JP7397309B2 - Method for producing alloy catalyst and alloy catalyst - Google Patents

Method for producing alloy catalyst and alloy catalyst Download PDF

Info

Publication number
JP7397309B2
JP7397309B2 JP2020039244A JP2020039244A JP7397309B2 JP 7397309 B2 JP7397309 B2 JP 7397309B2 JP 2020039244 A JP2020039244 A JP 2020039244A JP 2020039244 A JP2020039244 A JP 2020039244A JP 7397309 B2 JP7397309 B2 JP 7397309B2
Authority
JP
Japan
Prior art keywords
solvent
metal compound
noble metal
base metal
alloy catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020039244A
Other languages
Japanese (ja)
Other versions
JP2020171917A (en
Inventor
智子 小村
孝 飯島
正孝 日吉
晋也 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2020171917A publication Critical patent/JP2020171917A/en
Application granted granted Critical
Publication of JP7397309B2 publication Critical patent/JP7397309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、合金触媒の製造方法及び合金触媒に関する。 The present invention relates to a method for producing an alloy catalyst and an alloy catalyst.

合金触媒は、複数の金属を合金化して得られる触媒粒子を多孔質体(多孔質材料)に担持したものであり、活性金属として単一の金属を用いる触媒と比較して、触媒活性の大きさやその活性自体の機構を異ならせることも可能である。以下、「合金触媒」など「触媒」は、担持体である多孔質体に触媒能を有する触媒粒子を担持させたものを指し、触媒能を有する触媒粒子そのものを指すときには、「触媒粒子」と記載する。したがって、その用途に応じて、またはさらなる高い触媒活性を得るため、各種の分野、例えば固体高分子形燃料電池の触媒や、石油化学、石油精製等の化学プロセス用触媒、排ガス処理用触媒等、において合金触媒の開発が進められている。 An alloy catalyst is one in which catalyst particles obtained by alloying multiple metals are supported on a porous body (porous material), and has a higher catalytic activity than a catalyst using a single metal as the active metal. It is also possible to vary the mechanism of the pod's activity itself. Hereinafter, the term "catalyst," such as "alloy catalyst," refers to a porous material that supports catalyst particles that have catalytic ability, and when referring to the catalyst particles that have catalytic ability themselves, the term "catalyst particles." Describe it. Therefore, depending on the application or in order to obtain higher catalytic activity, it is used in various fields, such as catalysts for polymer electrolyte fuel cells, catalysts for chemical processes such as petrochemistry and petroleum refining, and catalysts for exhaust gas treatment. The development of alloy catalysts is progressing.

一般に、このような合金触媒には、その触媒性能を十分に発揮させるため、複数の金属が十分に合金化していることが求められる。また、合金触媒は、その活性点を多くする観点から、高い表面積が求められ、このため小径の触媒粒子が多孔質体内に分散した状態であることが好まれている。さらには、触媒反応を繰り返し行った際に、触媒粒子が凝集して粗大粒子を形成すると合金触媒の触媒反応に寄与し得る活性点が減少してしまう。したがって、触媒反応を繰り返し行った際にも、触媒粒子の凝集が防止されて耐久性が高まるように、触媒粒子は高度に分散していることが求められる。 In general, such an alloy catalyst is required to be sufficiently alloyed with a plurality of metals in order to fully exhibit its catalytic performance. Furthermore, alloy catalysts are required to have a high surface area in order to increase the number of active sites, and for this reason, it is preferred that small diameter catalyst particles be dispersed within the porous body. Furthermore, if the catalyst particles aggregate to form coarse particles when the catalytic reaction is repeated, the number of active sites that can contribute to the catalytic reaction of the alloy catalyst will decrease. Therefore, the catalyst particles are required to be highly dispersed so that even when the catalytic reaction is repeated, agglomeration of the catalyst particles is prevented and durability is increased.

以上の点につき、合金触媒の一例として固体高分子形燃料電池の触媒について、詳細に説明する。固体高分子形燃料電池の触媒には、従来多孔質の炭素材料に担持した白金が用いられてきた。近年、さらなる発電性能の向上を目指し、より高活性な白金系の合金触媒が用いられている。固体高分子形燃料電池用の合金触媒のなかでも特に高活性とされているのは、白金と卑金属からなるものである。 Regarding the above points, a catalyst for a polymer electrolyte fuel cell will be explained in detail as an example of an alloy catalyst. Conventionally, platinum supported on a porous carbon material has been used as a catalyst for polymer electrolyte fuel cells. In recent years, more active platinum-based alloy catalysts have been used to further improve power generation performance. Among alloy catalysts for polymer electrolyte fuel cells, those made of platinum and base metals are considered to have particularly high activity.

ここで、合金触媒の触媒粒子の粒径が大きい場合、発電性能が低下する。触媒粒子に凝集が見られる場合、耐久性が低下する。触媒粒子の合金化率が低い場合、発電性能が低下する。したがって、「小粒径・高分散・高合金化率」の合金触媒は、概して固体燃料電池の触媒として好適である。 Here, if the particle size of the catalyst particles of the alloy catalyst is large, the power generation performance decreases. If agglomeration is observed in the catalyst particles, durability will be reduced. When the alloying rate of catalyst particles is low, power generation performance decreases. Therefore, alloy catalysts with "small particle size, high dispersion, and high alloying ratio" are generally suitable as catalysts for solid fuel cells.

合金触媒を合成する方法として以下のような方法が一般的である。ひとつは、複数の金属を別々に担体に担持する方法である。この方法では、まず担体にどちらか一方の金属種を担持した後、もう一方の金属種をさらに担持させ、熱処理することによって金属種同士を合金化させる。もうひとつは、複数の金属を同時に担体に担持する方法である。担体と金属種を含む溶液に還元剤を加え、複数種類の金属種を同時に還元する(例えば、特許文献1)。この他、先述の2つの方法の中間的な方法として、担体に金属種を含む溶液を含浸乾固させ、これを水素などの還元性ガスを含む雰囲気下で熱処理することにより合金化する方法がある(例えば特許文献2)。 The following methods are generally used to synthesize alloy catalysts. One method is to separately support multiple metals on a carrier. In this method, first, one of the metal species is supported on a carrier, and then the other metal species is further supported, and the metal species are alloyed by heat treatment. The other method is to simultaneously support multiple metals on a carrier. A reducing agent is added to a solution containing a carrier and metal species to reduce multiple types of metal species simultaneously (for example, Patent Document 1). In addition, as an intermediate method between the above two methods, there is a method in which a carrier is impregnated with a solution containing a metal species, dried and then heat-treated in an atmosphere containing a reducing gas such as hydrogen to form an alloy. There is (for example, Patent Document 2).

また、触媒粒子の凝集を抑制するための一般的な方法として、高分子や有機酸などからなる保護剤を触媒粒子表面に吸着させる方法が知られている。 Furthermore, as a general method for suppressing agglomeration of catalyst particles, a method is known in which a protective agent made of a polymer, an organic acid, or the like is adsorbed onto the surface of the catalyst particles.

特開2012-41622号公報JP2012-41622A 国際公開第2014/025049号International Publication No. 2014/025049

ところで、固体高分子形燃料電池用の合金触媒は、白金等の貴金属と卑金属との合金である触媒粒子が多孔質材料に担持されたものである。貴金属の前駆体と卑金属の前駆体とを還元する場合、貴金属が優先的に還元されてしまい、その後卑金属が還元され、別個に貴金属と卑金属が析出しやすい。この結果、固体高分子形燃料電池用の合金触媒のように貴金属と卑金属とを同時に含む合金触媒は、合金化率を高くすることが困難である。 Incidentally, an alloy catalyst for a polymer electrolyte fuel cell is one in which catalyst particles, which are an alloy of a noble metal such as platinum and a base metal, are supported on a porous material. When reducing a noble metal precursor and a base metal precursor, the noble metal is preferentially reduced, and then the base metal is reduced, and the noble metal and the base metal tend to precipitate separately. As a result, it is difficult to increase the alloying ratio of alloy catalysts that simultaneously contain noble metals and base metals, such as alloy catalysts for polymer electrolyte fuel cells.

一方で、熱処理を行うことにより合金化を促進させることも考えられるが、この場合、触媒粒子の凝集や粒成長が起こりやすく、熱処理のみによる合金化を行うと、小粒径、高分散の触媒粒子を得ることが困難となる。 On the other hand, it is possible to promote alloying by heat treatment, but in this case, agglomeration and grain growth of catalyst particles tend to occur. It becomes difficult to obtain particles.

また、上述したように、触媒粒子の凝集を抑制するための方法として、従来、高分子や有機酸などからなる保護剤を触媒粒子表面に吸着させる方法が一般的に用いられてきた。しかしこの場合、保護剤を除去しなければ、発電反応に寄与可能な触媒表面積が低下すること、保護剤除去の方法として一般的である熱処理を行うと、触媒粒子の凝集や粒成長が起こりやすいこと、保護剤を用いているとその分粒径が大きくなるため、担体の細孔内部へ触媒粒子を担持できないこと、などの問題があった。さらに、本発明者が合金触媒の発電性能に寄与する特性について検討したところ、触媒粒子毎の組成のばらつきが小さいほど、発電性能、特に初期の発電性能が向上することが明らかになった。 Furthermore, as described above, as a method for suppressing agglomeration of catalyst particles, a method of adsorbing a protective agent made of a polymer, an organic acid, or the like onto the surface of catalyst particles has conventionally been generally used. However, in this case, if the protective agent is not removed, the surface area of the catalyst that can contribute to the power generation reaction will be reduced, and heat treatment, which is a common method for removing the protective agent, tends to cause aggregation and grain growth of the catalyst particles. In addition, when a protective agent is used, the particle size increases accordingly, resulting in problems such as the inability to support catalyst particles inside the pores of the carrier. Furthermore, when the present inventor studied the characteristics that contribute to the power generation performance of the alloy catalyst, it became clear that the smaller the variation in the composition of each catalyst particle, the better the power generation performance, especially the initial power generation performance.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が担持された合金触媒の製造方法及び合金触媒を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to support catalyst particles having a small particle size, high dispersion, small variation in composition, and high alloying rate. An object of the present invention is to provide a method for producing an alloy catalyst and an alloy catalyst.

本発明者らは、上記課題を解決すべく鋭意検討した結果、多孔質材料上に触媒粒子の前駆体となる貴金属化合物および卑金属化合物を含む溶液を含浸させた後、一旦溶液中の溶媒を除去し、さらに比較的還元力の強い還元剤を含む溶液と多孔質材料とを接触させることにより小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が担持された合金触媒を製造できることを見出し、さらに検討した結果、本発明に至った。 As a result of intensive studies to solve the above problems, the present inventors impregnated a porous material with a solution containing a noble metal compound and a base metal compound that will become a precursor of catalyst particles, and then removed the solvent in the solution. Furthermore, by bringing the porous material into contact with a solution containing a reducing agent with relatively strong reducing power, catalyst particles with a small particle size, high dispersion, small variation in composition, and high alloying rate were supported. It was discovered that an alloy catalyst could be manufactured, and as a result of further study, the present invention was achieved.

上記知見に基づき完成された本発明の要旨は、以下の通りである。
〔1〕 貴金属元素を含む貴金属化合物と卑金属元素を含む卑金属化合物と第1の溶媒と多孔質材料とを混合して混合物を得る第1の工程と、
以下の式(1):

(混合物中の第1の溶媒の容積)≦(多孔質材料の細孔容積)×5 (1)

を満足するまで前記混合物から前記第1の溶媒を除去することにより、前記貴金属化合物および前記卑金属化合物を前記多孔質材料に固定する第2の工程と、
前記多孔質材料に、酸化還元電位が-1.20V以下である還元剤と第2の溶媒とを含む還元溶液を接触させる第3の工程と、を有し、
前記還元溶液中における前記還元剤の物質量が、前記貴金属元素の総物質量の5倍以上であり、
前記還元溶液の25℃におけるpHが8.0以上12.0以下である、合金触媒の製造方法。
〔2〕 前記第2の工程において、以下の式(2):

(混合物中の第1の溶媒の容積)≦(多孔質材料の細孔容積)×2 (2)

を満足するまで前記混合物から前記第1の溶媒を除去する、〔1〕に記載の合金触媒の製造方法。
〔3〕 前記第1の溶媒と前記第2の溶媒とが、同一の溶媒を含む、または、
前記第1の溶媒のオクタノール/水分配係数と前記第2の溶媒のオクタノール/水分配係数との差の絶対値が、1.2以下である、〔1〕または〔2〕に記載の合金触媒の製造方法。
〔4〕 前記第1の溶媒が水を含み、かつ、前記第2の溶媒のオクタノール/水分配係数が、0.8以下である、
前記第2の溶媒が水を含み、かつ、前記第1の溶媒のオクタノール/水分配係数が、0.8以下である、または、
前記第1の溶媒および前記第2の溶媒が、ともに水を含む、〔1〕または〔2〕に記載の合金触媒の製造方法。
〔5〕 前記還元剤は、水素化ホウ素アルカリ金属塩、水素化ホウ素遷移金属塩、水素化アルミニウムアルカリ金属塩、シアノ水素化ホウ素アルカリ金属塩および水素化ジイソブチルアルミニウムからなる群から選択される1種または2種以上を含む、〔1〕~〔4〕のいずれか1項に記載の合金触媒の製造方法。
〔6〕 前記還元剤は、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化トリエチルホウ素リチウム、水素化ホウ素ニッケル、水素化ホウ素亜鉛、水素化アルミニウムリチウム、水素化アルミニウムナトリウム、水素化アルミニウムカリウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、シアノ水素化ホウ素リチウム、シアノ水素化ホウ素ナトリウム、シアノ水素化ホウ素カリウム、水素化ジイソブチルアルミニウムからなる群から選択される1種または2種以上を含む、〔1〕~〔5〕のいずれか1項に記載の合金触媒の製造方法。
〔7〕 前記還元剤は、水素化ホウ素ナトリウム、水素化ホウ素カリウムおよび水素化ホウ素リチウムからなる群から選択される1種以上を含む、〔1〕~〔6〕のいずれか1項に記載の合金触媒の製造方法。
〔8〕 前記還元溶液中における前記還元剤の物質量が、前記貴金属元素の総物質量の10倍以上である、〔1〕~〔7〕のいずれか1項に記載の合金触媒の製造方法。
〕 前記還元溶液のpHが、水酸化ナトリウム、水酸化カリウム、およびアンモニア水からなる群から選択される塩基を用いて調節される、〔1〕~〔〕のいずれか1項に記載の合金触媒の製造方法。
10〕 前記貴金属化合物中の前記貴金属元素は、白金、金、およびパラジウムからなる群から選択される1種以上を含む、〔1〕~〔〕のいずれか1項に記載の合金触媒の製造方法。
11〕 前記貴金属化合物は、ジニトロジアンミン白金、ビス(アセチルアセトナート)白金、ヘキサクロロ白金(IV)酸、ヘキサクロロ白金(IV)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム六水和物、ヘキサアンミン白金(IV)クロライド、ヘキサアンミン白金(IV)水酸塩溶液、テトラアンミン白金(II)ジクロライド、臭化白金(II)、臭化白金(IV)、シアン化白金(II)、ヨウ化白金、ジメチル(アセチルアセトナート)金(III)、塩化金、塩化金酸、臭化金、ヨウ化金、シアン化金、シアン化金カリウム、塩化パラジウム、ヨウ化パラジウム、臭化パラジウム、硝酸パラジウム、硫酸パラジウム、ビス(アセチルアセトナート)パラジウム(II)、テトラクロロパラジウム酸ナトリウム、テトラクロロパラジウム酸アンモニウム、およびテトラクロロパラジウム酸カリウムからなる群から選択される1種以上を含む、〔1〕~〔10〕のいずれか1項に記載の合金触媒の製造方法。
12〕 前記卑金属化合物中の卑金属元素が、Co、Fe、NiおよびTiからなる群から選択される1種以上を含む、〔1〕~〔11〕のいずれか1項に記載の合金触媒の製造方法。
13〕 前記卑金属化合物は、塩化コバルト、臭化コバルト、ヨウ化コバルト、シアン化コバルト、チオシアン酸コバルト、硫酸コバルト、硝酸コバルト、アセチルアセトナートコバルト、塩化鉄、臭化鉄、ヨウ化鉄、硫酸鉄、硝酸鉄、鉄(III)アセチルアセトナート、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、硫酸ニッケル、硝酸ニッケル、シアン化ニッケル(II)カリウム、ニッケル(II)アセチルアセトナート、塩化チタン、臭化チタン、ヨウ化チタン、チタニウムテトライソプロポキシドおよび硫酸チタンからなる群から選択される1種以上を含む、〔1〕~〔12〕のいずれか1項に記載の合金触媒の製造方法。
The gist of the present invention, which was completed based on the above findings, is as follows.
[1] A first step of obtaining a mixture by mixing a noble metal compound containing a noble metal element, a base metal compound containing a base metal element, a first solvent, and a porous material;
The following formula (1):

(Volume of first solvent in mixture) ≦ (pore volume of porous material) x 5 (1)

a second step of fixing the noble metal compound and the base metal compound to the porous material by removing the first solvent from the mixture until
a third step of contacting the porous material with a reducing solution containing a reducing agent having an oxidation-reduction potential of -1.20 V or less and a second solvent,
The amount of the reducing agent in the reducing solution is 5 times or more the total amount of the noble metal element,
A method for producing an alloy catalyst , wherein the pH of the reducing solution at 25° C. is 8.0 or more and 12.0 or less .
[2] In the second step, the following formula (2):

(Volume of first solvent in mixture) ≦ (pore volume of porous material) x 2 (2)

The method for producing an alloy catalyst according to [1], wherein the first solvent is removed from the mixture until the following is satisfied.
[3] The first solvent and the second solvent contain the same solvent, or
The alloy catalyst according to [1] or [2], wherein the absolute value of the difference between the octanol/water partition coefficient of the first solvent and the octanol/water partition coefficient of the second solvent is 1.2 or less. manufacturing method.
[4] The first solvent contains water, and the second solvent has an octanol/water partition coefficient of 0.8 or less.
the second solvent contains water, and the first solvent has an octanol/water partition coefficient of 0.8 or less, or
The method for producing an alloy catalyst according to [1] or [2], wherein the first solvent and the second solvent both contain water.
[5] The reducing agent is one selected from the group consisting of an alkali metal salt of borohydride, a transition metal salt of borohydride, an alkali metal salt of aluminum hydride, an alkali metal salt of cyanoborohydride, and diisobutylaluminum hydride. or the method for producing an alloy catalyst according to any one of [1] to [4], which contains two or more types.
[6] The reducing agent is lithium borohydride, sodium borohydride, potassium borohydride, lithium triethylborohydride, nickel borohydride, zinc borohydride, lithium aluminum hydride, sodium aluminum hydride, hydrogen One or two selected from the group consisting of potassium aluminum oxide, sodium bis(2-methoxyethoxy)aluminum hydride, lithium cyanoborohydride, sodium cyanoborohydride, potassium cyanoborohydride, and diisobutylaluminum hydride. The method for producing an alloy catalyst according to any one of [1] to [5], which includes the above.
[7] The reducing agent according to any one of [1] to [6], wherein the reducing agent contains one or more selected from the group consisting of sodium borohydride, potassium borohydride, and lithium borohydride. Method for producing alloy catalyst.
[8] The method for producing an alloy catalyst according to any one of [1] to [7], wherein the amount of the reducing agent in the reducing solution is 10 times or more the total amount of the noble metal elements. .
[ 9 ] The pH of the reducing solution is adjusted using a base selected from the group consisting of sodium hydroxide, potassium hydroxide, and ammonia water, according to any one of [1] to [ 8 ]. A method for producing an alloy catalyst.
[ 10 ] The alloy catalyst according to any one of [1] to [ 9 ], wherein the noble metal element in the noble metal compound contains one or more selected from the group consisting of platinum, gold, and palladium. Production method.
[ 11 ] The above-mentioned noble metal compounds include dinitrodiammine platinum, bis(acetylacetonato)platinum, hexachloroplatinic (IV) acid, potassium hexachloroplatinate (IV), sodium hexachloroplatinate (IV) hexahydrate, and hexaammineplatinum. (IV) Chloride, hexaammineplatinum(IV) hydroxide solution, tetraammineplatinum(II) dichloride, platinum(II) bromide, platinum(IV) bromide, platinum(II) cyanide, platinum iodide, dimethyl( acetylacetonate) gold (III), gold chloride, chloroauric acid, gold bromide, gold iodide, gold cyanide, potassium gold cyanide, palladium chloride, palladium iodide, palladium bromide, palladium nitrate, palladium sulfate, [1] to [ 10 ] containing one or more selected from the group consisting of bis(acetylacetonato)palladium (II), sodium tetrachloropalladate, ammonium tetrachloropalladate, and potassium tetrachloropalladate. A method for producing an alloy catalyst according to any one of the items.
[ 12 ] The alloy catalyst according to any one of [1] to [ 11 ], wherein the base metal element in the base metal compound contains one or more selected from the group consisting of Co, Fe, Ni and Ti. Production method.
[ 13 ] The base metal compounds include cobalt chloride, cobalt bromide, cobalt iodide, cobalt cyanide, cobalt thiocyanate, cobalt sulfate, cobalt nitrate, cobalt acetylacetonate, iron chloride, iron bromide, iron iodide, and sulfuric acid. Iron, iron nitrate, iron (III) acetylacetonate, nickel chloride, nickel bromide, nickel iodide, nickel sulfate, nickel nitrate, nickel (II) potassium cyanide, nickel (II) acetylacetonate, titanium chloride, odor The method for producing an alloy catalyst according to any one of [1] to [ 12 ], which contains one or more selected from the group consisting of titanium oxide, titanium iodide, titanium tetraisopropoxide, and titanium sulfate.

以上説明したように本発明によれば小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が担持された合金触媒の製造方法及び合金触媒を提供することが可能となる。 As explained above, according to the present invention, it is possible to provide a method for producing an alloy catalyst and an alloy catalyst in which catalyst particles having a small particle size, high dispersion, little variation in composition, and high alloying ratio are supported. becomes.

実施例2-15に係る合金触媒の30kVの加速電圧で走査型透過電子顕微鏡により観察した二次電子像(左)および透過像(右)である。These are a secondary electron image (left) and a transmission image (right) of the alloy catalyst according to Example 2-15, observed with a scanning transmission electron microscope at an accelerating voltage of 30 kV. 比較例2-9に係る合金触媒の30kVの加速電圧で走査型透過電子顕微鏡により観察した二次電子像(左)および透過像(右)である。These are a secondary electron image (left) and a transmission image (right) of an alloy catalyst according to Comparative Example 2-9, observed with a scanning transmission electron microscope at an acceleration voltage of 30 kV.

以下、好適な実施形態に基づき、本発明を詳細に説明する。また、以下の説明においては、固体高分子形燃料電池用の合金触媒の製造方法及び当該製造方法によって製造される合金触媒を中心に記載するが、本発明に係る合金触媒の製造方法において採用される原理上、本発明が任意の用途における合金触媒の製造に適用可能であることは言うまでもない。 Hereinafter, the present invention will be described in detail based on preferred embodiments. In addition, in the following explanation, the method for producing an alloy catalyst for polymer electrolyte fuel cells and the alloy catalyst produced by the production method will be mainly described, but the method for producing an alloy catalyst according to the present invention will be described. It goes without saying that the present invention is applicable to the production of alloy catalysts for any purpose based on the principle.

<1.本発明に至る着想>
まず、本発明の詳細な説明に先立ち、本発明者らによる本発明に至るまでの検討について説明する。上述したように、本発明者らは、小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子を有する合金触媒を得るべく検討を行った。
<1. Idea leading to the present invention>
First, prior to a detailed description of the present invention, studies conducted by the present inventors to arrive at the present invention will be explained. As described above, the present inventors conducted studies to obtain an alloy catalyst having catalyst particles having a small particle size, high dispersion, small variation in composition, and high alloying ratio.

合金化率を高める方法としては、上述したように、熱処理を行うことにより合金化を促進させることも考えられるが、この場合、触媒粒子の凝集や粒成長が起こりやすく、熱処理のみによる合金化を行うと、小粒径、高分散の触媒粒子を得ることが困難となる。 As mentioned above, one possible way to increase the alloying rate is to promote alloying by heat treatment, but in this case, agglomeration and grain growth of the catalyst particles tend to occur, so alloying by heat treatment alone is not possible. If this is done, it becomes difficult to obtain small-sized, highly dispersed catalyst particles.

そこで、本発明者らは、貴金属化合物と卑金属化合物の還元速度の違いに着目し、強力な還元剤を用いて貴金属化合物と卑金属化合物とを同時に還元し、貴金属化合物と卑金属化合物との還元速度の差の影響を小さくすることを試みた。ここで、強力な還元剤は、通常液相において作用することから、上記の還元反応は、液相中で行われる。しかしながら、このような液相中の還元反応においても、貴金属化合物と卑金属化合物との還元速度の差の影響を十分に排除することはできず、高い合金化率の触媒粒子を得ることは困難であった。なお、合金化率が高くなる場合もあったが、この場合、分散性が低くなる等、別の問題が生じた。この結果、本発明者らは、従来法と同じ液相中において、還元剤の種類、還元反応時の温度、金属種と還元剤それぞれの濃度、金属種として用いる化合物の種類、といった合成条件を種々検討するなかで、単純な液相中の反応では、還元速度の違いの影響を除去することができない、との理解に至った。 Therefore, the present inventors focused on the difference in the reduction rate between noble metal compounds and base metal compounds, and reduced the noble metal compound and base metal compound simultaneously using a strong reducing agent, thereby reducing the reduction rate between the noble metal compound and the base metal compound. An attempt was made to reduce the influence of the difference. Here, since a strong reducing agent usually acts in a liquid phase, the above reduction reaction is carried out in a liquid phase. However, even in such a reduction reaction in the liquid phase, it is not possible to sufficiently eliminate the influence of the difference in reduction rate between noble metal compounds and base metal compounds, and it is difficult to obtain catalyst particles with a high alloying rate. there were. Note that there were cases where the alloying ratio became high, but in this case, other problems such as low dispersibility occurred. As a result, the present inventors were able to adjust the synthesis conditions, such as the type of reducing agent, the temperature during the reduction reaction, the respective concentrations of the metal species and reducing agent, and the type of compound used as the metal species, in the same liquid phase as in the conventional method. Through various studies, we came to the understanding that simple reactions in the liquid phase cannot eliminate the effects of differences in reduction rates.

このような問題に直面した本発明者らは、貴金属化合物と卑金属化合物との還元速度の差の影響をより小さくすべく、還元反応における反応場を多孔質材料の表面付近に制限することに思い至った。すなわち、多孔質材料に対し貴金属化合物と卑金属化合物とを含む溶液を含浸させた後、溶媒の少なくとも一部を除去することにより、貴金属化合物と卑金属化合物とを多孔質材料の細孔内部を含む表面付近に偏在させる。このような多孔質材料に対し強力な還元剤を含む溶液を接触させることにより、還元反応における反応場を多孔質材料の表面付近に制限することができ、この結果貴金属化合物と卑金属化合物とが同時に還元されやすくなると、本発明者らは、着想した。 Faced with this problem, the present inventors thought of limiting the reaction field in the reduction reaction to near the surface of the porous material in order to further reduce the effect of the difference in reduction rate between the noble metal compound and the base metal compound. It's arrived. That is, by impregnating a porous material with a solution containing a noble metal compound and a base metal compound, and then removing at least a portion of the solvent, the noble metal compound and the base metal compound are applied to the surface including the inside of the pores of the porous material. Unevenly distributed nearby. By bringing a solution containing a strong reducing agent into contact with such a porous material, the reaction field for the reduction reaction can be restricted to the vicinity of the surface of the porous material, and as a result, the noble metal compound and the base metal compound are simultaneously produced. The present inventors came up with the idea that it becomes easier to reduce.

当該着想に基づき、本発明者らは各種条件について検討したところ、多孔質材料表面に合金化率の高い触媒粒子を生成させることができることを見出した。そして、得られた触媒粒子は、多孔質材料表面において強力な還元剤により短時間で形成されたものであるため、小粒径であり、かつ多孔質材料表面に渡り均一に分散していること、さらには、触媒粒子毎の組成のばらつきも小さいことが見出された。このような触媒粒子は、多孔質材料の細孔外部の表面のみならず細孔内部にもわたり均一に分布していた。以上により、多孔質材料上に小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が担持された合金触媒を得られることが判明した。このように、本発明者は、従来認識されていなかった新たな問題(課題)を抽出し、それを解決するための方針を着想し、そのような着想に基づいて本実施形態に係る新規かつ改良された合金触媒の製造方法を完成するに至った。このような合金触媒の製造方法により製造される合金触媒は、例えば固体高分子形燃料電池燃料電池の発電特性及び耐久性等を飛躍的に向上させることができる。 Based on this idea, the present inventors investigated various conditions and found that it was possible to generate catalyst particles with a high alloying rate on the surface of a porous material. The obtained catalyst particles are formed on the surface of the porous material in a short time using a strong reducing agent, so they have a small particle size and are uniformly dispersed over the surface of the porous material. Furthermore, it was found that the variation in composition among catalyst particles was also small. Such catalyst particles were uniformly distributed not only on the surface outside the pores of the porous material but also inside the pores. As a result of the above, it has been found that an alloy catalyst can be obtained in which catalyst particles having a small particle size, high dispersion, small variation in composition, and high alloying ratio are supported on a porous material. In this way, the present inventor extracted a new problem (issue) that had not been recognized in the past, conceived a policy for solving it, and based on such an idea, developed a new and novel problem according to the present embodiment. An improved method for producing an alloy catalyst has been completed. An alloy catalyst manufactured by such an alloy catalyst manufacturing method can dramatically improve the power generation characteristics, durability, etc. of, for example, a polymer electrolyte fuel cell.

<2.合金触媒の製造方法>
次に、本実施形態に係る合金触媒の製造方法について説明する。本実施形態に係る合金触媒の製造方法は、貴金属元素を含む貴金属化合物と卑金属元素を含む卑金属化合物と第1の溶媒と多孔質材料とを混合して混合物を得る第1の工程と、
以下の式(1):

(混合物中の第1の溶媒の容積)≦(多孔質材料の細孔容積)×5 (1)

を満足するまで上記混合物から上記第1の溶媒を除去することにより、上記貴金属化合物および上記卑金属化合物を上記多孔質材料に固定する第2の工程と、
上記記多孔質材料に、酸化還元電位が-1.20V以下である還元剤と第2の溶媒とを含む還元溶液を接触させる第3の工程と、を有し、
上記還元溶液中における上記還元剤の物質量が、上記貴金属元素の総物質量の5倍以上である。
以下、各工程について詳細に説明する。
<2. Manufacturing method of alloy catalyst>
Next, a method for manufacturing an alloy catalyst according to this embodiment will be explained. The method for producing an alloy catalyst according to the present embodiment includes a first step of mixing a noble metal compound containing a noble metal element, a base metal compound containing a base metal element, a first solvent, and a porous material to obtain a mixture;
The following formula (1):

(Volume of first solvent in mixture) ≦ (pore volume of porous material) x 5 (1)

a second step of fixing the noble metal compound and the base metal compound to the porous material by removing the first solvent from the mixture until the following is satisfied;
a third step of contacting the porous material with a reducing solution containing a reducing agent having an oxidation-reduction potential of -1.20 V or less and a second solvent;
The amount of the reducing agent in the reducing solution is 5 times or more the total amount of the noble metal elements.
Each step will be explained in detail below.

〔2.1. 第1の工程〕
まず、第1の工程においては、貴金属元素を含む貴金属化合物と卑金属元素を含む卑金属化合物と第1の溶媒と多孔質材料とを混合して混合物を得る。
[2.1. First step]
First, in the first step, a mixture is obtained by mixing a noble metal compound containing a noble metal element, a base metal compound containing a base metal element, a first solvent, and a porous material.

