JP7400034B2 - flame detection device - Google Patents

flame detection device Download PDF

Info

Publication number
JP7400034B2
JP7400034B2 JP2022117695A JP2022117695A JP7400034B2 JP 7400034 B2 JP7400034 B2 JP 7400034B2 JP 2022117695 A JP2022117695 A JP 2022117695A JP 2022117695 A JP2022117695 A JP 2022117695A JP 7400034 B2 JP7400034 B2 JP 7400034B2
Authority
JP
Japan
Prior art keywords
flame
light reception
light
light receiving
radiation energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022117695A
Other languages
Japanese (ja)
Other versions
JP2022160504A (en
Inventor
秀成 松熊
功 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2022117695A priority Critical patent/JP7400034B2/en
Publication of JP2022160504A publication Critical patent/JP2022160504A/en
Application granted granted Critical
Publication of JP7400034B2 publication Critical patent/JP7400034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、有炎燃焼時のCO2共鳴により発生する赤外線放射を検出して、炎の有無を判定する炎検出装置に関する。 The present invention relates to a flame detection device that detects infrared radiation generated by CO2 resonance during flaming combustion to determine the presence or absence of a flame.

従来、有炎燃焼により発生する放射線エネルギーを検出して、炎の有無を検出する炎検出装置にあっては、炎と炎以外の赤外線放射体との識別を行うため、有炎燃焼時に発生するCO2の共鳴放射による波長帯域を含む複数の波長帯域における放射線強度を検出して、それら複数の波長帯域における検出値の相対比により炎の有無を検出する2波長式、3波長式等の炎検出装置や炎検出方法がよく知られている。 Conventionally, flame detection devices detect the presence or absence of flame by detecting the radiation energy generated by flaming combustion. Flame detection methods such as two-wavelength and three-wavelength methods that detect the radiation intensity in multiple wavelength bands, including the wavelength band due to resonance radiation of CO2, and detect the presence or absence of a flame based on the relative ratio of the detected values in the multiple wavelength bands. The equipment and flame detection methods are well known.

ここで、従来技術における2波長式、及び、3波長式の炎検出装置について、簡単に説明する。 Here, two-wavelength type and three-wavelength type flame detection devices in the prior art will be briefly explained.

図10は、燃焼炎と、その他の代表的な放射体の赤外波長域における放射線スペクトルを示す概念図であり、横軸は放射線の波長、縦軸は放射線の相対強度を示す。 FIG. 10 is a conceptual diagram showing radiation spectra in the infrared wavelength range of a combustion flame and other typical radiators, where the horizontal axis shows the wavelength of the radiation and the vertical axis shows the relative intensity of the radiation.

図10に示すように、燃焼炎のスペクトル特性100においては、CO2の共鳴放射により4.5μm付近の波長帯域に放射線相対強度のピークがあり、また、このピーク波長の近傍に存在する特徴的な波長としては、例えば、長波長側の5.0μm付近に、放射線相対強度が低い波長帯域が存在する。 As shown in FIG. 10, in the spectral characteristics 100 of the combustion flame, there is a peak of relative radiation intensity in the wavelength band around 4.5 μm due to resonance radiation of CO2, and characteristic As for the wavelength, for example, there is a wavelength band near 5.0 μm on the long wavelength side where the relative radiation intensity is low.

2波長式の炎検出装置にあっては例えば、4.5μm付近の波長帯域と、5.0μm付近の波長帯域における各々の放射線エネルギーを狭帯域の光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線エネルギーを検出し、これを光電変換したうえで増幅等所定の加工を施してエネルギー量に対応する電気信号(以下、「受光信号」という)とし、上記各々の波長帯域の受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定する。 In a two-wavelength flame detection device, for example, each radiation energy in a wavelength band around 4.5 μm and a wavelength band around 5.0 μm is selectively transmitted (passed) by a narrow optical wavelength bandpass filter. Then, the radiation energy is detected by a light receiving sensor, photoelectrically converted, and subjected to predetermined processing such as amplification to produce an electrical signal corresponding to the amount of energy (hereinafter referred to as "light receiving signal"), which is then converted into an electrical signal corresponding to the amount of energy (hereinafter referred to as "light receiving signal"), and is converted into an electric signal corresponding to the amount of energy (hereinafter referred to as "light receiving signal"). The presence or absence of flame is determined by calculating the relative ratio of the received light signal levels and comparing it with a predetermined threshold value.

これにより、炎以外の赤外線放射体、例えば、スペクトル特性102に示す太陽光(6000°C)等の高温放射体や、スペクトル特性104に示す比較的低温の放射体(300℃程度)、またスペクトル特性106に示す人体などの低温放射体等と炎との識別が可能となる。 This allows infrared radiators other than flames, such as high-temperature radiators such as sunlight (6000°C) shown in spectral characteristic 102, relatively low-temperature radiators (about 300°C) shown in spectral characteristic 104, and It becomes possible to distinguish between a flame and a low-temperature radiator such as a human body shown in characteristic 106.

また、例えば、上述した2波長に加え、CO2の共鳴放射帯である4.5μm帯に対し短波長側の、例えば、2.3μm付近の波長帯域における放射線エネルギーを2波長式と同様の手法で検出し、これらの3波長帯域における各受光信号の相対比によって炎の有無を判定する3波長式の炎検出装置も知られており炎と炎以外の赤外線放射体との識別性能をさらに向上させている。 For example, in addition to the two wavelengths mentioned above, radiation energy in a wavelength band on the short wavelength side, for example, around 2.3 μm, with respect to the 4.5 μm band, which is the resonant radiation band of CO2, can be calculated using a method similar to the two-wavelength method. A three-wavelength flame detection device is also known, which detects flames and determines the presence or absence of flame based on the relative ratio of each received light signal in these three wavelength bands. ing.

また、近年にあっては、炎の検出エリアを拡大するため、炎から放射される4.5μm付近の放射線エネルギーを受光する受光ユニットを例えば従来の倍数に増設し、各受光センサで光電変換しこれらを必要に応じ適宜それぞれ増幅等して加工した各受光信号を加算することで、検出エリアを拡大してもS/N(信号対ノイズ比)を損なうことなく、十分な検出感度が得られるようにしている。 In addition, in recent years, in order to expand the flame detection area, the number of light receiving units that receive radiation energy in the vicinity of 4.5 μm emitted from the flame has been increased, for example, to a multiple of the conventional number, and each light receiving sensor performs photoelectric conversion. By adding together the received light signals that have been amplified and processed as necessary, sufficient detection sensitivity can be obtained without compromising the S/N (signal-to-noise ratio) even if the detection area is expanded. That's what I do.

特開2016-128796号公報Japanese Patent Application Publication No. 2016-128796 特許第3357330号公報Patent No. 3357330 特開2016-102651号公報Japanese Patent Application Publication No. 2016-102651

しかしながら、炎から放射される4.5μm付近の放射線エネルギーを受光する受光ユニットを複数設け、各受光信号を加算して検出感度を高めるようにした炎検出装置にあっては従来、複数の受光ユニットに設けられた受光センサは、配置位置の相違から視野が異なるため、単一の受光センサのみが見えている単一視野範囲が存在し、単一視野範囲に存在する炎からの放射線エネルギーに対してはS/Nを高めることができない問題がある。 However, in the conventional flame detection device, a plurality of light receiving units are provided to receive radiation energy of around 4.5 μm emitted from a flame, and the detection sensitivity is increased by adding each light reception signal. The light receiving sensors installed in the However, there is a problem in that the S/N ratio cannot be increased.

このような単一視野範囲ではたとえば、遠方の炎は検出できないにも関わらず比較的近くの外乱光源の影響を受けて誤動作する危険性がある。 In such a single viewing range, for example, although a distant flame cannot be detected, there is a risk of malfunction due to the influence of a relatively nearby disturbance light source.

本発明は、受光ユニットの障害を確実に判断するため、炎から放射される放射線エネルギーを受光する受光ユニットを複数設け、各受光信号を加算して検出感度を高めるようにした炎検出装置について、単一の受光ユニットのみが見えている範囲を実質的に視野範囲外とするようにして、S/Nの低い視野領域を排除した炎検出装置を提供することを目的とする。 The present invention relates to a flame detection device in which a plurality of light receiving units are provided to receive radiation energy emitted from a flame, and each light receiving signal is added to increase detection sensitivity in order to reliably determine a failure of the light receiving unit. It is an object of the present invention to provide a flame detection device in which a range in which only a single light receiving unit is visible is substantially outside the visual field, thereby eliminating a low S/N visual field area.

(炎検出装置)
本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
所定の視野範囲に存在する燃焼炎からの放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと、
複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部と、
複数の受光信号に基づいて判断部による炎有無の判断又は判断結果の採用を許容する判断制御部と、
を備えたことを特徴とする。
(Flame detection device)
The present invention is a flame detection device that determines and detects the presence or absence of a combustion flame by observing radiation energy emitted from a combustion flame, comprising:
a plurality of light receiving units that output light receiving signals observing the same wavelength band among the radiation energy from the combustion flame existing in a predetermined viewing range;
a determination unit that determines the presence or absence of a flame based on the plurality of light reception signals output from the plurality of light reception units;
a judgment control unit that allows the judgment unit to judge the presence or absence of a flame or adopt the judgment result based on the plurality of light reception signals;
It is characterized by having the following.

