, it is necessary to maintain the elevation angle from the satellite positioning device at 15° or more.
(2) Therefore, in urban areas where structures are overcrowded and it is difficult to secure a clear view of the sky, the installation location of satellite positioning equipment is limited to the rooftops of structures. In other words, it is possible to only measure displacement around the rooftops of structures, etc.
(3) However, various equipment is placed on the rooftop, and the installation location of satellite positioning equipment is restricted.
(4) Even if it were possible to install satellite positioning equipment on the rooftop, there is a risk that accurate displacement measurement would be hindered by the effects of multipath from other rooftop equipment and surrounding buildings.

従来はこうした課題により、構造物等の壁面測位に着目することもなかった。 In the past, due to these issues, there was no focus on wall positioning of structures, etc.

一方、GPS衛星を利用した測位技術に関して、本出願人のうち一人は特許文献3に示すような技術を既に提案している。この技術は、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別し、移動局の測定位置を補正するものである。 On the other hand, regarding positioning technology using GPS satellites, one of the applicants has already proposed a technology as shown in Patent Document 3. This technology uses a simple and reliable method to determine satellite signals affected by multipath and corrects the measured position of a mobile station.

特開2015-197344号公報Japanese Patent Application Publication No. 2015-197344 特開2008-76117号公報Japanese Patent Application Publication No. 2008-76117 特許第5232994号公報Patent No. 5232994

ところで現在、米国のGPS衛星のみならず、ロシア、欧州、中国、日本の衛星測位システム(以下、これら全てを総称してGNSS(Global Navigation Satellite System:全球測位衛星システム)と呼ぶ。)が運用されており、衛星測位機器で測位すると30前後のGNSS衛星からの信号を受信可能である。今後各国のGNSS衛星数の増加が見込まれ、さらに日本の準天頂衛星数の増加により、高仰角からの信号の取得も容易となる。衛星数の増加とともに上記の課題は容易に解決できると思われがちであるが、逆に衛星数の増加とともにマルチパス増大という課題も生じることから、その解決策が期待されていた。 By the way, not only the US GPS satellites but also the satellite positioning systems of Russia, Europe, China, and Japan (hereinafter collectively referred to as GNSS (Global Navigation Satellite System)) are in operation. When positioning with satellite positioning equipment, it is possible to receive signals from around 30 GNSS satellites. The number of GNSS satellites in each country is expected to increase in the future, and the number of quasi-zenith satellites in Japan will also increase, making it easier to acquire signals from high elevation angles. It is often thought that the above problems can be easily solved as the number of satellites increases, but conversely, as the number of satellites increases, the problem of increased multipath also arises, and a solution to this problem has been expected.

そこで本発明者は、「構造物等を含めた比較的安定した物体等は、構造物等を含めた比較的安定した物体等の周辺で行う各種測位にマルチパスを与える邪魔者と認識されることが多いが、GNSS測位機器を構造物等を含めた比較的安定した物体の壁面に直接設置すると、逆に構造物等を含めた比較的安定した物体等からのマルチパスが減り、構造物等を含めた比較的安定した物体等の変位計測には有効である」という点に着目して、構造物等の屋上のみならず、壁面の変位計測も可能とする以下の本発明に至った。 Therefore, the inventor proposed that ``relatively stable objects, including structures, etc., are recognized as nuisances that give multipath to various positioning operations performed around relatively stable objects, etc. However, if a GNSS positioning device is installed directly on the wall of a relatively stable object, such as a structure, the multipath from the relatively stable object, etc., will be reduced, and the structure will The present invention is effective for measuring the displacement of relatively stable objects, etc., and has led to the following invention, which enables displacement measurement not only on the roof of a structure, but also on the wall surface. .

本発明は、上記に鑑みてなされたものであって、特に構造物等を含めた比較的安定した物体の、頂部(屋上)のみならず、側面の変位計測のための精度を向上した変位計測方法および変位計測システムを提供することを目的とする。 The present invention has been made in view of the above, and is a displacement measurement device with improved accuracy for measuring not only the top (rooftop) but also the side surface of a relatively stable object, particularly a structure. The present invention aims to provide a method and a displacement measurement system.

上記した課題を解決し、目的を達成するために、本発明に係る変位計測方法は、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得することを特徴とする。
相対測位は一般に固定点の正確な位置を取得した後(既知点)、この既知点と観測点(未知点)で同時に単独測位を行い、共通誤差を相殺して未知点の測位を行う方法である。共通誤差として座標値を利用する場合と、測位衛星の送信電波の波長を利用する場合がある。前者は座標が既知である固定点のGNSS測位機器で観測された座標の誤差を未知点のGNSS測位機器に送り、未知点の測定座標から差し引いて補正し精度を改善させる。後者は干渉測位と呼ばれ、測位の物差しとしてGNSS衛星の送信電波の波長を用いる。以下、測位の物差しとしてGNSS衛星の送信電波の波長を用いた内容で説明する。
In order to solve the above-mentioned problems and achieve the purpose, the displacement measurement method according to the present invention uses a satellite signal receiver that receives satellite signals from a plurality of positioning satellites to provide a relatively stable displacement measurement method for objects including structures. This is a method of measuring the displacement of a relatively stable object, such as a structure, by installing a satellite signal receiver at one point on the outside of the object, or by installing multiple satellite signal receivers at different positions on the outside of the object. Time lapse between an observation point formed by a satellite and a fixed point formed by a satellite signal receiver installed on the outside of a relatively stable object, including a structure, or at a location other than the outside, including on the ground. The relative positioning step includes a relative positioning step that obtains the displacement associated with the relative positioning by relative positioning, and the relative positioning step selects a predetermined positioning satellite to be used for relative positioning from among a plurality of positioning satellites, and uses the satellite signal from the selected positioning satellite. The displacement is obtained by relative positioning.
Relative positioning is generally a method of obtaining the exact position of a fixed point (known point), then simultaneously performing independent positioning at this known point and observation point (unknown point), canceling out common errors and positioning the unknown point. be. There are cases where coordinate values are used as the common error, and cases where the wavelength of the radio wave transmitted by the positioning satellite is used. In the former case, the error in the coordinates observed by the GNSS positioning device of a fixed point whose coordinates are known is sent to the GNSS positioning device of the unknown point, and the error is subtracted from the measured coordinates of the unknown point to correct it and improve accuracy. The latter is called interferometric positioning, and uses the wavelength of the radio wave transmitted by the GNSS satellite as a measuring stick. The following description uses the wavelength of radio waves transmitted by GNSS satellites as a measuring stick for positioning.

また、本発明に係る他の変位計測方法は、上述した発明において、固定点と観測点との波長を用いた相対測位ステップと、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除くステップと、測位用衛星信号のみを用いて観測点の位置を算出するステップと、算出した観測点の位置を前記位置補正用データによって補正するステップを有し、補正した観測点の位置に基づいて前記変位を取得することを特徴とする。 Further, another displacement measurement method according to the present invention includes a relative positioning step using the wavelengths of the fixed point and the observation point, and measuring the reception strength of the satellite signal at the fixed point and the observation point, in the above-mentioned invention. Compare the reception strength at the fixed point and the reception strength at the observation point for each satellite signal, and calculate the carrier phase of the observation point for the satellite signal for which the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than or equal to a predetermined threshold. If the satellite signal from the positioning satellite cannot be continuously received during carrier phase calculation, it is detected as multipath, and if the calculated carrier phase is greater than or equal to a predetermined threshold, the satellite signal is transferred to the positioning satellite signal. , a step of calculating the position of the observation point using only the positioning satellite signal, and a step of correcting the calculated position of the observation point using the position correction data. It is characterized in that the displacement is acquired based on.