(貴金属化合物および卑金属化合物)
貴金属化合物中の貴金属元素および卑金属化合物中の卑金属元素は、得られる触媒粒子の構成元素となる。したがって、貴金属化合物および卑金属化合物は、触媒粒子の前駆体である。
(Noble metal compounds and base metal compounds)
The noble metal element in the noble metal compound and the base metal element in the base metal compound become constituent elements of the obtained catalyst particles. Therefore, noble metal compounds and base metal compounds are precursors of catalyst particles.

貴金属元素としては、触媒粒子の構成元素として使用可能であれば特に限定されず、例えば、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)が挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて用いることができる。 The noble metal element is not particularly limited as long as it can be used as a constituent element of the catalyst particles, and examples thereof include gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), and rhodium ( Rh), iridium (Ir), ruthenium (Ru), and osmium (Os), among which one type can be used alone or two or more types can be used in combination.

貴金属元素は、用途に応じて適宜選択可能であるが、特に固体高分子形燃料電池用の合金触媒を製造する場合、白金、金およびパラジウムからなる群から選択される1種以上を含むことが好ましく、白金を含むことがより好ましい。 The noble metal element can be selected as appropriate depending on the application, but in particular when producing an alloy catalyst for polymer electrolyte fuel cells, it is preferable to include one or more selected from the group consisting of platinum, gold and palladium. Preferably, platinum is more preferably included.

上述した貴金属元素を含む貴金属化合物としては、例えば貴金属元素の無機および/または有機塩、酸化物、硫化物、ハロゲン化物等を1種単独でまたは2種以上組み合わせて用いることができる。貴金属化合物としては、具体的には、水酸化金、酸化金(III)、フッ化金、塩化金、塩化金酸、臭化金、ヨウ化金、シアン化金、シアン化金カリウム、亜硫酸金ナトリウム、ジクロロ(1,10-フェナントロリン)金(III)クロライド、八塩化四金、クロロ(トリメチルホスフィン)金(I)、クロロ(トリエチルホスフィン)金(I)、クロロ(トリフェニルホスフィン)金(I)、ブロモ(トリフェニルホスフィン)金(I)、クロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール‐2‐イリデン]金(I)、水酸化[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール‐2‐イリデン]金(I)、クロロジフェニル(3-スルホナトフェニル)ホスフィン金(I)ナトリウム塩、金チオ硫酸ナトリウム、酢酸金(III)、ジメチル(アセチルアセトナート)金(III)、ジメチル(トリフルオロアセチルアセトナート)金(III)、トリクロロピリジン金(III)、メチルトリフェニルホスフィン金(I)、トリフェニルホスフィン金(I)ビス(トリフルオロメタンスルフォニル)イミダート等の金化合物、水酸化銀、フッ化銀、塩化銀、塩素酸銀、過塩素酸銀、臭化銀、ヨウ化銀、ヨウ素酸銀、硝酸銀、亜硝酸銀、シアン化銀、シアン化銀カリウム、酢酸銀、炭酸銀、チオシアン銀、チオシアン酸銀、テトラフルオロホウ酸銀(I)、トリフオロメタンスルホン酸銀、トリフルオロ酢酸銀、ヘキサフルオロリン酸銀(I)、硫化銀、硫酸銀、亜硫酸銀、リン酸銀、酸化銀、クエン酸銀、メタンスルホン酸銀、乳酸銀0.5水和物、トルエンスルホン酸銀、2-エチルヘキサン銀、2,2,6,6-テトラメチル-3,5-ヘプタンジオナト銀(I)等の銀化合物、アジ化銅、アジ化銅、安息香酸銅(II)、水酸化銅、フッ化銅、塩化銅、臭化銅、ヨウ化銅、ヨウ素酸銅、硝酸銅、シアン化銅、ジクロロ銅(I)酸、炭酸銅、チオシアン酸銅、チオフェン-2-カルボン酸銅(I)、硫化銅、硫酸銅、硫酸アンモニウム銅、酢酸銅、酸化銅、過酸化銅、銅(II)エトキシド、銅イソプロポキシド、ビス(アセチルアセトナート)銅(II)、エチルアセト酢酸銅、塩化二アンモニウム銅(II)二水和物、ぎ酸銅(II)四水和物、フタル酸銅、オレイン酸銅、シュウ酸銅、クエン酸銅、リン酸銅、グルコン酸銅、メタクリル酸銅、イソ酪酸銅、酒石酸銅(II)水和物、テレフタル酸銅(II)酸水和物、トリフルオロメタンスルホン酸銅、トリフルオロアセチルアセトナート銅(II)、トリシアノ銅(I)二カリウム、銅(I)フェニルアセチリド、2-エチルヘキサン酸銅(II)、シクロペンタジエニル(トリエチルホスフィン)銅(I)、硫酸テトラアンミン銅(II)水和物、テトラキス(アセトニトリル)銅(I)ヘキサフルオロホスファート、ジヒドロキソビス(テトラメチルエチレンジアミン)銅(II)塩化物、フタロシアニン銅、フタロシアニン銅四スルホン酸四ナトリウム塩、銅クロロフィリン三ナトリウム塩、ベンゼンスルフィン酸銅、水素化ホウ素ビス(トリフェニルホスフィン)銅、エチレンジアミン四酢酸銅(II)二ナトリウム塩四水和物等の銅化合物、ヘキサクロロ白金(IV)酸、ヘキサクロロ白金(IV)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム六水和物、塩化白金(IV)酸アンモニウム、ヘキサヒドロキソ白金(IV)酸、ヘキサヒドロキソ白金(IV)酸カリウム、ヘキサヒドロキソ白金(IV)酸ナトリウム、亜硫酸白金、硝酸白金(II)、塩化第一白金(II)、塩化第二白金(IV)、ヘキサシアノ白金(IV)酸カリウム、テトラブロモ白金(II)酸カリウム、ヘキサブロモ白金酸(IV)アンモニウム、ヘキサブロモ白金酸(IV)ナトリウム、ヘキサブロモ白金酸(IV)九水和物、ヘキサヨード白金酸(IV)カリウム、ジニトロジアンミン白金(II)、ヘキサアンミン白金(IV)クロライド、ヘキサアンミン白金(IV)水酸塩溶液、テトラアンミン白金(II)ジクロライド、テトラアンミン白金(II)ジクロライド、テトラアンミン白金(II)水酸化物、テトラアミン白金(II)テトラクロロ白金(II)酸、硝酸テトラアンミン白金(II)、テトラキス(トリフェニルホスフィン)白金(O)、ビス(アセチルアセトナート)白金(II)、テトラクロロ白金(II)酸カリウム、テトラクロロ白金(II)酸アンモニウム、テトラクロロ白金(II)酸ナトリウム、酸化白金(IV)、臭化白金(II)、臭化白金(IV)、硫化白金(IV)、ヨウ化白金、シアン化白金(II)、ヨードトリメチル白金(IV)、白金フタロシアニン、炭酸水素テトラアンミン白金(II)、ジクロロ(エチレンジアミン)白金(II)、ジクロロビス(ベンゾニトリル)白金(II)、ジニトロスルファト白金酸(II)、ビス(ピリジン)白金(II)クロリド、りん酸テトラアンミン白金(II)、ジクロロビス(ジエチルスルフィド)白金(II)、ジクロロビス(クロロシクロヘキセン)白金(II)、ジクロロビス(トリフェニルホスフィン)白金(II)等の白金化合物、塩化パラジウム、ヨウ化パラジウム、臭化パラジウム、硝酸パラジウム、硫酸パラジウム、酢酸パラジウム、テトラアンミンパラジウム(II)クロライド、テトラアンミンパラジウム(II)ブロマイド、テトラアンミンパラジウム(II)水酸化物、水酸化パラジウム、亜硝酸ジアミンパラジウム(II)、ジアンミンジニトロパラジウム(II)、ジアンミンジクロロパラジウム(II)、酢酸パラジウム(II)、ビス(アセチルアセトナート)パラジウム(II)、ビス(アセトニトリル)ジクロロパラジウム(II)、ジクロロビス(ピリジン)パラジウム(II)、trans-ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロ(テトラメチルエチレンジアミン)パラジウム(II)、trans-ジブロモビス(トリフェニルホスフィン)パラジウム(II)、酸化パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム、テトラクロロパラジウム酸ナトリウム、テトラクロロパラジウム酸アンモニウム、テトラクロロパラジウム酸カリウム、テトラブロモパラジウム(II)酸ナトリウム、ヘキサクロロパラジウム(IV)酸カリウム、ヘキサクロロパラジウム(IV)酸ナトリウム、ジクロロ(エチレンジアミン)パラジウム(II)、テトラニトロパラジウム(II)酸カリウム、硫化パラジウム、ジクロロ[ビス(1,2-ジフェニルホスフィノ)エタン]パラジウム(II)、ジクロロ[ビス(1,4-ジフェニルホスフィノ)ブタン]パラジウム(II)、2,2‘-ビス(ジフェニルホスフィノ)-1,1’-ビナフチルジクロロパラジウム(II)、2,2‘-ビス(ジフェニルホスフィノ)-1,1’-ビナフチルジブロモパラジウム(II)、ビス(トリ-t-ブチルホスフィン)パラジウム、ビス(ジ-t-ブチルフェニルホスフィン)ジクロロパラジウム(II)、ビス(トリ-o-トリルホスフィン)ジブロモパラジウム(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、[4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン]ジクロロパラジウム(II)、ジクロロ(シクロオクタジエン)パラジウム、ジクロロビス[ジ-t-ブチル(p-ジメチルアミノフェニル)ホスフィノ]パラジウム(II)、(エチレンジアミン)ジニトラトパラジウム(II)等のパラジウム化合物、酸化ロジウム、塩化ロジウム、ヨウ化ロジウム、臭化ロジウム、硫酸ロジウム、硝酸ロジウム、酢酸ロジウム(II)、ヘキサクロロロジウム(III)酸カリウム、ヘキサクロロロジウム(III)酸ナトリウム、ヘキサクロロロジウム(III)酸カリウム、ヘキサクロロロジウム(III)酸アンモニウム、ヘキサニトリトロジウム(III)酸カリウム、トリス(アセチルアセトナート)ロジウム(III)、クロロトリス(トリフェニルホスフィン)ロジウム(I)、アセチルアセトナートジカルボニルロジウム(I)、アセチルアセトナートカルボニルトリフェニルホスフィンロジウム(I)等のロジウム化合物、酸化イリジウム、臭化イリジウム、ヨウ化イリジウム、塩化イリジウム(III)、塩化イリジウム(IV)酸、トリス(アセチルアセトナート)イリジウム(II)、アセチルアセトンイリジウム(III)、(アセチルアセトナート)ジカルボニルイリジウム(I)、硝酸イリジウム、酢酸イリジウム、ヘキサアミンイリジウム水酸化物、塩化イリジウム(IV)酸アンモニウム、塩化イリジウム(IV)酸カリウム、イリジウムカルボニル、ドデカカルボニル四イリジウム、ヘキサニトロイジリウム(III)酸ナトリウム、ヘキサクロロイリジウム(IV)酸カリウム、ヘキサクロロイリジウム(IV)酸アンモ二ウム、ヘキサクロロイリジウム(IV)酸ナトリウム、等のイリジウム化合物、塩化ルテニウム、酸化ルテニウム、硝酸ルテニウム、ヘキサアンミンルテニウム(III)クロライド、ドデカカルボニルトリルテニウム(O)、トリス(アセチルアセトナート)ルテニウム(III)、ルテニウム酸ナトリウム、ルテニウム酸カリウム、ルテニウムカルボニル、ヨウ化ルテニウム、臭化ルテニウム、過ルテニウム酸カリウム、過ルテニウム酸テトラブチルアンモニウム、過ルテニウム酸テトラプロピルアンモニウム、ニトロシル塩化ルテニウム、ニトロシル硝酸ルテニウム、ヘキサシアノルテニウム(II)酸カリウム、ペンタクロロルテニウム(III)酸カリウム、ヘキサクロロルテニウム酸(IV)アンモニウム、カルボニルジヒドリドトリス(トリフェニルホスフィン)ルテニウム、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム、ルテニウムポルフィリン錯体、トリス(2,2´-ビピリジル)ルテニウム(II)ジクロリド等のルテニウム化合物、酸化オスミウム、オスミウムカルボニル、塩化オスミウム、ビス(シクロペンタジエニル)オスミウム、ヘキサクロロオスミウム(IV)酸ナトリウム、ヘキサクロロオスミウム(IV)酸カリウム、ヘキサクロロオスミウム酸(IV)アンモニウム、ヘキサブロモオスミウム酸(IV)アンモニウム、ヘキサブロモオスミウム酸(IV)カリウム、オスミウム(VI)酸カリウム等のオスミウム化合物等が挙げられる。 As the noble metal compound containing the above-mentioned noble metal element, for example, inorganic and/or organic salts, oxides, sulfides, halides, etc. of the noble metal element can be used alone or in combination of two or more. Specifically, the noble metal compounds include gold hydroxide, gold (III) oxide, gold fluoride, gold chloride, chloroauric acid, gold bromide, gold iodide, gold cyanide, potassium gold cyanide, and gold sulfite. Sodium, dichloro(1,10-phenanthroline)gold(III) chloride, tetrametal octachloride, chloro(trimethylphosphine)gold(I), chloro(triethylphosphine)gold(I), chloro(triphenylphosphine)gold(I) ), bromo(triphenylphosphine)gold(I), chloro[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]gold(I), hydroxide[1,3-bis(2, 6-diisopropylphenyl)imidazol-2-ylidene] gold(I), chlorodiphenyl(3-sulfonatophenyl)phosphine gold(I) sodium salt, gold sodium thiosulfate, gold(III) acetate, dimethyl (acetylacetonate) Gold (III), dimethyl (trifluoroacetylacetonate) gold (III), trichloropyridine gold (III), methyltriphenylphosphine gold (I), triphenylphosphine gold (I) bis(trifluoromethanesulfonyl) imidate, etc. Gold compounds, silver hydroxide, silver fluoride, silver chloride, silver chlorate, silver perchlorate, silver bromide, silver iodide, silver iodate, silver nitrate, silver nitrite, silver cyanide, potassium silver cyanide, acetic acid Silver, silver carbonate, silver thiocyanate, silver thiocyanate, silver (I) tetrafluoroborate, silver trifluoromethanesulfonate, silver trifluoroacetate, silver (I) hexafluorophosphate, silver sulfide, silver sulfate, silver sulfite , silver phosphate, silver oxide, silver citrate, silver methanesulfonate, silver lactate hemihydrate, silver toluenesulfonate, silver 2-ethylhexane, 2,2,6,6-tetramethyl-3, Silver compounds such as silver (I) 5-heptanedionate, copper azide, copper azide, copper (II) benzoate, copper hydroxide, copper fluoride, copper chloride, copper bromide, copper iodide, copper iodate, Copper nitrate, copper cyanide, dichlorocopper(I) acid, copper carbonate, copper thiocyanate, copper(I) thiophene-2-carboxylate, copper sulfide, copper sulfate, copper ammonium sulfate, copper acetate, copper oxide, copper peroxide , copper (II) ethoxide, copper isopropoxide, copper (II) bis(acetylacetonate), copper ethyl acetoacetate, diammonium chloride copper (II) dihydrate, copper (II) formate tetrahydrate, Copper phthalate, copper oleate, copper oxalate, copper citrate, copper phosphate, copper gluconate, copper methacrylate, copper isobutyrate, copper(II) tartrate hydrate, copper(II) terephthalate acid hydrate copper(II) trifluoromethanesulfonate, copper(II) trifluoroacetylacetonate, dipotassium tricyanocopper(I), copper(I) phenylacetylide, copper(II) 2-ethylhexanoate, cyclopentadienyl (triethylphosphine) ) Copper(I), tetraammine copper(II) sulfate hydrate, tetrakis(acetonitrile)copper(I) hexafluorophosphate, dihydroxobis(tetramethylethylenediamine)copper(II) chloride, phthalocyanine copper, phthalocyanine copper tetra Copper compounds such as tetrasodium sulfonic acid salt, trisodium copper chlorophyllin salt, copper benzenesulfinate, copper bis(triphenylphosphine) borohydride, copper(II) ethylenediaminetetraacetate disodium salt tetrahydrate, hexachloroplatinum ( IV) Acid, potassium hexachloroplatinate (IV), sodium hexachloroplatate (IV) hexahydrate, ammonium chloroplatinate (IV), hexahydroxoplatinate (IV) acid, potassium hexahydroxoplatate (IV), hexachloroplatinate (IV) Sodium hydroxoplatinate(IV), platinum sulfite, platinum(II) nitrate, platinum(II) chloride, platinum(IV) chloride, potassium hexacyanoplatinate(IV), potassium tetrabromoplatinate(II), hexabromo Ammonium (IV) platinate, sodium hexabromoplatinate (IV), hexabromoplatinic acid (IV) nonahydrate, potassium hexaiodoplatinate (IV), dinitrodiammineplatinum (II), hexaammineplatinum (IV) chloride, hexabromoplatinum (IV) chloride Ammineplatinum(IV) hydroxide solution, Tetraammineplatinum(II) dichloride, Tetraammineplatinum(II) dichloride, Tetraammineplatinum(II) hydroxide, Tetraammineplatinum(II) tetrachloroplatinic(II) acid, Tetraammineplatinum nitrate ( II), tetrakis(triphenylphosphine)platinum(O), bis(acetylacetonato)platinum(II), potassium tetrachloroplatinate(II), ammonium tetrachloroplatinate(II), tetrachloroplatinic(II) acid Sodium, platinum (IV) oxide, platinum (II) bromide, platinum (IV) bromide, platinum (IV) sulfide, platinum iodide, platinum (II) cyanide, platinum iodotrimethylplatinum (IV), platinum phthalocyanine, carbonic acid Tetraammineplatinum(II) hydrogen, dichloro(ethylenediamine)platinum(II), dichlorobis(benzonitrile)platinum(II), dinitrosulfatoplatinum(II), bis(pyridine)platinum(II) chloride, tetraammineplatinum phosphate( II), platinum compounds such as dichlorobis(diethylsulfide)platinum(II), dichlorobis(chlorocyclohexene)platinum(II), dichlorobis(triphenylphosphine)platinum(II), palladium chloride, palladium iodide, palladium bromide, nitric acid Palladium, palladium sulfate, palladium acetate, tetraamminepalladium (II) chloride, tetraamminepalladium (II) bromide, tetraamminepalladium (II) hydroxide, palladium hydroxide, diaminepalladium (II) nitrite, diamminedinitropalladium (II), Diamminedichloropalladium(II), palladium(II) acetate, bis(acetylacetonato)palladium(II), bis(acetonitrile)dichloropalladium(II), dichlorobis(pyridine)palladium(II), trans-dichlorobis(triphenylphosphine) ) Palladium(II), dichloro(tetramethylethylenediamine)palladium(II), trans-dibromobis(triphenylphosphine)palladium(II), palladium(II) oxide, tetrakis(triphenylphosphine)palladium, sodium tetrachloropalladate, Ammonium tetrachloropalladate, potassium tetrachloropalladate, sodium tetrabromopalladate (II), potassium hexachloropalladate (IV), sodium hexachloropalladate (IV), dichloro(ethylenediamine) palladium (II), tetranitropalladium ( II) acid potassium, palladium sulfide, dichloro[bis(1,2-diphenylphosphino)ethane]palladium(II), dichloro[bis(1,4-diphenylphosphino)butane]palladium(II), 2,2' -bis(diphenylphosphino)-1,1'-binaphthyldichloropalladium(II), 2,2'-bis(diphenylphosphino)-1,1'-binaphthyldibromopalladium(II), bis(tri-t- butylphosphine)palladium, bis(di-t-butylphenylphosphine)dichloropalladium(II), bis(tri-o-tolylphosphine)dibromopalladium(II), dichlorobis(benzonitrile)palladium(II), [4,5 -bis(diphenylphosphino)-9,9-dimethylxanthene]dichloropalladium(II), dichloro(cyclooctadiene)palladium, dichlorobis[di-t-butyl(p-dimethylaminophenyl)phosphino]palladium(II), Palladium compounds such as (ethylenediamine)dinitratopalladium (II), rhodium oxide, rhodium chloride, rhodium iodide, rhodium bromide, rhodium sulfate, rhodium nitrate, rhodium (II) acetate, potassium hexachlororhodate (III), hexachlororhodium Sodium (III) acid, potassium hexachlororhodate (III), ammonium hexachlororhodate (III), potassium hexanitrithrodate (III), tris(acetylacetonato)rhodium(III), chlorotris(triphenylphosphine)rhodium (I), rhodium compounds such as acetylacetonatodicarbonylrhodium (I), acetylacetonatocarbonyltriphenylphosphine rhodium (I), iridium oxide, iridium bromide, iridium iodide, iridium (III) chloride, iridium chloride ( IV) Acids, Tris(acetylacetonato)iridium(II), Acetylacetoneiridium(III), (acetylacetonato)dicarbonyliridium(I), Iridium Nitrate, Iridium Acetate, Hexamine Iridium Hydroxide, Iridium Chloride (IV) ) acid ammonium, potassium iridium chloride (IV), iridium carbonyl, dodecacarbonyl tetrairidium, sodium hexanitroidylium (III), potassium hexachloroiridate (IV), ammonium hexachloroiridate (IV), hexachloroiridium Iridium compounds such as sodium (IV) acid, ruthenium chloride, ruthenium oxide, ruthenium nitrate, hexaammineruthenium (III) chloride, dodecacarbonyltriruthenium (O), tris(acetylacetonate)ruthenium (III), sodium ruthenate , potassium ruthenate, ruthenium carbonyl, ruthenium iodide, ruthenium bromide, potassium perruthenate, tetrabutylammonium perruthenate, tetrapropylammonium perruthenate, ruthenium nitrosyl chloride, ruthenium nitrosyl nitrate, potassium hexacyanoruthenate(II) , potassium pentachlororuthenate(III), ammonium hexachlororuthenate(IV), carbonyldihydridotris(triphenylphosphine)ruthenium, carbonylchlorohydridotris(triphenylphosphine)ruthenium, ruthenium porphyrin complex, tris(2,2' -Ruthenium compounds such as bipyridyl)ruthenium(II) dichloride, osmium oxide, osmium carbonyl, osmium chloride, bis(cyclopentadienyl)osmium, sodium hexachloroosmate(IV), potassium hexachloroosmate(IV), hexachloroosmate (IV) ammonium, ammonium hexabromoosmate (IV), potassium hexabromoosmate (IV), potassium osmate (VI), and other osmium compounds.

上述した中でも、貴金属化合物は、好ましくは白金化合物(ジニトロジアンミン白金、ビス(アセチルアセトナート)白金、ヘキサクロロ白金(IV)酸、ヘキサクロロ白金(IV)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム六水和物、ヘキサアンミン白金(IV)クロライド、ヘキサアンミン白金(IV)水酸塩溶液、テトラアンミン白金(II)ジクロライド、臭化白金(II)、臭化白金(IV)、シアン化白金(II)およびヨウ化白金)、金化合物(ジメチル(アセチルアセトナート)金(III)、塩化金、塩化金酸、臭化金、ヨウ化金、シアン化金、シアン化金カリウム)およびパラジウム化合物(塩化パラジウム、ヨウ化パラジウム、臭化パラジウム、硝酸パラジウム、硫酸パラジウム、ビス(アセチルアセトナート)パラジウム(II)、テトラクロロパラジウム酸ナトリウム、テトラクロロパラジウム酸アンモニウム、テトラクロロパラジウム酸カリウム)からなる群から選択される1種以上を含む。このような化合物は、還元速度が比較的小さく、貴金属化合物と卑金属化合物との還元速度の差の影響を小さくすることに寄与することができる。これにより、貴金属化合物のみが還元して粒子化することが抑制され、触媒粒子とした際の合金化率が高まる。 Among the above-mentioned, the noble metal compound is preferably a platinum compound (dinitrodiammine platinum, bis(acetylacetonato)platinum, hexachloroplatinic (IV) acid, potassium hexachloroplatinate (IV), sodium hexachloroplatinate (IV) hexahydrate). hexaammineplatinum(IV) chloride, hexaammineplatinum(IV) hydroxide solution, tetraammineplatinum(II) dichloride, platinum(II) bromide, platinum(IV) bromide, platinum(II) cyanide and iodine platinum chloride), gold compounds (dimethyl(acetylacetonato)gold(III), gold chloride, chloroauric acid, gold bromide, gold iodide, gold cyanide, potassium gold cyanide) and palladium compounds (palladium chloride, gold iodine) 1 selected from the group consisting of palladium chloride, palladium bromide, palladium nitrate, palladium sulfate, bis(acetylacetonato)palladium (II), sodium tetrachloropalladate, ammonium tetrachloropalladate, potassium tetrachloropalladate) Contains more than one species. Such a compound has a relatively low reduction rate and can contribute to reducing the influence of the difference in reduction rate between the noble metal compound and the base metal compound. This prevents only the noble metal compound from being reduced and turned into particles, and increases the alloying rate when formed into catalyst particles.

特に貴金属化合物が白金化合物を含む場合、貴金属化合物は、好ましくは、ジニトロジアンミン白金、ビス(アセチルアセトナート)白金、ヘキサクロロ白金(IV)酸、ヘキサクロロ白金(IV)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム六水和物およびヨウ化白金からなる群から選択される1種以上を含む。このような白金化合物は、還元速度が比較的小さく、貴金属化合物と卑金属化合物との還元速度の差を小さくすることに寄与することができる。 In particular, when the noble metal compound comprises a platinum compound, the noble metal compound is preferably dinitrodiammine platinum, bis(acetylacetonato)platinum, hexachloroplatinic (IV) acid, potassium hexachloroplatinate (IV), hexachloroplatinic (IV) acid. It contains one or more selected from the group consisting of sodium hexahydrate and platinum iodide. Such a platinum compound has a relatively low reduction rate and can contribute to reducing the difference in reduction rate between the noble metal compound and the base metal compound.

混合物中の貴金属化合物の含有量は、特に限定されず、貴金属化合物の第1の溶媒に対する溶解度や、卑金属化合物との比率に応じて適宜設定される。 The content of the noble metal compound in the mixture is not particularly limited, and is appropriately set depending on the solubility of the noble metal compound in the first solvent and the ratio with the base metal compound.

卑金属元素は、例えば貴金属元素と組み合わせることにより合金触媒の触媒性能を向上させるために添加される。例えば、固体高分子形燃料電池の合金触媒の場合、貴金属元素の卑金属元素との合金化により、貴金属原子間の原子間距離が短くなり、これにより酸素との結合・脱離しやすさが最適化されることに起因して、触媒粒子の触媒活性が向上すると考えられている。 Base metal elements are added to improve the catalytic performance of the alloy catalyst, for example by combining with noble metal elements. For example, in the case of alloy catalysts for polymer electrolyte fuel cells, alloying a noble metal element with a base metal element shortens the interatomic distance between noble metal atoms, thereby optimizing the ease with which they bond with and desorb oxygen. It is thought that the catalytic activity of the catalyst particles is improved due to this.

卑金属元素としては、触媒粒子の構成元素として使用可能であれば特に限定されず、合金触媒の用途、目的に応じて、貴金属以外の任意の金属元素を1種単独で、または2種以上組み合わせ用いることができる。 The base metal element is not particularly limited as long as it can be used as a constituent element of catalyst particles, and any metal element other than noble metals may be used singly or in combination of two or more depending on the use and purpose of the alloy catalyst. be able to.

このような卑金属元素としては、例えば、金属、半金属の性質を有し、かつ貴金属でない周期表第1族~第16族の各種元素が挙げられる。具体的には、卑金属元素として、アルカリ金属元素(Li、Na、K、Rb、Cs、Fr)、アルカリ土類金属元素(Ca、Sr、Ba、Ra)、遷移金属元素(Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Mn、Fe、Co、Ni)、希土類元素(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)、アクチノイド(Ac、Th、Pa、U、Np、Pu)、その他の金属的性質を示す典型元素(Be、Mg、Zn、Cd、Hg、Al、Ga、In、Tl、Sn、Pb、Bi、Po)、半金属元素(B、Si、Ge、As、Sb、Te、At、Se)が挙げられる。 Examples of such base metal elements include various elements of Groups 1 to 16 of the periodic table that have the properties of metals and semimetals and are not noble metals. Specifically, the base metal elements include alkali metal elements (Li, Na, K, Rb, Cs, Fr), alkaline earth metal elements (Ca, Sr, Ba, Ra), and transition metal elements (Sc, Y, Ti). , Zr, Hf, V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Ni), rare earth elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er , Tm, Yb, Lu), actinides (Ac, Th, Pa, U, Np, Pu), and other typical elements exhibiting metallic properties (Be, Mg, Zn, Cd, Hg, Al, Ga, In, Tl , Sn, Pb, Bi, Po), metalloid elements (B, Si, Ge, As, Sb, Te, At, Se).

卑金属元素は、用途に応じて適宜選択可能であるが、特に固体高分子形燃料電池用の合金触媒を製造する場合、好ましくはTi、Zr、V、Nb、Mn、Fe、Co、Ni、Al、SnおよびSiからなる群から選択される1種以上を含み、より好ましくはCo、Fe、NiおよびTiからなる群から選択される1種以上を含む。 Base metal elements can be selected as appropriate depending on the application, but in particular when producing an alloy catalyst for polymer electrolyte fuel cells, preferably Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Al. , Sn, and Si, more preferably one or more selected from the group consisting of Co, Fe, Ni, and Ti.

上述した卑金属元素を含む卑金属化合物としては、例えば、卑金属元素の無機および/または有機塩、酸化物、硫化物、ハロゲン化物等を、1種単独でまたは2種以上組み合わせて用いることができる。このような卑金属化合物としては、Co、Fe、NiおよびTiについては、具体的には、酸化コバルト、水酸化コバルト、フッ化コバルト、塩化コバルト、臭化コバルト、ヨウ化コバルト、ヨウ素酸コバルト、硝酸コバルト、硫酸コバルト、シアン化コバルト、アセチルアセトナートコバルト、ギ酸コバルト、シュウ酸コバルト、オレイン酸コバルト、コバルトカルボニル、コバルトセン、シクロヘキサン酪酸コバルト、ステアリン酸コバルト、チオシアン酸コバルト、テトラメトキシフェニルポルフィリンコバルト、ナフテン酸コバルト、フタロシアニンコバルト、ヘキサシアノコバルト(III)酸カリウム、ヘキサニトロコバルト(III)酸ナトリウム、炭酸コバルト、酢酸コバルト等のコバルト化合物、酸化鉄、水酸化鉄、フッ化鉄、塩化鉄、臭化鉄、ヨウ化鉄、硝酸鉄、硫酸鉄、シアン化鉄(II)、硫化鉄、塩化ヒドロキシルアンモニウム、フェロシアン化ナトリウム、フェロシアン化カリウム、フェリシアン化カリウム、過塩素酸鉄、炭酸鉄、酢酸鉄、シュウ酸鉄、シュウ酸第二鉄カリウム、シュウ酸鉄第二鉄アンモニウム、酸化水酸化鉄、乳酸鉄(II)、硫酸アンモニウム鉄(II)、リン酸鉄、クエン酸鉄、クエン酸アンモニウム鉄、エチレンジアミン四酢酸鉄ナトリウム、鉄ペンタカルボニル、ドデカカルボニル三鉄、フタロシアニン鉄、鉄(III)アセチルアセトナート等の鉄化合物、酸化ニッケル(II)、水酸化ニッケル(II)、フッ化ニッケル(II)、塩化ニッケル(II)、臭化ニッケル(II)、ヨウ化ニッケル(II)、硝酸ニッケル(II)、硫酸ニッケル(II)、炭酸ニッケル、クエン酸ニッケル、シュウ酸ニッケル、ステアリン酸ニッケル、安息香酸ニッケル、酢酸ニッケル、過塩素酸ニッケル、シアン化ニッケル(II)カリウム、塩化ビス(トリフェニルホスフィン)ニッケル、ジカルボニルビス(トリフェニルホスフィン)ニッケル、ニッケル(II)アセチルアセトナート、フタロシアニンニッケル等のニッケル化合物、フッ化チタン、塩化チタン、臭化チタン、ヨウ化チタン、硫酸チタン、炭化チタン、窒化チタン、シュウ酸チタンカリウム、チタニウムテトライソプロポキシド、チタニウムテトラ-n-ブトキシド等のチタン化合物等が挙げられる。 As the base metal compound containing the above-mentioned base metal element, for example, inorganic and/or organic salts, oxides, sulfides, halides, etc. of the base metal element can be used alone or in combination of two or more. Such base metal compounds include Co, Fe, Ni and Ti, specifically cobalt oxide, cobalt hydroxide, cobalt fluoride, cobalt chloride, cobalt bromide, cobalt iodide, cobalt iodate, and nitric acid. Cobalt, cobalt sulfate, cobalt cyanide, cobalt acetylacetonate, cobalt formate, cobalt oxalate, cobalt oleate, cobalt carbonyl, cobaltocene, cobalt cyclohexane butyrate, cobalt stearate, cobalt thiocyanate, cobalt tetramethoxyphenylporphyrin, naphthene Cobalt compounds such as cobalt acid, cobalt phthalocyanine, potassium hexacyanocobalt(III), sodium hexanitrocobaltate(III), cobalt carbonate, cobalt acetate, iron oxide, iron hydroxide, iron fluoride, iron chloride, iron bromide , iron iodide, iron nitrate, iron sulfate, iron(II) cyanide, iron sulfide, hydroxylammonium chloride, sodium ferrocyanide, potassium ferrocyanide, potassium ferricyanide, iron perchlorate, iron carbonate, iron acetate, iron oxalate. , ferric potassium oxalate, ferric ammonium oxalate, iron hydroxide oxide, iron(II) lactate, ammonium iron(II) sulfate, iron phosphate, iron citrate, ammonium iron citrate, iron ethylenediaminetetraacetate Sodium, iron pentacarbonyl, triiron dodecacarbonyl, iron phthalocyanine, iron compounds such as iron (III) acetylacetonate, nickel (II) oxide, nickel (II) hydroxide, nickel (II) fluoride, nickel (II) chloride ), nickel (II) bromide, nickel (II) iodide, nickel (II) nitrate, nickel (II) sulfate, nickel carbonate, nickel citrate, nickel oxalate, nickel stearate, nickel benzoate, nickel acetate, Nickel compounds such as nickel perchlorate, potassium nickel(II) cyanide, nickel bis(triphenylphosphine) chloride, nickel dicarbonylbis(triphenylphosphine), nickel(II) acetylacetonate, nickel phthalocyanine, titanium fluoride , titanium compounds such as titanium chloride, titanium bromide, titanium iodide, titanium sulfate, titanium carbide, titanium nitride, potassium titanium oxalate, titanium tetraisopropoxide, and titanium tetra-n-butoxide.