複数の受光ユニットは、各々の視野範囲が重なる有効視野範囲と、各々の視野範囲が重ならない単一視野範囲を有して配置され、
判断制御部は、判断部による炎の有無の判断又は判断結果の採用を、有効視野範囲においては許容し、単一視野範囲においては禁止する。
The plurality of light receiving units are arranged to have an effective viewing range in which the viewing ranges of each unit overlap, and a single viewing range in which the viewing ranges do not overlap,
The judgment control unit allows the judgment unit to judge the presence or absence of flame or adopt the judgment result within the effective field of view range, but prohibits it in the single field of view range.

判断制御部は、複数の受光ユニットから出力された各受光信号の間の差分、及び複数の受光ユニットから出力された加算受光信号と各受光信号との比較に基づいて判断部による炎有無の判断又は判断結果の採用を許容する。 The determination control section causes the determination section to determine the presence or absence of a flame based on the difference between the respective light reception signals output from the plurality of light reception units and the comparison between the added light reception signals output from the plurality of light reception units and each light reception signal. Or allow the adoption of the judgment results.

また、判断制御部は、複数の受光ユニットから出力された各受光信号の間の差分を検出し、差分が所定値以下又は所定値を下回った場合は、判断部による炎有無の判断又は判断結果の採用を許容し、振幅積分値の差分が所定値以上又は所定値を上回った場合、又は複数の受光ユニットから出力された加算受光信号と各受光信号の何れかが略一致する場合は、判断部による炎有無の判断又は判断結果の採用を禁止する。 In addition, the judgment control section detects the difference between each light reception signal output from the plurality of light reception units, and if the difference is less than or equal to a predetermined value, the judgment section determines whether there is a flame or the judgment result. is allowed to be adopted, and if the difference in the amplitude integral value is greater than or equal to a predetermined value, or if the summed received light signal output from multiple light receiving units and any of the received light signals approximately match, a judgment is made. Prohibits the department from determining whether there is a flame or adopting the results of the determination.

(基本的な効果)
本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと、複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部と、複数の受光ユニットから出力された各受光信号の間の差分、及び複数の受光ユニットから出力された加算受光信号と各受光信号との比較に基づいて判断部による炎有無の判断又は判断結果の採用を許容する判断制御部と、を備えたため、
或いは、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと、複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部と、複数の受光ユニットから出力された各受光信号の間の差分を検出し、差分が所定値以下又は所定値を下回った場合は、判断部による炎有無の判断又は判断結果の採用を許容し、差分が所定値以上又は所定値を上回った場合、又は複数の受光ユニットから出力された加算受光信号と各受光信号の何れかが略一致する場合は、判断部による炎有無の判断又は判断結果の採用を禁止する判断制御部と、を備えたため、
複数の受光ユニットを設けた場合に受光位置の相違により単一の受光ユニットのみが見えている単一視野範囲を実質的に排除することで、低S/Nの不要な視野拡がりを抑制するので、たとえばこのような不要視野範囲に存在する外乱光源などによる誤動作を回避できる。すなわち、有効視野を高S/Nの範囲に絞り込むことができる。
(basic effect)
The present invention is a flame detection device that observes radiation energy emitted from a combustion flame and determines and detects the presence or absence of a combustion flame. a light receiving unit, a determining unit that determines the presence or absence of a flame based on a plurality of light receiving signals output from the plurality of light receiving units, a difference between each light receiving signal output from the plurality of light receiving units, and a plurality of light receiving units. and a judgment control unit that allows the judgment unit to judge whether there is a flame or to adopt the judgment result based on the comparison between the added light reception signal outputted from the addition light reception signal and each light reception signal,
Alternatively, it is a flame detection device that observes radiation energy emitted from a combustion flame to determine and detect the presence or absence of a combustion flame, and includes a plurality of light receiving devices that output received light signals observing the same wavelength band of radiation energy. unit, a determination section that determines the presence or absence of a flame based on the plurality of light reception signals output from the plurality of light reception units, and a determination section that detects the difference between each light reception signal output from the plurality of light reception units, and the difference is set to a predetermined value. If the difference is equal to or less than a predetermined value, the determination unit determines whether there is a flame or the determination result is accepted, and if the difference is greater than or equal to the predetermined value, or the additional light received output from multiple light receiving units and a determination control unit that prohibits the determination unit from determining the presence or absence of a flame or from adopting the determination result when the signal and any of the received light signals substantially match;
By effectively eliminating a single field of view where only a single light receiving unit is visible due to differences in light receiving positions when multiple light receiving units are installed, unnecessary widening of the field of view with low S/N is suppressed. For example, malfunctions caused by disturbance light sources existing in such an unnecessary visual field can be avoided. That is, the effective field of view can be narrowed down to a high S/N range.

また、本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、所定の視野範囲に存在する燃焼炎からの放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと、複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部と、複数の受光信号に基づいて判断部による炎有無の判断又は判断結果の採用を許容又は禁止する判断制御部と、を備え、複数の受光ユニットは、各々の視野範囲が重なる有効視野範囲と、各々の視野範囲が重ならない単一視野範囲を有して配置され、判断制御部は、判断部による炎の有無の判断又は判断結果の採用を、有効視野範囲においては許容し、単一視野範囲においては禁止することで、S/N改善により検出感度を高めることのできない単一視野範囲からの放射線エネルギーに対し、判断制御部により判断部による炎有無の判断を禁止することで、実質的に単一視野範囲を有効視野範囲外とした炎検出を可能とする。 The present invention also provides a flame detection device that observes the radiation energy emitted from a combustion flame to determine and detect the presence or absence of a combustion flame, which detects radiation energy emitted from the combustion flame existing in a predetermined field of view. A plurality of light-receiving units that output light-receiving signals that observe the same wavelength band, a determining unit that determines the presence or absence of a flame based on the plurality of light-receiving signals output from the plurality of light-receiving units, and a judgment unit that determines the presence or absence of a flame based on the plurality of light-receiving signals. a judgment control section that allows or prohibits judgment of the presence or absence of a flame by the unit or adoption of the judgment result; The judgment control unit allows the judgment unit to judge the presence or absence of flame or adopt the judgment result in the effective visual field range and prohibits it in a single visual field range. For radiation energy from a single field of view where detection sensitivity cannot be increased by N improvement, the judgment control section prohibits the judgment section from determining the presence or absence of a flame, effectively making the single field of view outside the effective field of view. This makes it possible to detect flames.

(複数の受光信号の積分値差分による判断制御の効果)
また、判断制御部は、所定期間分の複数の受光信号の振幅積分値の差分を検出し、振幅積分値の差分が所定値以下又は所定値を下回った場合に判断部による炎有無の判断を許容し、振幅積分値の差分が所定値以上又は所定値を上回った場合に判断部による炎有無の判断又は判断結果の採用を禁止するようにしたため、複数の受光信号の差分を確実に検出して炎有無の判断又は判断結果の採用を許容するか禁止するかを制御できる。
(Effect of judgment control based on integral value difference of multiple light reception signals)
Further, the judgment control section detects a difference in the amplitude integral values of the plurality of light reception signals for a predetermined period, and causes the judgment section to judge whether there is a flame or not when the difference in the amplitude integral values is less than or equal to a predetermined value. However, if the difference between the amplitude integral values is equal to or greater than a predetermined value, the determination unit is prohibited from determining the presence or absence of a flame or from adopting the determination result, so the difference between multiple received light signals can be reliably detected. It is possible to control whether to allow or prohibit the judgment of the presence or absence of a flame or the adoption of the judgment result.

炎検出装置の実施形態を示したブロック図Block diagram showing an embodiment of a flame detection device 炎検出装置の外観を示した説明図Explanatory diagram showing the external appearance of the flame detection device 受光センサの構造を示した説明図Explanatory diagram showing the structure of the light receiving sensor 図3の受光センサの等価回路を示した回路図Circuit diagram showing the equivalent circuit of the light receiving sensor in Figure 3 受光センサの配置と視野範囲を示した説明図Explanatory diagram showing the arrangement and field of view of the light receiving sensor 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから出力される受光信号を示した信号波形図Signal waveform diagram showing the light reception signal output from the light receiving unit in Figure 1 when observing radiation energy emitted from a combustion flame. 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから得られる加算受光信号の周波数分布を示した説明図An explanatory diagram showing the frequency distribution of the added light reception signal obtained from the light reception unit in Figure 1 when observing the radiation energy emitted from the combustion flame. 2波長方式の炎検出装置の実施形態を示したブロック図Block diagram showing an embodiment of a two-wavelength flame detection device 図8の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図Characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and translucent window applied to the embodiment of FIG. 8 燃焼炎と、その他の代表的な放射体の放射線スペクトルを示した特性図Characteristic diagram showing the radiation spectra of combustion flame and other typical radiators

[炎検出装置]
(装置概要)
図1は炎検出装置の実施形態を示したブロック図である。図1に示すように、本実施形態の炎検出装置10は、2組の受光ユニット12a,12b、MPU(マイクロコンピュータユニット)15に設けられた判断制御部36と判断部38で構成される。
[Flame detection device]
(Device overview)
FIG. 1 is a block diagram showing an embodiment of a flame detection device. As shown in FIG. 1, the flame detection device 10 of this embodiment includes two sets of light receiving units 12a and 12b, and a determination control section 36 and a determination section 38 provided in an MPU (microcomputer unit) 15.