また、本発明に係る他の変位計測方法は、上述した発明において、相対測位ステップは、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定するステップと、アンビギュイティを保持するステップと、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位するステップの少なくとも一つを有することを特徴とする。 Further, in another displacement measurement method according to the present invention, in the above-described invention, the relative positioning step includes a step of determining the ambiguity of the carrier phase of the satellite signal based on the position of the fixed point or the observation point; The present invention is characterized by comprising at least one of the following steps: holding a signal and performing relative positioning based on carrier phase cycle slip information output from a satellite signal receiver.

また、本発明に係る変位計測システムは、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物の変位を計測するシステムであって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得することを特徴とする。 Further, the displacement measurement system according to the present invention is a system that measures the displacement of a structure using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites, and is relatively stable. An observation point consisting of a satellite signal receiver installed at one point on the outer surface of an object, or multiple satellite signal receivers installed at different positions on the outer surface, and a relatively stable object including a structure. A relative positioning means is provided for obtaining, by relative positioning, a displacement over time between a fixed point constituted by a satellite signal receiver installed at a position other than the outer surface including the outer surface or on the ground, and the relative positioning means comprises: The method is characterized in that a predetermined positioning satellite to be used for relative positioning is selected from among a plurality of positioning satellites, and the displacement is obtained by relative positioning using a satellite signal from the selected positioning satellite.

また、本発明に係る他の変位計測システムは、上述した発明において、相対測位手段は、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く手段と、測位用衛星信号のみを用いて観測点の位置を算出する手段と、算出した観測点の位置を前記位置補正用データによって補正する手段を有し、補正した観測点の位置に基づいて前記変位を取得することを特徴とする。 Further, in another displacement measurement system according to the present invention, in the above-mentioned invention, the relative positioning means measures the reception strength of the satellite signal at the fixed point and the observation point, and measures the reception strength at the fixed point and the observation point for each satellite signal. A means for comparing reception strengths at a fixed point and calculating a carrier phase at an observation point for a satellite signal for which the difference between reception strength at a fixed point and reception strength at an observation point is greater than or equal to a predetermined threshold; If the satellite signals cannot be received continuously, it is detected as multipath, and if the calculated carrier phase is equal to or higher than a predetermined threshold, there is a means to remove the satellite signals from the positioning satellite signals, and a means to remove only the positioning satellite signals. and means for correcting the calculated position of the observation point using the position correction data, and the displacement is obtained based on the corrected position of the observation point. do.

また、本発明に係る他の変位計測システムは、上述した発明において、相対測位手段は、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定する手段と、アンビギュイティを保持する手段と、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位する手段の少なくとも一つを有することを特徴とする。 Further, in another displacement measurement system according to the present invention, in the above-described invention, the relative positioning means includes means for determining the ambiguity of the carrier phase of the satellite signal based on the position of the fixed point or the observation point; and means for relative positioning based on carrier phase cycle slip information output from a satellite signal receiver.

本発明に係る変位計測方法によれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体の外面に設置した観測点変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。 According to the displacement measurement method according to the present invention, the displacement of a relatively stable object including a structure etc. is measured using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites, the method comprising: An observation point consisting of a satellite signal receiver installed at one point on the outer surface of a relatively stable object, including a structure, etc., or a plurality of satellite signal receivers installed at different positions on the outer surface, and a structure, etc. Relative positioning that uses relative positioning to obtain the displacement over time between a fixed point constructed by a satellite signal receiver installed on the outer surface of a relatively stable object, including the ground, or a position other than the outer surface, including on the ground. The relative positioning step includes selecting a predetermined positioning satellite to be used for relative positioning among a plurality of positioning satellites, and acquiring the displacement by relative positioning using a satellite signal from the selected positioning satellite. This has the effect that the displacement of an observation point installed on the outer surface of a relatively stable object including objects can be accurately measured. Therefore, the present invention is useful for monitoring displacement and deformation of not only the top (rooftop) but also the side (wall) of relatively stable objects, including structures installed in crowded environments. suitable.

また、本発明に係る他の変位計測方法によれば、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除くステップと、測位用衛星信号のみを用いて観測点の位置を算出するステップと、算出した観測点の位置を前記位置補正用データによって補正するステップを有し、補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができるという効果を奏する。 Further, according to another displacement measurement method according to the present invention, the reception strength of the satellite signal at the fixed point and the observation point is measured, and the reception strength at the fixed point and the reception strength at the observation point are compared for each satellite signal, a step of calculating the carrier phase of the observation point for a satellite signal for which the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than or equal to a predetermined threshold; and during the calculation of the carrier phase, the satellite signal from the positioning satellite is If it cannot be received, it is detected as a multipath, and if the calculated carrier phase is above a predetermined threshold, the satellite signal is removed from the positioning satellite signal, and the position of the observation point is calculated using only the positioning satellite signal. and correcting the calculated position of the observation point using the position correction data, and the displacement is obtained based on the corrected position of the observation point, so the effect of multipath can be easily and surely corrected. By determining the received satellite signal and correcting the position of the observation point, it is possible to achieve highly accurate displacement measurement.

また、本発明に係る他の変位計測方法によれば、相対測位ステップは、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定するステップと、アンビギュイティを保持するステップと、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位するステップの少なくとも一つを有するので、高精度な変位計測を実現することができるという効果を奏する。 Further, according to another displacement measurement method according to the present invention, the relative positioning step includes a step of determining the ambiguity of the carrier wave phase of the satellite signal based on the position of the fixed point or the observation point, and maintaining the ambiguity. Since the method includes at least one of the step of performing relative positioning based on the cycle slip information of the carrier wave phase output by the satellite signal receiver, it is possible to realize highly accurate displacement measurement.

また、本発明に係る変位計測システムによれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物の変位を計測するシステムであって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体に設置した観測点のみで構造物の外面の変位を精度よく計測することができるという効果を奏する。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。 Further, according to the displacement measurement system according to the present invention, there is provided a system for measuring the displacement of a structure using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites. An observation point consisting of a satellite signal receiver installed at one point on the outer surface of a relatively stable object, or multiple satellite signal receivers installed at different positions on the outer surface, and a relatively stable object including structures, etc. The relative positioning means is provided with a relative positioning means for obtaining, by relative positioning, the displacement over time between the object and a fixed point formed by a satellite signal receiver installed at a position other than the outer surface including the outer surface or the ground. The method selects a predetermined positioning satellite to be used for relative positioning from among multiple positioning satellites, and obtains the displacement by relative positioning using the satellite signal from the selected positioning satellite. This has the effect of being able to accurately measure the displacement of the outer surface of a structure using only observation points installed on a stable object. Therefore, the present invention is useful for monitoring displacement and deformation of not only the top (rooftop) but also the side (wall) of relatively stable objects, including structures installed in crowded environments. suitable.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く手段と、測位用衛星信号のみを用いて観測点の位置を算出する手段と、算出した観測点の位置を前記位置補正用データによって補正する手段により補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができるという効果を奏する。 Further, according to another displacement measurement system according to the present invention, the relative positioning means measures the reception strength of the satellite signal at the fixed point and the observation point, and measures the reception strength at the fixed point and the reception strength at the observation point for each satellite signal. Means for comparing the strengths and calculating the carrier phase of the observation point for satellite signals for which the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than or equal to a predetermined threshold; If the signal cannot be received continuously, it is detected as a multipath, and if the calculated carrier phase is above a predetermined threshold, the satellite signal is removed from the positioning satellite signal and observation is performed using only the positioning satellite signal. Since the displacement is obtained based on the position of the observation point corrected by the means for calculating the position of the point and the means for correcting the calculated position of the observation point using the position correction data, it is possible to obtain the displacement using a simple and reliable method. By determining the satellite signals that have been affected by this and correcting the position of the observation point, it is possible to achieve highly accurate displacement measurement.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定する手段と、アンビギュイティを保持する手段と、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位する手段の少なくとも一つを有するので、高精度な変位計測を実現することができるという効果を奏する。 Further, according to another displacement measurement system according to the present invention, the relative positioning means includes means for determining the ambiguity of the carrier phase of the satellite signal based on the position of the fixed point or the observation point, and the means for maintaining the ambiguity. Since the present invention includes at least one of means for performing relative positioning based on cycle slip information of the carrier phase outputted by the satellite signal receiver, it is possible to realize highly accurate displacement measurement.