上述した中でも、卑金属化合物は、好ましくは、塩化コバルト、臭化コバルト、ヨウ化コバルト、シアン化コバルト、チオシアン酸コバルト、硫酸コバルト、硝酸コバルト、アセチルアセトナートコバルト、塩化鉄、臭化鉄、ヨウ化鉄、硫酸鉄、硝酸鉄、鉄(III)アセチルアセトナート、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、硫酸ニッケル、硝酸ニッケル、シアン化ニッケル(II)カリウム、ニッケル(II)アセチルアセトナート、塩化チタン、臭化チタン、ヨウ化チタン、チタニウムテトライソプロポキシドおよび硫酸チタンからなる群から選択される1種以上、より好ましくは、塩化コバルト、硫酸コバルト、硝酸コバルト、アセチルアセトナートコバルト、硫酸鉄、硝酸鉄、鉄(III)アセチルアセトナート、塩化ニッケル(II)、硫酸ニッケル、硝酸ニッケル、ニッケル(II)アセチルアセトナート、チタニウムテトライソプロポキシドおよび硫酸チタンからなる群から選択される1種以上を含む。これらの卑金属化合物は、比較的還元速度が大きく、このため卑金属化合物と貴金属化合物との還元速度の差の影響を小さくすることに寄与する。これにより、貴金属化合物のみが還元して粒子化することが抑制され、触媒粒子とした際の合金化率が高まる。 Among the above-mentioned, the base metal compounds are preferably cobalt chloride, cobalt bromide, cobalt iodide, cobalt cyanide, cobalt thiocyanate, cobalt sulfate, cobalt nitrate, cobalt acetylacetonate, iron chloride, iron bromide, and cobalt iodide. Iron, iron sulfate, iron nitrate, iron (III) acetylacetonate, nickel chloride, nickel bromide, nickel iodide, nickel sulfate, nickel nitrate, nickel (II) potassium cyanide, nickel (II) acetylacetonate, chloride One or more selected from the group consisting of titanium, titanium bromide, titanium iodide, titanium tetraisopropoxide, and titanium sulfate, more preferably cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt acetylacetonate, iron sulfate, One or more selected from the group consisting of iron nitrate, iron (III) acetylacetonate, nickel (II) chloride, nickel sulfate, nickel nitrate, nickel (II) acetylacetonate, titanium tetraisopropoxide, and titanium sulfate. include. These base metal compounds have a relatively high reduction rate, and therefore contribute to reducing the influence of the difference in reduction rate between the base metal compound and the noble metal compound. This prevents only the noble metal compound from being reduced and turned into particles, and increases the alloying rate when formed into catalyst particles.

また、貴金属化合物と卑金属化合物とは、還元速度の差ができる限り小さくなるように選択されることが好ましい。具体的には、還元しにくく還元速度の小さな貴金属化合物と、還元しやすく還元速度の大きい卑金属化合物とを組み合わせることが好ましい。このような組み合わせとしては、例えば貴金属化合物がジニトロジアンミン白金、ビス(アセチルアセトナート)白金、ヘキサクロロ白金(IV)酸、ヘキサクロロ白金(IV)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム六水和物、ヨウ化白金、ジメチル(アセチルアセトナート)金(III)、塩化金、塩化金酸、塩化パラジウム、硝酸パラジウム、硫酸パラジウム、ジアンミンジニトロパラジウム(II)およびビス(アセチルアセトナート)パラジウム(II)からなる群から選択される1種以上を含み、かつ卑金属化合物は、塩化コバルト、硫酸コバルト、硝酸コバルト、アセチルアセトナートコバルト、硫酸鉄、硝酸鉄、鉄(III)アセチルアセトナート、塩化ニッケル(II)、硫酸ニッケル、硝酸ニッケル、ニッケル(II)アセチルアセトナート、チタニウムテトライソプロポキシドおよび硫酸チタンからなる群から選択される1種以上を含む場合が挙げられる。これらの化合物は、市場より容易かつ安価に入手可能である。なお、このような組み合わせは、例えばHSAB則(Hard and Soft Acids and Bases)に基づき各化合物の還元反応における安定性を決定し、選択することができる。 Further, the noble metal compound and the base metal compound are preferably selected so that the difference in reduction rate is as small as possible. Specifically, it is preferable to combine a noble metal compound that is difficult to reduce and has a low reduction rate with a base metal compound that is easy to reduce and has a high reduction rate. Such a combination includes, for example, when the noble metal compound is dinitrodiammine platinum, bis(acetylacetonato)platinum, hexachloroplatinic (IV) acid, potassium hexachloroplatinate (IV), sodium hexachloroplatinate (IV) hexahydrate, Consists of platinum iodide, dimethyl(acetylacetonato)gold(III), gold chloride, chloroauric acid, palladium chloride, palladium nitrate, palladium sulfate, diaminedinitropalladium(II) and bis(acetylacetonato)palladium(II) The base metal compound includes one or more selected from the group, and the base metal compound is cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt acetylacetonate, iron sulfate, iron nitrate, iron (III) acetylacetonate, nickel (II) chloride, Examples include cases in which one or more selected from the group consisting of nickel sulfate, nickel nitrate, nickel (II) acetylacetonate, titanium tetraisopropoxide, and titanium sulfate are included. These compounds are easily and inexpensively available on the market. Note that such a combination can be selected by determining the stability of each compound in a reduction reaction based on, for example, the HSAB rule (Hard and Soft Acids and Bases).

混合物中の卑金属化合物の含有量は、特に限定されず、卑金属化合物の第1の溶媒に対する溶解度や、貴金属化合物との比率に応じて適宜設定される。具体的には、例えば固体高分子形燃料電池用の合金触媒を製造する場合、貴金属化合物の貴金属元素1モルに対し、卑金属化合物の卑金属元素が例えば0.1モル以上5モル以下、好ましくは0.3モル以上3モル以下となるように卑金属化合物の含有量が設定される。 The content of the base metal compound in the mixture is not particularly limited, and is appropriately set depending on the solubility of the base metal compound in the first solvent and the ratio to the noble metal compound. Specifically, when manufacturing an alloy catalyst for polymer electrolyte fuel cells, for example, the base metal element in the base metal compound is, for example, 0.1 mol or more and 5 mol or less, preferably 0.1 mol or more and 5 mol or less, preferably 0. The content of the base metal compound is set to be .3 mol or more and 3 mol or less.

(第1の溶媒)
混合物に用いる第1の溶媒は、上述した貴金属化合物および卑金属化合物を溶解可能であれば特に限定されず、水や各種有機溶媒を使用することができ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。有機溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、グリコール系溶媒、炭化水素系溶媒、芳香族系溶媒、ハロゲン化炭化水素、アミド系溶媒、カルボン酸系溶媒等が挙げられる。これらのうち、水、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒およびカルボン酸系溶媒は、比較的貴金属化合物および卑金属化合物を溶解しやすい。また、これらの溶媒は、後述する第2の工程において、比較的容易に多孔質材料から除去することができる。さらには、これらの溶媒は、第2の溶媒として水等の極性溶媒を用いる場合、これらの極性溶媒との親和性が高い。
(First solvent)
The first solvent used in the mixture is not particularly limited as long as it can dissolve the above-mentioned noble metal compound and base metal compound, and water and various organic solvents can be used, and one type or two types of these can be used. The above can be used in combination. Examples of organic solvents include alcohol solvents, ketone solvents, ether solvents, ester solvents, glycol solvents, hydrocarbon solvents, aromatic solvents, halogenated hydrocarbons, amide solvents, and carboxylic acid solvents. etc. Among these, water, alcohol-based solvents, ether-based solvents, ketone-based solvents, and carboxylic acid-based solvents are relatively easy to dissolve noble metal compounds and base metal compounds. Further, these solvents can be relatively easily removed from the porous material in the second step described below. Furthermore, these solvents have high affinity with polar solvents such as water when used as the second solvent.

特に、貴金属化合物および卑金属化合物の溶解性、後述する還元溶液との混合を考慮すると、第1の溶媒は、水を含むことが好ましい。 In particular, in consideration of the solubility of the noble metal compound and the base metal compound and the mixing with the reducing solution described below, it is preferable that the first solvent contains water.

アルコール系溶媒としては、例えば、炭素数1~10の分岐、環状または直鎖状アルコール化合物が挙げられ、これらを単独でまたは2種以上組み合わせて用いることができる。またアルコール系溶媒に含まれるアルコール化合物は、第1級、第2級および第3級アルコールのいずれであってもよく、多価アルコールであってもよい。より具体的には、アルコール系溶媒としては、例えば、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブチルアルコール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、シクロペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、メチルシクロヘキサノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール等が挙げられる。 Examples of the alcohol solvent include branched, cyclic, or linear alcohol compounds having 1 to 10 carbon atoms, and these can be used alone or in combination of two or more. Further, the alcohol compound contained in the alcohol solvent may be any of primary, secondary, and tertiary alcohols, and may be polyhydric alcohols. More specifically, examples of alcoholic solvents include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butyl alcohol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, and 2-pen. Tanol, cyclopentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, methylcyclohexanol, cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene Examples include glycol, pentaethylene glycol, and the like.

エーテル系溶媒としては、例えば、ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、メチル-n-プロピルエーテル、エチル-n-プロピルエーテル、ジ-n-プロピルエーテル、メチルイソプロピルエーテル、ジイソプロピルエーテル、メチル-n-ブチルエーテル、エチル-n-ブチルエーテル、メチルイソブチルエーテル、エチルイソブチルエーテル等の炭素数1~4の分岐または直鎖状アルキルのエーテル、テトラヒドロフラン、テトラヒドロピラン、オキサシクロヘプタン、1,4-ジオキサン等の環状エーテル等が挙げられる。 Examples of ether solvents include dimethyl ether, methyl ethyl ether, diethyl ether, methyl-n-propyl ether, ethyl-n-propyl ether, di-n-propyl ether, methyl isopropyl ether, diisopropyl ether, and methyl-n-butyl ether. , branched or linear alkyl ethers having 1 to 4 carbon atoms such as ethyl-n-butyl ether, methyl isobutyl ether, and ethyl isobutyl ether; cyclic ethers such as tetrahydrofuran, tetrahydropyran, oxacycloheptane, and 1,4-dioxane; can be mentioned.

ケトン系溶媒としては、アセトン、メチルイソブチルケトン、メチル-n-ブチルケトン、メチルエチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ペンタナール、ジエチルケトン、メチルプロピルケトン、ジイソブチルケトン、ジアセトンアルコール等が挙げられる。 Examples of the ketone solvent include acetone, methyl isobutyl ketone, methyl-n-butyl ketone, methyl ethyl ketone, cyclohexanone, methyl cyclohexanone, pentanal, diethyl ketone, methyl propyl ketone, diisobutyl ketone, diacetone alcohol, and the like.

エステル系溶媒としては、例えば、炭素数1~5の分岐、環状または直鎖状アルコール化合物と炭素数1~5の有機酸または炭酸とのエステルが挙げられ、これらを単独でまたは2種以上組み合わせて用いることができる。具体的には、エステル系溶媒としては、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸-sec-ブチル、酢酸-tert-ブチル、酢酸イソブチル、酢酸ベンジル酢酸アミル、酢酸イソアミル、炭酸ジエチル、炭酸プロピレン、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸イソプロピル、酪酸-n-ブチル、酪酸-sec-ブチル、酪酸-tert-ブチル、酪酸イソブチル、酪酸イソアミル、吉草酸メチル、吉草酸エチル、吉草酸-n-ブチル、吉草酸-sec-ブチル、吉草酸-tert-ブチル、イソ吉草酸ブチル、乳酸メチル、乳酸エチル、乳酸-n-ブチル、乳酸-sec-ブチル、乳酸-tert-ブチル、乳酸イソブチル等が挙げられる。 Examples of ester solvents include esters of branched, cyclic, or linear alcohol compounds having 1 to 5 carbon atoms and organic acids or carbonic acid having 1 to 5 carbon atoms, which may be used alone or in combination of two or more. It can be used as Specifically, the ester solvents include ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, n-butyl acetate, sec-butyl acetate, tert-butyl acetate, isobutyl acetate, and benzyl acetate. Amyl, isoamyl acetate, diethyl carbonate, propylene carbonate, methyl butyrate, ethyl butyrate, propyl butyrate, isopropyl butyrate, n-butyl butyrate, sec-butyl butyrate, tert-butyl butyrate, isobutyl butyrate, isoamyl butyrate, methyl valerate , ethyl valerate, n-butyl valerate, sec-butyl valerate, tert-butyl valerate, butyl isovalerate, methyl lactate, ethyl lactate, n-butyl lactate, sec-butyl lactate, lactic acid -tert-butyl, isobutyl lactate and the like.

カルボン酸系溶媒としては、例えば、炭素数1~5の有機酸が挙げられ、これらを単独でまたは2種以上組み合わせて用いることができる。具体的には、カルボン酸系溶媒としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、乳酸等が挙げられる。 Examples of the carboxylic acid solvent include organic acids having 1 to 5 carbon atoms, and these can be used alone or in combination of two or more. Specifically, examples of carboxylic acid solvents include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, and lactic acid.

(多孔質材料)
多孔質材料は、得られる合金触媒において、触媒粒子を担持する担体である。多孔質材料は、通常その構成粒子が多数の細孔を有し、大きな表面積を有している。そして、多孔質材料は、その細孔内部および外部の露出した表面において、触媒粒子を担持することが可能である。
(Porous material)
The porous material is a carrier that supports catalyst particles in the resulting alloy catalyst. Porous materials usually have constituent particles with a large number of pores and a large surface area. The porous material is capable of supporting catalyst particles inside its pores and on its exposed external surface.

多孔質材料としては、触媒の担体として使用可能であれば特に限定されず、多孔質炭素材料(例えば活性炭等)、シリカ、シリカアルミナ、シリカカルシア、モレキュラーシーブ、アルミナ、ゼオライト、チタニア、粘土、珪藻土、炭化ケイ素等が挙げられる。 Porous materials are not particularly limited as long as they can be used as catalyst carriers, and include porous carbon materials (for example, activated carbon, etc.), silica, silica alumina, silica calcia, molecular sieve, alumina, zeolite, titania, clay, diatomaceous earth. , silicon carbide, and the like.

上述した中でも、多孔質材料としては、細孔容量が比較的大きく、入手、取り扱いが容易な点で、シリカ、モレキュラーシーブ、アルミナ、ゼオライト、チタニア、多孔質炭素材料が好ましい。 Among the above-mentioned porous materials, silica, molecular sieve, alumina, zeolite, titania, and porous carbon materials are preferred because they have a relatively large pore volume and are easy to obtain and handle.

また、多孔質材料の表面積は、材料の種類が異なる場合、気孔率を比較することにより、多孔質材料の表面積の比較が可能である。気孔率とは、材料の占める容積に対する空間の容積の比率を示し、例えば多孔質材料であれば、1g当たりの細孔容積を求め、細孔容積を、多孔質材料の密度(真密度)から算出した1g当たりの容積で除することにより、算出することが可能である。また、水銀ポロシメトリーを用いた水銀気孔率法などにより、測定することも可能である。気孔率は3%以上75%以下であることが好ましく、5%以上50%以下であることがより好ましい。 Further, when the types of materials are different, the surface areas of the porous materials can be compared by comparing the porosity. Porosity indicates the ratio of the volume of space to the volume occupied by the material. For example, in the case of a porous material, calculate the pore volume per 1 g, and calculate the pore volume from the density (true density) of the porous material. It can be calculated by dividing by the calculated volume per 1 g. It is also possible to measure by a mercury porosity method using mercury porosimetry. The porosity is preferably 3% or more and 75% or less, more preferably 5% or more and 50% or less.

なお、同一種の多孔質材料の場合、比表面積(例えば、BET比表面積)を比較することにより、多孔質材料の表面積の比較が可能である。例えば、多孔質材料が、多孔質炭素材料である場合、そのBET比表面積は300cm/g以上であることが好ましく、450cm/g以上2500cm/g以下であることがより好ましい。 Note that in the case of porous materials of the same type, the surface areas of the porous materials can be compared by comparing the specific surface areas (for example, BET specific surface areas). For example, when the porous material is a porous carbon material, the BET specific surface area thereof is preferably 300 cm 2 /g or more, more preferably 450 cm 2 /g or more and 2500 cm 2 /g or less.

(その他の成分)
また、混合物中において、貴金属化合物や卑金属化合物の溶解を補助するために、酸や塩基が適宜添加されてもよい。ここで、上記の「酸」とは、いわゆるブレンステッド-ローリの定義に基づく酸をいい、プロトンを与える物質をいう。同様に、上記の「塩基」とはいわゆるブレンステッド-ローリの定義に基づく塩基をいい、プロトンを受容する物質をいう。このような、酸としては、例えば、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、ホウ酸、リン酸、等の無機酸や酢酸、クエン酸、ギ酸、乳酸、シュウ酸、メタンスルホン酸、ベンゼンスルホン酸等の有機酸が挙げられ、これらのうち1種を単独でまたは2種以上組み合わせて用いることができる。また、塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、アルカリ土類金属水酸化物、アンモニア、等が挙げられる。
(Other ingredients)
Further, in the mixture, an acid or a base may be added as appropriate to assist in dissolving the noble metal compound or base metal compound. Here, the above-mentioned "acid" refers to an acid based on the so-called Brønsted-Lori definition, and refers to a substance that provides protons. Similarly, the above-mentioned "base" refers to a base based on the so-called Brønsted-Lori definition, and refers to a substance that accepts protons. Examples of such acids include inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, and acetic acid, citric acid, formic acid, lactic acid, oxalic acid, and methane. Examples include organic acids such as sulfonic acid and benzenesulfonic acid, and one type of these can be used alone or two or more types can be used in combination. Further, examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides, ammonia, and the like.

混合物の25℃におけるpHは、特に限定されないが、例えば1.0以上11.0以下、好ましくは2.0以上9.0以下であることができる。上記範囲内である場合、多孔質材料の劣化を防止しつつ貴金属化合物および卑金属化合物を混合物中に好適に溶解させることができる。 The pH of the mixture at 25° C. is not particularly limited, but may be, for example, 1.0 or more and 11.0 or less, preferably 2.0 or more and 9.0 or less. When it is within the above range, the noble metal compound and the base metal compound can be suitably dissolved in the mixture while preventing deterioration of the porous material.

以上説明した各材料を混合し、混合物(混合液)を得る。混合方法および材料の添加順序は、特に限定されず、多孔質材料が十分に混合物中に分散し、かつ貴金属化合物および卑金属化合物が溶解するように、適宜混合方法を選択することができる。 The materials explained above are mixed to obtain a mixture (mixed liquid). The mixing method and the order of addition of the materials are not particularly limited, and the mixing method can be appropriately selected so that the porous material is sufficiently dispersed in the mixture and the noble metal compound and the base metal compound are dissolved.

混合方法の一例を以下に示す。まず、第1の溶媒に多孔質材料を添加し、超音波ホモジナイザー等により、多孔質材料を第1の溶媒中で分散させる。次いで、貴金属化合物および卑金属化合物を第1の溶媒に添加し、所定時間撹拌する。なお、この場合において、貴金属化合物および卑金属化合物の添加順序は特段限定されるものではなく、一方を先に添加してもよいし、両方を同時に添加してもよい。以上の混合時においては、必要に応じて加熱等を行って貴金属化合物および卑金属化合物の第1の溶媒への溶解を促進させてもよい。 An example of the mixing method is shown below. First, a porous material is added to a first solvent, and the porous material is dispersed in the first solvent using an ultrasonic homogenizer or the like. Then, the noble metal compound and the base metal compound are added to the first solvent and stirred for a predetermined period of time. In this case, the order of addition of the noble metal compound and the base metal compound is not particularly limited, and one may be added first, or both may be added at the same time. During the above mixing, heating or the like may be performed as necessary to promote dissolution of the noble metal compound and the base metal compound in the first solvent.

あるいは、第1の溶媒を分割し、一方に多孔質材料を分散させ、他方に貴金属化合物および卑金属化合物を溶解させ、これらを最終的に混合することにより混合物を得てもよい。さらには、第1の溶媒に予め貴金属化合物および卑金属化合物を溶解させておき、その後多孔質材料を分散させてもよい。 Alternatively, the mixture may be obtained by dividing the first solvent, dispersing the porous material in one, dissolving the noble metal compound and the base metal compound in the other, and finally mixing these. Furthermore, the noble metal compound and the base metal compound may be dissolved in the first solvent in advance, and then the porous material may be dispersed.

〔2.2. 第2の工程〕
第2の工程では、以下の式(1)を満足するまで混合物から第1の溶媒を除去することにより、貴金属化合物および卑金属化合物を多孔質材料に固定する。
(混合物中の第1の溶媒の容積)≦(多孔質材料の細孔容積)×5 (1)
[2.2. Second process]
In the second step, the noble metal compound and the base metal compound are fixed in the porous material by removing the first solvent from the mixture until the following formula (1) is satisfied.
(Volume of first solvent in mixture) ≦ (pore volume of porous material) x 5 (1)

このように、混合物中における第1の溶媒を多孔質材料の細孔容積に対し十分に小さくすることにより、多孔質材料の細孔表面に貴金属化合物および卑金属化合物が均一に分散しつつ、付着し、固定される。これにより、後述する第3の工程において貴金属化合物および卑金属化合物の還元反応の反応場が多孔質材料の細孔表面に固定される。 In this way, by making the first solvent in the mixture sufficiently small relative to the pore volume of the porous material, the noble metal compound and the base metal compound can be uniformly dispersed and attached to the pore surface of the porous material. , fixed. Thereby, the reaction field for the reduction reaction of the noble metal compound and the base metal compound is fixed on the pore surface of the porous material in the third step described later.

これに対し、混合物中の第1の溶媒の容積が、多孔質材料の細孔容積の5倍を超えると、多孔質材料に対し第1の溶媒の量が多くなりすぎる結果、多孔質材料の細孔内部に貴金属化合物および卑金属化合物が十分には保持されず、多孔質材料外部の第1の溶媒中にも多量の貴金属化合物および卑金属化合物が溶解しつつ存在してしまう。この結果、後述する第3の工程において貴金属化合物および卑金属化合物の還元反応の反応場が多孔質材料の細孔表面には十分には固定されず、貴金属化合物および卑金属化合物の還元速度の差の影響を小さくすることができない。このため、得られる触媒粒子の合金化率を大きくすることができない。 On the other hand, if the volume of the first solvent in the mixture exceeds five times the pore volume of the porous material, the amount of the first solvent relative to the porous material becomes too large, resulting in The noble metal compound and the base metal compound are not sufficiently retained inside the pores, and a large amount of the noble metal compound and the base metal compound end up remaining dissolved in the first solvent outside the porous material. As a result, in the third step described below, the reaction field for the reduction reaction of the noble metal compound and the base metal compound is not sufficiently fixed on the pore surface of the porous material, and the influence of the difference in the reduction rate of the noble metal compound and the base metal compound cannot be made smaller. For this reason, it is not possible to increase the alloying ratio of the obtained catalyst particles.

好ましくは、以下の式(2)を満足するまで混合物から第1の溶媒を除去することにより、貴金属化合物および卑金属化合物を多孔質材料に固定する。
(混合物中の第1の溶媒の容積)≦(多孔質材料の細孔容積)×2 (2)
Preferably, the noble metal compound and the base metal compound are fixed to the porous material by removing the first solvent from the mixture until the following formula (2) is satisfied.
(Volume of first solvent in mixture) ≦ (pore volume of porous material) x 2 (2)

第1の溶媒の除去は、例えば加熱、減圧、風乾等により行うことができる。効率的に第1の溶媒の除去を行うためにも、例えば、ロータリーエバポレーター等のエバポレーターを用いて減圧により第1の溶媒を揮発させることが好ましい。 The first solvent can be removed, for example, by heating, reduced pressure, air drying, or the like. In order to efficiently remove the first solvent, it is preferable to evaporate the first solvent under reduced pressure using, for example, an evaporator such as a rotary evaporator.

減圧時においては、加熱と組み合わせることにより、第1の除去効率が向上する。加熱温度は、例えば50℃以上110℃以下、好ましくは65℃以上95℃以下であることができる。 When reducing the pressure, the first removal efficiency is improved by combining it with heating. The heating temperature can be, for example, 50°C or more and 110°C or less, preferably 65°C or more and 95°C or less.

また、第1の溶媒の除去時において、均一に第1の溶媒を除去するために、必要に応じて撹拌を行ってもよい。混合物中の第1の溶媒の容積は、第1の溶媒の除去を行っている最中に、サンプル全体の重量を測定し、この重量から多孔質材料、貴金属化合物、卑金属化合物の重量を差し引いて第1の溶媒の重量を求めることで、混合物中の第1の溶媒の容積を算出することができる。あるいは、第1の溶媒の除去を行っている最中に、除去した溶媒を回収し、回収した溶媒の重量を測定して、元の溶媒重量から差し引いた値からも、算出することができる。多孔質材料の細孔容積は、例えば窒素吸着測定(例えばマイクロトラック・ベル社製、BEL-MAX)を用いて測定することができる。具体的には、窒素吸脱着等温線を測定し、この窒素吸脱着等温線にBET法を適用することによりBETプロットを作成する。ついで、BETプロットから、全細孔容積を算出することができる。後述する実施例では、マイクロトラック・ベル社製、BEL-MAXを用いた上記方法により、多孔質材料の細孔容積を算出した。 Further, when removing the first solvent, stirring may be performed as necessary in order to uniformly remove the first solvent. The volume of the first solvent in the mixture is determined by measuring the weight of the entire sample during removal of the first solvent and subtracting the weight of the porous material, noble metal compound, and base metal compound from this weight. By determining the weight of the first solvent, the volume of the first solvent in the mixture can be calculated. Alternatively, it can be calculated by collecting the removed solvent while removing the first solvent, measuring the weight of the collected solvent, and subtracting the weight from the original solvent weight. The pore volume of the porous material can be measured using, for example, nitrogen adsorption measurement (eg, Microtrac BEL-MAX, manufactured by BEL). Specifically, a nitrogen adsorption/desorption isotherm is measured, and a BET plot is created by applying the BET method to this nitrogen adsorption/desorption isotherm. The total pore volume can then be calculated from the BET plot. In the Examples described below, the pore volume of the porous material was calculated by the above method using BEL-MAX manufactured by Microtrac Bell.

〔2.3. 第3の工程〕
第3の工程においては、多孔質材料に、酸化還元電位が-1.20V以下である還元剤と第2の溶媒とを含む還元溶液を接触させる。ここで、還元溶液中における還元剤の物質量は、貴金属元素の総物質量の5倍以上である。これにより、貴金属化合物および卑金属化合物が同時に還元され、合金化率の高い合金粒子が触媒粒子として、多孔質材料の細孔内部に均一に析出する。
[2.3. Third step]
In the third step, the porous material is brought into contact with a reducing solution containing a reducing agent having an oxidation-reduction potential of −1.20 V or less and a second solvent. Here, the amount of the reducing agent in the reducing solution is five times or more the total amount of noble metal elements. As a result, the noble metal compound and the base metal compound are simultaneously reduced, and alloy particles with a high alloying rate are uniformly deposited as catalyst particles inside the pores of the porous material.

詳しく説明すると、第2の工程において、貴金属化合物および卑金属化合物は、多孔質材料の細孔内部に均一に担持・固定されている。このように貴金属化合物および卑金属化合物は、多孔質材料の細孔内部に均一に担持・固定された状態で、酸化還元電位が-1.20V以下である比較的還元力の高い還元剤を多量に接触させることにより、多孔質材料の細孔内部に均一に担持・固定された貴金属化合物および卑金属化合物が、限定された反応場において、迅速に還元される。この結果、貴金属化合物および卑金属化合物の還元速度の差の影響が小さくなり、合金化率が高い触媒粒子が形成される。また、貴金属化合物および卑金属化合物は、多孔質材料の細孔内部に均一に担持・固定された状態で迅速に還元されることから、多孔質材料の細孔内部に均一に、微細な触媒粒子が析出することとなる。さらには、触媒粒子毎の組成のばらつきも小さくなる。以上により、合金触媒の触媒粒子は、小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高いものとなる。 To explain in detail, in the second step, the noble metal compound and the base metal compound are uniformly supported and fixed inside the pores of the porous material. In this way, the noble metal compound and the base metal compound are uniformly supported and fixed inside the pores of the porous material, and a large amount of a reducing agent with a relatively high reducing power with an oxidation-reduction potential of -1.20V or less is applied. By contacting, the noble metal compound and base metal compound uniformly supported and fixed inside the pores of the porous material are rapidly reduced in a limited reaction field. As a result, the influence of the difference in reduction rate between the noble metal compound and the base metal compound is reduced, and catalyst particles with a high alloying rate are formed. In addition, since noble metal compounds and base metal compounds are quickly reduced while being uniformly supported and fixed inside the pores of the porous material, fine catalyst particles are uniformly distributed inside the pores of the porous material. It will precipitate. Furthermore, variations in composition among catalyst particles are also reduced. As a result of the above, the catalyst particles of the alloy catalyst have a small particle size and high dispersion, have small variations in composition, and have a high alloying ratio.