受光ユニット12a,12bは、監視領域に存在する燃焼炎から放射される放射線エネルギーを観測するものであり、大別して、燃焼炎からCO2共鳴に伴って放射される、概ね4.5μmを中心波長とする波長帯の放射線エネルギーを観測して光電変換し、受光信号E1,E2を出力する。 The light receiving units 12a and 12b are for observing the radiation energy emitted from the combustion flame existing in the monitoring area, and can be roughly divided into radiation energy emitted from the combustion flame along with CO2 resonance, with a center wavelength of approximately 4.5 μm. The radiation energy in the wavelength band is observed, photoelectrically converted, and the received light signals E1 and E2 are output.

受光ユニット12a,12bには、受光センサ22a,22b、前置フィルタ24a,24b、プリアンプ26a,26b、メインアンプ28a,28bが設けられ、メインアンプ28a,28bから出力された受光信号E1,E2は終段アンプ30a,30bでさらに増幅され、MPU15のA/D変換ポート35a,35bでデジタル受光信号に変換して取り込まれる。 The light receiving units 12a, 12b are provided with light receiving sensors 22a, 22b, prefilters 24a, 24b, preamplifiers 26a, 26b, and main amplifiers 28a, 28b, and the light receiving signals E1, E2 output from the main amplifiers 28a, 28b are The signals are further amplified by the final stage amplifiers 30a and 30b, and converted into digital light reception signals by the A/D conversion ports 35a and 35b of the MPU 15, and then taken in.

また、受光ユニット12a,12bからの受光信号E1,E2は加算器32で加算増幅
されて加算受光信号E3としてMPU15に出力され、MPU15のA/D変換ポート35cでデジタル受光信号に変換して取り込まれる。判断制御部36は、受光ユニット12a,12bから出力された受光信号E1,E2の間の差分ΔEを検出し、差分ΔEが所定値以下又は所定値を下回った場合に判断部38による炎有無の判断を許容し、差分ΔEが所定値を上回った場合に判断部38による炎有無の判断を禁止する、或いは判断結果を採用しない(たとえば炎有りの判断結果であっても外部へ出力しない)ようにしてもよい。
In addition, the light reception signals E1 and E2 from the light reception units 12a and 12b are summed and amplified by the adder 32 and outputted to the MPU 15 as an added light reception signal E3, and converted into a digital light reception signal by the A/D conversion port 35c of the MPU 15 and taken in. It can be done. The judgment control unit 36 detects the difference ΔE between the light reception signals E1 and E2 output from the light reception units 12a and 12b, and when the difference ΔE is less than or equal to a predetermined value, the judgment unit 38 determines whether there is a flame or not. If the difference ΔE exceeds a predetermined value, the determination unit 38 is prohibited from determining the presence or absence of a flame, or the determination result is not adopted (for example, even if the determination result is that there is a flame, it is not output to the outside). You can also do this.

差分ΔEはたとえば、受光信号E1に基づくデジタル受光信号と、受光信号E2に基づくデジタル受光信号E1’,E2’について、各々所定期間の積分値を求め、その差として算出する。 The difference ΔE is calculated as the difference between, for example, the integral values of the digital light reception signal based on the light reception signal E1 and the digital light reception signals E1' and E2' based on the light reception signal E2 over a predetermined period.

判断部38は、加算器32から出力された加算受光信号E3に基づき燃焼炎の有無を判断して検出する。 The determining unit 38 determines and detects the presence or absence of combustion flame based on the added light reception signal E3 output from the adder 32.

(装置外観とセンサユニット)
図2は炎検出装置の外観を示した説明図である。図2に示すように、炎検出装置10は、天井面の検知器ベースに取り付けられる本体50の下部に設けられたカバー52の下面に透光性窓18を設け、透光性窓18の内部に配置された基板54に、図1に示した光学ユニット12a,12bの受光センサ16a,16bを配置している。また、透光性窓18の近傍の内部の受光素子を見渡せる位置に、個別の試験ランプを外部試験光源として収納した試験光源用透光窓25を設けている。
(Device appearance and sensor unit)
FIG. 2 is an explanatory diagram showing the external appearance of the flame detection device. As shown in FIG. 2, the flame detection device 10 includes a light-transmitting window 18 on the lower surface of a cover 52 provided at the bottom of a main body 50 that is attached to a detector base on the ceiling. The light receiving sensors 16a, 16b of the optical units 12a, 12b shown in FIG. 1 are arranged on the substrate 54 arranged in the substrate 54. Further, a light-transmitting window 25 for a test light source is provided in the vicinity of the light-transmitting window 18 at a position where the light-receiving element inside can be seen.

(受光ユニット12a,12bの構成)
図1に示した受光ユニット12a,12bにおいて、受光センサ16a,16bは燃焼炎からCO2共鳴に伴って放射される、概ね4.5μmを中心波長とする赤外線波長帯域を有する放射線エネルギーを電気信号に変換して受光信号として出力し、前置フィルタ24a,24bは受光センサ16a,16bから出力される受光信号から、炎の揺らぎ周波数に対応した所定の周波数帯域の信号成分を選択通過させ、プリアンプ26a,26bは前置フィルタ24a,24bを通過した信号成分を初段増幅し、メインアンプ28a,28b、終段アンプ30a,30bは炎判断処理に適した信号レベルに増幅して受光信号E1,E2を出力する。
(Configuration of light receiving units 12a, 12b)
In the light-receiving units 12a and 12b shown in FIG. 1, the light-receiving sensors 16a and 16b convert radiation energy having an infrared wavelength band with a center wavelength of approximately 4.5 μm, which is emitted from a combustion flame along with CO2 resonance, into electrical signals. The pre-filters 24a and 24b selectively pass signal components in a predetermined frequency band corresponding to the flame fluctuation frequency from the light-receiving signals output from the light-receiving sensors 16a and 16b, and the preamplifier 26a , 26b amplify the signal components that have passed through the prefilters 24a, 24b at the first stage, and main amplifiers 28a, 28b and final stage amplifiers 30a, 30b amplify the received light signals E1, E2 to a signal level suitable for flame determination processing. Output.

ここで、受光センサ16a,16bは、サファイアガラス等の赤外線透光性の部材を用いて共用する透光性窓18、光学波長フィルタ20a,20b、及び受光素子22a,22bを備えている。 Here, the light-receiving sensors 16a and 16b include a light-transmitting window 18 made of an infrared-transparent member such as sapphire glass, optical wavelength filters 20a and 20b, and light-receiving elements 22a and 22b.

終段アンプ30a,30bを介して出力された受光信号E1,E2は、MPU15に設けたA/D変換ポート35a,35bによりデジタル受光信号に変換して読み込まれ、判断制御部36による炎有無の判断の許容又は禁止判定され、許容される場合は判断部38に対し許容が指示され、火災有無が判断される。 The light receiving signals E1 and E2 outputted via the final stage amplifiers 30a and 30b are converted into digital light receiving signals and read by the A/D conversion ports 35a and 35b provided in the MPU 15, and the judgment control unit 36 determines whether there is a flame or not. It is determined whether the judgment is permitted or prohibited, and if the judgment is permitted, permission is instructed to the judgment unit 38, and the presence or absence of a fire is determined.

また、受光ユニット12a,12bから出力された受光信号E1およびE2は加算器32で加算され、加算器32からの加算受光信号E3はMPU15に設けたA/D変換ポート35cによりデジタル受光信号に変換して読み込まれ、判断制御部36から炎有無の判断の許容指示を受けた判断部38による炎有無の判断が実行される。以下、各構成について具体的に説明する。 Further, the light receiving signals E1 and E2 outputted from the light receiving units 12a and 12b are added by an adder 32, and the added light receiving signal E3 from the adder 32 is converted into a digital light receiving signal by an A/D conversion port 35c provided in the MPU 15. The determination unit 38 receives an instruction to allow the determination of the presence or absence of a flame from the determination control unit 36 and executes the determination of the presence or absence of a flame. Each configuration will be specifically explained below.