図1は、本発明に係る変位計測方法および変位計測システムの実施の形態を示す概略状況図である。FIG. 1 is a schematic diagram showing an embodiment of a displacement measuring method and a displacement measuring system according to the present invention. 図2は、本発明に係る変位計測システムの実施の形態を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing an embodiment of a displacement measurement system according to the present invention. 図3は、本発明に係る変位計測方法の実施の形態を示す概略フローチャート図である。FIG. 3 is a schematic flowchart showing an embodiment of the displacement measuring method according to the present invention. 図4は、魚眼カメラで見た上空視野および測位衛星の一例を示す図である。FIG. 4 is a diagram showing an example of the sky field of view and positioning satellites as seen by a fisheye camera.

上述したように、本発明者は、「構造物等は、構造物等の周辺で行う各種測位にマルチパスを与える邪魔者と認識されることが多いが、GNSS測位機器を、構造物等を含めた比較的安定した物体の壁面に直接設置すると、逆に構造物等を含めた比較的安定した物体からのマルチパスが減り、構造物等を含めた比較的安定した物体の変位計測には有効である」という点に着目して、構造物等を含めた比較的安定した物体の屋上のみならず、壁面の変位計測も可能とする本発明に至った。なお、本発明は、単に構造物等を含めた比較的安定した物体の壁面測位のみならず、構造物等を含めた比較的安定した物体の屋上であっても衛星測位機器の設置場所周辺にマルチパスを生じさせる障害物等がある場合の測位などにも適用可能である。 As mentioned above, the inventor believes that ``Structures, etc. are often recognized as nuisances that provide multipaths to various positioning operations performed around structures, etc., but when using GNSS positioning equipment, If you install it directly on the wall of a relatively stable object, such as a structure, the multipath from the relatively stable object, such as a structure, will be reduced, making it difficult to measure the displacement of a relatively stable object, including a structure. Focusing on the fact that the method is effective, the present invention has been developed, which makes it possible to measure the displacement of relatively stable objects, including structures, not only on rooftops but also on walls. Note that the present invention is applicable not only to wall positioning of relatively stable objects including structures, but also to the vicinity of the installation location of satellite positioning equipment even on the rooftops of relatively stable objects including structures. It can also be applied to positioning when there are obstacles that cause multipath.

以下に、本発明に係る変位計測方法および変位計測システムの実施の形態を図面に基づいて詳細に説明する。なお、以下の説明では、変位を計測・監視する対象の構造物として都市部の過密した環境に設置された中小マンションを、衛星信号受信機としてGNSS測位機器を用いた相対測位を例に説明するが、この実施の形態によりこの発明が限定されるものではない。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a displacement measurement method and a displacement measurement system according to the present invention will be described below in detail based on the drawings. In the following explanation, relative positioning using GNSS positioning equipment as a satellite signal receiver will be used as an example of a small to medium-sized apartment building installed in a crowded urban environment as the structure whose displacement is to be measured and monitored. However, the invention is not limited to this embodiment.

本発明の実施の形態に係る変位計測方法は、複数の測位衛星からの衛星信号を受信するGNSS測位機器(衛星信号受信機)を用いて構造物の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するものである。ここでは、相対測位の中で最も精度が良い搬送波を用いた干渉測位を用いた方法で説明する。 A displacement measuring method according to an embodiment of the present invention is a method for measuring the displacement of a structure using a GNSS positioning device (satellite signal receiver) that receives satellite signals from a plurality of positioning satellites. An observation point consisting of a satellite signal receiver installed at one point on the outer surface of a relatively stable object, including structures, etc., or multiple satellite signal receivers installed at different positions on the outer surface, and structures, etc. A relative positioning step in which the displacement over time between a fixed point and a satellite signal receiver installed on the outer surface of a relatively stable object or a position other than the outer surface including on the ground is obtained by relative positioning. In the relative positioning step, a predetermined positioning satellite to be used for relative positioning is selected from a plurality of positioning satellites, and the displacement is obtained by relative positioning using a satellite signal from the selected positioning satellite. Here, a method using interferometric positioning using a carrier wave, which has the highest accuracy among relative positioning methods, will be explained.

より具体的には、GNSS測位機器の設置初期に固定点の座標を決定した後、固定点、観測点全てのGNSS測位機器で同時に観測をして、衛星からの電波到達の差(位相差)を解析し固定点と観測点間の距離を求める。例えばGNSS測位機器を5つ設置する場合には、固定点と他の観測点を1組とカウントしたとき、5組の座標変化や基線長の変化を取得することで、構造物のどの部分に傾斜や沈下が生じているか等を把握できる。 More specifically, after determining the coordinates of a fixed point at the initial stage of installation of the GNSS positioning equipment, the GNSS positioning equipment at all the fixed points and observation points perform simultaneous observations to determine the difference (phase difference) in the arrival of radio waves from the satellite. Analyze and find the distance between the fixed point and observation point. For example, when installing five GNSS positioning devices, when the fixed point and other observation points are counted as one set, by acquiring the coordinate changes and baseline length changes of the five sets, you can determine which part of the structure It is possible to ascertain whether tilting or subsidence is occurring.

次に、GNSS測位機器(観測点)を5つ設置した場合の変位計測システムを例にとり、初期座標設定から観測までの流れを説明する。 Next, the flow from initial coordinate setting to observation will be explained using an example of a displacement measurement system in which five GNSS positioning devices (observation points) are installed.

図1に示すように、中小マンションなどの構造物1の外壁面2の互いに異なる位置に、GNSS衛星からの衛星信号を受信するGNSS測位機器を5台設置し、観測点とし、別の構造物4の上にGNSS測位機器を1台設置し固定点Fとして干渉測位を行う。図1の例では、道路に面する外壁面2の上下左右の四隅と中央の合計5か所にGNSS測位機器A~Eを設置した場合を示しているが、設置位置、設置数についてはこれに限るものではなく同一構造物につき1点または互いに異なる複数点であればいかなる位置、数であっても構わない。固定点は外壁面2以外に設定してもよく、例えば構造物1の周辺地盤上や他の構造物3の屋上などに設置してもよい。 As shown in Figure 1, five GNSS positioning devices that receive satellite signals from GNSS satellites are installed at different positions on the outer wall surface 2 of a structure 1 such as a small and medium-sized condominium, and serve as observation points. One GNSS positioning device is installed on 4 and performs interferometric positioning as a fixed point F. The example in Figure 1 shows the case where GNSS positioning devices A to E are installed at a total of five locations, including the top, bottom, left, right, four corners, and the center of the outer wall surface 2 facing the road. The point is not limited to , and any number and location may be used as long as it is one point or multiple points that are different from each other on the same structure. The fixing point may be set at a location other than the outer wall surface 2, for example, on the ground around the structure 1 or on the roof of another structure 3.

