JP7396362B2 - blood purification device - Google Patents

blood purification device Download PDF

Info

Publication number
JP7396362B2
JP7396362B2 JP2021548318A JP2021548318A JP7396362B2 JP 7396362 B2 JP7396362 B2 JP 7396362B2 JP 2021548318 A JP2021548318 A JP 2021548318A JP 2021548318 A JP2021548318 A JP 2021548318A JP 7396362 B2 JP7396362 B2 JP 7396362B2
Authority
JP
Japan
Prior art keywords
blood
flow rate
removal
dialysate
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021548318A
Other languages
Japanese (ja)
Other versions
JPWO2021059573A1 (en
Inventor
勝則 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Publication of JPWO2021059573A1 publication Critical patent/JPWO2021059573A1/ja
Application granted granted Critical
Publication of JP7396362B2 publication Critical patent/JP7396362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/30Single needle dialysis ; Reciprocating systems, alternately withdrawing blood from and returning it to the patient, e.g. single-lumen-needle dialysis or single needle systems for hemofiltration or pheresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration

Description

本発明は、1本の穿刺針で脱血及び返血を交互に行う血液浄化装置に関する。 The present invention relates to a blood purification device that alternately performs blood removal and blood return using a single puncture needle.

血液浄化療法の一つに、1本の穿刺針で脱血及び返血を交互に行ういわゆるシングルニードル法による血液透析等の血液浄化が知られている。シングルニードル法は、穿刺が1本でよいため、2本穿刺する場合に比べて患者の痛みや医療従事者の負担が少なく、抜針事故が発生しても失血量が少なくて済む等の様々な利点がある。
しかしながら、一般的に行われているシングルニードル法では、脱血及び返血を交互に行うため、血液回路を循環する血流量が少なく、特に低分子量蛋白等の比較的大きな分子量の物質の除去について、十分な透析効率(除去効率)を得ることが難しかった。そのため、現状では治療の第1選択とはなりにくく、例えば、高齢者や透析導入初期の患者においてバスキュラーアクセスが未発達である等の理由により、通常の留置針を2本穿刺することが困難な場合や、活動量が少なく透析効率(除去効率)を求めない患者に対して、シングルニードル法が適応となっている。また、体調に応じていつでも透析が可能な在宅透析患者においては透析の頻度が高くなるため、シングルニードル法が有用であるが、透析効率(除去効率)を上げるために透析を長時間行う必要がある。
BACKGROUND ART As one type of blood purification therapy, blood purification such as hemodialysis using the so-called single needle method, in which blood is alternately removed and returned with a single puncture needle, is known. The single-needle method requires only one puncture, which causes less pain for the patient and less burden on medical personnel than when two punctures are used, and reduces blood loss even if a needle is accidentally pulled out. There are advantages.
However, in the commonly used single-needle method, blood removal and blood return are performed alternately, so the amount of blood circulating through the blood circuit is small, especially when removing relatively large molecular weight substances such as low molecular weight proteins. However, it was difficult to obtain sufficient dialysis efficiency (removal efficiency). Therefore, it is currently difficult to be the first choice of treatment; for example, it is difficult to puncture two regular indwelling needles in elderly patients or patients in the early stages of dialysis because their vascular access is underdeveloped. The single-needle method is indicated for patients who are inactive or who do not require high dialysis efficiency (removal efficiency). In addition, the single needle method is useful for home dialysis patients who can undergo dialysis at any time depending on their physical condition, as the frequency of dialysis increases; be.

そこで、透析効率(除去効率)を上げるため、特許文献1には、1本の穿刺で血液透析濾過を行うことが提案されている。
具体的には、濾過により血液回路の一部に血液を導入する脱血工程と、逆濾過により血液回路の一部に透析液を注入して返血する返血工程との間に循環工程を行うことで血流量を確保するものである。また、濾過により血液回路の全部に血液を導入する脱血工程の後、濾過(除水)速度よりも大きい血流量で血液を循環させることで血液浄化器を通過する総血液量を確保するものである。
Therefore, in order to increase dialysis efficiency (removal efficiency), Patent Document 1 proposes performing hemodiafiltration with a single puncture.
Specifically, there is a circulation process between the blood removal process, in which blood is introduced into a part of the blood circuit through filtration, and the blood return process, in which dialysate is injected into a part of the blood circuit through reverse filtration. This ensures blood flow. In addition, after the blood removal step in which blood is introduced into the entire blood circuit through filtration, the blood is circulated at a blood flow rate greater than the filtration (water removal) rate to ensure the total amount of blood that passes through the blood purifier. It is.