上述したように還元溶液は、酸化還元電位が-1.20V以下である還元剤と第2の溶媒とを含む。
還元剤の酸化還元電位は、-1.20V以下である。これにより、貴金属化合物および卑金属化合物を同時かつ迅速に還元することができる。これに対し、還元剤の酸化還元電位が-1.20Vを超えると、還元力が弱くなる結果、貴金属化合物の還元速度が遅くなり、貴金属化合物および卑金属化合物の還元速度の差が大きくなり、得られる触媒粒子の合金化率を大きくすることができない。還元剤の酸化還元電位は、好ましくは-1.20V以下、より好ましくは-1.28V以上-1.23V以下である。なお、本明細書において、酸化還元電位は、比較電極として飽和塩化銀電極を内蔵した酸化還元電位測定用電極(例えば、(株)堀場製作所製ORP電極9300-10Dや、東亜DKK(株)製ORP複合電極PST-5821C)およびORPメータ(例えば、(株)堀場製作所製ポータブル型pHメータD-72や、東亜DKK(株)製pHメータHM-42X)用いて還元剤の水溶液を測定した値を、標準水素電極基準の値に補正することにより求められる電位をいう。還元溶液が水以外を溶媒としている場合、還元剤の酸化還元電位を測定することは困難であることから、アルコールへ変換可能なカルボニル化合物によって還元剤の還元力の強さを判断することが可能である。例えば、ケトン類やアルデヒド類のみをアルコールに還元可能な還元剤よりも、ケトン類、アルデヒド類に加えてカルボン酸類やエステル類をも還元可能な還元剤の方が、強力な還元剤である、と判断することができる。
As described above, the reducing solution includes a reducing agent having a redox potential of −1.20 V or less and a second solvent.
The redox potential of the reducing agent is -1.20V or less. Thereby, the noble metal compound and the base metal compound can be reduced simultaneously and quickly. On the other hand, when the redox potential of the reducing agent exceeds -1.20V, the reducing power becomes weaker, and the reduction rate of the noble metal compound becomes slower, and the difference in the reduction rate between the noble metal compound and the base metal compound increases, and the reduction rate of the noble metal compound becomes large. It is not possible to increase the alloying ratio of the catalyst particles. The redox potential of the reducing agent is preferably -1.20V or less, more preferably -1.28V or more and -1.23V or less. In this specification, the oxidation-reduction potential is measured using an oxidation-reduction potential measurement electrode (for example, ORP electrode 9300-10D manufactured by Horiba, Ltd. or manufactured by Toa DKK Co., Ltd.) that has a built-in saturated silver chloride electrode as a comparison electrode. Values measured in an aqueous solution of a reducing agent using an ORP composite electrode PST-5821C) and an ORP meter (for example, portable pH meter D-72 manufactured by Horiba, Ltd. or pH meter HM-42X manufactured by Toa DKK Co., Ltd.) is the potential determined by correcting the value to that of a standard hydrogen electrode. If the reducing solution uses a solvent other than water, it is difficult to measure the redox potential of the reducing agent, so it is possible to judge the strength of the reducing power of the reducing agent by the carbonyl compound that can be converted to alcohol. It is. For example, a reducing agent that can reduce carboxylic acids and esters in addition to ketones and aldehydes is a more powerful reducing agent than a reducing agent that can reduce only ketones and aldehydes to alcohol. It can be determined that

このような還元剤としては、上述した酸化還元電位を有するものであれば特に限定されないが、例えば水素化ホウ素リチウム(LiBH)、水素化ホウ素ナトリウム(NaBH)、水素化ホウ素カリウム(KBH)、水素化トリエチルホウ素リチウム等の水素化ホウ素アルカリ金属塩、水素化ホウ素ニッケル(Ni(BH)、水素化ホウ素亜鉛(Zn(BH)等の水素化ホウ素遷移金属塩、水素化アルミニウムリチウム(LiAlH)、水素化アルミニウムナトリウム(NaAlH)、水素化アルミニウムカリウム(KAlH)、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム等の水素化アルミニウムアルカリ金属塩、シアノ水素化ホウ素リチウム(LiBHCN)、シアノ水素化ホウ素ナトリウム(NaBHCN)、シアノ水素化ホウ素カリウム(KBHCN)等のシアノ水素化ホウ素アルカリ金属塩、水素化ジイソブチルアルミニウム(DIBAL)等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。 Such a reducing agent is not particularly limited as long as it has the above-mentioned redox potential, but for example, lithium borohydride (LiBH 4 ), sodium borohydride (NaBH 4 ), potassium borohydride (KBH 4 ), borohydride alkali metal salts such as lithium triethylborohydride, borohydride transition metal salts such as nickel borohydride (Ni(BH 4 ) 2 ), zinc borohydride (Zn(BH 4 ) 2 ), Alkali metal salts of aluminum hydride such as lithium aluminum hydride (LiAlH 4 ), sodium aluminum hydride (NaAlH 4 ), potassium aluminum hydride (KAlH 4 ), sodium bis(2-methoxyethoxy)aluminum hydride, cyanohydride Examples include cyanoborohydride alkali metal salts such as lithium boron (LiBH 3 CN), sodium cyanoborohydride (NaBH 3 CN), potassium cyanoborohydride (KBH 3 CN), diisobutylaluminum hydride (DIBAL), etc. , one kind among these can be used alone or two or more kinds can be used in combination.

したがって、還元剤は、水素化ホウ素アルカリ金属塩、水素化ホウ素遷移金属塩、水素化アルミニウムアルカリ金属塩、シアノ水素化ホウ素アルカリ金属塩および水素化ジイソブチルアルミニウムからなる群から選択される1種または2種以上を含むことができ、より具体的には、水素化ホウ素リチウム(LiBH)、水素化ホウ素ナトリウム(NaBH)、水素化ホウ素カリウム(KBH)、水素化トリエチルホウ素リチウム、水素化ホウ素ニッケル(Ni(BH)、水素化ホウ素亜鉛(Zn(BH)、水素化アルミニウムリチウム(LiAlH)、水素化アルミニウムナトリウム(NaAlH)、水素化アルミニウムカリウム(KAlH)、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、シアノ水素化ホウ素リチウム(LiBHCN)、シアノ水素化ホウ素ナトリウム(NaBHCN)、シアノ水素化ホウ素カリウム(KBHCN)、水素化ジイソブチルアルミニウム(DIBAL)からなる群から選択される1種または2種以上を含むことができる。 Therefore, the reducing agent is one or two selected from the group consisting of an alkali metal salt of borohydride, a transition metal salt of borohydride, an alkali metal salt of aluminum hydride, an alkali metal salt of cyanoborohydride, and diisobutylaluminum hydride. More specifically, lithium borohydride (LiBH 4 ), sodium borohydride (NaBH 4 ), potassium borohydride (KBH 4 ), lithium triethylborohydride, borohydride Nickel (Ni(BH 4 ) 2 ), zinc borohydride (Zn(BH 4 ) 2 ), lithium aluminum hydride (LiAlH 4 ), sodium aluminum hydride (NaAlH 4 ), potassium aluminum hydride (KAlH 4 ), Sodium bis(2-methoxyethoxy)aluminum hydride, lithium cyanoborohydride (LiBH 3 CN), sodium cyanoborohydride (NaBH 3 CN), potassium cyanoborohydride (KBH 3 CN), diisobutylaluminum hydride ( DIBAL) or two or more selected from the group consisting of:

上述した中でも、貴金属化合物および卑金属化合物の両者を還元可能な高い還元力を有すること、複数の溶媒に可溶であること、試薬として容易に入手可能であること、発火等の危険性が低いこと等の観点から、還元剤は、好ましくは水素化ホウ素アルカリ金属塩、水素化ホウ素遷移金属塩、シアノ水素化ホウ素アルカリ金属塩を含み、より好ましくは水素化ホウ素ナトリウム、水素化ホウ素カリウムおよび水素化ホウ素リチウムからなる群から選択される1種以上を含む。これらの還元剤は、貴金属化合物および卑金属化合物を同時に還元するための十分な還元力を有するとともに、比較的容易に入手可能である。 Among the above, it has a high reducing power capable of reducing both noble metal compounds and base metal compounds, is soluble in multiple solvents, is easily available as a reagent, and has a low risk of ignition etc. From the viewpoint of the Contains one or more selected from the group consisting of lithium boron. These reducing agents have sufficient reducing power to simultaneously reduce noble metal compounds and base metal compounds, and are relatively easily available.

また、還元溶液における還元剤の物質量は、多孔質材料に担持される貴金属化合物の貴金属元素の総物質量に対し、5倍以上である。これにより、貴金属化合物および卑金属化合物に対して充分に過剰な量の還元剤が存在し、貴金属化合物および卑金属化合物に接触することができることから、貴金属化合物および卑金属化合物を同時かつ迅速に還元することができる。還元溶液における還元剤の物質量は、貴金属元素の総物質量に対し5倍未満の場合、たとえ酸化還元電位が-1.28Vを下回る非常に強力な還元剤を用いたとしても、還元剤の量が貴金属化合物、卑金属化合物に対して不充分であることから、貴金属化合物、卑金属化合物の還元速度が遅くなる、あるいは貴金属化合物、卑金属化合物を十分に還元することができなくなり、貴金属化合物および卑金属化合物の還元速度の差の影響が大きくなり、得られる触媒粒子の合金化率を大きくすることができない。さらには、貴金属化合物、卑金属化合物を十分に還元できない結果、多孔質材料に触媒粒子が担持されず、担持率が仕込みの値に到達しない場合がある。 Further, the amount of the reducing agent in the reducing solution is 5 times or more as compared to the total amount of noble metal elements in the noble metal compound supported on the porous material. As a result, the reducing agent exists in a sufficient excess amount relative to the noble metal compound and the base metal compound and can contact the noble metal compound and the base metal compound, so that the noble metal compound and the base metal compound can be reduced simultaneously and quickly. can. If the amount of reducing agent in the reducing solution is less than 5 times the total amount of precious metal elements, even if a very strong reducing agent with a redox potential of less than -1.28V is used, the amount of reducing agent Because the amount is insufficient for the noble metal compound and base metal compound, the reduction rate of the noble metal compound and base metal compound becomes slow, or the noble metal compound and base metal compound cannot be reduced sufficiently, and the noble metal compound and base metal compound The influence of the difference in the reduction rate becomes large, and the alloying ratio of the obtained catalyst particles cannot be increased. Furthermore, as a result of not being able to sufficiently reduce the noble metal compound and the base metal compound, catalyst particles may not be supported on the porous material, and the supporting ratio may not reach the initial value.

還元溶液における還元剤の物質量は、貴金属化合物および卑金属化合物の還元速度の差を小さくする観点から、貴金属元素の総物質量に対し好ましくは10倍以上、より好ましくは100倍以上である。なお、還元溶液における還元剤の物質量の上限は、特に限定されないが、コストを抑制する観点から、例えば貴金属元素の総物質量に対し200倍以下とすることができる。 The amount of the reducing agent in the reducing solution is preferably 10 times or more, more preferably 100 times or more, relative to the total amount of noble metal elements, from the viewpoint of reducing the difference in reduction rate between the noble metal compound and the base metal compound. Note that the upper limit of the amount of the reducing agent in the reducing solution is not particularly limited, but from the viewpoint of reducing costs, it can be, for example, 200 times or less with respect to the total amount of noble metal elements.

還元溶液における還元剤の濃度は、特に限定されないが、例えば、0.1mol/L以上5.5mol/L以下、好ましくは1.0mol/L以上5.0mol/L以下であることができる。これにより、過度に還元剤が希釈され、還元速度が遅くなることを防止することができるとともに、還元剤の濃度が適度であるため、還元反応を十分に制御することができる。 The concentration of the reducing agent in the reducing solution is not particularly limited, but may be, for example, 0.1 mol/L or more and 5.5 mol/L or less, preferably 1.0 mol/L or more and 5.0 mol/L or less. Thereby, it is possible to prevent the reducing agent from being excessively diluted and the reduction rate becoming slow, and since the concentration of the reducing agent is appropriate, the reduction reaction can be sufficiently controlled.

さらに還元溶液に含まれる第2の溶媒は、上述した還元剤を溶解可能であれば特に限定されず、上述した第1の溶媒において用いることのできる溶媒のうち1種を単独でまたは2種以上を組み合わせて用いることができる。 Furthermore, the second solvent contained in the reducing solution is not particularly limited as long as it can dissolve the above-mentioned reducing agent, and may be one or more solvents that can be used in the above-mentioned first solvent. Can be used in combination.

これらのうち、水、アルコール系溶媒、エーテル系溶媒は、比較的還元剤を溶解しやすいことから、好適に用いることができる。 Among these, water, alcohol-based solvents, and ether-based solvents can be preferably used because they dissolve the reducing agent relatively easily.

ここで、混合物に含まれる第1の溶媒と、還元溶液に含まれる第2の溶媒との好ましい関係について説明する。上述したように、本実施形態においては、還元溶液を多孔質材料に接触させることにより、迅速に貴金属化合物および卑金属化合物を還元させる。このために、第1の溶媒と第2の溶媒とは、混和性が高いことが好ましい。 Here, a preferred relationship between the first solvent contained in the mixture and the second solvent contained in the reducing solution will be explained. As described above, in this embodiment, the noble metal compound and the base metal compound are rapidly reduced by bringing the reducing solution into contact with the porous material. For this reason, it is preferable that the first solvent and the second solvent have high miscibility.

このため、第1の溶媒と第2の溶媒とは、同一の溶媒を含むか、第1の溶媒のオクタノール/水分配係数と第2の溶媒のオクタノール/水分配係数との差の絶対値が、1.2以下であることが好ましい。 Therefore, the first solvent and the second solvent either contain the same solvent, or the absolute value of the difference between the octanol/water partition coefficient of the first solvent and the octanol/water partition coefficient of the second solvent is , is preferably 1.2 or less.

一方で、第1の溶媒には、貴金属化合物および卑金属化合物を溶解させることが求められ、第2の溶媒には、還元剤を溶解させることが求められる。このような貴金属化合物、卑金属化合物、および還元剤を溶解させる観点からは、水や、水と親和性高い溶媒が有利である。したがって、第1の溶媒と第2の溶媒とは、特に、以下の組み合わせまたは関係(i)~(iii)のいずれかを満足することが好ましい。 On the other hand, the first solvent is required to dissolve the noble metal compound and the base metal compound, and the second solvent is required to dissolve the reducing agent. From the viewpoint of dissolving such noble metal compounds, base metal compounds, and reducing agents, water and a solvent with high affinity for water are advantageous. Therefore, it is particularly preferable that the first solvent and the second solvent satisfy any one of the following combinations or relationships (i) to (iii).

(i)第1の溶媒が水を含み、かつ、第2の溶媒のオクタノール/水分配係数が、0.8以下である。
(ii)第2の溶媒が水を含み、かつ、第1の溶媒のオクタノール/水分配係数が、0.8以下である。
(iii)第1の溶媒および第2の溶媒が、ともに水を含む。
(i) The first solvent contains water, and the octanol/water partition coefficient of the second solvent is 0.8 or less.
(ii) The second solvent contains water, and the first solvent has an octanol/water partition coefficient of 0.8 or less.
(iii) Both the first solvent and the second solvent contain water.

ここで、「オクタノール/水分配係数」は、「JIS Z 7260-107:2000 分配係数(1-オクタノール/水)の測定 フラスコ振とう法」、あるいは、「JIS Z 7260-117:2006 分配係数(1-オクタノール/水)の測定 高速液体クロマトグラフィー」に基づき求めることができる。例えば、以下の各溶媒のオクタノール/水分配係数は、エタノール:-0.32、イソプロパノール:0.05、アセトン:-0.24、メタノール:-0.82、1-プロパノール:0.25、ジエチルエーテル:-0.36、酢酸:-0.17、トルエン:2.73、ベンゼン:2.13、テトラヒドロフラン:0.46である。 Here, "octanol/water partition coefficient" refers to "JIS Z 7260-107:2000 Measurement of partition coefficient (1-octanol/water) shaking flask method" or "JIS Z 7260-117:2006 partition coefficient ( 1-octanol/water) can be determined based on high performance liquid chromatography. For example, the octanol/water partition coefficients of the following solvents are: ethanol: -0.32, isopropanol: 0.05, acetone: -0.24, methanol: -0.82, 1-propanol: 0.25, diethyl Ether: -0.36, acetic acid: -0.17, toluene: 2.73, benzene: 2.13, and tetrahydrofuran: 0.46.

また、還元溶液の25℃におけるpHは、特に限定されないが、好ましくは8.0以上12.0以下、より好ましくは8.5以上11.5以下である。これにより、還元剤が適度に安定し、不本意な還元剤の分解や、失活が抑制される。また、pHが12.0以下であることにより、還元剤の安定性が過度に高くなることが防止され、還元速度の低下が抑制される。 Further, the pH of the reducing solution at 25° C. is not particularly limited, but is preferably 8.0 or more and 12.0 or less, more preferably 8.5 or more and 11.5 or less. This stabilizes the reducing agent appropriately and suppresses undesired decomposition and deactivation of the reducing agent. Further, by having a pH of 12.0 or less, the stability of the reducing agent is prevented from becoming excessively high, and a decrease in the reduction rate is suppressed.

還元溶液のpHの調節は、例えば上述したような酸、塩基、特に塩基によって調節することができる。特に、第3の工程で得られる合金触媒を含む液体は、後述する後工程において洗浄を行うが、この際、多くの種類のイオンが液中に含まれていると、イオンを除去するために要する洗浄回数が多くなってしまうことから、還元溶液のpHが、水酸化ナトリウム、水酸化カリウム、およびアンモニア水からなる群から選択される塩基を用いて調節されることが好ましい。 The pH of the reducing solution can be adjusted, for example, by acids, bases, especially bases, as mentioned above. In particular, the liquid containing the alloy catalyst obtained in the third step is washed in the post-process described below, but at this time, if many types of ions are contained in the liquid, it is necessary to remove the ions. Since the number of washings required increases, it is preferable that the pH of the reducing solution is adjusted using a base selected from the group consisting of sodium hydroxide, potassium hydroxide, and aqueous ammonia.

また、還元反応時における温度は、特に限定されず、第2の溶媒の種類や、還元反応の速度を考慮して適宜決定できる。還元反応時における温度は、例えば、0℃以上270℃以下、好ましくは3℃以上150℃以下であることができる。 Further, the temperature during the reduction reaction is not particularly limited, and can be appropriately determined in consideration of the type of the second solvent and the speed of the reduction reaction. The temperature during the reduction reaction can be, for example, 0°C or more and 270°C or less, preferably 3°C or more and 150°C or less.

また、還元反応の時間は、特に限定されず、貴金属化合物および卑金属化合物の還元状態に応じて適宜選択でき、例えば10分以上24時間以下、好ましくは15分以上15時間以下であることができる。 Further, the time for the reduction reaction is not particularly limited and can be appropriately selected depending on the reduction state of the noble metal compound and the base metal compound, and may be, for example, 10 minutes or more and 24 hours or less, preferably 15 minutes or more and 15 hours or less.

また、還元反応時において、多孔質材料と還元溶液との混合液を必要に応じて撹拌してもよい。
また、還元反応時において、第1の溶媒、第2の溶媒に水以外の溶媒を含む場合、反応による発火の危険性を抑える観点から、不活性ガス(希ガス、窒素等)雰囲気にて還元反応を行うことが好ましい。第1の溶媒、第2の溶媒に水以外の溶媒を含まない場合には、還元反応時の雰囲気は大気中、不活性ガス中など、任意の雰囲気下で行うことができる。
以上のようにして、多孔質材料の細孔内部に小粒径、高分散かつ合金化率が高い触媒粒子が担持された、合金触媒を得ることができる。
Further, during the reduction reaction, the mixed solution of the porous material and the reducing solution may be stirred as necessary.
In addition, when the first and second solvents contain a solvent other than water during the reduction reaction, in order to reduce the risk of ignition due to the reaction, the reduction should be carried out in an inert gas (rare gas, nitrogen, etc.) atmosphere. Preferably, the reaction is carried out. When the first solvent and the second solvent do not contain any solvent other than water, the reduction reaction can be carried out in any atmosphere such as the air or an inert gas.
In the manner described above, it is possible to obtain an alloy catalyst in which catalyst particles having a small particle size, high dispersion, and high alloying rate are supported inside the pores of a porous material.

〔2.4. 後工程〕
得られた合金触媒は、必要に応じて公知の方法により洗浄、乾燥等の後処理を行って使用することができる。
[2.4. Post-process〕
The obtained alloy catalyst can be used after being subjected to post-treatments such as washing and drying according to known methods, if necessary.

また、得られた合金触媒について熱処理を行ってもよい。熱処理を行うことにより、触媒粒子の合金化率が向上する。従来の合金触媒の熱処理を行うと、合金化率が向上する一方で、触媒粒子同士が融着し、触媒粒子の粒径が大きくなり、凝集も進むことが知られている。しかしながら、上述した本実施形態にかかる合金触媒の製造方法においては、触媒粒子が多孔質材料の細孔内部に高分散で均一に分布していることから、熱処理を行った際にも触媒粒子同士が接触しにくく、この結果粒子径の増大や、分散性の低下は生じにくい。 Further, the obtained alloy catalyst may be subjected to heat treatment. The heat treatment improves the alloying rate of the catalyst particles. It is known that when a conventional alloy catalyst is heat-treated, the alloying rate improves, but the catalyst particles fuse together, the particle size of the catalyst particles increases, and aggregation progresses. However, in the method for producing an alloy catalyst according to the present embodiment described above, since the catalyst particles are highly dispersed and uniformly distributed inside the pores of the porous material, even when heat treatment is performed, the catalyst particles do not interact with each other. It is difficult for the particles to come into contact with each other, and as a result, an increase in particle size and a decrease in dispersibility are unlikely to occur.

熱処理の温度は、特に限定されないが、例えば450℃以上1200℃以下、好ましくは600℃以上900℃以下とすることができる。また、熱処理の時間も特に限定されず、例えば10分以上3時間以下、好ましくは20分以上1時間以下とすることができる。
なお、熱処理は、不活性ガス(希ガス、窒素等)雰囲気、還元性ガス(水素等)雰囲気、不活性ガスと還元性ガスの混合雰囲気、あるいは真空雰囲気下で行うことが好ましい。
The temperature of the heat treatment is not particularly limited, but can be, for example, 450°C or more and 1200°C or less, preferably 600°C or more and 900°C or less. Further, the heat treatment time is not particularly limited, and can be, for example, 10 minutes or more and 3 hours or less, preferably 20 minutes or more and 1 hour or less.
Note that the heat treatment is preferably performed in an inert gas (rare gas, nitrogen, etc.) atmosphere, a reducing gas (hydrogen, etc.) atmosphere, a mixed atmosphere of an inert gas and a reducing gas, or a vacuum atmosphere.

以上、本発明の好適な実施形態について説明した。本実施形態に係る合金触媒の製造方法によれば、第2の工程において、所定の量となるまで第1の溶媒を除去することにより、多孔質材料の細孔内部の表面付近に貴金属化合物および卑金属化合物を固定することができる。そして、このような貴金属化合物および卑金属化合物が固定された多孔質材料に対し、第3の工程で強力な還元剤を十分な量接触させることにより、貴金属化合物および卑金属化合物の還元反応の反応場が多孔質材料の細孔内部の表面付近に制限され、かつ貴金属化合物および卑金属化合物の還元速度の差の影響が小さくなる。この結果、合金化率の大きな小粒径の粒子が、多孔質材料の細孔内部の表面にわたり均一かつ大量に発生する。このため、多孔質材料の細孔内部に小粒径かつ高分散であり、組成のばらつきが小さく、合金化率が高い触媒粒子が担持された、合金触媒を得ることができる。 The preferred embodiments of the present invention have been described above. According to the method for manufacturing an alloy catalyst according to the present embodiment, in the second step, the first solvent is removed until a predetermined amount is reached, so that the noble metal compound and Base metal compounds can be fixed. In the third step, a sufficient amount of a strong reducing agent is brought into contact with the porous material on which the noble metal compound and the base metal compound are fixed, thereby creating a reaction field for the reduction reaction of the noble metal compound and the base metal compound. It is restricted to the vicinity of the surface inside the pores of the porous material, and the influence of the difference in reduction rate between the noble metal compound and the base metal compound is reduced. As a result, small-sized particles with a high alloying ratio are generated uniformly and in large quantities over the inner surface of the pores of the porous material. Therefore, it is possible to obtain an alloy catalyst in which catalyst particles having a small particle size, high dispersion, small variation in composition, and high alloying rate are supported inside the pores of the porous material.

なお、熱処理による合金化処理や気相による還元反応の前処理として多孔質材料から溶媒を除去することは従来知られていた一方で、本実施形態のように、還元溶液を用いた還元反応の前処理として多孔質材料から予め溶媒を除去することは、従来知られていなかった。 It should be noted that while it has been known in the past to remove a solvent from a porous material as a pretreatment for alloying treatment by heat treatment or reduction reaction in a gas phase, as in this embodiment, the reduction reaction using a reducing solution is It was not previously known to previously remove the solvent from the porous material as a pretreatment.

また、触媒粒子の分散性を維持するための保護剤が不要であるため、保護材の除去工程も不要であり、除去による合金触媒の劣化(例えば、触媒粒子の粗大化、凝集等)を防止することができる。さらには、保護剤を不要とすることにより、多孔質材料の細孔内部における触媒粒子の担持量が増加することができる。 In addition, since a protective agent to maintain the dispersibility of the catalyst particles is not required, there is no need to remove the protective agent, thereby preventing deterioration of the alloy catalyst (e.g., coarsening of catalyst particles, agglomeration, etc.) due to removal. can do. Furthermore, by eliminating the need for a protective agent, the amount of catalyst particles supported inside the pores of the porous material can be increased.

<3.合金触媒>
つぎに、本実施形態に係る合金触媒について説明する。本実施形態に係る合金触媒は、上述した合金触媒の製造方法によって製造されたものである。したがって、本実施形態に係る合金触媒では、多孔質材料上に小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が担持されている。以下、合金触媒の構成について詳細に説明する。
<3. Alloy catalyst>
Next, the alloy catalyst according to this embodiment will be explained. The alloy catalyst according to this embodiment is manufactured by the method for manufacturing an alloy catalyst described above. Therefore, in the alloy catalyst according to the present embodiment, catalyst particles having a small particle size, high dispersion, small variation in composition, and high alloying rate are supported on the porous material. Hereinafter, the structure of the alloy catalyst will be explained in detail.

〔3.1.触媒粒子、貴金属元素、卑金属元素、及び多孔質材料〕
触媒粒子は、貴金属元素と卑金属元素とを含む。触媒粒子内では、貴金属元素と卑金属元素とが合金化されている。貴金属元素及び卑金属元素は上述した貴金属化合物及び卑金属化合物に由来するものであり、具体的な種類は上述した通りである。貴金属元素は、白金、金、およびパラジウムからなる群から選択される1種以上を含むことが好ましく、卑金属元素は、Co、Fe、NiおよびTiからなる群から選択される1種以上を含むことが好ましい。多孔質材料の具体的な構成は上述した通りである。
[3.1. Catalyst particles, noble metal elements, base metal elements, and porous materials]
The catalyst particles contain a noble metal element and a base metal element. Within the catalyst particles, the noble metal element and the base metal element are alloyed. The noble metal elements and base metal elements are derived from the above-mentioned noble metal compounds and base metal compounds, and the specific types are as described above. Preferably, the noble metal element includes one or more selected from the group consisting of platinum, gold, and palladium, and the base metal element includes one or more selected from the group consisting of Co, Fe, Ni, and Ti. is preferred. The specific structure of the porous material is as described above.

〔3.2.触媒粒子の粒径〕
上述したように、本実施形態に係る合金触媒では、多孔質材料上に担持される触媒粒子が小粒径となっている。より具体的に説明すると、本実施形態における触媒粒子の粒径は、X線回折装置によるXRD(X線回折分析)測定の結果より、以下のシェラーの式を用いて算出される。したがって、ここでの粒径は所謂平均粒径である。なお、合金触媒は熱処理される場合があるが、熱処理の有無に関わらず、本実施形態における触媒粒子の粒径は本方法により測定される平均粒径となる。
シェラーの式:D=Kλ/βcosθ
D:結晶子径、K:シェラー定数(0.94)、λ:CuKαのX線波長、β:半値幅、θ:Bragg角
[3.2. Particle size of catalyst particles]
As described above, in the alloy catalyst according to this embodiment, the catalyst particles supported on the porous material have a small particle size. To explain more specifically, the particle size of the catalyst particles in this embodiment is calculated using the following Scherrer equation from the results of XRD (X-ray diffraction analysis) measurement using an X-ray diffraction device. Therefore, the particle size here is the so-called average particle size. Note that although the alloy catalyst may be heat-treated, the particle size of the catalyst particles in this embodiment is the average particle size measured by this method regardless of whether or not the alloy catalyst is heat-treated.
Scherrer equation: D=Kλ/βcosθ
D: crystallite diameter, K: Scherrer constant (0.94), λ: X-ray wavelength of CuKα, β: half width, θ: Bragg angle

そして、本実施形態に係る合金触媒では、水素50vol%+アルゴン50vol%からなる混合ガスを150mL/minで流通させながら、合金触媒を900℃で20分間熱処理した場合に、熱処理後の触媒粒子の粒径が3nm以上7.5nm以下となる。このように、本実施形態に係る合金触媒では、触媒粒子が多孔質材料上に小粒径かつ高分散で担持されているので、熱処理後であっても触媒粒子同士がほとんど凝集せず、小粒径を維持することができる。 In the alloy catalyst according to this embodiment, when the alloy catalyst is heat-treated at 900°C for 20 minutes while flowing a mixed gas consisting of 50 vol% hydrogen and 50 vol% argon at 150 mL/min, the catalyst particles after the heat treatment are The particle size is 3 nm or more and 7.5 nm or less. In this way, in the alloy catalyst according to the present embodiment, the catalyst particles are supported on the porous material in a small particle size and highly dispersed manner, so that even after heat treatment, the catalyst particles hardly aggregate with each other, and the particles are small. Particle size can be maintained.

〔3.3.分散性〕
上述したように、本実施形態に係る合金触媒では、触媒粒子が多孔質材料上に高分散で担持されている。触媒粒子の分散性は、以下の式(5):
(分散度)={(上記熱処理後の触媒粒子の粒径)-(上記熱処理前の触媒粒子の粒径)}/(上記熱処理前の前記触媒粒子の粒径) (5)
で定義される分散度で評価される。本実施形態に係る合金触媒では、分散度が1.5以下となる。分散度が小さいほど、触媒粒子の分散性が高いと言える。
[3.3. Dispersibility]
As described above, in the alloy catalyst according to this embodiment, the catalyst particles are supported on the porous material in a highly dispersed manner. The dispersibility of catalyst particles is expressed by the following formula (5):
(Degree of dispersion) = {(Particle size of the catalyst particles after the above heat treatment) - (Particle size of the catalyst particles before the above heat treatment)}/(Particle size of the catalyst particles before the above heat treatment) (5)
It is evaluated by the degree of dispersion defined by . In the alloy catalyst according to this embodiment, the degree of dispersion is 1.5 or less. It can be said that the smaller the degree of dispersion, the higher the dispersibility of the catalyst particles.

〔3.4.合金化率〕
上述したように、本実施形態に係る合金触媒では、触媒粒子の合金化率が非常に高くなっている。ここで、合金化率は以下の式(3):
合金化率[%]={(バルク貴金属の格子定数)-(触媒粒子の格子定数)}/{(バルク貴金属の格子定数)-(バルク合金の最大ピークの格子定数)}×100 (3)
で定義される。本実施形態に係る合金触媒では、合金化率が80%以上となる。合金化率が高いほど貴金属元素と卑金属元素との合金化が進んでいると言える。
[3.4. Alloying rate]
As described above, in the alloy catalyst according to this embodiment, the alloying rate of the catalyst particles is extremely high. Here, the alloying rate is expressed by the following formula (3):
Alloying rate [%] = {(Lattice constant of bulk noble metal) - (Lattice constant of catalyst particles)} / {(Lattice constant of bulk noble metal) - (Lattice constant of maximum peak of bulk alloy)} x 100 (3)
Defined by In the alloy catalyst according to this embodiment, the alloying ratio is 80% or more. It can be said that the higher the alloying ratio is, the more advanced the alloying between the noble metal element and the base metal element is.