観測点、固定点に設置するGNSS測位機器としては、高性能な2周波GNSS機器、格安な1周波GNSS機器のどちらでもよい。なお、GNSS測位機器A~Eは、図示しない通信装置を通じて遠隔地の計測室のコンピュータに有線または無線通信回線を介して接続しているものとする。 The GNSS positioning equipment installed at observation points and fixed points may be either high-performance two-frequency GNSS equipment or inexpensive single-frequency GNSS equipment. It is assumed that the GNSS positioning devices A to E are connected to a computer in a remote measurement room via a communication device (not shown) via a wired or wireless communication line.

図2は、本発明に係る変位計測システム10の概略構成図である。この図に示すように、この変位計測システム10は、計測室に設けられるコンピュータ12を有している。コンピュータ12は、相対測位手段14、報知手段16、警報手段18、記憶手段20、これらを制御する制御手段22を備えている。記憶手段20はGNSS測位機器A~Eから得られた計測データをリアルタイムに記憶・収集する。記憶手段20に記憶・収集されたデータは制御手段22を通じて適宜読み出され、相対測位手段14によって処理されるようになっている。相対測位手段14はGNSS測位機器A~Eどうしの間の時間経過に伴う変位・変形情報を相対測位により取得するものであり、各種解析ソフトウェア、演算手段などで構成される。なお、このコンピュータ12はインターネットに接続している。このため、例えばユーザの要求に応じて、報知手段16の機能によりインターネットを経由して構造物の管理関係者が有するユーザ端末装置(例えば、パソコンや携帯電話端末など)に取得した構造物の変位・変形情報を配信可能である。また、警報手段18は、所定の閾値以上の変位が取得された場合に、管理室のコンピュータ12や上記のユーザ端末装置を通じてアラーム音などの警報を発する処理を行う。 FIG. 2 is a schematic configuration diagram of the displacement measurement system 10 according to the present invention. As shown in this figure, this displacement measurement system 10 includes a computer 12 provided in a measurement room. The computer 12 includes a relative positioning means 14, a notification means 16, an alarm means 18, a storage means 20, and a control means 22 for controlling these. The storage means 20 stores and collects measurement data obtained from the GNSS positioning devices A to E in real time. The data stored and collected in the storage means 20 is read out as appropriate through the control means 22 and processed by the relative positioning means 14. The relative positioning means 14 acquires displacement/deformation information over time between the GNSS positioning devices A to E through relative positioning, and is comprised of various analysis software, calculation means, and the like. Note that this computer 12 is connected to the Internet. For this reason, for example, in response to a user's request, the displacement of the structure is obtained via the Internet by the function of the notification means 16 to a user terminal device (for example, a personal computer, a mobile phone terminal, etc.) owned by a person involved in the management of the structure.・Deformation information can be distributed. Further, the alarm unit 18 performs a process of issuing an alarm such as an alarm sound through the computer 12 in the management room or the user terminal device described above when a displacement equal to or greater than a predetermined threshold is obtained.

図3に示すように、まず、5つの観測点にGNSS測位機器A~Eを設置する(ステップS1)。次に構造物4に設定した固定点Fの初期座標を数時間から数日間の単独測位や周辺の電子基準点とのスタティック測位等にて決定する(ステップS2)。 As shown in FIG. 3, first, GNSS positioning devices A to E are installed at five observation points (step S1). Next, the initial coordinates of the fixed point F set on the structure 4 are determined by independent positioning for several hours to several days, static positioning with surrounding electronic reference points, etc. (step S2).

次に固定点と観測点で同時に観測を開始し衛星からの電波到達の差(位相差)を解析し、固定点と観測点の距離を求める(ステップS3)。以上の初期座標の設定から干渉測位は、計測室のコンピュータ12に備わる図示しない解析ソフトウェアや干渉測位手段14が行うことができる。本実施の形態では、相対測位としてリアルタイムキネマティック(RTK)測位を利用する。その際、後述のアルゴリズムを適用し、構造物1の外壁面2に関して適切な座標・基線長解を得るものとする。 Next, observation is started simultaneously at the fixed point and the observation point, and the difference (phase difference) in the arrival of radio waves from the satellite is analyzed to determine the distance between the fixed point and the observation point (step S3). Interferometric positioning from the above initial coordinate setting can be performed by analysis software (not shown) or interferometric positioning means 14 provided in the computer 12 in the measurement room. In this embodiment, real-time kinematic (RTK) positioning is used as relative positioning. At that time, the algorithm described below is applied to obtain an appropriate coordinate/baseline length solution for the outer wall surface 2 of the structure 1.

異常値を含めた観測結果としての変位・変形情報は、報知手段16の機能により計測室のコンピュータ12やユーザ端末装置の画面などに報知される(ステップS4)。ここで、取得された異常値があらかじめ定めた所定の閾値以上である場合には、警報手段18は計測室のコンピュータ12やユーザ端末装置を通じてアラーム音などの警報を発する。これにより管理者や管理関係者などのユーザは、閾値以上の変位が生じたことを即座に把握することができる。 The displacement/deformation information as an observation result including abnormal values is notified to the computer 12 in the measurement room, the screen of the user terminal device, etc. by the function of the notification means 16 (step S4). Here, if the acquired abnormal value is greater than or equal to a predetermined threshold value, the alarm means 18 issues an alarm such as an alarm sound through the computer 12 in the measurement room or the user terminal device. This allows users such as administrators and management personnel to immediately understand that a displacement greater than the threshold has occurred.

なお、上記の実施の形態において、コンピュータ12は観測点(固定点併用)の測位情報をリアルタイムで取得でき、相対測位手段14による解析もリアルタイムで可能である。また、報知手段16は、例えばユーザの要求に応じて、例えば所定時間毎(例えば1日(24時間)毎)の解析結果(観測結果)もユーザに報知することもできる。したがって、観測点を5つ設けた場合に必要となる解析時間も基本はリアルタイムである。また、一般に構造物はあまり大きく変位しないため、大地震時等を除き、測位情報を数時間平均または1日平均した測位平均値で比較するのが通例である。 In the above embodiment, the computer 12 can acquire positioning information of observation points (also used as fixed points) in real time, and analysis by the relative positioning means 14 can also be performed in real time. Further, the notification means 16 can also notify the user of the analysis results (observation results) at predetermined time intervals (for example, every 24 hours), for example, in response to a user's request. Therefore, the analysis time required when five observation points are provided is basically real time. Furthermore, since structures generally do not displace very significantly, it is customary to compare positioning information using the average positioning value averaged over several hours or averaged over one day, except in the case of a major earthquake.

本実施の形態によれば、例えば、都市部など過密な環境下に設置された学校等の公共施設、施工者のいなくなった中小マンション等の杭や構造物の変形・変位、斜面、ダム傾斜部などを監視することができる。公共施設は一般に避難場所として利用されるが、大地震後の余震等が継続する中で当該施設が安全か否かの確認を行う際にも本発明を利用することができる。 According to this embodiment, for example, deformation/displacement of piles and structures, slopes, and dam inclinations of public facilities such as schools installed in urban areas and other crowded environments, small and medium-sized condominiums with no builder, etc. Departments, etc. can be monitored. Public facilities are generally used as evacuation sites, but the present invention can also be used to confirm whether the facility is safe while aftershocks and the like continue after a major earthquake.