(受光センサ16a,16b)
図3は受光センサの概略構成を示した説明図、図4は図3の受光センサの等価回路を示した回路図である。
(Light receiving sensor 16a, 16b)
FIG. 3 is an explanatory diagram showing a schematic configuration of a light receiving sensor, and FIG. 4 is a circuit diagram showing an equivalent circuit of the light receiving sensor of FIG.

図3に示すように、受光センサ16a,16bは、基板40a,40bの表面に支持配置された焦電体45a,45bを備え、これに受光電極25a、25bを設け、基板40a,40bの裏面側に配置されたFET27を備えてなる受光素子部22a,22bと、基板40a,40bを基部38a,38b上に支持するため、基部38a,38bを貫通して設けられた端子42a,42bと、受光素子部22a,22bの前方に4.5μmを中心とした赤外線を選択透過する光学波長フィルタ20a,20bを備えたカバー部材44a,44bとからなるパッケージ化された構成を有している。 As shown in FIG. 3, the light receiving sensors 16a, 16b include pyroelectric bodies 45a, 45b supported and arranged on the surfaces of substrates 40a, 40b, and light receiving electrodes 25a, 25b are provided thereon. Light-receiving element portions 22a and 22b including FETs 27 disposed on the sides; terminals 42a and 42b provided through the base portions 38a and 38b to support the substrates 40a and 40b on the base portions 38a and 38b; It has a packaged structure consisting of cover members 44a and 44b provided with optical wavelength filters 20a and 20b that selectively transmit infrared rays centered at 4.5 μm in front of the light receiving element portions 22a and 22b.

また、受光素子部22a,22bの等価回路は、図4に示すように、FET27のゲートから例えば焦電体45aと、図4では図示省略した高抵抗29の並列回路を介してゲート端子Gに接続し、またFET27のドレインとソースをそれぞれドレイン端子Dとソース端子Sに接続している。各端子は図4の端子42aとして(図4には2本しか図示していないが、それぞれに対応する端子がある)パッケージ外部に引き出される。 Further, as shown in FIG. 4, the equivalent circuit of the light receiving element portions 22a and 22b is connected to the gate terminal G from the gate of the FET 27 via a parallel circuit of a pyroelectric material 45a and a high resistance 29 (not shown in FIG. 4). Furthermore, the drain and source of the FET 27 are connected to the drain terminal D and the source terminal S, respectively. Each terminal is drawn out to the outside of the package as the terminal 42a in FIG. 4 (although only two terminals are shown in FIG. 4, there are terminals corresponding to each terminal).

ここで、光学波長フィルタ20aは、例えば、シリコン、ゲルマニウム、サファイア等の基板上に、公知の方法でそれぞれ形成することができる。 Here, the optical wavelength filter 20a can be formed, for example, on a substrate of silicon, germanium, sapphire, or the like by a known method.

(透光性窓18)
透光性窓18は、図2及び図3に示したように、受光センサ16a,16bが収納された図4のセンサユニットの監視エリア側に相当する上面側であって、受光センサ16a,16bの前面側に設けた所定の開口部に配置され、上述のように、例えば、サファイアガラス等の赤外線透光性の部材により形成している。このため受光素子部22a,22bは、受光限界視野が透光性窓18の縁辺部で規制されることにより、所定の拡がり角度を有する検知エリアが設定される。本実施形態にあっては、透光性窓18は共用部材として、受光センサ16a,16bに含まれるものとして説明する。
(Translucent window 18)
As shown in FIGS. 2 and 3, the light-transmitting window 18 is located on the upper surface side corresponding to the monitoring area side of the sensor unit in FIG. 4 in which the light-receiving sensors 16a, 16b are housed, and It is disposed in a predetermined opening provided on the front side of the camera, and as described above, is made of an infrared transparent member such as sapphire glass. Therefore, in the light-receiving element parts 22a and 22b, the light-receiving limit field of view is restricted by the edge portion of the translucent window 18, so that a detection area having a predetermined spread angle is set. In this embodiment, the translucent window 18 will be described as a shared member included in the light receiving sensors 16a, 16b.

(受光センサ16a,16bの視野範囲)
図5は受光センサの配置と視野範囲を示した説明図である。図5に示すように、回路基板48上に隣接して配置された受光センサ16a,16bは、透光性窓18の内側に配置されており、軸心線間距離で示す所定の間隔dだけ離れた異なる位置に配置されている。
(Visual range of light receiving sensors 16a, 16b)
FIG. 5 is an explanatory diagram showing the arrangement and viewing range of the light receiving sensor. As shown in FIG. 5, the light receiving sensors 16a and 16b arranged adjacently on the circuit board 48 are arranged inside the translucent window 18, and are spaced apart by a predetermined distance d indicated by the distance between the axes. placed in different locations.

このため受光センサ 16a,16bは所定の拡がり角度θをもつ視野範囲を検知エリアとしているが、位置の相違により、受光センサ16aの上側の視野範囲の限界線60と受光センサ16bの上側の視野範囲の限界線62との間の領域64は、受光センサ16aのみから見える単一視野範囲となる。 For this reason, the light-receiving sensors 16a and 16b have a viewing range with a predetermined spread angle θ as their detection area, but due to the difference in position, the upper viewing range limit line 60 of the light-receiving sensor 16a and the upper viewing range of the light-receiving sensor 16b A region 64 between the limit line 62 and the limit line 62 becomes a single visual field visible only from the light receiving sensor 16a.

また、受光センサ16aの下側の視野範囲の限界線60と受光センサ16bの下側の視野範囲の限界線62との間の領域66は、受光センサ16bのみから見える単一視野範囲となる。 Further, an area 66 between the limit line 60 of the lower viewing range of the light receiving sensor 16a and the limit line 62 of the lower viewing range of the light receiving sensor 16b becomes a single viewing range visible only from the light receiving sensor 16b.

このため単一視野範囲64に存在する炎からの放射線エネルギーは受光センサ16aのみで受光され、図1の受光ユニット12aからの受光信号E1は所定レベルとなるが、受光ユニット12bからの受光信号E2はゼロレベルとなり、加算器32からの加算受光信号E3は受光信号E1と同じであり、S/Nの改善により検出感度を高めることはできない。 Therefore, the radiation energy from the flame existing in the single viewing range 64 is received only by the light receiving sensor 16a, and the light receiving signal E1 from the light receiving unit 12a in FIG. 1 is at a predetermined level, but the light receiving signal E2 from the light receiving unit 12b is is at zero level, and the added light reception signal E3 from the adder 32 is the same as the light reception signal E1, and the detection sensitivity cannot be increased by improving the S/N ratio.

また、単一視野範囲66に存在する炎からの放射線エネルギーは受光センサ16bのみで受光され、図1の受光ユニット12bからの受光信号E2は所定レベルとなるが、受光ユニット12aからの受光信号E1はゼロレベルとなり、加算器32からの加算受光信号
E3は受光信号E2と同じであり、S/Nの改善により検出感度を高めることはできない。
Further, the radiation energy from the flame existing in the single viewing range 66 is received only by the light receiving sensor 16b, and the light receiving signal E2 from the light receiving unit 12b in FIG. 1 is at a predetermined level, but the light receiving signal E1 from the light receiving unit 12a is is at zero level, and the added light reception signal E3 from the adder 32 is the same as the light reception signal E2, and the detection sensitivity cannot be increased by improving the S/N ratio.

このようにS/N改善により検出感度を高めることのできない単一視野範囲64,66からの放射線エネルギーに対し、本実施形態にあっては、判断制御部36により判断部38による炎有無の判断を禁止することで、実質的に単一視野範囲64,66を有効視野範囲外とした炎検出を可能とする。 In this embodiment, with respect to radiation energy from the single field of view ranges 64 and 66 for which the detection sensitivity cannot be increased by improving the S/N, the determination control unit 36 allows the determination unit 38 to determine the presence or absence of a flame. By prohibiting this, flame detection can be performed with the single visual field ranges 64 and 66 substantially outside the effective visual field range.

(前置フィルタ24a)
前置フィルタ24aは、周波数選択部として機能し、受光センサ16aの受光素子部22aから出力される受光信号から、炎判断処理に用いられる特定の周波数帯域の信号成分のみを通過させる例えばアクティブフィルタであり、後段のプリアンプ26aに特定の周波数帯域の信号成分を含む受光信号を出力する。このような周波数選択フィルタは、前置フィルタとしてだけでなくプリアンプから終段アンプまで適宜に配置され、周波数選択(抽出)しつつ信号増幅されるようになっている。
(Pre-filter 24a)
The prefilter 24a functions as a frequency selection section, and is, for example, an active filter that passes only signal components in a specific frequency band used for flame determination processing from the light reception signal output from the light reception element section 22a of the light reception sensor 16a. A received light signal containing a signal component in a specific frequency band is output to the preamplifier 26a at the subsequent stage. Such frequency selection filters are arranged not only as prefilters but also from preamplifiers to final stage amplifiers, and are designed to amplify signals while selecting (extracting) frequencies.