合金化率は、概念的には触媒粒子内の卑金属元素の固溶度合いを示す値であり、合金化率が高いほど卑金属元素と貴金属元素が触媒粒子内で均一に固溶している。貴金属元素及び卑金属元素が合金化されることで、貴金属元素のみからなる触媒粒子に比べて原子間距離が変動し、固体高分子形燃料電池の発電性能、特に初期の発電性能が向上する。ただし、ここで求められる合金化率はあくまで触媒粒子全体の平均的な合金化率であり、合金化率が高いからといって個々の触媒粒子が十分に合金化されているとは必ずしも言えない。そこで、本実施形態では、合金化率の他に後述する卑金属元素濃度の標準偏差を評価し、この標準偏差が低いことを合金触媒の要件とした。式(3)で求められる合金化率が高く、かつ標準偏差が低い場合には、触媒粒子毎の組成のばらつきが小さく、かつ個々の触媒粒子も十分に合金化されていると考えられる。 The alloying ratio is conceptually a value indicating the degree of solid solution of the base metal element within the catalyst particles, and the higher the alloying ratio, the more uniformly the base metal element and the noble metal element are solid dissolved within the catalyst particle. By alloying the noble metal element and the base metal element, the interatomic distance changes compared to catalyst particles made only of the noble metal element, and the power generation performance of the polymer electrolyte fuel cell, especially the initial power generation performance, improves. However, the alloying rate determined here is just the average alloying rate of the entire catalyst particle, and just because the alloying rate is high does not necessarily mean that each individual catalyst particle is sufficiently alloyed. . Therefore, in this embodiment, in addition to the alloying ratio, the standard deviation of the base metal element concentration, which will be described later, was evaluated, and a requirement for the alloy catalyst was that this standard deviation be low. When the alloying rate determined by equation (3) is high and the standard deviation is low, it is considered that the compositional variation among catalyst particles is small and that the individual catalyst particles are also sufficiently alloyed.

式(3)において、触媒粒子の格子定数は、X線回折分析により求められた値である。バルク貴金属の格子定数は、貴金属元素の標準試料をX線回折分析することで得られた格子定数であり、データベース(例えば、国際回折データセンター(International Centre for Diffraction Date; ICDDが配布するデータベース)に登録されている。なお、触媒粒子に貴金属元素が複数種類含まれている場合、バルク貴金属の格子定数は、触媒粒子中の物質量が最も多い貴金属元素の格子定数を用いることができる。バルク合金の最大ピークの格子定数は、触媒粒子と同一組成の標準試料をX線回折分析することで得られた格子定数であり、データベース(例えば、国際回折データセンター(International Centre for Diffraction Date; ICDDが配布するデータベース)に登録されている。なお、ここでの触媒粒子の組成は触媒粒子全体の平均的な組成、すなわち多孔質材料に担持されている貴金属元素及び卑金属元素の質量%である。多孔質材料に担持されている貴金属元素及び卑金属元素の質量%は、後述する実施例において触媒粒子の担持率として評価されている。後述する実施例では、国際回折データセンターが配布するデータベースに基づいて、合金化率を算出した。 In formula (3), the lattice constant of the catalyst particles is a value determined by X-ray diffraction analysis. The lattice constant of a bulk noble metal is a lattice constant obtained by X-ray diffraction analysis of a standard sample of a noble metal element, and is stored in a database (for example, the International Center for Diffraction Date; a database distributed by ICDD). Registered.In addition, if the catalyst particles contain multiple types of noble metal elements, the lattice constant of the noble metal element with the largest amount of substance in the catalyst particles can be used as the lattice constant of the bulk noble metal.Bulk alloy The lattice constant of the maximum peak is the lattice constant obtained by X-ray diffraction analysis of a standard sample with the same composition as the catalyst particles, and is a lattice constant obtained from a database (e.g., International Center for Diffraction Date; distributed by ICDD). The composition of the catalyst particles here is the average composition of the entire catalyst particles, that is, the mass % of noble metal elements and base metal elements supported on the porous material.Porous The mass % of noble metal elements and base metal elements supported on the material is evaluated as the support rate of catalyst particles in the examples described below.In the examples described later, based on the database distributed by the International Diffraction Data Center, The alloying rate was calculated.

〔3.5.組成のばらつき〕
上述したように、本実施形態に係る合金触媒では、触媒粒子毎の組成のばらつきが小さくなっている。つまり、より多くの触媒粒子の組成が仕込みの組成(すなわち、合金触媒の作製に使用した貴金属化合物及び卑金属化合物の化学式及び使用量から導かれる触媒粒子の組成。触媒粒子の組成は、例えば多孔質材料に担持された全貴金属元素の質量%及び全卑金属元素の質量%として示される。)に非常に類似する。このため、より多くの触媒粒子が効率よく触媒反応(酸素還元反応)を行うことができ、ひいては、固体高分子形燃料電池の発電性能、特に初期の発電性能を高めることができる。組成のばらつきが大きい場合、触媒粒子毎に組成が大きく異なることになるので、触媒反応を高効率で行う触媒粒子とそうでない触媒粒子とが混在することになり、初期の発電性能が低下する。
[3.5. Composition variation]
As described above, in the alloy catalyst according to this embodiment, the variation in composition among catalyst particles is small. In other words, the composition of more catalyst particles is derived from the charged composition (i.e., the composition of catalyst particles derived from the chemical formula and usage amount of the noble metal compound and base metal compound used to prepare the alloy catalyst. For example, the composition of catalyst particles is derived from the porous (expressed as mass % of total noble metal elements and mass % of total base metal elements supported on the material). Therefore, more catalyst particles can efficiently perform the catalytic reaction (oxygen reduction reaction), and as a result, the power generation performance of the polymer electrolyte fuel cell, especially the initial power generation performance, can be improved. If there is a large variation in composition, the composition will vary greatly between catalyst particles, resulting in a coexistence of catalyst particles that perform catalytic reactions with high efficiency and catalyst particles that do not, resulting in a decrease in initial power generation performance.

本実施形態に係る合金触媒では、触媒粒子毎の組成のばらつきを触媒粒子の卑金属元素濃度の標準偏差で評価する。当該標準偏差は、6.5以下となる。この場合、組成のばらつきは十分小さいと評価できる。すなわち、標準偏差が6.5以下となる場合、より多くの触媒粒子が効率よく触媒反応を行うことができる。標準偏差が低いほど、組成のばらつきが小さいと言える。標準偏差は好ましくは6.0以下である。標準偏差の下限値は特に制限されず、理想的には0である。ただし、実際的には標準偏差は0超の値となる。 In the alloy catalyst according to this embodiment, the compositional variation of each catalyst particle is evaluated by the standard deviation of the base metal element concentration of the catalyst particles. The standard deviation is 6.5 or less. In this case, it can be evaluated that the compositional variations are sufficiently small. That is, when the standard deviation is 6.5 or less, more catalyst particles can efficiently perform the catalytic reaction. It can be said that the lower the standard deviation, the smaller the variation in composition. The standard deviation is preferably 6.0 or less. The lower limit value of the standard deviation is not particularly limited and is ideally 0. However, in reality, the standard deviation will be a value exceeding 0.

触媒粒子毎の組成のばらつき、すなわち触媒粒子の卑金属元素濃度の標準偏差は、STEM-EDS(Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy)で測定される。具体的には、1試験サンプルあたり合計100粒子以上の触媒粒子を無作為に抽出し、それぞれの触媒粒子に対してEDSの点分析によって貴金属と卑金属の原子数濃度を測定する。このとき、観察時の倍率は50万倍とし、またサンプル全体の平均的なばらつきを知るため、1試験サンプルあたり3視野以上観察を行うことが好ましい。つまり、これらの視野から合計で100粒子以上の触媒粒子を抽出する。なお、触媒粒子の抽出に際しては、別途観察画像を2値化しておき、この2値化画像を参照してもよい。2値化画像では、触媒粒子の画像がより鮮明になっている可能性がある。ついで、触媒粒子毎の卑金属元素濃度(原子濃度)に基づいて標準偏差を算出する。なお、触媒粒子が複数種類の卑金属元素を含む場合、少なくとも1種以上の卑金属元素の標準偏差が6.5以下であればよく、好ましくは全ての卑金属元素の標準偏差が6.5以下である。 The compositional variation of each catalyst particle, that is, the standard deviation of the base metal element concentration of the catalyst particles, is measured by STEM-EDS (Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy). Specifically, a total of 100 or more catalyst particles are randomly extracted from each test sample, and the atomic concentration of noble metals and base metals is measured for each catalyst particle by EDS point analysis. At this time, the magnification during observation is 500,000 times, and in order to know the average variation of the entire sample, it is preferable to observe three or more visual fields per test sample. That is, a total of 100 or more catalyst particles are extracted from these fields of view. Note that when extracting catalyst particles, the observed image may be binarized separately, and this binarized image may be referred to. In the binarized image, the image of the catalyst particles may be clearer. Next, the standard deviation is calculated based on the base metal element concentration (atomic concentration) for each catalyst particle. In addition, when the catalyst particles contain multiple types of base metal elements, it is sufficient that the standard deviation of at least one type of base metal element is 6.5 or less, and preferably the standard deviation of all base metal elements is 6.5 or less. .

以上述べた通り、本実施形態に係る合金触媒では、多孔質材料上に小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が担持されている。したがって、本実施形態に係る合金触媒を固体高分子形燃料電池に用いることで、固体高分子形燃料電池の耐久性及び発電性能を向上させることができる。 As described above, in the alloy catalyst according to the present embodiment, catalyst particles having a small particle size, high dispersion, small variation in composition, and high alloying rate are supported on the porous material. Therefore, by using the alloy catalyst according to this embodiment in a polymer electrolyte fuel cell, the durability and power generation performance of the polymer electrolyte fuel cell can be improved.

〔3.6.内部担持率〕
本実施形態に係る合金触媒では、さらに多孔質材料の細孔内部に触媒粒子が担持されていることが好ましい。より具体的には、合金触媒を走査型透過電子顕微鏡で観察した場合に、以下の式(4):
内部担持率[%]=(b-2×a)/b (4)
で定義される内部担持率が26%以上であることが好ましい。ここで、bは観察視野内の全触媒粒子数、aは多孔質材料の最表面および表面近傍に存在する触媒粒子数である。a、bは、同一視野を異なる加速電圧で観測することで測定される。例えば、後述する実施例では、aは3kVの反射像における触媒粒子数として測定され、bは30kVの透過像における触媒粒子数として測定される。したがって、多孔質材料の細孔内部に触媒粒子が担持されていることは、内部担持率によって評価される。内部担持率が26%以上となる場合、多孔質材料の細孔内部に担持された触媒粒子が十分に多いと評価できる。なお、詳細は後述するが、本実施形態に係る合金触媒は、上述した製造方法によって製造されているので、多孔質材料の細孔内部に多くの触媒粒子が担持されており、内部担持率が26%を超えている。このため、固体高分子形燃料電池の発電性能及び耐久性がさらに向上する。内部担持率が大きいほど、細孔内部に担持されている触媒粒子の数が大きく、好ましいと言える。
[3.6. Internal carrying rate]
In the alloy catalyst according to this embodiment, it is preferable that catalyst particles are further supported inside the pores of the porous material. More specifically, when observing the alloy catalyst with a scanning transmission electron microscope, the following formula (4):
Internal loading rate [%] = (b-2×a)/b (4)
It is preferable that the internal loading rate defined by is 26% or more. Here, b is the total number of catalyst particles within the observation field, and a is the number of catalyst particles present at and near the outermost surface of the porous material. a and b are measured by observing the same visual field at different accelerating voltages. For example, in the examples described below, a is measured as the number of catalyst particles in a 3 kV reflection image, and b is measured as the number of catalyst particles in a 30 kV transmission image. Therefore, the fact that the catalyst particles are supported inside the pores of the porous material is evaluated by the internal loading rate. When the internal loading rate is 26% or more, it can be evaluated that the number of catalyst particles supported inside the pores of the porous material is sufficiently large. Although the details will be described later, since the alloy catalyst according to this embodiment is manufactured by the above-mentioned manufacturing method, many catalyst particles are supported inside the pores of the porous material, and the internal loading rate is low. It exceeds 26%. Therefore, the power generation performance and durability of the polymer electrolyte fuel cell are further improved. It can be said that the larger the internal loading rate, the larger the number of catalyst particles supported inside the pores, which is preferable.

なお、上述した本実施形態に係る合金触媒の製造方法により製造される合金触媒は、特に限定されず、その合金触媒を構成する触媒成分に応じた任意の用途に適用することが可能である。特に、当該合金触媒には、小粒径かつ高分散であり、組成のばらつきが小さく、合金化率が高い触媒粒子が担持されている。したがって、当該合金触媒は、触媒粒子が小粒径かつ高分散であり、組成のばらつきが小さく、合金化率が高いことが要求される分野、例えば固体高分子形燃料電池の触媒として好適に利用することができる。 Note that the alloy catalyst manufactured by the method for manufacturing an alloy catalyst according to the present embodiment described above is not particularly limited, and can be applied to any purpose depending on the catalyst components constituting the alloy catalyst. In particular, the alloy catalyst supports catalyst particles having a small particle size, high dispersion, small variation in composition, and high alloying rate. Therefore, the alloy catalyst is suitable for use in fields where catalyst particles are required to have small particle size and high dispersion, small variations in composition, and high alloying ratio, such as catalysts for polymer electrolyte fuel cells. can do.

そして、本実施形態に係る合金触媒の製造方法により製造される合金触媒を固体高分子形燃料電池の触媒に適用する場合、以下の理由により、発電性能および耐久性が著しく優れたものとなる。 When the alloy catalyst manufactured by the method for manufacturing an alloy catalyst according to the present embodiment is applied to a catalyst for a polymer electrolyte fuel cell, the power generation performance and durability will be significantly excellent for the following reasons.

まず、触媒粒子が小粒径であり、上述した熱処理後の粒径が3nm以上7.5nm以下となるので、合金触媒の発電反応に寄与可能な触媒粒子の有効比表面積が大きい。
さらに、触媒粒子同士の凝集がなく分散性が良好であるため、熱処理しても小粒径を維持可能であり、熱処理による粒成長が少ない(例えば熱処理後の粒径が3nm以上7.5nm)ことから、熱処理を行った場合でも依然として触媒粒子の発電反応に寄与可能な有効比表面積が大きい。また同時に、触媒粒子の分散性が良好であることから繰り返し発電反応を行った際の触媒粒子の粗大化(例えば15nm以上の粒径の粗大粒の形成)による合金触媒の劣化が少なく、耐久性が高い。
First, the catalyst particles have a small particle size, and the particle size after the above heat treatment is 3 nm or more and 7.5 nm or less, so the effective specific surface area of the catalyst particles that can contribute to the power generation reaction of the alloy catalyst is large.
Furthermore, since the catalyst particles do not aggregate with each other and have good dispersibility, it is possible to maintain a small particle size even after heat treatment, and grain growth due to heat treatment is small (for example, the particle size after heat treatment is 3 nm or more and 7.5 nm). Therefore, even after heat treatment, the catalyst particles still have a large effective specific surface area that can contribute to the power generation reaction. At the same time, since the dispersibility of the catalyst particles is good, there is little deterioration of the alloy catalyst due to the coarsening of the catalyst particles (for example, the formation of coarse particles with a particle size of 15 nm or more) when repeated power generation reactions are performed, and the durability of the alloy catalyst is reduced. is high.

また、本実施形態においては、触媒粒子の合金化率が高い。貴金属元素の卑金属元素との合金化により、貴金属原子間の原子間距離が短くなり、これにより酸素との結合・脱離しやすさが最適化される。触媒粒子の酸素との吸着性が高すぎると還元反応後に脱着しづらくなり、触媒粒子の脱離性が高すぎると酸素が吸着しないため還元反応を起こすことができない。固体高分子形燃料電池の発電反応においては、律速となるのがカソード側の酸素還元反応であるため、合金化により触媒粒子と酸素との結合・脱離しやすさが最適化されると、発電反応が促進され、発電性能が向上する。 Furthermore, in this embodiment, the alloying rate of the catalyst particles is high. Alloying a noble metal element with a base metal element shortens the interatomic distance between noble metal atoms, thereby optimizing the ease with which they bond with and desorb oxygen. If the adsorption of oxygen on the catalyst particles is too high, it will be difficult to desorb after the reduction reaction, and if the desorption of the catalyst particles is too high, no oxygen will be adsorbed and the reduction reaction will not occur. In the power generation reaction of polymer electrolyte fuel cells, the oxygen reduction reaction on the cathode side is rate-determining, so if the ease of bonding and desorption between catalyst particles and oxygen is optimized through alloying, power generation The reaction is accelerated and power generation performance is improved.

さらには、本実施形態に係る方法においては、多孔質材料の細孔内部に十分な量の触媒粒子を担持することが可能である。この結果、担体としての多孔質材料の表面積を有効に利用できる。この結果、細孔内部に担持された触媒粒子は細孔外(多孔質材料の外表面)に担持された触媒粒子と比較して、繰り返しの発電反応による、粒子の粗大化等の劣化が起こりづらく、耐久性に優れている。さらには、細孔内部に担持された触媒粒子は細孔外(多孔質材料の外表面)に担持された触媒粒子と比較して、触媒層に含まれる高分子電解質としてのアイオノマーの被覆が抑制されているため、アイオノマーの被覆による発電反応に寄与可能な有効比表面積の低下が少なく、発電性能の低下が小さい。以上により、本実施形態においては、多孔質材料の細孔内部に十分な量の触媒粒子を担持することにより固体高分子形燃料電池の発電性能および耐久性の向上に寄与する。 Furthermore, in the method according to this embodiment, it is possible to support a sufficient amount of catalyst particles inside the pores of the porous material. As a result, the surface area of the porous material as a carrier can be effectively utilized. As a result, compared to catalyst particles supported outside the pores (on the outer surface of the porous material), the catalyst particles supported inside the pores undergo deterioration such as coarsening of the particles due to repeated power generation reactions. Hard and durable. Furthermore, compared to catalyst particles supported outside the pores (on the outer surface of the porous material), the catalyst particles supported inside the pores are less likely to be coated with the ionomer as a polymer electrolyte contained in the catalyst layer. Therefore, the effective specific surface area that can contribute to the power generation reaction due to the ionomer coating is less reduced, and the power generation performance is less reduced. As described above, in this embodiment, by supporting a sufficient amount of catalyst particles inside the pores of the porous material, it contributes to improving the power generation performance and durability of the polymer electrolyte fuel cell.

以下に、実施例を示しながら、本発明の実施形態について、具体的に説明する。なお、以下に示す実施例は、本発明のあくまでも一例であって、本発明が、下記の例に限定されるものではない。 Embodiments of the present invention will be specifically described below with reference to Examples. Note that the examples shown below are merely examples of the present invention, and the present invention is not limited to the following examples.

1.合金触媒の製造
(実施例1-1)
(i)第1の工程
第1の溶媒としての水100mLに、多孔質材料としてのメソポーラスシリカ(太陽化学(株)製、TMPS-4R、細孔容積:0.89cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としてのジニトロジアンミン白金硝酸溶液を0.39g、卑金属化合物としての硫酸ニッケル(II)六水和物0.046g、および硫酸コバルト七水和物0.051gを加え、スターラーを用いて30分間撹拌した。
1. Production of alloy catalyst (Example 1-1)
(i) First step Add 0.5 g of mesoporous silica (manufactured by Taiyo Kagaku Co., Ltd., TMPS-4R, pore volume: 0.89 cm 3 /g) as a porous material to 100 mL of water as the first solvent. was added and dispersed for 2 minutes using an ultrasonic homogenizer. To this, 0.39 g of dinitrodiammine platinum nitrate solution as a noble metal compound, 0.046 g of nickel (II) sulfate hexahydrate as a base metal compound, and 0.051 g of cobalt sulfate heptahydrate were added, and the mixture was stirred using a stirrer. Stir for 30 minutes.

(ii)第2の工程
撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して水の質量を算出し、水の質量が0.22gとなるまで溶媒の除去を継続した。ここで、メソポーラスシリカの細孔容積は、0.89cm/g×0.5(g)=0.445cmである。0.22gの水の容積は、水の密度が0.99g/cmであるため、0.22cmである。したがって、サンプル中の水の容積は、メソポーラスシリカの細孔容積の0.5倍であった。
(ii) Second step After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of water, and solvent removal was continued until the mass of water was 0.22 g. Here, the pore volume of mesoporous silica is 0.89 cm 3 /g×0.5(g)=0.445 cm 3 . The volume of 0.22 g of water is 0.22 cm 3 because the density of water is 0.99 g/cm 3 . Therefore, the volume of water in the sample was 0.5 times the pore volume of the mesoporous silica.

(iii)第3の工程
次に、大気中で、還元剤としての水素化ホウ素ナトリウム0.34gを4.5mLの水(第2の溶媒)に溶解した還元溶液を、溶媒除去後に得られたサンプルへ投入し、強撹拌した。このとき、反応は室温で行った。このまま1時間撹拌した後、得られた混合液をろ過によって洗浄し、回収したサンプルを真空乾燥することで、実施例1-1に係る合金触媒を得た。
(iii) Third step Next, in the atmosphere, a reducing solution obtained by dissolving 0.34 g of sodium borohydride as a reducing agent in 4.5 mL of water (second solvent) was prepared after removing the solvent. The mixture was added to the sample and stirred vigorously. At this time, the reaction was performed at room temperature. After stirring as it was for 1 hour, the resulting mixed solution was washed by filtration, and the collected sample was vacuum dried to obtain an alloy catalyst according to Example 1-1.

(実施例1-2)
第1の工程~第3の工程における各種材料および実験条件を表1-1に示すように変更した以外は、実施例1-1と同様にして実施例1-2に係る合金触媒を得た。
(Example 1-2)
An alloy catalyst according to Example 1-2 was obtained in the same manner as in Example 1-1, except that the various materials and experimental conditions in the first to third steps were changed as shown in Table 1-1. .

(実施例1-3)
(i)第1の工程
第1の溶媒としての水/エタノール=1/1(vol/vol)混合溶液100mLに、多孔質材料としてのメソポーラスシリカ(太陽化学(株)製、TMPS-4R、細孔容積:0.89cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としての塩化金酸を0.14g、卑金属化合物としての塩化ニッケル(II)六水和物0.027gを加え、スターラーを用いて30分間撹拌した。
(Example 1-3)
(i) First step Mesoporous silica (manufactured by Taiyo Kagaku Co., Ltd., TMPS-4R, fine Pore volume: 0.89 cm 3 /g) was added and dispersed for 2 minutes using an ultrasonic homogenizer. 0.14 g of chloroauric acid as a noble metal compound and 0.027 g of nickel (II) chloride hexahydrate as a base metal compound were added thereto, and the mixture was stirred for 30 minutes using a stirrer.

(ii)第2の工程
撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して第1の溶媒の質量を算出し、第1の溶媒の質量が0.20gとなるまで溶媒の除去を継続した。ここで、メソポーラスシリカの細孔容積は、0.89cm/g×0.5(g)=0.445cmである。0.20gの第1の溶媒の容積は、水/エタノール=1/1(vol/vol)混合溶液の密度が0.91g/cmであるため、0.22cmである。したがって、サンプル中の水の容積は、メソポーラスシリカの細孔容積の0.5倍であった。
(ii) Second step After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of the first solvent, and the solvent was continued to be removed until the mass of the first solvent reached 0.20 g. Here, the pore volume of mesoporous silica is 0.89 cm 3 /g×0.5(g)=0.445 cm 3 . The volume of 0.20 g of the first solvent is 0.22 cm 3 because the density of the water/ethanol=1/1 (vol/vol) mixed solution is 0.91 g/cm 3 . Therefore, the volume of water in the sample was 0.5 times the pore volume of the mesoporous silica.

(iii)第3の工程
次に、Ar雰囲気中で、還元剤としての水素化ホウ素ナトリウム1.27gを16.8mLの水(第2の溶媒)に溶解した還元溶液を、溶媒除去後に得られたサンプルへ投入し、強撹拌した。このとき、反応は室温で行った。このまま1時間撹拌した後、得られた混合液をろ過によって洗浄し、回収したサンプルを真空乾燥することで、実施例1-3に係る合金触媒を得た。
(iii) Third step Next, in an Ar atmosphere, a reducing solution obtained by dissolving 1.27 g of sodium borohydride as a reducing agent in 16.8 mL of water (second solvent) was obtained after removing the solvent. and stirred vigorously. At this time, the reaction was performed at room temperature. After stirring as it was for 1 hour, the resulting mixed solution was washed by filtration, and the collected sample was vacuum dried to obtain an alloy catalyst according to Example 1-3.

以上の各実施例における製造条件を表1-1に示す。なお、表中、
「Pt(NO(NH」は、白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液を、
「硝酸Pd」は、硝酸パラジウムを、
「塩化金酸」は、塩化金(III)酸四水和物を、
「硫酸Ni」は、硫酸ニッケル(II)六水和物を、
「硫酸Co」は、硫酸コバルト(II)七水和物を、
「硝酸Co」は、硝酸コバルト(II)六水和物を、
「塩化Ni」は、塩化ニッケル(II)六水和物を、
「EtOH」は、エタノールを、
「r.t.」は、室温を、それぞれ示す。なお、第2の工程における、第1の溶媒の残存量は、多孔質材料の細孔容積を基準とした比率として記載した。
The manufacturing conditions for each of the above examples are shown in Table 1-1. In addition, in the table,
"Pt(NO 2 ) 2 (NH 3 ) 2 " is a dinitrodiammine platinum nitrate solution with a platinum concentration of 4.5 wt%.
"Pd nitrate" means palladium nitrate,
"Chloroauric acid" refers to chloroauric acid (III) acid tetrahydrate,
"Ni sulfate" refers to nickel (II) sulfate hexahydrate,
"Co sulfate" refers to cobalt (II) sulfate heptahydrate,
"Co nitrate" refers to cobalt(II) nitrate hexahydrate,
"Ni chloride" refers to nickel (II) chloride hexahydrate,
"EtOH" means ethanol,
"rt." each indicates room temperature. Note that the remaining amount of the first solvent in the second step was described as a ratio based on the pore volume of the porous material.

Figure 0007397309000001
Figure 0007397309000001

Figure 0007397309000002
Figure 0007397309000002

2.合金触媒の評価
2.1. 触媒粒子の粒径
得られた合金触媒の触媒粒子の粒径は、X線回折装置(X-Ray Diffraction;XRD、(株)リガク製、Smart Lab)により測定した。XRD測定の結果より、以下のシェラーの式を用いて結晶子径(触媒粒子の粒径)を算出した。
シェラーの式:D=Kλ/βcosθ
D:結晶子径、K:シェラー定数(0.94)、λ:CuKαのX線波長、β:半値幅、θ:Bragg角
2. Evaluation of alloy catalyst 2.1. Particle Size of Catalyst Particles The particle size of the catalyst particles of the obtained alloy catalyst was measured using an X-ray diffraction device (XRD, manufactured by Rigaku Co., Ltd., Smart Lab). From the results of the XRD measurement, the crystallite diameter (particle diameter of the catalyst particles) was calculated using the Scherrer equation below.
Scherrer equation: D=Kλ/βcosθ
D: crystallite diameter, K: Scherrer constant (0.94), λ: X-ray wavelength of CuKα, β: half width, θ: Bragg angle

2.2. 分散性
得られた合金触媒の分散性は、熱処理前後での粒径変化によって測定した。得られた合金触媒を真空乾燥し、乾燥後のサンプルを、水素50vol%+アルゴン50vol%からなる混合ガスを150mL/minで流通させながら、900℃で20分間熱処理した。分散性が悪い場合、熱処理による粗大粒生成が顕著に確認されることから、熱処理前後の粒径変化(粒径の増加)を測定することにより、分散性を評価した。より具体的には、上述した式(5)で定義される分散度を測定した。分散度が1.5以下であれば、分散性が十分高いと評価できる。
2.2. Dispersibility The dispersibility of the obtained alloy catalyst was measured by the change in particle size before and after heat treatment. The obtained alloy catalyst was vacuum-dried, and the dried sample was heat-treated at 900° C. for 20 minutes while flowing a mixed gas of 50 vol% hydrogen and 50 vol% argon at 150 mL/min. If the dispersibility is poor, the formation of coarse particles due to heat treatment is clearly confirmed, so the dispersibility was evaluated by measuring the change in particle size (increase in particle size) before and after the heat treatment. More specifically, the degree of dispersion defined by the above equation (5) was measured. If the degree of dispersion is 1.5 or less, it can be evaluated that the dispersibility is sufficiently high.

2.3. 合金化率
得られた触媒粒子の合金化率は、X線回折装置(X-Ray Diffraction;XRD、(株)リガク製、Smart Lab)により測定した。XRD測定の結果より、上述した式(3)を用いて合金化率を算出した。なお、貴金属が二種類以上の場合は、最も物質量が多く含まれる貴金属の格子定数によって算出した。
2.3. Alloying Ratio The alloying ratio of the obtained catalyst particles was measured using an X-ray diffraction device (XRD, manufactured by Rigaku Co., Ltd., Smart Lab). From the results of the XRD measurement, the alloying rate was calculated using the above-mentioned formula (3). In addition, when there are two or more types of noble metals, the calculation was performed based on the lattice constant of the noble metal containing the largest amount of substance.

2.4. 触媒粒子の細孔内部における存在評価(内部担持率)
得られた合金触媒の触媒粒子の内部担持率の評価は、走査型透過電子顕微鏡(Scanning Transmission Electron Microscope;STEM(株)日立ハイテクノロジーズ製、SU9000)および画像解析ソフト(ImageJ)を用いて行った。まずSTEM観察によって、異なる加速電圧における同一視野の画像を得た。加速電圧は、低加速電圧(~1kV)、高加速電圧(25~30kV)、両者の中間の加速電圧(2~7kV)、を含む値から選択することができ、低加速電圧、高加速電圧を含むことが好ましい。本実施例では、3kV、30kVで観察を行った。次に、画像解析ソフトを用い、STEM観察で得られた画像の粒子解析を行った。まず触媒粒子を縁取り処理し、その後、二値化処理を行った。得られた二値化処理画像から、それぞれの加速電圧における触媒粒子数をカウントした。すなわち、3kVの反射像における触媒粒子数、30kVの透過像における触媒粒子数をカウントした。これらの値と、上述した式(4)とに基づいて、内部担持率を算出した。ここで、3kVの反射像における触媒粒子数は、式(4)中のa、すなわち多孔質材料の最表面および表面近傍に存在する触媒粒子数を示し、30kVの透過像における触媒粒子数は、式(4)中のb、すなわち観察視野内の全触媒粒子数を示す。なお、bは担体の裏側に存在する粒子数も含むため、担体裏側にも最表面および表面近傍と同数の粒子が存在すると仮定した。
2.4. Evaluation of the presence of catalyst particles inside the pores (internal support rate)
The internal support rate of the catalyst particles of the obtained alloy catalyst was evaluated using a scanning transmission electron microscope (STEM SU9000, manufactured by Hitachi High-Technologies, Inc.) and image analysis software (ImageJ). . First, images of the same field of view at different acceleration voltages were obtained by STEM observation. The accelerating voltage can be selected from values including low accelerating voltage (~1 kV), high accelerating voltage (25 to 30 kV), and an intermediate accelerating voltage (2 to 7 kV). It is preferable to include. In this example, observation was performed at 3 kV and 30 kV. Next, particle analysis of the images obtained by STEM observation was performed using image analysis software. First, the catalyst particles were subjected to edge processing, and then binarization processing was performed. The number of catalyst particles at each acceleration voltage was counted from the obtained binarized image. That is, the number of catalyst particles in a 3 kV reflection image and the number of catalyst particles in a 30 kV transmission image were counted. The internal loading rate was calculated based on these values and the above-mentioned formula (4). Here, the number of catalyst particles in the 3kV reflection image represents a in equation (4), that is, the number of catalyst particles present on the outermost surface and near the surface of the porous material, and the number of catalyst particles in the 30kV transmission image is: b in formula (4) indicates the total number of catalyst particles within the observation field. Since b also includes the number of particles present on the back side of the carrier, it was assumed that the same number of particles existed on the back side of the carrier as on the outermost surface and near the surface.