<アルゴリズム>
次に上記のRTK測位(相対測位)で使用するアルゴリズムの機能について説明する。
<Algorithm>
Next, the function of the algorithm used in the above RTK positioning (relative positioning) will be explained.

a)GNSS衛星の信号を取捨選択する機能
GNSS測位機器A~Eは上空にあるGNSS衛星からの信号を受信する。マルチパスとならなければ、各GNSS衛星からGNSS測位機器A~Eに届くべき信号レベルが決まっているため、解析に利用するGNSS衛星を選択する機能を持たせる。なお、図4においてC01、G21、J01等の符号は衛星番号を示している。解析に利用するGNSS衛星をさらに厳密に選択する機能を持たせる方法としては、例えば上記の特許文献3に記載の方法を用いることができる。
a) Function to select signals from GNSS satellites GNSS positioning devices A to E receive signals from GNSS satellites in the sky. Unless multipath occurs, the signal level that should reach GNSS positioning equipment A to E from each GNSS satellite is determined, so a function is provided to select the GNSS satellite to be used for analysis. Note that in FIG. 4, symbols such as C01, G21, and J01 indicate satellite numbers. As a method for providing a function to more precisely select GNSS satellites to be used for analysis, for example, the method described in Patent Document 3 mentioned above can be used.

この特許文献3に記載の方法を用いる場合には、例えば、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する。ここで、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く。測位用衛星信号のみを用いて観測点の位置を算出し、算出した観測点の位置を上記の位置補正用データによって補正する。補正した観測点の位置に基づいて構造物1の外壁面2の変位・変形を観測する。 When using the method described in Patent Document 3, for example, the reception strength of the satellite signal at a fixed point and an observation point is measured, and the reception strength at the fixed point and the reception strength at the observation point are compared for each satellite signal. , the carrier phase of the observation point is calculated for a satellite signal for which the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than or equal to a predetermined threshold. Here, if the satellite signal from the positioning satellite cannot be continuously received while calculating the carrier wave phase, it is detected as multipath, and if the calculated carrier wave phase is more than a predetermined threshold, the satellite signal is used as the positioning satellite signal. Exclude from. The position of the observation point is calculated using only the positioning satellite signal, and the calculated position of the observation point is corrected using the above position correction data. Displacement and deformation of the outer wall surface 2 of the structure 1 is observed based on the corrected position of the observation point.

ここで、搬送波位相とは、GNSS測位機器と衛星間の相対速度すなわち視線速度である。搬送波位相は、衛星信号のドップラー・シフトを測定することで容易に計算することができる。マルチパスの影響を受けた場合、電波の入射方向も変化する。電波の入射方向の変化により、衛星の視線方向の速度も大きく変化する。すなわち、マルチパスが生じたときは、衛星信号の受信強度が急激に変化するのと同時に、搬送波位相も大きく変化する。そこで、固定点に比して観測点で受信強度が大きく変化した衛星信号について、さらに搬送波位相を計算し、搬送波位相も大きく変化した衛星信号を、マルチパスの影響を受けた衛星信号として確実に判別することが可能となる。 Here, the carrier wave phase is the relative velocity between the GNSS positioning device and the satellite, that is, the radial velocity. Carrier phase can be easily calculated by measuring the Doppler shift of the satellite signal. When affected by multipath, the direction of incidence of radio waves also changes. Due to changes in the direction of incidence of radio waves, the velocity of the satellite in the line-of-sight direction also changes significantly. That is, when multipath occurs, the reception strength of the satellite signal changes rapidly, and at the same time, the carrier wave phase also changes significantly. Therefore, we further calculated the carrier phase of satellite signals whose reception strength changed significantly at the observation point compared to the fixed point, and confirmed that the satellite signals whose carrier phase also changed significantly are considered to be satellite signals affected by multipath. It becomes possible to discriminate.

ここで、上記の特許文献3に記載の方法に以下のb)~d)の3つの機能を追加することによって、構造物1の外壁面2の高精度な変位計測を実現させてもよい。 Here, highly accurate displacement measurement of the outer wall surface 2 of the structure 1 may be realized by adding the following three functions b) to d) to the method described in Patent Document 3 above.

b)RTKの要となるアンビギュイティを高い信頼度で決定する機能
構造物1の外壁面2の測位は、1日またはもっと長い期間(1年)で数cm等のずれを検知することが主目的であり、あらかじめアンビギュイティの候補となる位置を事前に入力する機能を追加することで、継続したFIX解が得られる。
b) Function to determine ambiguity with high reliability, which is the key point of RTK When positioning the outer wall surface 2 of the structure 1, it is possible to detect a deviation of several centimeters in one day or a longer period (one year). This is the main objective, and by adding a function to input in advance the positions of candidates for ambiguity, a continuous FIX solution can be obtained.

換言すると、構造物1の外壁面2のGNSS測位機器A~Eの設置位置についてはあらかじめ正しい精密位置がわかっているため、搬送波位相のアンビギュイティを決める際の初期値をその値に設定する。これは既存のソフトウェアでは対応していない。初期値を正しく入力すると、搬送波位相測定値が正しく出力される限り、正しいFIX解を得ることができ、精度も1cm程度となる。逆にミスFIX解(誤った搬送波位相のアンビギュイティ)の削減、除外も可能となる。 In other words, since the correct precise positions of the installation positions of the GNSS positioning devices A to E on the outer wall surface 2 of the structure 1 are known in advance, the initial value for determining carrier phase ambiguity is set to that value. . This is not supported by existing software. If the initial values are entered correctly, as long as the carrier phase measurement value is output correctly, a correct FIX solution can be obtained with an accuracy of about 1 cm. Conversely, it is also possible to reduce or eliminate miss FIX solutions (ambiguities of incorrect carrier phases).

この機能を新たに取り入れることで、従来のRTKの汎用ソフトウェアと比較して格段に利便性(例えば24時間のRTK測位で何%の時間、RTKが可能であるかを示すもの)が向上することを本発明者は確認済みである。 By incorporating this new function, convenience (for example, indicating what percentage of the time RTK is possible in 24-hour RTK positioning) will be significantly improved compared to conventional general-purpose RTK software. The inventor has confirmed this.

ここで、RTK測位(相対測位)における搬送波はL1帯で波長19cm、L2帯で波長24cmの無変調で無限に続くサイン波であるため、GNSS測位機器で信号を受信し始めた時の位相の整数部分(整数値バイアス)はわからない。このため、通常の相対測位では何らかの方法でこの整数値バイアスを解く必要がある。 Here, the carrier wave in RTK positioning (relative positioning) is an unmodulated, infinitely continuous sine wave with a wavelength of 19 cm in the L1 band and a wavelength of 24 cm in the L2 band, so the phase difference when the GNSS positioning device starts receiving the signal is I don't know about the integer part (integer value bias). Therefore, in normal relative positioning, it is necessary to solve this integer value bias in some way.