(プリアンプ26a,26bとメインアンプ28a,28b)
プリアンプ26a,26bは、前置フィルタ24a,24bを介して入力される受光信号を所定の増幅率で初段増幅し、メインアンプ28a,28bは、プリアンプ26a,26bからの各受光信号を、受光信号E1,E2として出力する。終段アンプ30a,30bは、受光信号E1,E2を最終的に炎判断処理に適した信号レベルに調整増幅し、E1’,E2’としてMPU15のA/D変換ポート35a,35bへ出力する。
(Preamplifiers 26a, 26b and main amplifiers 28a, 28b)
The preamplifiers 26a, 26b amplify the received light signals input via the pre-filters 24a, 24b at a predetermined amplification factor, and the main amplifiers 28a, 28b convert the received light signals from the preamplifiers 26a, 26b into received light signals. Output as E1 and E2. The final stage amplifiers 30a, 30b adjust and amplify the received light signals E1, E2 to a signal level finally suitable for flame determination processing, and output them to the A/D conversion ports 35a, 35b of the MPU 15 as E1', E2'.

(加算アンプ32)
加算アンプ32は、受光ユニット12a,12bのメインアンプ28a,28bからの受光信号E1,E2を入力して加算した後に、後段のMPU15に設けたAD変換ポート35cの入力に適した電圧レベルの加算信号E3に変換して出力する。
(Additional amplifier 32)
The summing amplifier 32 inputs and adds the received light signals E1 and E2 from the main amplifiers 28a and 28b of the light receiving units 12a and 12b, and then adds a voltage level suitable for input to the AD conversion port 35c provided in the MPU 15 at the subsequent stage. It is converted into signal E3 and output.

(A/D変換ポート35a,35b,35c)
A/D変換ポート35a、35b,35cはMPU15の入力ポートとして設けたA/D変換器であり、受光信号(アナログ受光信号)E1,E2を終段アンプ30a,30bで処理した後の各信号及び加算信号E3をデジタル信号に変換して読み込む。
(A/D conversion ports 35a, 35b, 35c)
A/D conversion ports 35a, 35b, and 35c are A/D converters provided as input ports of the MPU 15, and each signal after receiving light signals (analog light receiving signals) E1 and E2 is processed by final stage amplifiers 30a and 30b. and converts the addition signal E3 into a digital signal and reads it.

(判断制御部36)
図6は燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから出力される受光信号を示した信号波形図であり、図6(A)はA/D変換ポート35aからの、E1’由来のデジタル信号波形を示し、図6(B)はA/D変換ポート35bからの、E2’由来のデジタル信号波形を示す。
(Judgment control unit 36)
FIG. 6 is a signal waveform diagram showing a light reception signal output from the light reception unit of FIG. 1 when radiation energy radiated from a combustion flame is observed, and FIG. , E1'-derived digital signal waveforms, and FIG. 6(B) shows E2'-derived digital signal waveforms from the A/D conversion port 35b.

なお、本実施形態にあっては、A/D変換は64Hzで受光信号をサンプリングして行うものとし、すなわち各信号につき1秒間に64点のデジタルデータが得られるものとする。また、簡単のため、以降はA/D変換後の信号も変換前と同じく受光信号E1’,E2’,E3という。 In this embodiment, it is assumed that A/D conversion is performed by sampling the received light signal at 64 Hz, that is, 64 points of digital data are obtained per second for each signal. For simplicity, the signals after A/D conversion will also be referred to as light reception signals E1', E2', and E3 in the same manner as before conversion.

判断制御部36は、図1の受光ユニット12a,12bから出力される図6に示す受光信号E1’,E2’の間の差分を検出する。判断制御部36による差分の検出は、図6に示す受光信号E1’、E2’をT=2秒(128データ)単位で、受光信号E1,E2の中点となる基準電位からのプラス及びマイナス側の振幅との差分の絶対値となる積分値ΣE1’,ΣE2’を求め、積分値の差分ΔEを、
ΔE=ΣE1’-ΣE2’
として算出する。
The determination control section 36 detects the difference between the light reception signals E1' and E2' shown in FIG. 6 output from the light reception units 12a and 12b of FIG. 1. The detection of the difference by the judgment control unit 36 is performed by detecting the positive and negative potentials of the received light signals E1' and E2' shown in FIG. Find the integral values ΣE1' and ΣE2' which are the absolute values of the difference with the amplitude on the side, and calculate the difference ΔE of the integral values as
ΔE=ΣE1'-ΣE2'
Calculated as

続いて、判断制御部36は、積分値の差分ΔEの絶対値が所定値以下又は所定値を下回った場合に判断部38による炎有無の判断を許容し、一方、積分値の差分のΔEの絶対値が所定値以上又は所定値を上回った場合には、判断部38による炎有無の判断を禁止する制御を行う。 Subsequently, the determination control unit 36 allows the determination unit 38 to determine the presence or absence of a flame when the absolute value of the difference ΔE in the integral values is equal to or less than a predetermined value, and on the other hand, the determination control unit 36 allows the determination unit 38 to determine whether there is a flame or not. If the absolute value is greater than or equal to a predetermined value, control is performed to prohibit the determination unit 38 from determining the presence or absence of a flame.

このため受光ユニット12a,12bが正常に動作している場合に、受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以下又は所定値を下回ることから、判断制御部36は判断部38による炎有無の判断を許容する。 Therefore, when the light receiving units 12a and 12b are operating normally, the absolute value of the difference ΔE between the integral values of the light receiving signals E1' and E2' is less than or equal to a predetermined value, so the judgment control unit 36 The judgment unit 38 is allowed to judge whether there is a flame or not.

これに対し受光ユニット12a,12bの何れか一方が障害を起した場合には、受光信号E1’,E2’の相違が大きくなり、受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以上又は所定値を上回ることから、判断制御部36は判断部38による炎有無の判断を禁止する。或いは、積分値の差分のΔEの絶対値が所定値以上又は所定値を上回った場合には、判断部38で判断結果を採用しない(たとえば炎有りの判断結果であっても外部へ出力しない)ようにしても良い。 On the other hand, if either one of the light receiving units 12a, 12b has a failure, the difference between the light receiving signals E1', E2' increases, and the absolute value of the difference ΔE between the integral values of the light receiving signals E1', E2' increases. is greater than or equal to the predetermined value, the determination control unit 36 prohibits the determination unit 38 from determining the presence or absence of a flame. Alternatively, if the absolute value of ΔE, which is the difference between the integral values, is greater than or equal to a predetermined value, the determination unit 38 does not adopt the determination result (for example, even if the determination result is that there is a flame, it is not output to the outside). You can do it like this.

また、判断制御部36が受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以上又は所定値を上回ることで判断部38による炎有無の判断を禁止する制御は、受光ユニット12a,12bの何れかの障害に起因している可能性が高いことから、判断制御部36は装置内に設けている内部試験光源の駆動により試験光を受光センサ16a,16bに照射する試験を行い、このとき受光ユニット12a,12bから出力される受光信号E1,E2から障害を検出して確定する制御を行う。 Further, the determination control unit 36 performs control to prohibit the determination unit 38 from determining the presence or absence of a flame when the absolute value of the difference ΔE between the integral values of the light reception signals E1' and E2' is equal to or greater than a predetermined value. 12a, 12b, the judgment control unit 36 performs a test in which the light receiving sensors 16a, 16b are irradiated with test light by driving an internal test light source provided in the device. At this time, control is performed to detect and determine the failure from the light reception signals E1 and E2 output from the light reception units 12a and 12b.

更に、図5に示した単一視野範囲64,66の何れかから放射線エネルギーを受けた場合にも、受光信号E1’,E2’の相違が大きくなり、受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以上又は所定値を上回ることから、判断制御部36は判断部38による炎有無の判断を禁止し、これにより単一視野範囲64,66を実質的に炎検出器10の視野範囲外とすることができる。 Furthermore, when radiation energy is received from either of the single visual field ranges 64 and 66 shown in FIG. Since the absolute value of the difference ΔE is greater than or equal to the predetermined value, the judgment control unit 36 prohibits the judgment unit 38 from judging the presence or absence of a flame, thereby effectively detecting the flame in the single visual field ranges 64 and 66. It may be outside the field of view of the device 10.

(判断部38)
判断部38は、加算器32で加算された図6に示す受光信号E1’,E2’を2秒ごとに加算した加算受光信号E3を加算受光信号E3の中点となる基準電位からのプラス及びマイナス側の振幅との差分の絶対値となる積分値ΣE3を求める。
(Judgment unit 38)
The determining unit 38 converts the added light receiving signal E3, which is obtained by adding the light receiving signals E1' and E2' shown in FIG. An integral value ΣE3, which is the absolute value of the difference from the amplitude on the negative side, is determined.

次いで、判断部38は、積分値ΣE3が、予め設定された基準レベル以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、積分値ΣE3が基準レベルを超えた場合には、炎有り判断の第1要素とする。 Next, the determining unit 38 determines that the received light output corresponding to a flame has not been detected when the integral value ΣE3 is below a preset reference level, and on the other hand, when the integral value ΣE3 exceeds the reference level. If there is a flame, it will be the first factor in determining whether there is a flame.