2.5. 触媒粒子の担持率
得られた触媒粒子の担持率は、誘導結合プラズマ発光分光分析(ICP-AES: Inductively Coupled Plasma - Atomic Emission Spectrometry、(株)島津製作所製、ICPE-9800)により測定した。なお、ここでの担持率は、試験サンプルとして使用した合金触媒の総質量に対する各金属元素の質量%として求めた。
2.5. Supporting rate of catalyst particles The supporting rate of the obtained catalyst particles was measured by inductively coupled plasma emission spectrometry (ICP-AES: ICPE-9800, manufactured by Shimadzu Corporation). Note that the supporting ratio here was determined as the mass % of each metal element relative to the total mass of the alloy catalyst used as a test sample.

2.6. 卑金属元素濃度の標準偏差
卑金属元素の標準偏差は、STEM-EDSを用いて測定した。具体的には、STEMとして日立ハイテクノロジーズ社製SU9000を使用し、EDSとして堀場製作所社製E-MAX Evolutionを使用した。本測定では、1試験サンプルを異なる3視野で観察し、各視野から合計で100個の触媒粒子を無作為に抽出した。観察時の倍率は50万倍とした。ついで、それぞれの触媒粒子に対してEDSの点分析によって貴金属と卑金属の原子数濃度を測定した。ついで、触媒粒子毎の卑金属元素濃度(原子濃度)に基づいて標準偏差を算出した。なお、実施例1-1の触媒粒子は卑金属元素を2種類(Ni、Co)含む三元系の触媒粒子となっているため、実施例1-1では、Co濃度の標準偏差を算出した。
以上の結果を表1-2に示す。
2.6. Standard deviation of base metal element concentration The standard deviation of base metal element concentration was measured using STEM-EDS. Specifically, SU9000 manufactured by Hitachi High Technologies was used as the STEM, and E-MAX Evolution manufactured by Horiba, Ltd. was used as the EDS. In this measurement, one test sample was observed in three different fields of view, and a total of 100 catalyst particles were randomly extracted from each field of view. The magnification during observation was 500,000 times. Next, the atomic number concentrations of noble metals and base metals were measured for each catalyst particle by EDS point analysis. Next, the standard deviation was calculated based on the base metal element concentration (atomic concentration) for each catalyst particle. Note that since the catalyst particles of Example 1-1 are ternary catalyst particles containing two types of base metal elements (Ni and Co), in Example 1-1, the standard deviation of the Co concentration was calculated.
The above results are shown in Table 1-2.

Figure 0007397309000003
Figure 0007397309000003

3.結果
表1-2からも明らかなように、実施例1-1~1-3に係る合金触媒は、小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が多孔質材料に担持されていた。
3. Results As is clear from Table 1-2, the alloy catalysts according to Examples 1-1 to 1-3 had small particle sizes and high dispersion, small variations in composition, and catalyst particles with a high alloying rate. supported on a porous material.

4.固体高分子形燃料電池用合金触媒の製造
(実施例2-1)
(i)第1の工程
第1の溶媒としての1-プロパノール100mLに、多孔質材料としてのケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製、細孔容積:2.9cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としてのアセチルアセトナート白金を0.32g、卑金属化合物としてのアセチルアセトナートコバルト(III)0.22gを加え、スターラーを用いて30分間撹拌した。
4. Production of alloy catalyst for polymer electrolyte fuel cells (Example 2-1)
(i) First step Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd., pore volume: 2.9 cm 3 /g) as a porous material is added to 100 mL of 1-propanol as the first solvent. 0.5 g was added and dispersed for 2 minutes using an ultrasonic homogenizer. 0.32 g of platinum acetylacetonate as a noble metal compound and 0.22 g of cobalt (III) acetylacetonate as a base metal compound were added thereto, and the mixture was stirred for 30 minutes using a stirrer.

(ii)第2の工程
撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して1-プロパノールの質量を算出し、1-プロパノールの質量が5.8gとなるまで溶媒の除去を継続した。ここで、ケッチェンブラックの細孔容積は、2.9cm/g×0.5(g)=1.45cmである。5.8gの1-プロパノールの容積は、1-プロパノールの密度が0.8g/cmであるため、7.25cmである。したがって、サンプル中の1-プロパノールの容積は、ケッチェンブラックの細孔容積の5.0倍であった。
(ii) Second step After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of 1-propanol, and solvent removal was continued until the mass of 1-propanol reached 5.8 g. Here, the pore volume of Ketjenblack is 2.9 cm 3 /g×0.5(g)=1.45 cm 3 . The volume of 5.8 g of 1-propanol is 7.25 cm 3 since the density of 1-propanol is 0.8 g/cm 3 . Therefore, the volume of 1-propanol in the sample was 5.0 times the pore volume of Ketjenblack.

(iii)第3の工程
次に、Ar雰囲気中で、還元剤としてのシアノ水素化ホウ素ナトリウム0.27gを4mLのメタノール(第2の溶媒)に溶解した還元溶液を、溶媒除去後に得られたサンプルへ投入し、強撹拌した。このとき、反応は75℃に設定したオイルバス中で行った。このまま1時間撹拌した後、得られた混合液をろ過によって洗浄し、回収したサンプルを真空乾燥することで、実施例2-1に係る合金触媒を得た。
(iii) Third step Next, in an Ar atmosphere, a reducing solution obtained by dissolving 0.27 g of sodium cyanoborohydride as a reducing agent in 4 mL of methanol (second solvent) was prepared after removing the solvent. The mixture was added to the sample and stirred vigorously. At this time, the reaction was carried out in an oil bath set at 75°C. After stirring for 1 hour, the resulting mixed solution was washed by filtration, and the collected sample was vacuum-dried to obtain an alloy catalyst according to Example 2-1.

(実施例2-2~2-7)
第1の工程~第3の工程における各種材料および実験条件を表2-1に示すように変更した以外は、実施例2-1と同様にして実施例2-2~2-7に係る合金触媒を得た。
(Examples 2-2 to 2-7)
The alloys according to Examples 2-2 to 2-7 were prepared in the same manner as in Example 2-1, except that the various materials and experimental conditions in the first to third steps were changed as shown in Table 2-1. I got a catalyst.

(実施例2-8)
(i)第1の工程
第1の溶媒としての水100mLに、多孔質材料としてのケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製、細孔容積:2.9cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としての白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、卑金属化合物としての硝酸鉄(III)九水和物0.066gを加え、スターラーを用いて30分間撹拌した。
(Example 2-8)
(i) First step Ketjen Black EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd., pore volume: 2.9 cm 3 /g) as a porous material was added to 100 mL of water as the first solvent. 5 g was added and dispersed for 2 minutes using an ultrasonic homogenizer. 5.5 g of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.5 wt% as a noble metal compound and 0.066 g of iron(III) nitrate nonahydrate as a base metal compound were added thereto, and the mixture was stirred for 30 minutes using a stirrer.

(ii)第2の工程
撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して水の質量を算出し、水の質量が0.072gとなるまで溶媒の除去を継続した。ここで、ケッチェンブラックの細孔容積は、2.9cm/g×0.5(g)=1.45cmである。0.072gの水の容積は、水の密度が0.99g/cmであるため、0.073cmである。したがって、サンプル中の水の容積は、ケッチェンブラックの細孔容積の0.05倍であった。
(ii) Second step After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of water, and solvent removal was continued until the mass of water became 0.072 g. Here, the pore volume of Ketjenblack is 2.9 cm 3 /g×0.5(g)=1.45 cm 3 . The volume of 0.072 g of water is 0.073 cm 3 because the density of water is 0.99 g/cm 3 . Therefore, the volume of water in the sample was 0.05 times the pore volume of Ketjenblack.

(iii)第3の工程
次に、大気中で、還元剤としての水素化ホウ素ナトリウム4.8gに少量(1mL程度)の1.0mol/L水酸化ナトリウム水溶液、32mLの水(第2の溶媒)を加えた。この溶液を撹拌しながらpHを測定し、pHが11.8になるまで1.0mol/L水酸化ナトリウムを加え、還元溶液を得た。得られた還元溶液を、溶媒除去後に得られたサンプルへ投入し、強撹拌した。このとき、反応は室温にて行った。このまま1時間撹拌した後、得られた混合液をろ過によって洗浄し、回収したサンプルを真空乾燥することで、実施例2-8に係る合金触媒を得た。
(iii) Third step Next, in the air, 4.8 g of sodium borohydride as a reducing agent, a small amount (about 1 mL) of a 1.0 mol/L aqueous sodium hydroxide solution, and 32 mL of water (second solvent) ) was added. The pH of this solution was measured while stirring, and 1.0 mol/L sodium hydroxide was added until the pH reached 11.8 to obtain a reduced solution. The obtained reduced solution was added to the sample obtained after removing the solvent, and the sample was vigorously stirred. At this time, the reaction was performed at room temperature. After stirring as it was for 1 hour, the resulting mixed solution was washed by filtration, and the collected sample was vacuum dried to obtain an alloy catalyst according to Example 2-8.

(実施例2-9~2-13)
第1の工程~第3の工程における各種材料および実験条件を表2-1に示すように変更した以外は、実施例2-8と同様にして実施例2-9~2-13に係る合金触媒を得た。
(Examples 2-9 to 2-13)
The alloys according to Examples 2-9 to 2-13 were prepared in the same manner as in Example 2-8, except that the various materials and experimental conditions in the first to third steps were changed as shown in Table 2-1. I got a catalyst.

(実施例2-14)
(i)第1の工程
第1の溶媒としての水100mLに、多孔質材料としてのケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製、細孔容量:2.9cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としての白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、卑金属化合物としての硫酸コバルト七水和物0.12gを加え、スターラーを用いて30分間撹拌した。
(Example 2-14)
(i) First step Ketjen Black EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd., pore volume: 2.9 cm 3 /g) as a porous material was added to 100 mL of water as the first solvent. 5 g was added and dispersed for 2 minutes using an ultrasonic homogenizer. 5.5 g of a dinitrodiammine platinum nitric acid solution having a platinum concentration of 4.5 wt% as a noble metal compound and 0.12 g of cobalt sulfate heptahydrate as a base metal compound were added thereto, and the mixture was stirred for 30 minutes using a stirrer.

(ii)第2の工程
撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して水の質量を算出し、水の質量が0.015gとなるまで溶媒の除去を継続した。ここで、ケッチェンブラックの細孔容積は、2.9cm/g×0.5(g)=1.45cmである。0.015gの水の容積は、水の密度が0.99g/cmであるため、0.015cmである。したがって、サンプル中の水の容積は、ケッチェンブラックの細孔容積の0.01倍であった。
(ii) Second step After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of water, and solvent removal was continued until the mass of water became 0.015 g. Here, the pore volume of Ketjenblack is 2.9 cm 3 /g×0.5(g)=1.45 cm 3 . The volume of 0.015 g of water is 0.015 cm 3 because the density of water is 0.99 g/cm 3 . Therefore, the volume of water in the sample was 0.01 times the pore volume of Ketjenblack.

(iii)第3の工程
次に、大気中で、還元剤としての水素化ホウ素ナトリウム4.8gを32mLの水(第2の溶媒)に溶解した還元溶液32mLを、溶媒除去後に得られたサンプルへ投入し、強撹拌した。このとき、反応は室温にて行った。このまま1時間撹拌した後、得られた混合液をろ過によって洗浄し、回収したサンプルを真空乾燥することで、実施例2-14に係る合金触媒を得た。
(iii) Third step Next, in the atmosphere, 32 mL of a reducing solution prepared by dissolving 4.8 g of sodium borohydride as a reducing agent in 32 mL of water (second solvent) was added to the sample obtained after removing the solvent. and stirred vigorously. At this time, the reaction was performed at room temperature. After stirring as it was for 1 hour, the resulting mixed solution was washed by filtration, and the collected sample was vacuum dried to obtain an alloy catalyst according to Example 2-14.

(実施例2-15)
第1の工程~第3の工程における各種材料および実験条件を表2-1に示すように変更した以外は、実施例2-14と同様にして実施例2-15に係る合金触媒を得た。
(Example 2-15)
An alloy catalyst according to Example 2-15 was obtained in the same manner as Example 2-14, except that the various materials and experimental conditions in the first to third steps were changed as shown in Table 2-1. .

(比較例2-1~2-10)
第1の工程~第3の工程における各種材料および実験条件を表2-2に示すように変更した以外は、実施例2-1と同様にして比較例2-1~2-10に係る合金触媒を得た。
(Comparative Examples 2-1 to 2-10)
The alloys according to Comparative Examples 2-1 to 2-10 were prepared in the same manner as in Example 2-1, except that the various materials and experimental conditions in the first to third steps were changed as shown in Table 2-2. I got a catalyst.

(比較例2-11)
水80mLにケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、エタノール20mLを加え、110℃に設定したオイルバス中で12時間撹拌した。得られた混合液をろ過によって洗浄し、回収した。回収したサンプルに水を100mL注ぎ、ここに硝酸コバルト六水和物を0.12g加え、30分間撹拌した。
(Comparative Example 2-11)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd.) was added to 80 mL of water and dispersed for 2 minutes using an ultrasonic homogenizer. 5.5 g of a dinitrodiammine platinum nitric acid solution with a platinum concentration of 4.5 wt% and 20 mL of ethanol were added thereto, and the mixture was stirred for 12 hours in an oil bath set at 110°C. The resulting mixture was washed and collected by filtration. 100 mL of water was poured into the collected sample, 0.12 g of cobalt nitrate hexahydrate was added thereto, and the mixture was stirred for 30 minutes.

撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの重量を測定して水の重量を算出し、水の重量が0.015gとなるまで溶媒の除去を継続した。 After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the weight of the sample was measured to calculate the weight of water, and solvent removal was continued until the weight of water was 0.015 g.

溶媒除去後、サンプルを真空乾燥し、乾燥後のサンプルを、水素50vol%+アルゴン50vol%からなる混合ガスを150mL/minで流通させながら、900℃で20分間熱処理することにより、比較例2-11に係る合金触媒を得た。 After removing the solvent, the sample was vacuum-dried, and the dried sample was heat-treated at 900°C for 20 minutes while flowing a mixed gas consisting of 50 vol% hydrogen and 50 vol% argon at 150 mL/min. Comparative Example 2- An alloy catalyst according to No. 11 was obtained.

(比較例2-12)
水80mLにケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、エタノール20mLを加え、110℃に設定したオイルバス中で12時間撹拌した。得られた混合液をろ過によって洗浄し、回収した。回収したサンプルに水を100mL注ぎ、ここに硝酸コバルト六水和物を0.12g加え、30分間撹拌した。
(Comparative example 2-12)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd.) was added to 80 mL of water and dispersed for 2 minutes using an ultrasonic homogenizer. 5.5 g of a dinitrodiammine platinum nitric acid solution with a platinum concentration of 4.5 wt% and 20 mL of ethanol were added thereto, and the mixture was stirred for 12 hours in an oil bath set at 110°C. The resulting mixture was washed and collected by filtration. 100 mL of water was poured into the collected sample, 0.12 g of cobalt nitrate hexahydrate was added thereto, and the mixture was stirred for 30 minutes.

撹拌後、この混合液に水素化ホウ素ナトリウム4.8gを43mLの水に溶解した水溶液を加え、強撹拌した。3時間撹拌後、混合液をろ過によって洗浄し、回収したサンプルを真空乾燥後、水素50vol%+アルゴン50vol%からなる混合ガスを150mL/minで流通させながら、900℃で20分間熱処理することにより、比較例2-12に係る合金触媒を得た。 After stirring, an aqueous solution prepared by dissolving 4.8 g of sodium borohydride in 43 mL of water was added to this mixed solution, and the mixture was vigorously stirred. After stirring for 3 hours, the mixed solution was washed by filtration, and the collected sample was dried in vacuum, and then heat-treated at 900 ° C. for 20 minutes while flowing a mixed gas consisting of 50 vol% hydrogen + 50 vol% argon at 150 mL/min. , an alloy catalyst according to Comparative Example 2-12 was obtained.

(比較例2-13)
水200mLにケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、硫酸コバルト七水和物0.12gを加え、30分間撹拌した。
(Comparative example 2-13)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd.) was added to 200 mL of water and dispersed for 2 minutes using an ultrasonic homogenizer. To this were added 5.5 g of dinitrodiammine platinum nitric acid solution with a platinum concentration of 4.5 wt% and 0.12 g of cobalt sulfate heptahydrate, and the mixture was stirred for 30 minutes.

撹拌後、この混合液に水素化ホウ素ナトリウム4.8gを60mLの水に溶解した水溶液を加え、強撹拌した。3時間撹拌後、混合液をろ過によって洗浄し、回収したサンプルを真空乾燥後、水素50vol%+アルゴン50vol%からなる混合ガスを150mL/minで流通させながら、900℃で20分間熱処理することにより、比較例2-13に係る合金触媒を得た。 After stirring, an aqueous solution prepared by dissolving 4.8 g of sodium borohydride in 60 mL of water was added to this mixed solution, and the mixture was vigorously stirred. After stirring for 3 hours, the mixed solution was washed by filtration, and the collected sample was dried in vacuum, and then heat-treated at 900 ° C. for 20 minutes while flowing a mixed gas consisting of 50 vol% hydrogen + 50 vol% argon at 150 mL/min. , an alloy catalyst according to Comparative Example 2-13 was obtained.

(比較例2-14)
水100mLに、ケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、硫酸コバルト七水和物0.12gを加え、スターラーを用いて30分間撹拌した。
(Comparative example 2-14)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd.) was added to 100 mL of water, and dispersed for 2 minutes using an ultrasonic homogenizer. 5.5 g of dinitrodiammine platinum nitric acid solution with a platinum concentration of 4.5 wt% and 0.12 g of cobalt sulfate heptahydrate were added to the mixture, and the mixture was stirred for 30 minutes using a stirrer.

撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの重量を測定して水の重量を算出し、水の重量が0.15gとなるまで溶媒の除去を継続した。
溶媒除去後、水素を150mL/minで流通させながら、900℃で20分間熱処理することにより、比較例2-14に係る合金触媒を得た。
After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the weight of the sample was measured to calculate the weight of water, and solvent removal was continued until the weight of water was 0.15 g.
After removing the solvent, heat treatment was performed at 900° C. for 20 minutes while flowing hydrogen at a rate of 150 mL/min to obtain an alloy catalyst according to Comparative Example 2-14.

(比較例2-15)
水200mLにケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、硫酸コバルト七水和物0.12g、ポリビニルピロリドンK-15 0.13gを加え、30分間撹拌した。
(Comparative example 2-15)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd.) was added to 200 mL of water and dispersed for 2 minutes using an ultrasonic homogenizer. To this were added 5.5 g of dinitrodiammine platinum nitric acid solution with a platinum concentration of 4.5 wt%, 0.12 g of cobalt sulfate heptahydrate, and 0.13 g of polyvinylpyrrolidone K-15, and the mixture was stirred for 30 minutes.

撹拌後、この混合液に水素化ホウ素ナトリウム4.8gを43mLの水に溶解した水溶液を加え、強撹拌した。3時間撹拌後、混合液をろ過によって洗浄し、回収したサンプルを真空乾燥後、水素50vol%+アルゴン50vol%からなる混合ガスを150mL/minで流通させながら、900℃で20分間熱処理することにより、比較例2-15に係る合金触媒を得た。 After stirring, an aqueous solution prepared by dissolving 4.8 g of sodium borohydride in 43 mL of water was added to this mixed solution, and the mixture was vigorously stirred. After stirring for 3 hours, the mixed solution was washed by filtration, and the collected sample was dried in vacuum, and then heat-treated at 900 ° C. for 20 minutes while flowing a mixed gas consisting of 50 vol% hydrogen + 50 vol% argon at 150 mL/min. , an alloy catalyst according to Comparative Example 2-15 was obtained.

(比較例2-16)
テトラエチレングリコール60mLに、白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5gを加えて撹拌し、Pt希釈溶液を調整した。一方で、テトラエチレングリコール70mLに、硫酸コバルト七水和物0.12gを加えて撹拌し、Co希釈溶液を調整した。
ポリビニルピロリドン(PVP)に、テトラエチレングリコール70mLを加えて攪拌し、PVP溶液を調製した。
(Comparative example 2-16)
5.5 g of dinitrodiammine platinum nitric acid solution with a platinum concentration of 4.5 wt% was added to 60 mL of tetraethylene glycol and stirred to prepare a diluted Pt solution. On the other hand, 0.12 g of cobalt sulfate heptahydrate was added to 70 mL of tetraethylene glycol and stirred to prepare a Co diluted solution.
70 mL of tetraethylene glycol was added to polyvinylpyrrolidone (PVP) and stirred to prepare a PVP solution.

上記で調製したPVP溶液にPt希釈溶液をゆっくり滴下し混合して、窒素雰囲気中、室温で1時間程度攪拌した。これに、Co希釈溶液をゆっくり滴下し混合して、窒素雰囲気中で1時間程度攪拌した。この混合液に水素化ホウ素ナトリウム4.8gを43mLのテトラエチレングリコールに溶解した溶液を加え、150℃に加熱し、1時間程度加熱還流することで、PtとCoとを同時還元した。 The diluted Pt solution was slowly added dropwise to the PVP solution prepared above and mixed, and the mixture was stirred at room temperature in a nitrogen atmosphere for about 1 hour. A diluted Co solution was slowly added dropwise to this and mixed, and the mixture was stirred for about 1 hour in a nitrogen atmosphere. A solution of 4.8 g of sodium borohydride dissolved in 43 mL of tetraethylene glycol was added to this mixed solution, heated to 150° C., and heated under reflux for about 1 hour to simultaneously reduce Pt and Co.

得られた反応溶液を、70mLの蒸留水に分散させたケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製)0.5gに、Ptが粉末に対して32.3質量%となるように添加し、3時間攪拌した。さらに、120℃で水分を蒸発させ、450℃で2時間焼成し、比較例2-16に係る合金触媒を得た。 The obtained reaction solution was added to 0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd.) dispersed in 70 mL of distilled water so that Pt was 32.3% by mass based on the powder. and stirred for 3 hours. Further, water was evaporated at 120°C and calcined at 450°C for 2 hours to obtain an alloy catalyst according to Comparative Example 2-16.

(比較例2-17)
第1の溶媒としての水100mLに、多孔質材料としてのケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製、細孔容量:2.9cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としてのヘキサクロロ白金(IV)酸六水和物0.66g、卑金属化合物としての塩化コバルト0.10gを加え、スターラーを用いて30分間撹拌した。
(Comparative Example 2-17)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd., pore volume: 2.9 cm 3 /g) as a porous material was added to 100 mL of water as the first solvent, and the mixture was subjected to ultrasonic waves. Dispersion was performed using a homogenizer for 2 minutes. 0.66 g of hexachloroplatinic (IV) acid hexahydrate as a noble metal compound and 0.10 g of cobalt chloride as a base metal compound were added thereto, and the mixture was stirred for 30 minutes using a stirrer.

撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して水の質量を算出し、水の質量が0.015gとなるまで溶媒の除去を継続した。ここで、ケッチェンブラックの細孔容積は、2.9cm/g×0.5(g)=1.45cmである。0.015gの水の容積は、水の密度が0.99g/cmであるため、0.015cmである。したがって、サンプル中の水の容積は、ケッチェンブラックの細孔容積の0.01倍であった。 After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of water, and solvent removal was continued until the mass of water became 0.015 g. Here, the pore volume of Ketjenblack is 2.9 cm 3 /g×0.5(g)=1.45 cm 3 . The volume of 0.015 g of water is 0.015 cm 3 because the density of water is 0.99 g/cm 3 . Therefore, the volume of water in the sample was 0.01 times the pore volume of Ketjenblack.

得られた多孔質材料について窒素雰囲気下で150℃にて16時間乾燥し、その後、窒素中の5%エチレンを用いて、150℃で5時間還元し、比較例2-17に係る合金触媒を得た。 The obtained porous material was dried at 150° C. for 16 hours under a nitrogen atmosphere, and then reduced using 5% ethylene in nitrogen at 150° C. for 5 hours to obtain the alloy catalyst according to Comparative Example 2-17. Obtained.

(比較例2-18)
第1の溶媒としての水100mLに、多孔質材料としてのケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製、細孔容量:2.9cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としてのヘキサクロロ白金(IV)酸六水和物0.66g、卑金属化合物としての塩化コバルト0.10gを加え、スターラーを用いて30分間撹拌した。
(Comparative example 2-18)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd., pore volume: 2.9 cm 3 /g) as a porous material was added to 100 mL of water as the first solvent, and the mixture was subjected to ultrasonic waves. Dispersion was performed using a homogenizer for 2 minutes. 0.66 g of hexachloroplatinic (IV) acid hexahydrate as a noble metal compound and 0.10 g of cobalt chloride as a base metal compound were added thereto, and the mixture was stirred for 30 minutes using a stirrer.

撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して水の質量を算出し、水の質量が0.015gとなるまで溶媒の除去を継続した。ここで、ケッチェンブラックの細孔容積は、2.9cm/g×0.5(g)=1.45cmである。0.015gの水の容積は、水の密度が0.99g/cmであるため、0.015cmである。したがって、サンプル中の水の容積は、ケッチェンブラックの細孔容積の0.01倍であった。 After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of water, and solvent removal was continued until the mass of water became 0.015 g. Here, the pore volume of Ketjenblack is 2.9 cm 3 /g×0.5(g)=1.45 cm 3 . The volume of 0.015 g of water is 0.015 cm 3 because the density of water is 0.99 g/cm 3 . Therefore, the volume of water in the sample was 0.01 times the pore volume of Ketjenblack.

その後、多孔質材料に0.21gの水酸化カリウムを溶解させた391.79mlの水溶液を含浸させ、16時間攪拌し、貴金属元素および卑金属元素をそれぞれの水酸化物として析出させた。次いで、得られた多孔質材料について窒素雰囲気下で150℃にて16時間乾燥し、その後、窒素中の5%エチレンを用いて、150℃で5時間還元し、比較例2-18に係る合金触媒を得た。 Thereafter, the porous material was impregnated with 391.79 ml of an aqueous solution in which 0.21 g of potassium hydroxide was dissolved, and stirred for 16 hours to precipitate noble metal elements and base metal elements as their respective hydroxides. The resulting porous material was then dried at 150°C for 16 hours under a nitrogen atmosphere, and then reduced using 5% ethylene in nitrogen at 150°C for 5 hours to form an alloy according to Comparative Example 2-18. I got a catalyst.

(比較例2-19)
第1の溶媒としての水100mLに、多孔質材料としてのケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製、細孔容量:2.9cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。ここに貴金属化合物としてのヘキサクロロ白金(IV)酸六水和物0.66g、卑金属化合物としての塩化コバルト0.10gを加え、スターラーを用いて30分間撹拌した。
(Comparative Example 2-19)
0.5 g of Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd., pore volume: 2.9 cm 3 /g) as a porous material was added to 100 mL of water as the first solvent, and the mixture was subjected to ultrasonic waves. Dispersion was performed using a homogenizer for 2 minutes. 0.66 g of hexachloroplatinic (IV) acid hexahydrate as a noble metal compound and 0.10 g of cobalt chloride as a base metal compound were added thereto, and the mixture was stirred for 30 minutes using a stirrer.

撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して水の質量を算出し、水の質量が0.015gとなるまで溶媒の除去を継続した。ここで、ケッチェンブラックの細孔容積は、2.9cm/g×0.5(g)=1.45cmである。0.015gの水の容積は、水の密度が0.99g/cmであるため、0.015cmである。したがって、サンプル中の水の容積は、ケッチェンブラックの細孔容積の0.01倍であった。 After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of water, and solvent removal was continued until the mass of water became 0.015 g. Here, the pore volume of Ketjenblack is 2.9 cm 3 /g×0.5(g)=1.45 cm 3 . The volume of 0.015 g of water is 0.015 cm 3 because the density of water is 0.99 g/cm 3 . Therefore, the volume of water in the sample was 0.01 times the pore volume of Ketjenblack.

その後、多孔質材料に0.21gの水酸化カリウムを溶解させた391.79mlの水溶液を含浸させ、16時間攪拌し、貴金属元素および卑金属元素をそれぞれの水酸化物として析出させた。 Thereafter, the porous material was impregnated with 391.79 ml of an aqueous solution in which 0.21 g of potassium hydroxide was dissolved, and stirred for 16 hours to precipitate noble metal elements and base metal elements as their respective hydroxides.

次に、Ar雰囲気中で、還元剤としてのヒドラジン一水和物3.21gを13mLの水に溶解した還元溶液を、得られたサンプルへ投入し、強撹拌した。このとき、反応は室温にて行った。このまま1時間撹拌した後、得られた混合液をろ過によって洗浄し、回収したサンプルを真空乾燥することで、比較例2-19に係る合金触媒を得た。 Next, in an Ar atmosphere, a reducing solution in which 3.21 g of hydrazine monohydrate as a reducing agent was dissolved in 13 mL of water was poured into the obtained sample and vigorously stirred. At this time, the reaction was performed at room temperature. After stirring as it was for 1 hour, the resulting mixed solution was washed by filtration, and the collected sample was vacuum dried to obtain an alloy catalyst according to Comparative Example 2-19.

(比較例2-20)
ヒドラジン一水和物0.45gを30mLの水に溶解した還元溶液に、多孔質材料としてのケッチェンブラックEC600JD(ライオン・スペシャリティ・ケミカルズ(株)製、細孔容量:2.9cm/g)0.5gを加えて、超音波ホモジナイザーによって2分間分散させた。次いで白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液5.5g、および硝酸コバルト六水和物を0.12g加え、室温にて30分間撹拌した。
(Comparative example 2-20)
Ketjenblack EC600JD (manufactured by Lion Specialty Chemicals Co., Ltd., pore volume: 2.9 cm 3 /g) as a porous material was added to a reduced solution in which 0.45 g of hydrazine monohydrate was dissolved in 30 mL of water. 0.5 g was added and dispersed for 2 minutes using an ultrasonic homogenizer. Next, 5.5 g of a dinitrodiammine platinum nitric acid solution with a platinum concentration of 4.5 wt% and 0.12 g of cobalt nitrate hexahydrate were added, and the mixture was stirred at room temperature for 30 minutes.

撹拌後、ロータリーエバポレーターを用いて溶媒を除去した。溶媒除去中、サンプルの質量を測定して水の質量を算出し、水の質量が0.015gとなるまで溶媒の除去を継続した。ここで、ケッチェンブラックの細孔容積は、2.9cm/g×0.5(g)=1.45cmである。0.015gの水の容積は、水の密度が0.99g/cmであるため、0.015cmである。したがって、サンプル中の水の容積は、ケッチェンブラックの細孔容積の0.01倍であった。
次いで、窒素雰囲気下において、630℃で5時間焼成し、比較例2-20に係る合金触媒を得た。
After stirring, the solvent was removed using a rotary evaporator. During solvent removal, the mass of the sample was measured to calculate the mass of water, and solvent removal was continued until the mass of water became 0.015 g. Here, the pore volume of Ketjenblack is 2.9 cm 3 /g×0.5(g)=1.45 cm 3 . The volume of 0.015 g of water is 0.015 cm 3 because the density of water is 0.99 g/cm 3 . Therefore, the volume of water in the sample was 0.01 times the pore volume of Ketjenblack.
Next, it was calcined at 630° C. for 5 hours in a nitrogen atmosphere to obtain an alloy catalyst according to Comparative Example 2-20.