なお、上記の方法の一般的なRTK測位と異なる点は以下のとおりである。すなわち通常のRTK測位の場合、固定点の位置情報を入力した後に、測位のモノサシとしてGNSS衛星の送信電波を用い干渉測位解析を行うが、上記の方法はアルゴリズム中に設定する新たな方法であり、従来のRTK測位とは異なる。 Note that the above method differs from general RTK positioning in the following points. In other words, in the case of normal RTK positioning, after inputting the position information of a fixed point, interferometric positioning analysis is performed using the radio waves transmitted by the GNSS satellite as a positioning measure, but the above method is a new method that is set in the algorithm. , which is different from conventional RTK positioning.

c)アンビギュイティを保持する機能
アンビギュイティ保持とは、サイクルスリップ等のない衛星については、いったん正しいアンビギュイティを求めると、理論上その値を保持してもRTKの測位は継続できる。アンビギュイティ保持とはその特徴を利用したものである。この方法の特徴は、従来の方法ではアンビギュイティ保持が途切れてしまうケースにおいても、その途切れを可能な限りなくすところにある。1つの具体例として、アンビギュイティ決定には、主衛星と従衛星による二重位相差が必須である。その主衛星が変更されるとアンビギュイティ保持はできなくなる。このような事象にも対応できるよう、あらかじめ品質のよい主衛星を選択することと、主衛星が変更されても瞬時に別の主衛星でアンビギュイティを保持できる能力を持つ機能である。これも既存のソフトウェアでは対応していない。
c) Function to maintain ambiguity Ambiguity maintenance means that for satellites without cycle slips, once the correct ambiguity is determined, RTK positioning can theoretically continue even if that value is maintained. Ambiguity preservation is a method that takes advantage of this characteristic. The feature of this method is that even in cases where ambiguity maintenance is interrupted in conventional methods, the interruption is eliminated as much as possible. As one specific example, ambiguity determination requires a double phase difference between the main satellite and the slave satellite. If the main satellite is changed, ambiguity cannot be maintained. In order to respond to such events, this function has the ability to select a high-quality main satellite in advance, and even if the main satellite is changed, ambiguity can be maintained instantly with another main satellite. This is also not supported by existing software.

d)GNSS測位機器が出力する搬送波位相のサイクルスリップ情報等を利用する機能
例えばu-blox社製の衛星信号受信機には、出力情報に搬送波位相が信頼できるか信頼できないかのIndicatorが付加されている。そこで本機能では、GNSS測位機器による出力情報から、こうした信頼できる情報のみを選択して解析する。このような機能も既存のソフトウェアでは対応していない。
d) A function that utilizes carrier phase cycle slip information etc. output by GNSS positioning equipment For example, U-blox's satellite signal receiver has an indicator added to the output information to indicate whether the carrier phase is reliable or not. ing. Therefore, this function selects and analyzes only such reliable information from the output information from GNSS positioning equipment. This kind of functionality is also not supported by existing software.

ここで、サイクルスリップについて説明する。衛星からの電波が障害物で遮断されると位相測定が中断する。そのため、その間の整数部の繰り上がり、繰り下がりが分からなくなる。この中断前後で位相の整数部分に整数部だけの不確定が生じる。これをサイクルスリップという。この際ベースラインの処理時に整数値のあいまいさを再度推定し直す必要がある。 Here, cycle slip will be explained. If the radio waves from the satellite are blocked by an obstacle, phase measurement will be interrupted. Therefore, it becomes impossible to understand whether the integer part is carried up or down during that time. Before and after this interruption, only the integer part of the phase is uncertain. This is called a cycle slip. In this case, it is necessary to re-estimate the ambiguity of the integer value during baseline processing.

このように、上記の特許文献3に記載の方法に対して上記のb)~d)の3つの機能を組み合わせることによって、より高精度に変位計測することが可能となる。 In this way, by combining the above three functions b) to d) with the method described in Patent Document 3, it becomes possible to measure displacement with higher accuracy.

以上説明したように、本発明に係る変位計測方法によれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測する方法であって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体の外面に設置した観測点のみで構造物等を含めた比較的安定した物体の外面の変位を精度よく計測することができる。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。 As explained above, according to the displacement measurement method according to the present invention, the displacement of relatively stable objects including structures is measured using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites. An observation method that consists of a satellite signal receiver installed at one point on the outer surface of a relatively stable object, including structures, or multiple satellite signal receivers installed at different positions on the outer surface. The relative displacement over time between a point and a fixed point constituted by a satellite signal receiver installed at a location other than the outer surface of a relatively stable object, including a structure, or the outer surface, including on the ground. The relative positioning step includes a relative positioning step for acquiring positioning, and the relative positioning step selects a predetermined positioning satellite to be used for relative positioning from among a plurality of positioning satellites, and calculates the displacement using a satellite signal from the selected positioning satellite. Therefore, it is possible to accurately measure the displacement of the outer surface of a relatively stable object, including a structure, using only observation points installed on the outer surface of the relatively stable object, including the structure. Therefore, the present invention is useful for monitoring displacement and deformation of not only the top (rooftop) but also the side (wall) of relatively stable objects, including structures installed in crowded environments. suitable.

また、本発明に係る他の変位計測方法によれば、相対測位ステップは、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除くステップと、測位用衛星信号のみを用いて観測点の位置を算出するステップと、算出した観測点の位置を前記位置補正用データによって補正するステップを有し、補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができる。 According to another displacement measurement method according to the present invention, the relative positioning step includes measuring the reception strength of the satellite signal at the fixed point and the observation point, and measuring the reception strength at the fixed point and the reception strength at the observation point for each satellite signal. A step of comparing the strengths and calculating the carrier phase of the observation point for the satellite signal for which the difference between the reception strength at the fixed point and the reception strength at the observation point is equal to or greater than a predetermined threshold; If the signal cannot be received continuously, it is detected as a multipath, and if the calculated carrier phase is above a predetermined threshold, the satellite signal is removed from the positioning satellite signal and observation is performed using only the positioning satellite signal. This method is simple and reliable since it has the steps of calculating the position of the point and correcting the calculated position of the observation point using the position correction data, and obtaining the displacement based on the corrected position of the observation point. By identifying satellite signals affected by multipath and correcting the position of the observation point, highly accurate displacement measurement can be achieved.

また、本発明に係る他の変位計測方法によれば、相対測位ステップは、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定するステップと、アンビギュイティを保持するステップと、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位するステップの少なくとも一つを有するので、高精度な変位計測を実現することができる。 Further, according to another displacement measurement method according to the present invention, the relative positioning step includes a step of determining the ambiguity of the carrier wave phase of the satellite signal based on the position of the fixed point or the observation point, and maintaining the ambiguity. Since the method includes at least one of the step of performing relative positioning based on the cycle slip information of the carrier phase output from the satellite signal receiver, highly accurate displacement measurement can be realized.