また、判断部38は加算受光信号E3を2秒間(128データ)ごとに高速フーリエ変換して結果を分析し、たとえば8Hz以下の周波数帯域に主成分がある場合に炎有り判断の第2要素とし、第1要素と第2要素とに基づく複合的な炎有無判断を行う。 In addition, the judgment unit 38 performs fast Fourier transform on the added light reception signal E3 every 2 seconds (128 data) and analyzes the result. For example, if there is a main component in a frequency band of 8 Hz or less, it is used as the second factor for determining the presence of flame. , performs a composite flame presence/absence judgment based on the first element and the second element.

図7は、燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから得られる加算受光信号E3の周波数分布を示した説明図である。判断部38は、図6に示す受光信号E1’,E2’を加算した加算受光信号E3をT=2秒間(128データ)ごとに高速フーリエ変換して、図7に示す周波数分布を得る。 FIG. 7 is an explanatory diagram showing the frequency distribution of the added light reception signal E3 obtained from the light reception unit of FIG. 1 when radiation energy radiated from a combustion flame is observed. The determining unit 38 performs fast Fourier transform on the added light reception signal E3 obtained by adding the light reception signals E1' and E2' shown in FIG. 6 every T=2 seconds (128 data) to obtain the frequency distribution shown in FIG.

図7に示すように、燃焼炎から放射される放射線エネルギーを周波数軸で観測すると、概ね8Hzよりも低周波側に高い出力レベルを示す周波数特性FLが得られることから、受光信号E3の周波数の主要な成分が8Hzまでの周波数帯域FLに存在し、8Hzを超える例えば16Hzまでの高周波側の周波数帯域FHは低いレベルを示す。このような分布特性は、炎を観測した場合の信号の特徴である。 As shown in FIG. 7, when the radiation energy emitted from the combustion flame is observed on the frequency axis, a frequency characteristic FL showing a high output level on the lower frequency side than approximately 8 Hz is obtained, so the frequency of the received light signal E3 is The main component exists in the frequency band FL up to 8 Hz, and the frequency band FH on the high frequency side exceeding 8 Hz, for example up to 16 Hz, shows a low level. Such distribution characteristics are characteristic of the signal when observing a flame.

このため、加算受光信号E3の周波数分布に基づく炎判断は、例えば8Hzまでの範囲となる低周波側の周波数分布FLの積分値ΣFLおよび8Hzを超え16Hzまでの範囲となる高周波側の積分値ΣFHを求め、両積分値の比ΣFL/ΣFHが、予め設定された閾値以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、ΣFL/ΣFHが閾値を超えた場合には、炎有り判断の第2要素とする。 For this reason, flame judgment based on the frequency distribution of the added light reception signal E3 is based on the integral value ΣFL of the frequency distribution FL on the low frequency side, which ranges up to 8 Hz, and the integral value ΣFH on the high frequency side, which exceeds 8 Hz and extends to 16 Hz. is determined, and if the ratio of both integral values ΣFL/ΣFH is less than a preset threshold, it is determined that the received light output corresponding to flame has not been detected, whereas ΣFL/ΣFH exceeds the threshold. In such cases, it is used as the second factor in determining whether there is a flame.

そして、判断部38は、炎有り判断の第1要素と2要素の両方が成立し、且つ、たとえばこれが所定回数連続した場合に炎有りとの判断を確定して火災検出信号を外部に出力する。 Then, when both the first and second elements for determining the presence of a flame are satisfied and, for example, this continues a predetermined number of times, the determination unit 38 confirms the determination that there is a flame and outputs a fire detection signal to the outside. .

[2波長式の炎検出装置]
(受光ユニット12a,12b)
図8は2波長方式としての炎検出装置の実施形態を示したブロック図である。図8に示すように、本実施形態による2波長方式の炎検出装置10は、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E1,E2を出力する2組の受光ユニット12a,12bに加え、新たに概ね5.0μm~7.0μmの波長帯域の放射線エネルギーを電気信号に変換した受光信号E4を出力する受光ユニット12cが設けられる。
[Two-wavelength flame detection device]
(Light receiving units 12a, 12b)
FIG. 8 is a block diagram showing an embodiment of a flame detection device using a two-wavelength method. As shown in FIG. 8, the two-wavelength flame detection device 10 according to the present embodiment observes radiation energy in a narrow wavelength band with a center wavelength of approximately 4.5 μm, which is emitted from a combustion flame by CO2 resonance. In addition to two sets of light receiving units 12a and 12b that output received light signals E1 and E2 through photoelectric conversion, a newly outputted light received signal E4 is obtained by converting radiation energy in a wavelength band of approximately 5.0 μm to 7.0 μm into an electrical signal. A light receiving unit 12c is provided.

受光ユニット12a,12bは、図1の実施形態と同じであり、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E1,E2出力する。 The light-receiving units 12a and 12b are the same as the embodiment shown in FIG. 1, and receive light-receiving signals E1, which are obtained by observing radiation energy in a narrow wavelength band with a center wavelength of approximately 4.5 μm, which is emitted from the combustion flame by CO2 resonance. Output E2.

受光ユニット12a,12b,12cからの受光信号に基づくE1’,E2’,E4’及び加算器32からの加算受光信号E3は、それぞれMPU15に設けたA/D変換ポート35a,35b,35d,35cの各々でデジタル受光信号に変換して取り込こまれている。 E1', E2', E4' based on the light receiving signals from the light receiving units 12a, 12b, 12c and the added light receiving signal E3 from the adder 32 are sent to A/D conversion ports 35a, 35b, 35d, 35c provided in the MPU 15, respectively. Each of these is converted into a digital light reception signal and imported.

MPU15に設けられた判断制御部36は図1の実施形態と同じであり、受光ユニット12a,12bから出力された受光信号E1’,E2’の間の差分ΔEを検出し、差分ΔEの絶対値が所定値以下又は所定値を下回った場合に判断部38による炎有無の判断を許容し、差分ΔEの絶対値が所定値以上又は所定値を上回った場合に判断部38による炎有無の判断を禁止する。ここでも、図1の1波長式の実施形態同様に、積分値の差分のΔEの絶対値が所定値以上又は所定値を上回った場合には、判断部38で判断結果を採用しないようにしても良い。 The judgment control unit 36 provided in the MPU 15 is the same as the embodiment shown in FIG. is below a predetermined value or less than a predetermined value, the determination unit 38 is allowed to determine the presence or absence of a flame, and when the absolute value of the difference ΔE is equal to or greater than a predetermined value, the determination unit 38 is permitted to determine the presence or absence of a flame. prohibit. Here, as in the one-wavelength type embodiment of FIG. 1, if the absolute value of ΔE of the difference in integral values is equal to or greater than a predetermined value, the determination unit 38 is configured not to adopt the determination result. Also good.

(受光ユニット12c)
受光ユニット12cは、受光センサ16a,16bとは異なる所定の波長帯域を有する放射線エネルギーを電気信号に変換して出力する受光センサ16cを備える。即ち、受光ユニット12a,12bは、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを電気信号に変換した受光信号E1,E2を出力するのに対し、受光ユニット12cは、本実施形態においては概ね5.0μm~7.0μmの赤外線波長帯域の放射線エネルギーを電気信号に変換した受光信号E4を出力する。
(Light receiving unit 12c)
The light receiving unit 12c includes a light receiving sensor 16c that converts radiation energy having a predetermined wavelength band different from those of the light receiving sensors 16a and 16b into an electrical signal and outputs the electric signal. That is, the light-receiving units 12a and 12b output light-receiving signals E1 and E2 that are converted into electrical signals from radiation energy in a narrow wavelength band with a center wavelength of approximately 4.5 μm, which is emitted by CO2 resonance from a combustion flame. On the other hand, in this embodiment, the light receiving unit 12c outputs a light receiving signal E4 obtained by converting radiation energy in an infrared wavelength band of approximately 5.0 μm to 7.0 μm into an electrical signal.

また、受光ユニット12cは、受光センサ16cに続いて、受光センサ16cから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24cと、前置フィルタ24cを通過した信号成分を初段増幅するプリアンプ26cと、プリアンプ26cからの出力を増幅するメインアンプ28cとで構成される。受光ユニット12cのメインアンプ28cから出力された受光信号E4は、終段アンプ30cを介して、MPU15のA/D変換ポート35dへ入力され、デジタル受光信号に変換して読み込まれ、炎の判断処理に用いられる。 Further, the light receiving unit 12c includes, following the light receiving sensor 16c, a prefilter 24c that passes only signal components in a predetermined frequency band from the light receiving signal output from the light receiving sensor 16c, and a signal that has passed through the prefilter 24c. It is composed of a preamplifier 26c that amplifies the component at the first stage, and a main amplifier 28c that amplifies the output from the preamplifier 26c. The light reception signal E4 outputted from the main amplifier 28c of the light reception unit 12c is inputted to the A/D conversion port 35d of the MPU 15 via the final stage amplifier 30c, converted into a digital light reception signal, read, and subjected to flame judgment processing. used for.