以上の各実施例および比較例における製造条件を表2-1、2-2に示す。なお、表中、「acacPt」は、ビス(アセチルアセトナート)白金(II)を、「塩化Pt」は、ヘキサクロロ白金(IV)酸六水和物を、「Pt(NO(NH」は、白金濃度4.5wt%のジニトロジアンミン白金硝酸溶液を、「acacCo」は、アセチルアセトナートコバルト(III)を、「塩化Co」は、塩化コバルト(II)を、「硝酸Co」は、硝酸コバルト(II)六水和物を、「硫酸Co」は、硫酸コバルト(II)七水和物を、「硝酸Fe」は、硝酸鉄(III)九水和物を、「硝酸Ni」は、硝酸ニッケル(II)六水和物を、「硫酸Ti」は、硫酸チタン(IV)を、「EtOH」は、エタノールを、「1-PrOH」は、1-プロパノールを、「2-PrOH」は、2-プロパノール(イソプロパノール)を、「THF」は、テトラヒドロフランを、「MeOH」は、メタノールを、「TEG」は、テトラエチレングリコールを、「DEE」は、ジエチルエーテルを、「ヒドラジン」は、ヒドラジン一水和物を、「PVP」は、ポリビニルピロリドンを、「r.t.」は、室温を、それぞれ示す。なお、第2の工程における、第1の溶媒の残存量は、多孔質材料の細孔容積を基準とした比率として記載した。さらには、還元剤の物質量も、貴金属化合物の物質量を基準とした比率として記載した。また、比較例2-11~2-20については、本来単純に本実施形態に係る合金触媒の製造方法の各工程に当てはめることができるものではないが、参考までに、各条件を本実施形態に係る方法における条件に対応し得る部分に記載している。 The manufacturing conditions in each of the above Examples and Comparative Examples are shown in Tables 2-1 and 2-2. In addition, in the table, "acacPt" refers to bis(acetylacetonato)platinum (II), "Pt chloride" refers to hexachloroplatinic (IV) acid hexahydrate, and "Pt(NO 2 ) 2 (NH 3 ) 2 '' refers to a dinitrodiammine platinum nitrate solution with a platinum concentration of 4.5 wt%, ``acacCo'' refers to cobalt (III) acetylacetonate, ``Co chloride'' refers to cobalt (II) chloride, and ``Co nitrate'' is cobalt (II) nitrate hexahydrate, "Co sulfate" is cobalt (II) sulfate heptahydrate, "Fe nitrate" is iron (III) nitrate nonahydrate, "Ni nitrate" is " is nickel (II) nitrate hexahydrate, "Ti sulfate" is titanium (IV) sulfate, "EtOH" is ethanol, "1-PrOH" is 1-propanol, "2- "PrOH" is 2-propanol (isopropanol), "THF" is tetrahydrofuran, "MeOH" is methanol, "TEG" is tetraethylene glycol, "DEE" is diethyl ether, "hydrazine" indicates hydrazine monohydrate, "PVP" indicates polyvinylpyrrolidone, and "r.t." indicates room temperature, respectively. Note that the remaining amount of the first solvent in the second step was described as a ratio based on the pore volume of the porous material. Furthermore, the amount of the reducing agent was also described as a ratio based on the amount of the noble metal compound. In addition, although Comparative Examples 2-11 to 2-20 cannot simply be applied to each step of the method for manufacturing an alloy catalyst according to the present embodiment, for reference, each condition is It is described in the part that can correspond to the conditions in the method related to.

なお、実施例2-1について、NaBHCNは有機溶媒中で使用しているため、酸化還元電位を測定することは困難である。従って表2-1には、参考値として、実施例2-3で測定される水溶液中のNaBHCNの酸化還元電位の値を示している。 Note that in Example 2-1, since NaBH 3 CN is used in an organic solvent, it is difficult to measure the redox potential. Therefore, Table 2-1 shows, as reference values, the values of the redox potential of NaBH 3 CN in the aqueous solution measured in Example 2-3.

また、実施例2-2について、LiAlHは、非常に強力な還元剤として周知である。そして、LiAlHがNaBHよりも強力であり、その酸化還元電位が-1.20V以下であることについても、明らかである。例えば、一般にNaBHではアルデヒドやケトンは還元可能でも、通常エステル、アミド、カルボン酸は還元不可であるのに対し、LiAlHはアルデヒドやケトンはもちろん、エステル、カルボン酸、カルボン酸塩まで還元可能である。従って、還元力の強さからLiAlHの水溶液を得ることが出来ず、測定することは困難であるものの、LiAlHの酸化還元電位が-1.20V以下であることは、明らかである。 Also, for Example 2-2, LiAlH 4 is well known as a very strong reducing agent. It is also clear that LiAlH 4 is stronger than NaBH 4 and its redox potential is -1.20V or less. For example, NaBH4 can generally reduce aldehydes and ketones, but usually cannot reduce esters, amides, and carboxylic acids, whereas LiAlH4 can reduce not only aldehydes and ketones, but also esters, carboxylic acids, and carboxylic acid salts. It is. Therefore, although it is difficult to obtain an aqueous solution of LiAlH 4 due to its strong reducing power and it is difficult to measure it, it is clear that the redox potential of LiAlH 4 is -1.20V or less.

Figure 0007397309000004
Figure 0007397309000004

Figure 0007397309000005
Figure 0007397309000005

Figure 0007397309000006
Figure 0007397309000006

Figure 0007397309000007
Figure 0007397309000007

5.合金触媒の評価
合金触媒の触媒粒子の粒径、分散性、合金化率、触媒粒子の細孔内部における存在評価(すなわち内部担持率)、触媒粒子の担持率、及び卑金属元素濃度の標準偏差の評価については、上述した2.1.~2.6に記載の方法により評価を行った。
5. Evaluation of alloy catalysts Particle size, dispersibility, alloying rate of catalyst particles of alloy catalysts, evaluation of existence of catalyst particles inside pores (i.e. internal loading rate), loading rate of catalyst particles, and standard deviation of base metal element concentration Regarding evaluation, see 2.1. above. The evaluation was performed by the method described in ~2.6.

6. 固体高分子形燃料電池の評価
6.1. 試験セルの作成
6.1.1.塗布インクの作製
電解質樹脂となるナフィオン(Dupont社製ナフィオン、登録商標:Nafion、パースルホン酸系イオン交換樹脂)が溶解したナフィオン溶液を用意した。ついで、アルゴン雰囲気下で合金触媒及びナフィオン溶液を混合した。ここで、電解質樹脂の固形分の質量比は、合金触媒に対して1.0倍とした。ついで、混合溶液を軽く撹拌した後、超音波で混合溶液中の合金触媒を解砕した。ついで、混合溶液に更にエタノールを加えることで、合金触媒及び電解質樹脂の合計の固形分濃度が混合物の総質量に対して1.0質量%となるように調整した。これにより、合金触媒及び電解質樹脂を含む塗布インクを作製した。
6. Evaluation of polymer electrolyte fuel cells 6.1. Creation of test cell 6.1.1. Preparation of Coating Ink A Nafion solution in which Nafion (registered trademark: Nafion, persulfonic acid-based ion exchange resin) serving as an electrolyte resin was dissolved was prepared. The alloy catalyst and Nafion solution were then mixed under an argon atmosphere. Here, the mass ratio of the solid content of the electrolyte resin was 1.0 times that of the alloy catalyst. Next, after stirring the mixed solution lightly, the alloy catalyst in the mixed solution was crushed by ultrasonic waves. Next, ethanol was further added to the mixed solution to adjust the total solid content concentration of the alloy catalyst and electrolyte resin to 1.0% by mass based on the total mass of the mixture. In this way, a coating ink containing an alloy catalyst and an electrolyte resin was produced.

6.1.2.触媒層の作製
塗布インクにさらにエタノールを加えることで、塗布インク中の触媒濃度(燃料電池用触媒の濃度)を塗布インクの総質量に対して1.0質量%とした。ここで、燃料電池用触媒の種類はサンプル毎に異なるが、燃料電池用触媒の濃度は、合金触媒を構成する金属元素の全成分の濃度を意味する。後述の目付量も同様である。ついで、燃料電池用触媒の触媒層単位面積当たりの質量(以下、「触媒目付量」という。)が0.2mg/cmとなるようにスプレー条件を調節し、上記塗布インクをテフロン(登録商標)シート上にスプレーした。ついで、アルゴン雰囲気中120℃で60分間の乾燥処理を行うことで、触媒層を作製した。同じ触媒層を2つ作製し、一方をカソード、他方をアノードとした。
6.1.2. Preparation of Catalyst Layer By further adding ethanol to the coating ink, the catalyst concentration in the coating ink (concentration of fuel cell catalyst) was made 1.0% by mass with respect to the total mass of the coating ink. Here, although the type of fuel cell catalyst differs from sample to sample, the concentration of the fuel cell catalyst means the concentration of all the metal elements constituting the alloy catalyst. The same applies to the basis weight described below. Next, the spray conditions were adjusted so that the mass per unit area of the catalyst layer of the fuel cell catalyst (hereinafter referred to as "catalyst basis weight") was 0.2 mg/ cm2 , and the coating ink was coated with Teflon (registered trademark). ) sprayed onto the sheet. Next, a catalyst layer was prepared by performing a drying process at 120° C. for 60 minutes in an argon atmosphere. Two identical catalyst layers were produced, one serving as a cathode and the other serving as an anode.

6.1.3.膜/電極接合体(Membrane Electrode Assembly:MEA)の作製
ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層をそれぞれカッターナイフで一辺2.5cmの正方形状に切り出した。このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cmで10分間プレスした。次いで、この積層体を室温まで冷却した。次いで、アノード及びカソード共にテフロン(登録商標)シートのみを注意深く剥ぎ取った。以上の工程により、アノード及びカソードの各触媒層を電解質膜に定着させた。
6.1.3. Preparation of Membrane Electrode Assembly (MEA) A square electrolyte membrane with a side of 6 cm was cut out from a Nafion membrane (NR211 manufactured by DuPont). Further, each of the anode and cathode catalyst layers coated on the Teflon (registered trademark) sheet was cut into a square shape of 2.5 cm on each side using a cutter knife. The electrolyte membrane was sandwiched between the anode and cathode catalyst layers cut out in this manner so that the catalyst layers were in contact with each other across the center of the electrolyte membrane, and there was no deviation from each other. / cm2 for 10 minutes. This laminate was then cooled to room temperature. Next, only the Teflon (registered trademark) sheets of both the anode and cathode were carefully peeled off. Through the above steps, the anode and cathode catalyst layers were fixed to the electrolyte membrane.

次に、ガス拡散層となるカーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの正方形状のカーボンペーパーを2つ切り出した。ついで、これらのカーボンペーパーをアノードとカソードにずれが無いように積層することで、積層体を作製した。ついで、積層体を120℃、50kg/cmで10分間プレスすることで、MEAを作製した。なお、プレス前の触媒層付テフロン(登録商標)シートの重量とプレス後にはがしたテフロン(登録商標)シートの質量との差からナフィオン膜に定着した触媒層の質量を求め、触媒層の組成の質量比より触媒目付量、合金触媒の目付量、及び電解質樹脂の目付量を算出した。この方法により、触媒目付量が0.2mg/cmであることを確認した。 Next, two square pieces of carbon paper each 2.5 cm on a side were cut out from the carbon paper (35BC manufactured by SGL Carbon Co., Ltd.) that would serve as the gas diffusion layer. Next, a laminate was produced by stacking these carbon papers so that there was no misalignment between the anode and the cathode. Then, the MEA was produced by pressing the laminate at 120° C. and 50 kg/cm 2 for 10 minutes. In addition, the mass of the catalyst layer fixed on the Nafion membrane is calculated from the difference between the weight of the Teflon (registered trademark) sheet with the catalyst layer before pressing and the mass of the Teflon (registered trademark) sheet peeled off after pressing, and the composition of the catalyst layer is calculated. The basis weight of the catalyst, the basis weight of the alloy catalyst, and the basis weight of the electrolyte resin were calculated from the mass ratio of . By this method, it was confirmed that the basis weight of the catalyst was 0.2 mg/cm 2 .

6.2. 発電性能、耐久性評価
上述の方法で作製したMEAをそれぞれセルに組み込み、燃料電池測定装置((株)東陽テクニカ製、AutoPEM)にセットして、以下の手順で燃料電池の性能評価を行った。
6.2. Power generation performance and durability evaluation Each MEA produced by the method described above was assembled into a cell, set in a fuel cell measuring device (manufactured by Toyo Technica Co., Ltd., AutoPEM), and the performance of the fuel cell was evaluated using the following procedure. .

6.2.1.発電性能
反応ガスについては、カソードに空気を、また、アノードに純水素を、それぞれ利用率が40%と70%となるように、大気圧下に供給した。また、セル温度は80℃に設定した。供給するガスについては、カソード側及びアノード側共に加湿器中で65℃に保温された蒸留水にそれぞれ通す(すなわち、バブリングを行う)ことで、加湿機中の水温に相当する飽和水蒸気を伴ってセルに供給されるようにした。
6.2.1. Power Generation Performance Regarding the reactive gases, air was supplied to the cathode and pure hydrogen to the anode under atmospheric pressure so that the utilization rates were 40% and 70%, respectively. Further, the cell temperature was set at 80°C. Regarding the gas to be supplied, both the cathode side and the anode side are passed through distilled water kept at 65°C in a humidifier (that is, by bubbling), so that the gas is supplied with saturated water vapor corresponding to the water temperature in the humidifier. Now supplied to the cell.

このような設定の下にセルにガスを供給した条件下で、負荷を徐々に増やし、初期の発電特性の評価を実施した(表中「初期性能」の欄に示す)。発電特性は、電流密度0.2A/cmにおけるセル端子間電圧(以下、セル電圧という)を記録し、このセル電圧の値を発電特性として比較することにより、評価を行った。 Under the conditions where gas was supplied to the cell under these settings, the load was gradually increased and the initial power generation characteristics were evaluated (shown in the "Initial Performance" column in the table). The power generation characteristics were evaluated by recording the cell terminal voltage (hereinafter referred to as cell voltage) at a current density of 0.2 A/cm 2 and comparing the cell voltage values as power generation characteristics.

6.2.2.耐久性
引き続いて、耐久性評価のために、“セル端子間電圧を0.6Vにして4秒間保持し、次いでセル端子間電圧を1.2Vに上昇させて4秒間保持し、その後にセル端子間電圧を元の0.6Vに戻す”という操作を1回のサイクル操作とし、このサイクル操作を300回繰り返す耐久試験を実施した。この耐久試験の後に、耐久試験前の初期性能の評価試験の場合と同様に発電性能(耐久試験後の電流密度0.2mA/cmにおけるセル電圧)を測定した(表中「耐久後」の欄に示す)。この耐久試験後のセル電圧(V)を耐久試験前のセル電圧から差し引いてセル電圧の低下幅△Vを求め、この低下幅△Vを耐久前試験前のセル電圧で除してセル電圧低下率を算出することにより、耐久性の評価を行った。
結果を表3-1、表3-2に示す。
6.2.2. Durability Subsequently, for durability evaluation, the cell terminal voltage was set to 0.6V and held for 4 seconds, then the cell terminal voltage was increased to 1.2V and held for 4 seconds, and then the cell terminal voltage was increased to 1.2V and held for 4 seconds. A durability test was carried out in which the operation of "returning the voltage between the terminals to the original 0.6 V" was considered as one cycle operation, and this cycle operation was repeated 300 times. After this durability test, the power generation performance (cell voltage at a current density of 0.2 mA/cm 2 after the durability test) was measured in the same way as in the initial performance evaluation test before the durability test ("After durability" in the table). (shown in column). Subtract the cell voltage (V) after this durability test from the cell voltage before the durability test to find the cell voltage drop width △V, and divide this drop width △V by the cell voltage before the durability test to reduce the cell voltage. Durability was evaluated by calculating the ratio.
The results are shown in Table 3-1 and Table 3-2.

Figure 0007397309000008
Figure 0007397309000008

Figure 0007397309000009
Figure 0007397309000009

Figure 0007397309000010
Figure 0007397309000010

Figure 0007397309000011
Figure 0007397309000011

7.結果
表3-1、表3-2からも明らかなように、実施例2-1~2-15に係る合金触媒は、小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子が多孔質材料に担持されており、固体高分子形燃料電池の触媒として使用した際にも、初期の発電性能および耐久性に優れていた。これに対し、比較例2-1~2-20に係る合金触媒は、小粒径かつ高分散であり、組成のばらつきが小さく、合金化率の高い触媒粒子を、多孔質材料上に形成、担持することができなかった。この結果、固体高分子形燃料電池の触媒として使用した際に、初期の発電性能および耐久後の発電性能のいずれもが、劣っており、また、総じて電圧低下率も実施例2-1~2-15に係る合金触媒を用いた場合と比較して劣っていた。
7. Results As is clear from Tables 3-1 and 3-2, the alloy catalysts according to Examples 2-1 to 2-15 have small particle sizes and high dispersion, have small compositional variations, and have a high alloying rate. Catalyst particles with a high carbon content are supported on a porous material, and when used as a catalyst in a polymer electrolyte fuel cell, the initial power generation performance and durability were excellent. On the other hand, the alloy catalysts according to Comparative Examples 2-1 to 2-20 have small particle diameters, high dispersion, small compositional variations, and high alloying ratio by forming catalyst particles on a porous material. I couldn't carry it. As a result, when used as a catalyst in a polymer electrolyte fuel cell, both the initial power generation performance and the power generation performance after durability were inferior, and the voltage drop rate was generally lower than that of Examples 2-1 to 2-1. It was inferior to the case where the alloy catalyst according to No.-15 was used.

具体的には、第1の溶媒の除去量が多かった(乾燥後の第1の溶媒が少なかった)実施例2-2~2-15においては、実施例2-1に係る合金触媒と比較して、小粒径であり、組成のばらつきが小さく、高合金化率であった。この傾向は、第1の溶媒の除去量が多いほど顕著であった。これは、第1の溶媒の除去量が多い場合、第3の工程における還元反応の反応場が、多孔質材料の表面により近い領域に制限された結果、触媒粒子の凝集が抑制されたものと考えられる。 Specifically, in Examples 2-2 to 2-15 in which the amount of first solvent removed was large (the amount of first solvent after drying was small), compared with the alloy catalyst according to Example 2-1. As a result, the grain size was small, the variation in composition was small, and the alloying rate was high. This tendency was more pronounced as the amount of first solvent removed was larger. This is because when the amount of first solvent removed is large, the reaction field for the reduction reaction in the third step is restricted to an area closer to the surface of the porous material, which suppresses aggregation of catalyst particles. Conceivable.

また、実施例2-2、2-7~2-15においては、第1の溶媒と第2の溶媒とは、同一の溶媒を含むか、第1の溶媒のオクタノール/水分配係数と第2の溶媒のオクタノール/水分配係数との差の絶対値が、1.2以下である。さらに、実施例2-3~2-15においては、第1の溶媒と第2の溶媒とが、上述した関係(i)~(iii)のいずれかを満足する。これらの実施例2-2~2-15においては、実施例2-1に係る合金触媒と比較して、小粒径であり、組成のばらつきが小さく、高合金化率であった。これは、上述した理由に加え、第3の工程において還元溶液を多孔質材料に接触した際に、第1の溶媒と第2の溶媒とが素早く混和し、卑金属化合物、貴金属化合物と、還元剤とが接触しやすくなったため、還元反応が進行しやすくなったと考えられる。 Further, in Examples 2-2, 2-7 to 2-15, the first solvent and the second solvent contain the same solvent, or the octanol/water partition coefficient of the first solvent and the second The absolute value of the difference between the solvent and the octanol/water partition coefficient is 1.2 or less. Furthermore, in Examples 2-3 to 2-15, the first solvent and the second solvent satisfy any of the relationships (i) to (iii) described above. In these Examples 2-2 to 2-15, the particle size was smaller, the variation in composition was smaller, and the alloying rate was higher than that of the alloy catalyst according to Example 2-1. In addition to the reasons mentioned above, this is because when the reducing solution is brought into contact with the porous material in the third step, the first solvent and the second solvent are quickly mixed, and the base metal compound, the noble metal compound, and the reducing agent are mixed together. It is thought that the reduction reaction progressed more easily because of the easier contact between the two.

また、実施例2-4~2-15においては、水素化ホウ素ナトリウム、水素化ホウ素カリウムまたは水素化ホウ素リチウムが還元剤として使用されている。上記の結果から、これらの還元剤が貴金属化合物と卑金属化合物とを同時に還元するために十分な還元力を有していることが明らかとなった。なお、これらの還元剤は、より強力な還元剤と比較して安全性が高い。また、還元力がより弱いシアノ水素化ホウ素ナトリウムを用いた実施例2-3の場合と比較して、粒径、分散性、組成のばらつき、合金化率が改善する傾向があった。これは、第3の工程における還元反応の際、より大きな還元速度で短時間に還元反応が進行するため、貴金属化合物と卑金属化合物の還元速度の差の影響がより小さくなった結果と考えられる。 Furthermore, in Examples 2-4 to 2-15, sodium borohydride, potassium borohydride, or lithium borohydride was used as the reducing agent. The above results revealed that these reducing agents have sufficient reducing power to simultaneously reduce noble metal compounds and base metal compounds. Note that these reducing agents are highly safe compared to stronger reducing agents. Furthermore, compared to Example 2-3 in which sodium cyanoborohydride, which has a weaker reducing power, was used, the particle size, dispersibility, compositional variation, and alloying rate tended to be improved. This is considered to be a result of the fact that during the reduction reaction in the third step, the reduction reaction proceeds in a shorter time at a higher reduction rate, so that the influence of the difference in reduction rate between the noble metal compound and the base metal compound becomes smaller.

実施例2-5~2-15においては、使用した還元剤の物質量が、貴金属元素の総物質量の10倍以上である。この結果、得られた触媒粒子の粒径、分散性、組成のばらつき、合金化率が、実施例2-1~2-4の場合と比較して向上する傾向があった。これは、還元剤の使用量を多くしたことから、還元反応がより均一に進行した結果と考えられる。この傾向は、還元剤の使用量が多くなるほど観察された(例えば、実施例2-8~2-10、2-14、2-15)。 In Examples 2-5 to 2-15, the amount of the reducing agent used was 10 times or more the total amount of noble metal elements. As a result, the particle size, dispersibility, composition variation, and alloying rate of the obtained catalyst particles tended to be improved compared to Examples 2-1 to 2-4. This is considered to be the result of the reduction reaction proceeding more uniformly due to the increased amount of reducing agent used. This tendency was observed as the amount of reducing agent used increased (eg, Examples 2-8 to 2-10, 2-14, and 2-15).

実施例2-7~2-15においては、貴金属化合物としてジニトロジアンミン白金が用いられ、卑金属化合物として硫酸コバルト、硝酸コバルト、硫酸鉄、硝酸鉄、硫酸ニッケル、硝酸ニッケルまたは硫酸チタンが用いられた。これらの化合物の組み合わせは、HSAB則によると、卑金属化合物と貴金属化合物との還元速度の差の影響がより小さくなる組み合わせである。この結果、他の実施例2-1~2-6と比較して、触媒粒子の粒径、分散性、組成のばらつき、合金化率が向上する傾向があった。 In Examples 2-7 to 2-15, dinitrodiammine platinum was used as the noble metal compound, and cobalt sulfate, cobalt nitrate, iron sulfate, iron nitrate, nickel sulfate, nickel nitrate, or titanium sulfate was used as the base metal compound. According to the HSAB rule, the combination of these compounds is such that the influence of the difference in reduction rate between the base metal compound and the noble metal compound becomes smaller. As a result, compared to other Examples 2-1 to 2-6, the particle size, dispersibility, compositional variation, and alloying rate of catalyst particles tended to be improved.

実施例2-8~2-15においては、還元溶液のpHを8.0以上12.0以下とした。これにより、他の実施例2-1~2-7と比較して、触媒粒子の粒径、分散性、組成のばらつき、合金化率が向上する傾向があった。これは、還元剤を安定化させることができ、不本意な還元剤の分解を抑制して還元剤の失活を抑制しつつ、なおかつ、還元剤の安定性が過度に高くなることが防止され、還元速度の低下が抑制された結果と考えられる。 In Examples 2-8 to 2-15, the pH of the reducing solution was set to 8.0 or more and 12.0 or less. As a result, compared to other Examples 2-1 to 2-7, the particle size, dispersibility, compositional variation, and alloying rate of the catalyst particles tended to be improved. This can stabilize the reducing agent, suppressing undesired decomposition of the reducing agent and suppressing the deactivation of the reducing agent, while also preventing the stability of the reducing agent from becoming excessively high. This is thought to be the result of suppressing the reduction rate.

比較例2-1においては、卑金属化合物を用いず、貴金属化合物のみを用いて触媒を製造した。このため、初期性能が実施例に係る合金触媒のものと比較して低かった。なお、比較例2-1では卑金属元素を使用していないので、卑金属元素濃度の標準偏差は測定しなかった。 In Comparative Example 2-1, a catalyst was produced using only a noble metal compound without using a base metal compound. Therefore, the initial performance was lower than that of the alloy catalyst according to the example. Note that in Comparative Example 2-1, since no base metal element was used, the standard deviation of the base metal element concentration was not measured.

比較例2-2~2-5においては、第2の工程における第1の溶媒の除去が不十分であり、得られる触媒粒子の熱処理後の粒径が大きくなり、分散性が低下していた。これは、第3の工程において還元反応の反応場が十分に制限されていなかった結果であると考えられる。この点、多孔質材料の細孔内部への担持が不十分であることからも裏付けられる。また、合金化率は大きくなったものの、卑金属元素濃度の標準偏差が大きくなった。還元剤自体は強力であるため、合金化率が大きくなったと考えられる。しかしながら、還元反応の反応場が十分に制限されておらず、貴金属化合物と卑金属化合物の還元速度差の影響を小さくできていないことから、多くの反応場において貴金属化合物が卑金属化合物に先行して還元されてしまい、全ての触媒粒子上で均一に合金化を進行させることが困難であったと考えられる。このため、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 In Comparative Examples 2-2 to 2-5, the removal of the first solvent in the second step was insufficient, and the particle size of the resulting catalyst particles after heat treatment increased, resulting in decreased dispersibility. . This is considered to be the result that the reaction field for the reduction reaction was not sufficiently restricted in the third step. This point is supported by the fact that the porous material is insufficiently supported inside the pores. Furthermore, although the alloying rate increased, the standard deviation of the base metal element concentration also increased. Since the reducing agent itself is strong, it is thought that the alloying rate increased. However, the reaction field for the reduction reaction is not sufficiently restricted and the effect of the difference in reduction rate between noble metal compounds and base metal compounds cannot be reduced, so in many reaction fields, noble metal compounds are reduced before base metal compounds. This is thought to have made it difficult to uniformly proceed alloying on all catalyst particles. For this reason, it is thought that the composition of each catalyst particle varied and the standard deviation of the base metal element concentration became large.

比較例2-6~2-9においては、還元剤として比較的弱いヒドラジンを用いた結果、十分な合金化率を得ることが困難であり、あるいは小粒径、高分散とすることが困難であった。これは、貴金属化合物と卑金属化合物とを同時に還元するための十分な還元力をヒドラジンが有していなかったため、また、還元力が比較的弱く還元速度が小さいことから、還元反応して生成した触媒粒子が、担体に沈着する前に、液相中において触媒粒子同士の凝集体を形成してしまったため、と考えられる。また、比較例2-6~2-8においては、用いた第1の溶媒が第2の溶媒としての水との親和性が不十分であり、還元反応の際にヒドラジンと貴金属化合物、卑金属化合物との接触が不十分となったことも一因であると考えられた。また、比較例2-6~2-9においても、卑金属元素原子数濃度の標準偏差が大きくなった。ヒドラジンは還元力が不十分であり、貴金属化合物と卑金属化合物を同時にかつ速やかに還元することができないため、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 In Comparative Examples 2-6 to 2-9, as a result of using relatively weak hydrazine as a reducing agent, it was difficult to obtain a sufficient alloying rate, or it was difficult to obtain a small particle size and high dispersion. there were. This is because hydrazine did not have sufficient reducing power to reduce noble metal compounds and base metal compounds at the same time, and also because the reducing power was relatively weak and the reduction rate was slow. This is thought to be because the particles formed aggregates of catalyst particles in the liquid phase before being deposited on the carrier. In addition, in Comparative Examples 2-6 to 2-8, the first solvent used had insufficient affinity with water as the second solvent, and hydrazine and noble metal compounds and base metal compounds were mixed during the reduction reaction. It was thought that one of the reasons was that there was insufficient contact with Furthermore, in Comparative Examples 2-6 to 2-9, the standard deviation of the base metal element atomic number concentration was also large. It is thought that hydrazine has insufficient reducing power and cannot reduce noble metal compounds and base metal compounds simultaneously and quickly, which is why the composition of each catalyst particle varies and the standard deviation of the base metal element concentration becomes large.

比較例2-10においては、還元剤の量が十分でなく、貴金属化合物と卑金属化合物を還元するには還元力が不足であったことから、粒径が大きく、分散性に劣り、合金化率の低い触媒粒子が生成した。また、卑金属元素濃度の標準偏差が大きくなった。還元剤の量が十分でないことから還元力が不十分であり、貴金属化合物と卑金属化合物を同時にかつ速やかに還元することができないため、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 In Comparative Example 2-10, the amount of reducing agent was insufficient and the reducing power was insufficient to reduce the noble metal compound and the base metal compound, so the particle size was large, the dispersibility was poor, and the alloying rate was low. Catalyst particles with a low concentration were formed. In addition, the standard deviation of base metal element concentrations increased. Because the amount of reducing agent is not sufficient, the reducing power is insufficient, and the noble metal compound and the base metal compound cannot be reduced simultaneously and quickly, so the composition of each catalyst particle varies and the standard deviation of the base metal element concentration is large. It is thought that it has become.

比較例2-11、2-12は、触媒粒子を構成する構成元素を別々に担持する、従来より知られている一般的な合金触媒の合成技術に基づき、これを再現した結果である。比較例2-11、2-12においては、貴金属化合物と卑金属化合物とを別々に還元して担持した結果、十分に合金化せず、合金化率が低下した。比較例2-11においては、熱処理のみによって卑金属化合物の還元反応を行うと同時に、貴金属化合物との合金化も進行させなければならないため、特に合金化率の低下が顕著であった。比較例2-12においては、卑金属化合物の還元を液相中において還元剤を用いて行ったのちに、熱処理によって合金化を進行させたことから、合金化率の低下のみならず、分散性も低下した。さらに、比較例2-11、2-12では、卑金属元素濃度の標準偏差が大きくなった。比較例2-11、2-12では、貴金属化合物と卑金属化合物とを別々に還元して担持しているので、全ての触媒粒子において均一に合金化を進行させることは困難であり、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。さらに、比較例2-11、2-12では、実施例2-1~2-15と異なり、合金化の駆動力は熱処理のみなので、貴金属成分と卑金属成分が担体である多孔質材料上で移動し、熱拡散しなければ合金化が進行しない。従って、この点でも、全ての触媒粒子において均一に合金化を進行させることは困難であり、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 Comparative Examples 2-11 and 2-12 are the results of reproduction based on a conventionally known general alloy catalyst synthesis technique in which the constituent elements constituting the catalyst particles are separately supported. In Comparative Examples 2-11 and 2-12, as a result of reducing and supporting the noble metal compound and the base metal compound separately, they were not sufficiently alloyed and the alloying rate decreased. In Comparative Example 2-11, the reduction reaction of the base metal compound must be carried out only by heat treatment, and at the same time, alloying with the noble metal compound must also proceed, so the reduction in the alloying rate was particularly remarkable. In Comparative Example 2-12, the base metal compound was reduced using a reducing agent in the liquid phase and then the alloying was progressed by heat treatment, which not only reduced the alloying rate but also improved the dispersibility. decreased. Furthermore, in Comparative Examples 2-11 and 2-12, the standard deviation of the base metal element concentration became large. In Comparative Examples 2-11 and 2-12, since the noble metal compound and the base metal compound are reduced and supported separately, it is difficult to uniformly proceed the alloying in all the catalyst particles. This is thought to be due to the variation in the composition of the base metal elements, and the standard deviation of the base metal element concentration. Furthermore, in Comparative Examples 2-11 and 2-12, unlike Examples 2-1 to 2-15, the driving force for alloying is only the heat treatment, so the noble metal component and the base metal component move on the porous material that is the carrier. However, unless thermal diffusion occurs, alloying will not proceed. Therefore, in this respect as well, it is difficult to uniformly proceed with alloying in all the catalyst particles, and it is thought that the composition of each catalyst particle varies and the standard deviation of the base metal element concentration becomes large.