また、本発明に係る変位計測システムによれば、複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて構造物等を含めた比較的安定した物体の変位を計測するシステムであって、構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点との間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記変位を相対測位により取得するので、構造物等を含めた比較的安定した物体の外面に設置した観測点のみで構造物等を含めた比較的安定した物体の外面の変位を精度よく計測することができる。このため、本発明は、過密した環境に設置されている構造物等を含めた比較的安定した物体の頂部(屋上)のみならず、側部(壁面)の変位・変形等を監視するのに好適である。 Further, according to the displacement measurement system according to the present invention, the system measures the displacement of relatively stable objects including structures using a satellite signal receiver that receives satellite signals from a plurality of positioning satellites. An observation point consisting of a satellite signal receiver installed at one point on the outer surface of a relatively stable object, including a structure, or a plurality of satellite signal receivers installed at different positions on the outer surface, and a structure. Obtains displacement over time between a fixed point formed by a satellite signal receiver installed on the outer surface of a relatively stable object, including objects, or at a location other than the outer surface, including on the ground, through relative positioning. A relative positioning means is provided, and the relative positioning means selects a predetermined positioning satellite to be used for relative positioning from among a plurality of positioning satellites, and obtains the displacement by relative positioning using a satellite signal from the selected positioning satellite. , it is possible to accurately measure the displacement of the outer surface of a relatively stable object, such as a structure, using only observation points installed on the outer surface of the relatively stable object, including the structure. Therefore, the present invention is useful for monitoring displacement and deformation of not only the top (rooftop) but also the side (wall) of relatively stable objects, including structures installed in crowded environments. suitable.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、固定点の位置を算出し固定点の絶対位置とのずれを示す位置補正用データを算出する手段と、固定点と観測点における衛星信号の受信強度を測定して、各衛星信号について固定点における受信強度と観測点における受信強度を比較し、固定点における受信強度と観測点における受信強度の差が所定の閾値以上である衛星信号について観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、衛星信号を測位用衛星信号から除く手段と、測位用衛星信号のみを用いて観測点の位置を算出する手段と、算出した観測点の位置を前記位置補正用データによって補正する手段を有し、補正した観測点の位置に基づいて前記変位を取得するので、簡単かつ確実な方法によってマルチパスの影響を受けた衛星信号を判別して、観測点の位置を補正することにより、高精度な変位計測を実現することができる。 Further, according to another displacement measurement system according to the present invention, the relative positioning means includes means for calculating the position of the fixed point and calculating position correction data indicating a deviation from the absolute position of the fixed point; The reception strength of the satellite signal at the observation point is measured, and the reception strength at the fixed point and the reception strength at the observation point are compared for each satellite signal, and the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than or equal to a predetermined threshold. A means for calculating the carrier wave phase of an observation point for a satellite signal that is , and a means for detecting multipath if the satellite signal from a positioning satellite cannot be continuously received during calculation of the carrier wave phase, and the calculated carrier wave phase is set to a predetermined threshold value. In the above case, means for removing the satellite signal from the positioning satellite signal, means for calculating the position of the observation point using only the positioning satellite signal, and correcting the calculated position of the observation point using the position correction data. Since the displacement is obtained based on the corrected position of the observation point, the satellite signal affected by multipath can be determined by a simple and reliable method, and the position of the observation point can be corrected. This makes it possible to achieve highly accurate displacement measurement.

また、本発明に係る他の変位計測システムによれば、相対測位手段は、衛星信号の搬送波位相のアンビギュイティを固定点または観測点の位置に基づいて決定する手段と、アンビギュイティを保持する手段と、衛星信号受信機が出力する搬送波位相のサイクルスリップ情報に基づいて相対測位する手段の少なくとも一つを有するので、高精度な変位計測を実現することができる。 Further, according to another displacement measurement system according to the present invention, the relative positioning means includes means for determining the ambiguity of the carrier phase of the satellite signal based on the position of the fixed point or the observation point, and the means for maintaining the ambiguity. Since the apparatus includes at least one of means for performing relative positioning based on cycle slip information of the carrier phase output from the satellite signal receiver, highly accurate displacement measurement can be realized.

以上のように、本発明に係る変位計測方法および変位計測システムは、衛星測位システムを用いた構造物等を含めた比較的安定した物体の変位監視に有用であり、特に、都市部などの過密した環境に設置されている構造物等を含めた比較的安定した物体の壁面を変位監視する場合や、マルチパスを生じさせる障害物がある屋上などの場所に衛星測位機器を設置して変位監視する場合などに適している。 As described above, the displacement measurement method and displacement measurement system according to the present invention are useful for monitoring the displacement of relatively stable objects including structures using a satellite positioning system, and are particularly useful in overcrowded areas such as urban areas. When monitoring the displacement of a wall of a relatively stable object, including a structure installed in a harsh environment, or by installing a satellite positioning device in a place such as a rooftop where there are obstacles that cause multipath, displacement monitoring is possible. Suitable for situations such as

1 構造物
2 外壁面(外面)
3 屋上(外面)
10 変位計測システム
12 コンピュータ
14 相対測位手段
16 報知手段
18 警報手段
20 記憶手段
22 制御手段
A~E GNSS観測点
1 Structure 2 External wall surface (external surface)
3 Rooftop (exterior)
10 Displacement measurement system 12 Computer 14 Relative positioning means 16 Notification means 18 Alarm means 20 Storage means 22 Control means A to E GNSS observation points

Claims (2)

複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて、上空視野の限られた構造物等を含めた比較的安定した物体の変位を計測する方法であって、
構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点と、の間の時間経過に伴う変位を、相対測位により取得する相対測位ステップを備え、
前記相対測位ステップは、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記固定点と前記観測点における衛星信号の受信強度を測定して、各衛星信号について前記固定点における受信強度と前記観測点における受信強度を比較し、前記固定点における受信強度と前記観測点における受信強度の差が所定の閾値以上である衛星信号について前記観測点の搬送波位相を算出するステップと、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、この衛星信号を測位用衛星信号から除くステップと、測位用衛星信号を用いて前記観測点の位置を算出するステップと、算出した前記観測点の位置を位置補正用データによって補正するステップを有し、補正した前記観測点の位置に基づいて前記変位の相対測位を行うものであり、
前記固定点と前記観測点の初期座標を設定した後、前記固定点と前記観測点との間の時間経過に伴う前記変位を前記相対測位ステップによりリアルタイムで計測し、異常値を含めた計測結果を報知することを特徴とする変位計測方法。
A method for measuring the displacement of relatively stable objects, including structures with limited sky visibility, using a satellite signal receiver that receives satellite signals from multiple positioning satellites, the method comprising:
An observation point consisting of a satellite signal receiver installed at one point on the outer surface of a relatively stable object, including a structure, etc., or a plurality of satellite signal receivers installed at different positions on the outer surface, and a structure, etc. A relative positioning method that uses relative positioning to measure the displacement over time between a fixed point constructed by a satellite signal receiver installed on the outer surface of a relatively stable object, including the ground, or a position other than the outer surface, including on the ground. Equipped with a positioning step,
In the relative positioning step, a predetermined positioning satellite to be used for relative positioning is selected from a plurality of positioning satellites, and the reception strength of the satellite signal at the fixed point and the observation point is determined using the satellite signal from the selected positioning satellite. Measure and compare the reception strength at the fixed point and the reception strength at the observation point for each satellite signal, and for satellite signals for which the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than or equal to a predetermined threshold. a step of calculating the carrier wave phase of the observation point; and if a satellite signal from a positioning satellite cannot be continuously received during the calculation of the carrier wave phase, it is detected as multipath; and if the calculated carrier wave phase is equal to or higher than a predetermined threshold value; includes the steps of removing this satellite signal from the positioning satellite signal, calculating the position of the observation point using the positioning satellite signal, and correcting the calculated position of the observation point using position correction data. and performs relative positioning of the displacement based on the corrected position of the observation point,
After setting the initial coordinates of the fixed point and the observation point, the displacement between the fixed point and the observation point over time is measured in real time by the relative positioning step, and measurement results including abnormal values are obtained. A displacement measurement method characterized by notifying.
複数の測位衛星からの衛星信号を受信する衛星信号受信機を用いて、上空視野の限られた構造物等を含めた比較的安定した物体の変位を計測するシステムであって、
構造物等を含めた比較的安定した物体の外面の1点に設置した衛星信号受信機、もしくは、外面の互いに異なる位置に複数設置した衛星信号受信機により構成される観測点と、構造物等を含めた比較的安定した物体の外面または地盤上を含む外面以外の位置に設置した衛星信号受信機により構成される固定点と、の間の時間経過に伴う変位を、相対測位により取得する相対測位手段を備え、
前記相対測位手段は、複数の測位衛星のうち相対測位に利用する所定の測位衛星を選択し、選択した測位衛星からの衛星信号を用いて前記固定点と前記観測点における衛星信号の受信強度を測定して、各衛星信号について前記固定点における受信強度と前記観測点における受信強度を比較し、前記固定点における受信強度と前記観測点における受信強度の差が所定の閾値以上である衛星信号について前記観測点の搬送波位相を算出する手段と、搬送波位相の算出中に測位衛星からの衛星信号を連続して受信できない場合はマルチパスとして検出し、算出した搬送波位相が所定の閾値以上である場合は、この衛星信号を測位用衛星信号から除く手段と、測位用衛星信号を用いて前記観測点の位置を算出する手段と、算出した前記観測点の位置を位置補正用データによって補正する手段を有し、補正した前記観測点の位置に基づいて前記変位の相対測位を行うものであり、
前記固定点と前記観測点との間の時間経過に伴う前記変位を前記相対測位手段によりリアルタイムで計測し、異常値を含めた計測結果を報知することを特徴とする変位計測システム。
A system that measures the displacement of relatively stable objects, including structures with limited sky visibility, using a satellite signal receiver that receives satellite signals from multiple positioning satellites,
An observation point consisting of a satellite signal receiver installed at one point on the outer surface of a relatively stable object, including a structure, etc., or a plurality of satellite signal receivers installed at different positions on the outer surface, and a structure, etc. A relative positioning method that uses relative positioning to measure the displacement over time between a fixed point constructed by a satellite signal receiver installed on the outer surface of a relatively stable object, including the ground, or a position other than the outer surface, including on the ground. Equipped with positioning means,
The relative positioning means selects a predetermined positioning satellite to be used for relative positioning from among a plurality of positioning satellites, and measures the reception strength of the satellite signal at the fixed point and the observation point using the satellite signal from the selected positioning satellite. Measure and compare the reception strength at the fixed point and the reception strength at the observation point for each satellite signal, and for satellite signals for which the difference between the reception strength at the fixed point and the reception strength at the observation point is greater than or equal to a predetermined threshold. means for calculating a carrier phase of the observation point; and if satellite signals from a positioning satellite cannot be continuously received during calculation of the carrier phase, it is detected as multipath, and if the calculated carrier phase is greater than or equal to a predetermined threshold; means for removing this satellite signal from the positioning satellite signal, means for calculating the position of the observation point using the positioning satellite signal, and means for correcting the calculated position of the observation point using position correction data. and performs relative positioning of the displacement based on the corrected position of the observation point,
A displacement measurement system, characterized in that the displacement between the fixed point and the observation point over time is measured in real time by the relative positioning means, and the measurement results including abnormal values are reported.
JP2022009637A 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system Active JP7405378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022009637A JP7405378B2 (en) 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017079210A JP7075572B2 (en) 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system
JP2022009637A JP7405378B2 (en) 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017079210A Division JP7075572B2 (en) 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system