(受光センサ16cの構成)
受光センサ16cは、概ね5.0μmを超える所定の波長帯域の放射線を良好に透過するカットオンフィルタで構成されるロングパスフィルタである光学波長フィルタ20cと、光学波長フィルタ20cを透過した光を受光して電気信号に変換して出力する図4の受光素子部22aと同様の等価回路でなる受光素子部22cを備え、図3に示した受光センサ16aと同様な構造により、パッケージ化された構成とする。
(Configuration of light receiving sensor 16c)
The light receiving sensor 16c receives the light transmitted through the optical wavelength filter 20c, which is a long pass filter composed of a cut-on filter that satisfactorily transmits radiation in a predetermined wavelength band exceeding approximately 5.0 μm, and the optical wavelength filter 20c. The light receiving sensor 16a has a packaged configuration with a structure similar to that of the light receiving sensor 16a shown in FIG. do.

(受光センサ16a~16cの波長透過特性)
図9は、図8の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Wavelength transmission characteristics of light receiving sensors 16a to 16c)
FIG. 9 is a characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and the translucent window applied to the embodiment of FIG. 8.

図9に示すように、図8の透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性(又は、ロングウェーブカット特性)を有する透過率特性70が得られる。そして、光学波長フィルタ20a,20bを構成する、概ね4.5μm付近を中心波長とするバンドパスフィルタにより、当該中心波長近傍の波長帯域の放射線エネルギーを透過する透過率特性72が得られる。これらの組合せにより、合成特性74をもつ狭帯域バンドパスフィルタが構成される。 As shown in FIG. 9, the sapphire glass that is the translucent window 18 in FIG. Characteristic 70 is obtained. The bandpass filters having a center wavelength around 4.5 μm, which constitute the optical wavelength filters 20a and 20b, provide a transmittance characteristic 72 that transmits radiation energy in a wavelength band near the center wavelength. These combinations constitute a narrowband bandpass filter having a composite characteristic 74.

一方、透光性窓18であるサファイアガラスの透過率特性70と、光学波長フィルタ20cを構成するロングパスフィルタの透過率特性76の組合せにより、概ね5.0μm~7.0μmの波長帯域の放射線エネルギーを透過する合成特性78をもつ広帯域バンドパスフィルタが構成される。 On the other hand, due to the combination of the transmittance characteristic 70 of the sapphire glass that is the translucent window 18 and the transmittance characteristic 76 of the long-pass filter that constitutes the optical wavelength filter 20c, radiation energy in a wavelength band of approximately 5.0 μm to 7.0 μm is generated. A wideband bandpass filter having a synthetic characteristic 78 that transmits .

ここで、5.0~7.0μmの帯域を検出する受光センサ16cの視野は、有効視野を概ね包含するようにする。 Here, the field of view of the light receiving sensor 16c that detects a band of 5.0 to 7.0 μm is designed to approximately include the effective field of view.

(2波長方式による炎判断)
MPU15に設けられた判断部38は、判断制御部36による炎有無の判断を許容する制御指示を受けた場合、当該許容判断の元となった受光信号E1’,E2’に対応する期間の受光信号E3,E4’の各々について信号振幅(基準電位からの差分の絶対値)の時間積分処理を行い、積分値ΣE3,ΣE4’を算出する。ここで、積分値ΣE3,ΣE4’は、便宜上、炎積分値ΣE3,非炎積分値ΣE4’として区別する。
(Flame judgment using two wavelength method)
When the determination unit 38 provided in the MPU 15 receives a control instruction to permit the determination of the presence or absence of a flame by the determination control unit 36, the determination unit 38 determines whether or not the determination unit 38 receives light during the period corresponding to the received light signals E1′ and E2′ that are the basis of the determination of whether or not there is a flame. Time integration processing of the signal amplitude (absolute value of the difference from the reference potential) is performed for each of the signals E3 and E4', and integral values ΣE3 and ΣE4' are calculated. Here, for convenience, the integral values ΣE3 and ΣE4' are distinguished as a flame integral value ΣE3 and a non-flame integral value ΣE4'.

次いで、判断部15は、炎積分値ΣE3が、予め設定された基準レベル以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、炎積分値ΣE3が基準レベルを超えた場合には、非炎積分値ΣE4’との相対比ΣE3/ΣE4’を算出し、相対比(ΣE3/ΣE4’)が、予め設定された閾値を超えた場合は、炎と判定して炎有り判断の第1要素とし、閾値以下の場合には、例えば、人体等の炎以外の比較的低温の放射線源による受光出力があったものとして、炎判断は抑止して行わない。 Next, when the flame integral value ΣE3 is less than or equal to a preset reference level, the determination unit 15 determines that the received light output corresponding to the flame has not been detected, and on the other hand, the flame integral value ΣE3 is at the reference level If the value exceeds the non-flame integral value ΣE4', the relative ratio ΣE3/ΣE4' is calculated, and if the relative ratio (ΣE3/ΣE4') exceeds a preset threshold, it is determined that there is a flame. This is the first factor in determining the presence of a flame, and if it is less than the threshold, it is assumed that there is a light reception output from a relatively low temperature radiation source other than a flame, such as a human body, and the flame determination is suppressed and not performed.

炎判断の第1要素は、図1の実施形態においてはΣE3が基準レベル(閾値)を超えることで成立するのに対し、本実施形態における炎判断の第1要素は、ΣE3が基準レベル(閾値)を超え、且つ相対比ΣE3/ΣE4’が別の閾値を超えることで成立する。 In the embodiment of FIG. 1, the first element of flame determination is established when ΣE3 exceeds the reference level (threshold value), whereas in this embodiment, the first element of flame determination is established when ΣE3 exceeds the reference level (threshold value). ) and the relative ratio ΣE3/ΣE4' exceeds another threshold value.

また、判断部38は、判断制御部36による炎有無の判断を許容する制御指示を受けた場合、図1の実施形態に示したように、加算器32から出力された積分値の比ΣFL/ΣFHが基準レベルを超えた場合には、炎判断の第2要素とする。 Further, when the judgment unit 38 receives a control instruction to allow the judgment control unit 36 to judge the presence or absence of a flame, the judgment unit 38, as shown in the embodiment of FIG. If ΣFH exceeds the reference level, it is considered the second factor in flame determination.

そして、判断部38は、炎有り判断の第1要素と第2要素の両方が成立し、且つ、たとえば所定の回数連続した場合に炎有りと判断を確定して火災検出信号を外部に出力する。 Then, when both the first element and the second element for determining the presence of a flame are satisfied and, for example, a predetermined number of times in succession, the determination unit 38 determines that there is a flame and outputs a fire detection signal to the outside. .

[本発明の変形例]
上記の実施形態は、受光ユニット12a,12bからの受光信号E1,E2を加算器32で加算して加算受光信号E3として判断部38により炎有無の判断を行っているが、これに限定されず、例えば、受光ユニット12a,12bからの受光信号E1’,E2’の平均を求め、平均受光信号に基づいて判断部38により炎有無の判断するようにしても良い。
[Modification of the present invention]
In the above embodiment, the adder 32 adds the received light signals E1 and E2 from the light receiving units 12a and 12b, and the judgment unit 38 determines whether there is a flame or not as the added received light signal E3, but the present invention is not limited to this. For example, the average of the light reception signals E1' and E2' from the light reception units 12a and 12b may be calculated, and the determination unit 38 may determine whether there is a flame or not based on the average light reception signal.

上記の実施形態は、2波長方式の炎検出装置として、燃焼炎のCO2の共鳴放射帯である4.5μm付近の波長帯域と、5.0μm付近の波長帯域における各々の放射線エネルギーを観測して炎を判定しているが、4.5μm付近の波長帯域と、2.3μm付近の波長帯域における各々の放射線エネルギーを観測して炎を判定するようにしても良い。 The above embodiment is a two-wavelength flame detection device that observes each radiation energy in a wavelength band around 4.5 μm, which is the resonance radiation band of CO2 of a combustion flame, and a wavelength band around 5.0 μm. Although a flame is determined, the flame may be determined by observing each radiation energy in a wavelength band around 4.5 μm and a wavelength band around 2.3 μm.

また、燃焼炎のCO2の共鳴放射帯である4.5μm帯の短波長側の、例えば、2.3μm付近の波長帯域における放射線エネルギーを、5.0μm付近の波長帯域における放射線エネルギーを検出し、これらの3波長帯域における受光信号の相対比が炎からの放射の特徴に従うことを炎有りの判断要素とする3波長式の炎検出装置としても良い。 In addition, radiation energy in a wavelength band near 2.3 μm, for example, on the short wavelength side of the 4.5 μm band, which is the resonant radiation band of CO2 of the combustion flame, is detected, and radiation energy in a wavelength band around 5.0 μm is detected, It is also possible to use a three-wavelength type flame detection device that uses the fact that the relative ratio of the received light signals in these three wavelength bands follows the characteristics of radiation from the flame as an element for determining whether there is a flame.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。 Furthermore, the present invention includes appropriate modifications without impairing its objects and advantages, and is not limited by the numerical values shown in the above embodiments.