比較例2-13は、触媒粒子を構成する構成元素を液相中で同時に還元する、従来より知られている一般的な合金触媒の合成技術に基づき、これを再現した結果である。比較例2-13においては、第1の溶媒の除去を行わず、液相において還元を行った結果、触媒粒子の凝集を抑制できず、分散性が低下した。また、合金化率は大きくなったものの、卑金属元素濃度の標準偏差が大きくなった。還元剤自体は強力であるため、合金化率が大きくなったと考えられる。しかしながら、還元反応の反応場が十分に制限されておらず、貴金属化合物と卑金属化合物の還元速度差の影響を小さくできていないことから、多くの反応場において貴金属化合物が卑金属化合物に先行して還元されてしまい、全ての触媒粒子上で均一に合金化を進行させることが困難であったと考えられる。このため、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 Comparative Example 2-13 is the result of reproduction based on a conventionally known general alloy catalyst synthesis technique in which constituent elements constituting catalyst particles are simultaneously reduced in a liquid phase. In Comparative Example 2-13, reduction was performed in the liquid phase without removing the first solvent, and as a result, aggregation of catalyst particles could not be suppressed, resulting in a decrease in dispersibility. Furthermore, although the alloying rate increased, the standard deviation of the base metal element concentration also increased. Since the reducing agent itself is strong, it is thought that the alloying rate increased. However, the reaction field for the reduction reaction is not sufficiently restricted and the effect of the difference in reduction rate between noble metal compounds and base metal compounds cannot be reduced, so in many reaction fields, noble metal compounds are reduced before base metal compounds. This is thought to have made it difficult to uniformly proceed alloying on all catalyst particles. For this reason, it is thought that the composition of each catalyst particle varied and the standard deviation of the base metal element concentration became large.

比較例2-14、2-17は、触媒粒子を構成する構成元素を担持させた担体を加熱し、熱処理によって合金化を進行させる、従来より知られている一般的な合金触媒の合成方法に基づき、これを再現した結果である。比較例2-14、2-17においては、熱処理により還元反応および合金化を行った結果、合金化の進行が不十分であり、合金化率が低下した。さらに、比較例2-14、2-17では、卑金属元素濃度の標準偏差が大きくなった。比較例2-14、2-17では、合金化は貴金属化合物と卑金属化合物とが担持された多孔質材料を熱処理することのみによって進行する。貴金属成分(ここでは主に多孔質材料に担持された貴金属化合物)と卑金属成分(ここでは主に多孔質材料に担持された卑金属化合物)が担体である多孔質材料上で移動し、熱拡散しなければ合金化が進行しない。従って、全ての触媒粒子において均一に合金化を進行させることは困難であり、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 Comparative Examples 2-14 and 2-17 are based on a conventionally known synthesis method for alloy catalysts, in which a carrier on which the constituent elements constituting catalyst particles are supported is heated, and alloying is progressed through heat treatment. This is the result of reproducing this based on the following. In Comparative Examples 2-14 and 2-17, as a result of the reduction reaction and alloying performed by heat treatment, the progress of alloying was insufficient and the alloying rate decreased. Furthermore, in Comparative Examples 2-14 and 2-17, the standard deviation of the base metal element concentration became large. In Comparative Examples 2-14 and 2-17, alloying proceeds only by heat treating the porous material on which the noble metal compound and the base metal compound are supported. A noble metal component (here, mainly a noble metal compound supported on a porous material) and a base metal component (here, mainly a base metal compound supported on a porous material) move on the porous material that is the carrier and undergo thermal diffusion. Otherwise, alloying will not proceed. Therefore, it is difficult to uniformly proceed with alloying in all the catalyst particles, and it is thought that the composition of each catalyst particle varies and the standard deviation of the base metal element concentration becomes large.

比較例2-15は、微粒子を高分子等の保護剤によって分散させる、従来より知られている一般的な微粒子の分散技術に基づき、これを再現した結果である。比較例2-15は、比較例2-13においてPVPを保護剤として使用し、分散性の低下の抑制を試みた。しかしながら、保護剤により触媒粒子が覆われる結果、多孔質材料の細孔内部への担持が困難であり、表面で凝集が生じやすく、依然として分散性は十分でなかった。また、保護剤により触媒粒子が覆われる結果、発電性能、特に初期性能が低下した。また、合金化率は大きくなったものの、卑金属元素濃度の標準偏差が大きくなった。還元剤自体は強力であるため、合金化率が大きくなったと考えられる。しかしながら、還元反応の反応場が十分に制限されておらず、貴金属化合物と卑金属化合物の還元速度差の影響を小さくできていないことから、多くの反応場において貴金属化合物が卑金属化合物に先行して還元されてしまい、全ての触媒粒子上で均一に合金化を進行させることが困難であったと考えられる。このため、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 Comparative Example 2-15 is the result of reproducing this technique based on a conventionally known general fine particle dispersion technique in which fine particles are dispersed with a protective agent such as a polymer. In Comparative Example 2-15, PVP was used as a protective agent in Comparative Example 2-13 in an attempt to suppress the decrease in dispersibility. However, as a result of the catalyst particles being covered by the protective agent, it was difficult to support the porous material inside the pores, and agglomeration was likely to occur on the surface, resulting in insufficient dispersibility. Furthermore, as a result of the catalyst particles being covered with the protective agent, the power generation performance, especially the initial performance, decreased. Furthermore, although the alloying rate increased, the standard deviation of the base metal element concentration also increased. Since the reducing agent itself is strong, it is thought that the alloying rate increased. However, the reaction field for the reduction reaction is not sufficiently restricted and the effect of the difference in reduction rate between noble metal compounds and base metal compounds cannot be reduced, so in many reaction fields, noble metal compounds are reduced before base metal compounds. This is thought to have made it difficult to uniformly proceed alloying on all catalyst particles. For this reason, it is thought that the composition of each catalyst particle varied and the standard deviation of the base metal element concentration became large.

比較例2-16は、特許文献1に記載の合成方法を、本発明の条件にあてはめて再現した結果である。比較例2-16においては、保護剤を用い、触媒粒子を合成した後、多孔質材料に担持させた。この結果、保護剤により触媒粒子が覆われる結果、多孔質材料の細孔内部への担持が困難であり、多孔質材料の外表面にしか触媒粒子が担持されないことから、触媒粒子の凝集が生じ、分散性が低下した。また、保護剤により触媒粒子が覆われる結果、発電性能、特に初期性能が低下した。また、合金化率は大きくなったものの、卑金属元素濃度の標準偏差が大きくなった。還元剤自体は強力であるため、合金化率が大きくなったと考えられる。しかしながら、比較例2-16では還元反応が液相中で進行するため、還元反応の反応場が十分に制限されておらず、貴金属化合物と卑金属化合物の還元速度差の影響を小さくできていない。このことから、多くの反応場において貴金属化合物が卑金属化合物に先行して還元されてしまい、全ての触媒粒子上で均一に合金化を進行させることが困難であったと考えられる。このため、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 Comparative Example 2-16 is the result of reproducing the synthesis method described in Patent Document 1 by applying the conditions of the present invention. In Comparative Example 2-16, catalyst particles were synthesized using a protective agent and then supported on a porous material. As a result, the catalyst particles are covered with the protective agent, making it difficult to support them inside the pores of the porous material, and the catalyst particles are supported only on the outer surface of the porous material, resulting in agglomeration of the catalyst particles. , the dispersibility decreased. Furthermore, as a result of the catalyst particles being covered with the protective agent, the power generation performance, especially the initial performance, decreased. Furthermore, although the alloying rate increased, the standard deviation of the base metal element concentration also increased. Since the reducing agent itself is strong, it is thought that the alloying rate increased. However, in Comparative Example 2-16, the reduction reaction proceeds in the liquid phase, so the reaction field for the reduction reaction is not sufficiently restricted, and the influence of the difference in reduction rate between the noble metal compound and the base metal compound cannot be reduced. From this, it is thought that in many reaction sites, noble metal compounds were reduced before base metal compounds, making it difficult to uniformly proceed alloying on all catalyst particles. For this reason, it is thought that the composition of each catalyst particle varied and the standard deviation of the base metal element concentration became large.

比較例2-18、2-19は、本発明においては第3の工程で還元溶液のpHを制御するために用いているアルカリ性物質を、第2の工程の後、多孔質材料に用いるように方法を変更したものである。比較例2-18、2-19においては、貴金属化合物と卑金属化合物とを多孔質材料に含浸させたのち、水酸化カリウムにより、これらの水酸化物を形成している。しかしながら、このように水酸化物を形成した場合、形成される水酸化物はゲル状の固体となることから、多孔質材料の細孔内部へ固定化させることが困難であり、細孔内部を含めた多孔質材料の表面積が活用されないことから、触媒粒子の分散性が低下した。さらに、比較例2-18においては、熱処理により還元反応および合金化を行っていることから、この結果、合金化の進行が不充分であり、合金化率も低下した。また、比較例2-19においては、還元力が弱いヒドラジンを還元剤として用いた結果、合金化が充分に進行せず、合金化率も低下した。また、比較例2-18、2-19では、卑金属元素濃度の標準偏差が大きくなった。比較例2-18、2-19では、貴金属化合物および卑金属化合物は水酸化物を形成し、多孔質材料に均一に吸着していない。このため、その後の還元反応の際に一斉に均一な粒子化が行われず、触媒粒子間で組成にばらつきが生じ、卑金属元素原子数濃度の標準偏差が大きくなったと考えられる。 Comparative Examples 2-18 and 2-19 show that in the present invention, the alkaline substance used to control the pH of the reducing solution in the third step was used for the porous material after the second step. This is a modified method. In Comparative Examples 2-18 and 2-19, a porous material is impregnated with a noble metal compound and a base metal compound, and then potassium hydroxide is used to form these hydroxides. However, when hydroxide is formed in this way, the formed hydroxide becomes a gel-like solid, so it is difficult to immobilize it inside the pores of a porous material. The dispersibility of the catalyst particles was reduced because the surface area of the included porous material was not utilized. Furthermore, in Comparative Example 2-18, the reduction reaction and alloying were performed by heat treatment, and as a result, the progress of alloying was insufficient and the alloying rate was also reduced. Furthermore, in Comparative Example 2-19, as a result of using hydrazine, which has a weak reducing power, as a reducing agent, alloying did not proceed sufficiently and the alloying rate also decreased. Furthermore, in Comparative Examples 2-18 and 2-19, the standard deviation of the base metal element concentration was large. In Comparative Examples 2-18 and 2-19, the noble metal compound and the base metal compound formed hydroxides and were not uniformly adsorbed onto the porous material. For this reason, it is thought that uniform particle formation was not performed all at once during the subsequent reduction reaction, resulting in variations in composition among the catalyst particles, resulting in an increase in the standard deviation of the base metal element atomic number concentration.

比較例2-20は、本発明においては、第2の工程で貴金属化合物、卑金属化合物を多孔質材料に固定化した後に、第3の工程で還元溶液と接触させている方法を変更し、第2の工程において、貴金属化合物、卑金属化合物、還元剤をあらかじめ全て同時に多孔質材料に固定化するようにしたものである。比較例2-20においては、多孔質材料に含浸させる溶液としてヒドラジンがあらかじめ含まれたものを用いている。このような場合、ヒドラジン、貴金属化合物、卑金属化合物が液相中で接触した時点から、還元反応が開始されてしまい、還元反応場を多孔質材料の表面付近に制限して還元速度の差を小さくすることが困難となった結果、分散性が低下した。また、比較例2-13と同様、結果として液相において還元を行っていることから、触媒粒子の凝集を抑制できず、分散性が低下した。さらに、比較例2-20では、卑金属元素濃度の標準偏差が大きくなった。比較例2-20では、貴金属化合物と卑金属化合物の還元速度差の影響が大きく、多くの反応場において貴金属化合物が卑金属化合物に先行して還元されてしまい、全ての触媒粒子上で均一に合金化を進行させることが困難であったと考えられる。このため、触媒粒子毎の組成がばらつき、卑金属元素濃度の標準偏差が大きくなったと考えられる。 In Comparative Example 2-20, in the present invention, after fixing the noble metal compound and the base metal compound in the porous material in the second step, the method of contacting with the reducing solution in the third step was changed, and In step 2, the noble metal compound, base metal compound, and reducing agent are all immobilized on the porous material at the same time in advance. In Comparative Example 2-20, a solution containing hydrazine in advance is used as a solution to impregnate the porous material. In such cases, the reduction reaction starts from the moment hydrazine, the noble metal compound, and the base metal compound come into contact with each other in the liquid phase, and the reduction reaction field is limited to near the surface of the porous material to reduce the difference in reduction rate. As a result, dispersibility decreased. Further, as in Comparative Example 2-13, since the reduction was performed in the liquid phase, aggregation of the catalyst particles could not be suppressed, resulting in a decrease in dispersibility. Furthermore, in Comparative Example 2-20, the standard deviation of the base metal element concentration was increased. In Comparative Example 2-20, the influence of the difference in reduction rate between the noble metal compound and the base metal compound was large, and the noble metal compound was reduced before the base metal compound in many reaction sites, resulting in uniform alloying on all catalyst particles. It is thought that it was difficult to advance the process. For this reason, it is thought that the composition of each catalyst particle varied and the standard deviation of the base metal element concentration became large.

なお、比較例2-20に係る方法において、還元剤としてより強力な還元剤を用いた場合であっても、還元剤、貴金属化合物、卑金属化合物が液相中で接触した時点で還元反応が進行してしまうことから、触媒粒子の凝集を抑制できず、分散性が低下する。 In addition, in the method according to Comparative Example 2-20, even when a stronger reducing agent is used as the reducing agent, the reduction reaction proceeds as soon as the reducing agent, the noble metal compound, and the base metal compound come into contact with each other in the liquid phase. As a result, agglomeration of catalyst particles cannot be suppressed and dispersibility deteriorates.

なお、図1に、実施例2-15に係る合金触媒の30kVの加速電圧で走査型透過電子顕微鏡により観察した二次電子像(左)と透過像(右)とを示し、図2に、比較例2-9に係る合金触媒の30kVの加速電圧で走査型透過電子顕微鏡により観察した二次電子像(左)と透過像(右)とを示す。 In addition, FIG. 1 shows a secondary electron image (left) and a transmission image (right) of the alloy catalyst according to Example 2-15 observed with a scanning transmission electron microscope at an acceleration voltage of 30 kV, and FIG. A secondary electron image (left) and a transmission image (right) of an alloy catalyst according to Comparative Example 2-9 observed with a scanning transmission electron microscope at an accelerating voltage of 30 kV are shown.

図1に示すように、実施例2-15に係る合金触媒においては、合金触媒の外表面の様子を現す二次電子像(左)において、触媒粒子はまばらにしか観察されず、一方で、合金触媒の内部の様子を現す透過像(右)において、10nm弱の小粒径の触媒粒子が高度に分散されていることが観察された。このことから、実施例2-15に係る合金触媒においては、多孔質材料内部に小粒径の触媒粒子が高度に分散していることが理解できる。 As shown in FIG. 1, in the alloy catalyst according to Example 2-15, catalyst particles were observed only sparsely in the secondary electron image (left) showing the outer surface of the alloy catalyst; In the transmission image (right) showing the internal state of the alloy catalyst, it was observed that catalyst particles with a small diameter of just under 10 nm were highly dispersed. From this, it can be seen that in the alloy catalyst according to Example 2-15, small-sized catalyst particles are highly dispersed inside the porous material.

これに対し、図2に示すように、比較例2-9に係る合金触媒においては、合金触媒の外表面の様子を現す二次電子像(左)においても、合金触媒の内部の様子を現す透過像(右)においても、100nm弱の比較的大きな触媒粒子が多数観察された。このことから、比較例2-9に係る合金触媒においては、多孔質材料の内部には担持困難な粗大な触媒粒子が、多孔質材料の外表面に付着しており、多孔質材料内部には小粒径の触媒粒子が担持されていないことが理解できる。 On the other hand, as shown in Figure 2, in the alloy catalyst according to Comparative Example 2-9, even in the secondary electron image (left) that shows the appearance of the outer surface of the alloy catalyst, the inside appearance of the alloy catalyst is also shown. Also in the transmission image (right), many relatively large catalyst particles of just under 100 nm were observed. From this, in the alloy catalyst according to Comparative Example 2-9, coarse catalyst particles that are difficult to support inside the porous material adhere to the outer surface of the porous material, and It can be seen that small-sized catalyst particles are not supported.

以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

Claims (13)

貴金属元素を含む貴金属化合物と卑金属元素を含む卑金属化合物と第1の溶媒と多孔質材料とを混合して混合物を得る第1の工程と、
以下の式(1):

(混合物中の第1の溶媒の容積)≦(多孔質材料の細孔容積)×5 (1)

を満足するまで前記混合物から前記第1の溶媒を除去することにより、前記貴金属化合物および前記卑金属化合物を前記多孔質材料に固定する第2の工程と、
前記多孔質材料に、酸化還元電位が-1.20V以下である還元剤と第2の溶媒とを含む還元溶液を接触させる第3の工程と、を有し、
前記還元溶液中における前記還元剤の物質量が、前記貴金属元素の総物質量の5倍以上であり、
前記還元溶液の25℃におけるpHが8.0以上12.0以下である、合金触媒の製造方法。
A first step of obtaining a mixture by mixing a noble metal compound containing a noble metal element, a base metal compound containing a base metal element, a first solvent, and a porous material;
The following formula (1):

(Volume of first solvent in mixture) ≦ (pore volume of porous material) x 5 (1)

a second step of fixing the noble metal compound and the base metal compound to the porous material by removing the first solvent from the mixture until
a third step of contacting the porous material with a reducing solution containing a reducing agent having an oxidation-reduction potential of -1.20 V or less and a second solvent,
The amount of the reducing agent in the reducing solution is 5 times or more the total amount of the noble metal element,
A method for producing an alloy catalyst , wherein the pH of the reducing solution at 25° C. is 8.0 or more and 12.0 or less .
前記第2の工程において、以下の式(2):

(混合物中の第1の溶媒の容積)≦(多孔質材料の細孔容積)×2 (2)

を満足するまで前記混合物から前記第1の溶媒を除去する、請求項1に記載の合金触媒の製造方法。
In the second step, the following formula (2):

(Volume of first solvent in mixture) ≦ (pore volume of porous material) x 2 (2)

The method for producing an alloy catalyst according to claim 1, wherein the first solvent is removed from the mixture until the following is satisfied.
前記第1の溶媒と前記第2の溶媒とが、同一の溶媒を含む、または、
前記第1の溶媒のオクタノール/水分配係数と前記第2の溶媒のオクタノール/水分配係数との差の絶対値が、1.2以下である、請求項1または2に記載の合金触媒の製造方法。
the first solvent and the second solvent contain the same solvent, or
The production of the alloy catalyst according to claim 1 or 2, wherein the absolute value of the difference between the octanol/water partition coefficient of the first solvent and the octanol/water partition coefficient of the second solvent is 1.2 or less. Method.
前記第1の溶媒が水を含み、かつ、前記第2の溶媒のオクタノール/水分配係数が、0.8以下である、
前記第2の溶媒が水を含み、かつ、前記第1の溶媒のオクタノール/水分配係数が、0.8以下である、または、
前記第1の溶媒および前記第2の溶媒が、ともに水を含む、請求項1または2に記載の合金触媒の製造方法。
the first solvent contains water, and the second solvent has an octanol/water partition coefficient of 0.8 or less;
the second solvent contains water, and the first solvent has an octanol/water partition coefficient of 0.8 or less, or
The method for producing an alloy catalyst according to claim 1 or 2, wherein the first solvent and the second solvent both contain water.
前記還元剤は、水素化ホウ素アルカリ金属塩、水素化ホウ素遷移金属塩、水素化アルミニウムアルカリ金属塩、シアノ水素化ホウ素アルカリ金属塩および水素化ジイソブチルアルミニウムからなる群から選択される1種または2種以上を含む、請求項1~4のいずれか1項に記載の合金触媒の製造方法。 The reducing agent is one or two selected from the group consisting of alkali metal borohydride, transition metal borohydride, alkali metal aluminum hydride, alkali metal cyanoborohydride, and diisobutylaluminum hydride. The method for producing an alloy catalyst according to any one of claims 1 to 4, comprising the above steps. 前記還元剤は、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化トリエチルホウ素リチウム、水素化ホウ素ニッケル、水素化ホウ素亜鉛、水素化アルミニウムリチウム、水素化アルミニウムナトリウム、水素化アルミニウムカリウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、シアノ水素化ホウ素リチウム、シアノ水素化ホウ素ナトリウム、シアノ水素化ホウ素カリウム、水素化ジイソブチルアルミニウムからなる群から選択される1種または2種以上を含む、請求項1~5のいずれか1項に記載の合金触媒の製造方法。 The reducing agent is lithium borohydride, sodium borohydride, potassium borohydride, lithium triethylborohydride, nickel borohydride, zinc borohydride, lithium aluminum hydride, sodium aluminum hydride, potassium aluminum hydride. , sodium bis(2-methoxyethoxy)aluminum hydride, lithium cyanoborohydride, sodium cyanoborohydride, potassium cyanoborohydride, and diisobutylaluminum hydride. A method for producing an alloy catalyst according to any one of claims 1 to 5. 前記還元剤は、水素化ホウ素ナトリウム、水素化ホウ素カリウム、および水素化ホウ素リチウムからなる群から選択される1種以上を含む、請求項1~6のいずれか1項に記載の合金触媒の製造方法。 Production of the alloy catalyst according to any one of claims 1 to 6, wherein the reducing agent contains one or more selected from the group consisting of sodium borohydride, potassium borohydride, and lithium borohydride. Method. 前記還元溶液中における前記還元剤の物質量が、前記貴金属元素の総物質量の10倍以上である、請求項1~7のいずれか1項に記載の合金触媒の製造方法。 The method for producing an alloy catalyst according to any one of claims 1 to 7, wherein the amount of the reducing agent in the reducing solution is 10 times or more the total amount of the noble metal elements. 前記還元溶液のpHが、水酸化ナトリウム、水酸化カリウム、およびアンモニア水からなる群から選択される塩基を用いて調節される、請求項1~のいずれか1項に記載の合金触媒の製造方法。 Production of an alloy catalyst according to any one of claims 1 to 8 , wherein the pH of the reducing solution is adjusted using a base selected from the group consisting of sodium hydroxide, potassium hydroxide, and aqueous ammonia. Method. 前記貴金属化合物中の前記貴金属元素は、白金、金、およびパラジウムからなる群から選択される1種以上を含む、請求項1~のいずれか1項に記載の合金触媒の製造方法。 The method for producing an alloy catalyst according to any one of claims 1 to 9 , wherein the noble metal element in the noble metal compound includes one or more selected from the group consisting of platinum, gold, and palladium. 前記貴金属化合物は、ジニトロジアンミン白金、ビス(アセチルアセトナート)白金、ヘキサクロロ白金(IV)酸、ヘキサクロロ白金(IV)酸カリウム、ヘキサクロロ白金(IV)酸ナトリウム六水和物、ヘキサアンミン白金(IV)クロライド、ヘキサアンミン白金(IV)水酸塩溶液、テトラアンミン白金(II)ジクロライド、臭化白金(II)、臭化白金(IV)、シアン化白金(II)、ヨウ化白金、ジメチル(アセチルアセトナート)金(III)、塩化金、塩化金酸、臭化金、ヨウ化金、シアン化金、シアン化金カリウム、塩化パラジウム、ヨウ化パラジウム、臭化パラジウム、硝酸パラジウム、硫酸パラジウム、ビス(アセチルアセトナート)パラジウム(II)、テトラクロロパラジウム酸ナトリウム、テトラクロロパラジウム酸アンモニウム、およびテトラクロロパラジウム酸カリウムからなる群から選択される1種以上を含む、請求項1~10のいずれか1項に記載の合金触媒の製造方法。 The noble metal compounds include dinitrodiammineplatinum, bis(acetylacetonato)platinum, hexachloroplatinum(IV) acid, potassium hexachloroplatinate(IV), sodium hexachloroplatinate(IV) hexahydrate, and hexaammineplatinum(IV). Chloride, hexaammineplatinum (IV) hydroxide solution, tetraammineplatinum (II) dichloride, platinum (II) bromide, platinum (IV) bromide, platinum cyanide, platinum iodide, dimethyl (acetylacetonate) ) Gold (III), gold chloride, chloroauric acid, gold bromide, gold iodide, gold cyanide, potassium gold cyanide, palladium chloride, palladium iodide, palladium bromide, palladium nitrate, palladium sulfate, bis(acetyl) acetonato) palladium (II), sodium tetrachloropalladate, ammonium tetrachloropalladate, and potassium tetrachloropalladate, comprising one or more selected from the group consisting of palladium (II), sodium tetrachloropalladate, and potassium tetrachloropalladate , A method for producing the alloy catalyst described. 前記卑金属化合物中の卑金属元素が、Co、Fe、NiおよびTiからなる群から選択される1種以上を含む、請求項1~11のいずれか1項に記載の合金触媒の製造方法。 The method for producing an alloy catalyst according to any one of claims 1 to 11 , wherein the base metal element in the base metal compound contains one or more selected from the group consisting of Co, Fe, Ni, and Ti. 前記卑金属化合物は、塩化コバルト、臭化コバルト、ヨウ化コバルト、シアン化コバルト、チオシアン酸コバルト、硫酸コバルト、硝酸コバルト、アセチルアセトナートコバルト、塩化鉄、臭化鉄、ヨウ化鉄、硫酸鉄、硝酸鉄、鉄(III)アセチルアセトナート、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、硫酸ニッケル、硝酸ニッケル、シアン化ニッケル(II)カリウム、ニッケル(II)アセチルアセトナート、塩化チタン、臭化チタン、ヨウ化チタン、チタニウムテトライソプロポキシドおよび硫酸チタンからなる群から選択される1種以上を含む、請求項1~12のいずれか1項に記載の合金触媒の製造方法。 The base metal compounds include cobalt chloride, cobalt bromide, cobalt iodide, cobalt cyanide, cobalt thiocyanate, cobalt sulfate, cobalt nitrate, cobalt acetylacetonate, iron chloride, iron bromide, iron iodide, iron sulfate, and nitric acid. Iron, iron (III) acetylacetonate, nickel chloride, nickel bromide, nickel iodide, nickel sulfate, nickel nitrate, nickel (II) potassium cyanide, nickel (II) acetylacetonate, titanium chloride, titanium bromide, The method for producing an alloy catalyst according to any one of claims 1 to 12 , comprising one or more selected from the group consisting of titanium iodide, titanium tetraisopropoxide, and titanium sulfate.
JP2020039244A 2019-04-12 2020-03-06 Method for producing alloy catalyst and alloy catalyst Active JP7397309B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019076038 2019-04-12
JP2019076038 2019-04-12

Publications (2)

Publication Number Publication Date
JP2020171917A JP2020171917A (en) 2020-10-22
JP7397309B2 true JP7397309B2 (en) 2023-12-13

Family

ID=72829949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039244A Active JP7397309B2 (en) 2019-04-12 2020-03-06 Method for producing alloy catalyst and alloy catalyst

Country Status (1)

Country Link
JP (1) JP7397309B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085159B1 (en) * 2021-01-26 2022-06-16 フジテック株式会社 Man conveyor balustrade and man conveyor
CN114373943B (en) * 2021-12-14 2023-11-24 同济大学 PtCo/C alloy cathode catalyst for vehicle-mounted fuel cell and preparation method and application thereof
CN114367310A (en) * 2021-12-22 2022-04-19 安徽省化工研究院 Synthetic method of composite nano catalyst
WO2023167199A1 (en) * 2022-03-01 2023-09-07 三井金属鉱業株式会社 Electrode catalyst, method for producing same, and fuel cell
KR20240018672A (en) 2022-03-01 2024-02-13 미쓰이금속광업주식회사 Electrode catalyst and its manufacturing method and fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123843A (en) 1998-10-17 2000-04-28 Degussa Huels Ag Platinum alloy catalyst and manufacture thereof
WO2005120703A1 (en) 2004-06-10 2005-12-22 Sumitomo Electric Industries, Ltd. Metal catalyst and method for preparation thereof
JP2008500171A (en) 2004-05-27 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Sol-gel derived composite comprising a noble metal component and an oxide or oxyhydroxide having carbon for a fuel cell catalyst
JP2012041622A (en) 2010-08-23 2012-03-01 Toyota Motor Corp Pd-Fe ALLOY NANOPARTICLE, METHOD FOR PRODUCING THE SAME, AND EXHAUST EMISSION CONTROL CATALYST USING Pd-Fe ALLOY NANOPARTICLE
JP2018097976A (en) 2016-12-09 2018-06-21 トヨタ自動車株式会社 Electrode catalyst for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123843A (en) 1998-10-17 2000-04-28 Degussa Huels Ag Platinum alloy catalyst and manufacture thereof
JP2008500171A (en) 2004-05-27 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Sol-gel derived composite comprising a noble metal component and an oxide or oxyhydroxide having carbon for a fuel cell catalyst
WO2005120703A1 (en) 2004-06-10 2005-12-22 Sumitomo Electric Industries, Ltd. Metal catalyst and method for preparation thereof
JP2012041622A (en) 2010-08-23 2012-03-01 Toyota Motor Corp Pd-Fe ALLOY NANOPARTICLE, METHOD FOR PRODUCING THE SAME, AND EXHAUST EMISSION CONTROL CATALYST USING Pd-Fe ALLOY NANOPARTICLE
JP2018097976A (en) 2016-12-09 2018-06-21 トヨタ自動車株式会社 Electrode catalyst for fuel cell

Also Published As

Publication number Publication date
JP2020171917A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP7397309B2 (en) Method for producing alloy catalyst and alloy catalyst
Zhang et al. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction
Hong et al. Ultrathin free‐standing ternary‐alloy nanosheets
US8168561B2 (en) Core shell catalyst
US8129306B2 (en) Non-platinum bimetallic polymer electrolyte fuel cell catalysts
Tiwari et al. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells
EP1922777B1 (en) Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
Zhang et al. Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd–Co alloy electrocatalysts
Long et al. Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures
KR101144109B1 (en) Synthesis methods of Core-Shell Nanoparticles on a Carbon support
Xiao et al. Enhanced Catalytic Performance of Composition‐Tunable PtCu Nanowire Networks for Methanol Electrooxidation
US20050065026A1 (en) Precious metal - metal oxide composite cluster
US10693146B2 (en) Production method for fine metal particles, production method for fuel cell electrode catalyst, supported fine metal particle catalyst, and fuel cell electrode catalyst
US20080220296A1 (en) PtRu core-shell nanoparticles for heterogeneous catalysis
Watanabe et al. Highly durable and active PtCo alloy/graphitized carbon black cathode catalysts by controlled deposition of stabilized Pt skin layers
Yang et al. Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation
US9440224B2 (en) Catalyst particles comprising hollow multilayered base metal-precious metal core/shell particles and method of their manufacture
JP2005135900A (en) Electrode catalyst for fuel cell and its manufacturing method
JP5665743B2 (en) Continuous production method of catalyst
Wang et al. Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions
He et al. Electrocatalysis of oxygen reduction on carbon-supported PtCo catalysts prepared by water-in-oil micro-emulsion
CN103022518B (en) Electrode catalyst for fuel cell and method of preparation, membrane electrode assembly (MEA) including the catalyst, and fuel cell including the MEA
EP2543439A1 (en) Catalyst loaded with fine noble metal particles, method for producing same, and purification catalyst
Ravichandran et al. Improved methanol electrooxidation catalyzed by ordered mesoporous Pt-Ru-Ir alloy nanostructures with trace Ir content
Liu et al. A novel strategy to synthesize bimetallic Pt–Ag particles with tunable nanostructures and their superior electrocatalytic activities toward the oxygen reduction reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R151 Written notification of patent or utility model registration

Ref document number: 7397309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151