Publications (2)

Publication Number Publication Date
JP2022050685A JP2022050685A (en) 2022-03-30
JP7405378B2 true JP7405378B2 (en) 2023-12-26

Family

ID=64275099

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017079210A Active JP7075572B2 (en) 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system
JP2022009637A Active JP7405378B2 (en) 2017-04-12 2022-01-25 Displacement measurement method and displacement measurement system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017079210A Active JP7075572B2 (en) 2017-04-12 2017-04-12 Displacement measurement method and displacement measurement system

Country Status (1)

Country Link
JP (2) JP7075572B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018218A (en) * 2019-07-24 2021-02-15 清水建設株式会社 Displacement measuring method and displacement measuring system
US11782167B2 (en) * 2020-11-03 2023-10-10 2KR Systems, LLC Methods of and systems, networks and devices for remotely detecting and monitoring the displacement, deflection and/or distortion of stationary and mobile systems using GNSS-based technologies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256036A (en) 2006-03-23 2007-10-04 Maeda Corp Structure soundness determination system
US20080204315A1 (en) 2005-02-04 2008-08-28 Sepa-Sistemi Elettronici Per Automazione S.P.A. System and Method For Monitoring and Surveying Movements of the Terrain, Large Infrastructures and Civil Building Works In General, Based Upon the Signals Transmitted by the Gps Navigation Satellite System
JP2009074930A (en) 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Positioning device, positioning system, computer program, and positioning method
JP5232994B2 (en) 2005-06-06 2013-07-10 国立大学法人東京海洋大学 GPS receiver and GPS positioning correction method
JP2014085168A (en) 2012-10-22 2014-05-12 Nagata Denki Kk Position measurement system
JP2016102789A (en) 2014-11-18 2016-06-02 長田電機株式会社 Displacement monitoring system and displacement monitoring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080204315A1 (en) 2005-02-04 2008-08-28 Sepa-Sistemi Elettronici Per Automazione S.P.A. System and Method For Monitoring and Surveying Movements of the Terrain, Large Infrastructures and Civil Building Works In General, Based Upon the Signals Transmitted by the Gps Navigation Satellite System
JP5232994B2 (en) 2005-06-06 2013-07-10 国立大学法人東京海洋大学 GPS receiver and GPS positioning correction method
JP2007256036A (en) 2006-03-23 2007-10-04 Maeda Corp Structure soundness determination system
JP2009074930A (en) 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Positioning device, positioning system, computer program, and positioning method
JP2014085168A (en) 2012-10-22 2014-05-12 Nagata Denki Kk Position measurement system
JP2016102789A (en) 2014-11-18 2016-06-02 長田電機株式会社 Displacement monitoring system and displacement monitoring method

Also Published As

Publication number Publication date
JP7075572B2 (en) 2022-05-26
JP2022050685A (en) 2022-03-30
JP2018179734A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP7405378B2 (en) Displacement measurement method and displacement measurement system
JP4920079B2 (en) Seismic measurement system with GPS receiver
KR101667331B1 (en) Apparatus for getting signal quality of base station of plurality satellite navigation
US20100026569A1 (en) Method and apparatus for location detection using gps and wifi/wimax
CN110325819B (en) Accurate altitude estimation for indoor positioning
US11573335B2 (en) Method and apparatus for position estimation
JPWO2006132003A1 (en) GPS receiver and GPS positioning correction method
KR20160007351A (en) System and method for determining location using beacons
JP6602176B2 (en) Building damage assessment method
JP2016501365A (en) Method and associated apparatus for estimating error level in satellite geolocation measurement and monitoring reliability of said estimation
JP5925038B2 (en) Displacement observation method and displacement observation system
JP7162450B2 (en) Displacement measurement method and displacement measurement system
JP2004045158A (en) Ground movement measuring system
US20140240174A1 (en) Method and apparatus for determining non-line of sight (nlos) around a gps receiver
KR100812541B1 (en) Measuring System of Structure Using GNSS Network adjustment
KR100760215B1 (en) Structure construction management system using GNSS
CN111164460A (en) Electronic device, method and computer program for determining and using distances from matching constellation information
JP4914500B2 (en) Communication terminal device
JP2009250627A (en) Sensor position locating method
US20220350031A1 (en) Global Navigation Satellite System Interferometric Reflectometry Signature-Based Defense
JP2004144622A (en) Monitoring system for sloped face
JP4140699B2 (en) Slope monitoring system
JP2018059876A (en) Displacement monitoring method and displacement monitoring system for structure
JP2010139335A (en) Disaster urgent ground fluctuations analysis system and disaster urgent ground fluctuations analysis method
JP2024102744A (en) Ambiguity determination method, determination system, displacement measurement method and displacement measurement system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7405378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150