10:炎検出装置
12a,12b,12c:受光ユニット
15:MPU
16a,16b,16c:受光センサ
18:透光性窓
20a,20b,20d:光学波長フィルタ
22a,22b,22c:受光素子部
24a,24b,24c:前置フィルタ
26a,26b,26c:プリアンプ
27:FET
28a,28b,28c:メインアンプ
30a,30b,30c:終段アンプ
32:加算器
35a,35b,35c,35d:A/D変換ポート
36:判断制御部
38:判断部
45a,45b:焦電体
10: Flame detection device 12a, 12b, 12c: Light receiving unit 15: MPU
16a, 16b, 16c: Light receiving sensor 18: Transparent windows 20a, 20b, 20d: Optical wavelength filters 22a, 22b, 22c: Light receiving element sections 24a, 24b, 24c: Prefilter 26a, 26b, 26c: Preamplifier 27: FET
28a, 28b, 28c: Main amplifier 30a, 30b, 30c: Final stage amplifier 32: Adder 35a, 35b, 35c, 35d: A/D conversion port 36: Judgment control section 38: Judgment section 45a, 45b: Pyroelectric body

Claims (3)

燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
所定の視野範囲に存在する燃焼炎からの放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと
前記複数の受光ユニットから出力された各受光信号に基づいて前記放射線エネルギーの発生元を判定する判断制御部と、
を備え、
前記複数の受光ユニットは、各々の前記視野範囲が重なる有効視野範囲有して配置され、
前記判断制御部は、前記複数の受光ユニットから出力された各受光信号の間の差分、及び前記複数の受光ユニットから出力された加算受光信号と前記各受光信号との比較に基づいて、前記放射線エネルギーの発生元が前記有効視野範囲内か否かを判定することを特徴とする炎検出装置。
A flame detection device that determines and detects the presence or absence of a combustion flame by observing radiation energy emitted from the combustion flame,
a plurality of light receiving units that output light receiving signals observing the same wavelength band among the radiation energy from the combustion flame existing in a predetermined viewing range ;
a determination control unit that determines the source of the radiation energy based on each light reception signal output from the plurality of light reception units ;
Equipped with
The plurality of light receiving units are arranged to have effective viewing ranges in which the viewing ranges of each of the light receiving units overlap,
The judgment control unit determines the radiation level based on the difference between each of the light reception signals output from the plurality of light reception units and the comparison between the added light reception signal output from the plurality of light reception units and each of the light reception signals. A flame detection device characterized by determining whether or not a source of energy is within the effective field of view .
燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
所定の視野範囲に存在する燃焼炎からの放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと
前記複数の受光ユニットから出力された各受光信号に基づいて前記放射線エネルギーの発生元を判定する判断制御部と、
を備え、
前記複数の受光ユニットは、各々の前記視野範囲が重なる有効視野範囲と、各々の前記視野範囲が重ならない単一視野範囲を有して配置され、
前記判断制御部は
前記複数の受光ユニットから出力された各受光信号の間の差分を検出し、
前記差分が所定値以下又は前記所定値を下回った場合は、前記放射線エネルギーの発生元が前記有効視野範囲内と判定し、
前記差分が前記所定値以上又は前記所定値を上回った場合、又は前記複数の受光ユニットから出力された加算受光信号と前記各受光信号の何れかが略一致する場合は、前記放射線エネルギーの発生元が前記単一視野範囲内と判定することを特徴とする炎検出装置。
A flame detection device that determines and detects the presence or absence of a combustion flame by observing radiation energy emitted from the combustion flame,
a plurality of light receiving units that output light receiving signals observing the same wavelength band among the radiation energy from the combustion flame existing in a predetermined viewing range ;
a determination control unit that determines the source of the radiation energy based on each light reception signal output from the plurality of light reception units ;
Equipped with
The plurality of light receiving units are arranged to have an effective viewing range in which each of the viewing ranges overlaps, and a single viewing range in which each of the viewing ranges does not overlap,
The judgment control section
detecting a difference between each light reception signal output from the plurality of light reception units;
If the difference is less than or equal to a predetermined value, it is determined that the source of the radiation energy is within the effective visual field range,
If the difference is greater than or equal to the predetermined value, or if the added light reception signal output from the plurality of light reception units and any of the light reception signals substantially match, the source of the radiation energy The flame detection device is characterized in that it is determined that the flame is within the single visual field range .
請求項1又は2記載の炎検出装置であって、The flame detection device according to claim 1 or 2,
前記複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部を備え、comprising a determination unit that determines the presence or absence of a flame based on the plurality of light reception signals output from the plurality of light reception units,
前記判断制御部は、前記判断部による炎の有無の判断又は判断結果の採用を、前記有効視野範囲において許容することを特徴とする炎検出装置。The flame detection device is characterized in that the judgment control unit allows the judgment unit to judge whether there is a flame or to adopt the judgment result within the effective visual field range.

JP2022117695A 2018-03-29 2022-07-25 flame detection device Active JP7400034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022117695A JP7400034B2 (en) 2018-03-29 2022-07-25 flame detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018064315A JP7177598B2 (en) 2018-03-29 2018-03-29 flame detector
JP2022117695A JP7400034B2 (en) 2018-03-29 2022-07-25 flame detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018064315A Division JP7177598B2 (en) 2018-03-29 2018-03-29 flame detector

Publications (2)

Publication Number Publication Date
JP2022160504A JP2022160504A (en) 2022-10-19
JP7400034B2 true JP7400034B2 (en) 2023-12-18

Family

ID=68168641

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018064315A Active JP7177598B2 (en) 2018-03-29 2018-03-29 flame detector
JP2022117695A Active JP7400034B2 (en) 2018-03-29 2022-07-25 flame detection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018064315A Active JP7177598B2 (en) 2018-03-29 2018-03-29 flame detector

Country Status (1)

Country Link
JP (2) JP7177598B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215364A (en) 1999-01-26 2000-08-04 Hochiki Corp Flame detector
JP2000321132A (en) 1999-05-14 2000-11-24 Kokusai Gijutsu Kaihatsu Kk Flame sensor
JP2016102651A (en) 2014-11-27 2016-06-02 ホーチキ株式会社 Flame detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132195A (en) * 1984-07-25 1986-02-14 セコム株式会社 Fire sensor
JPH03218422A (en) * 1989-11-20 1991-09-26 Tokico Ltd Sensor
JPH03248084A (en) * 1990-02-27 1991-11-06 Nec Corp Laser alarm apparatus
JPH0652450A (en) * 1992-07-28 1994-02-25 Matsushita Electric Works Ltd Heat ray type intrusion detector
JP3205889B2 (en) * 1994-07-11 2001-09-04 ヤマトプロテック株式会社 Flame detector
US5995008A (en) * 1997-05-07 1999-11-30 Detector Electronics Corporation Fire detection method and apparatus using overlapping spectral bands

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215364A (en) 1999-01-26 2000-08-04 Hochiki Corp Flame detector
JP2000321132A (en) 1999-05-14 2000-11-24 Kokusai Gijutsu Kaihatsu Kk Flame sensor
JP2016102651A (en) 2014-11-27 2016-06-02 ホーチキ株式会社 Flame detector

Also Published As

Publication number Publication date
JP7177598B2 (en) 2022-11-24
JP2019174337A (en) 2019-10-10
JP2022160504A (en) 2022-10-19

Similar Documents

Publication Publication Date Title
JP5109079B2 (en) Flame detector
US8227756B2 (en) Apparatus for flame discrimination utilizing long wavelength pass filters and related method
US6806471B2 (en) Flame detection device
KR20230074072A (en) Multispectral sensor response balancing
US20020043623A1 (en) Multipurpose detector
CN106605130B (en) Stray light suppressed FCM ultraviolet light transducer and ultraviolet light detection method
JP7400034B2 (en) flame detection device
US10175101B2 (en) Methods and systems for flash detection
US20030102434A1 (en) Flame sensor
JP6430795B2 (en) Flame detection device
JP6526971B2 (en) Flame detector
JP3781247B2 (en) Flame detector
JP7184269B2 (en) Flame detector
JP6894551B2 (en) Flame detector
JP6748696B2 (en) Flame detector
JP4740022B2 (en) Optical sensor and object detection method
JP7170791B2 (en) flame detector
US10365162B2 (en) Laser wavelength detectors
JPH02228584A (en) Detecting system of moving object and apparatus therefor
JP7114306B2 (en) Flame detector
JP7016765B2 (en) Flame detector
JP7011969B2 (en) Flame detector
JP7322205B2 (en) Flame detector
JP2019185694A (en) Flame detection device
JP2003227751A (en) Flame detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7400034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150