特許第4352775号公報Patent No. 4352775

シングルニードル法においては、脱血及び返血を同時に行うことができないため、大流量の脱血を連続的に行うことはできない。従って、特許文献1に記載の方法では、循環により血流量を確保することは可能であるが、脱血流量に依存する濾過流量に限界がある。よって、濾過流量に比例して高くなる溶質の除去効率を更に高めることが困難であった。 In the single needle method, blood removal and blood return cannot be performed at the same time, and therefore, a large flow of blood cannot be continuously removed. Therefore, in the method described in Patent Document 1, although it is possible to secure the blood flow rate through circulation, there is a limit to the filtration flow rate, which depends on the drained blood flow rate. Therefore, it has been difficult to further increase the solute removal efficiency, which increases in proportion to the filtration flow rate.

従って、本発明は、シングルニードル法において、脱血流量が少なくても濾過流量を大きくすることが可能な血液浄化装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a blood purification device that can increase the filtration flow rate even when the blood flow rate is small in the single needle method.

本発明は、1本の穿刺針で脱血及び返血を交互に行う血液浄化装置であって、血液浄化器と、血液回路と、置換液供給源と、前記血液回路と前記置換液供給源とを接続する置換液ラインと、制御部と、を備え、前記制御部は、前記血液回路に第1の流量で血液を導入する脱血工程と、前記血液回路に前記第1の流量よりも小さい第2の流量で血液を導入すると共に、前記脱血工程で導入された血液及び前記第2の流量で導入される血液を前記血液回路で循環させる脱血循環工程と、前記血液回路に置換液を注入して前記血液回路から血液を導出する返血工程と、を含む治療工程を繰り返し行い、前記脱血循環工程を、前記血液浄化器において前記第2の流量と同じ流量で除水を行う除水工程、又は前記置換液ラインを介して前記血液回路に置換液を第3の流量で注入すると共に、前記血液浄化器において前記第2の流量に前記第3の流量を加えた流量で除水を行う濾過工程のいずれかにて行う血液浄化装置に関する。 The present invention is a blood purification device that alternately performs blood removal and blood return with a single puncture needle, and includes a blood purifier, a blood circuit, a replacement fluid supply source, the blood circuit and the replacement fluid supply source. and a control unit, the control unit including a blood removal step of introducing blood into the blood circuit at a first flow rate, and a substituent line connecting the blood circuit with a blood removal and circulation step in which blood is introduced at a small second flow rate and the blood introduced in the blood removal step and the blood introduced at the second flow rate are circulated in the blood circuit; and a replacement liquid is introduced into the blood circuit. a blood return step in which the blood is drawn out from the blood circuit by injecting the blood, and the blood removal circulation step is replaced with a blood removal step in which water is removed at the same flow rate as the second flow rate in the blood purifier. A substituent liquid is injected into the blood circuit at a third flow rate through a water process or the substituent line, and water is removed in the blood purifier at a flow rate equal to the third flow rate added to the second flow rate. The present invention relates to a blood purification device that performs any of the filtration steps.

また、前記血液浄化装置は、前記置換液供給源として透析液回路を備えており、置換液として透析液を用い、前記制御部は、前記脱血循環工程において、前記除水工程として、前記血液浄化器において前記第2の流量と同じ流量で除水を行うと共に透析する透析工程を行い、前記濾過工程として、前記置換液ラインを介して前記血液回路に置換液を第3の流量で注入し、前記血液浄化器において前記第2の流量に前記第3の流量を加えた流量で除水を行う共に透析する透析濾過工程を行うことが好ましい。 Further, the blood purification device includes a dialysate circuit as the replacement fluid supply source, uses dialysate as the replacement fluid, and the control unit is configured to perform the blood purification as the water removal step in the blood removal and circulation step. A dialysis step is performed in which water is removed and dialyzed at the same flow rate as the second flow rate in the device, and as the filtration step, a replacement fluid is injected into the blood circuit via the replacement fluid line at a third flow rate, In the blood purifier, it is preferable to perform a diafiltration process in which water is removed and dialyzed at a flow rate obtained by adding the third flow rate to the second flow rate.

また、前記血液浄化装置は、前記置換液供給源として透析液回路を備えており、置換液として透析液を用い、前記透析液回路は、前記血液浄化器に透析液を流入させないように構成されることが好ましい。 Further, the blood purification device includes a dialysate circuit as the replacement fluid supply source, uses dialysate as the replacement fluid, and the dialysate circuit is configured to prevent dialysate from flowing into the blood purifier. It is preferable that

また、前記置換液供給源として、置換液が充填された置換液ボトル又は置換液バッグを用いることが好ましい。 Further, it is preferable to use a substitution liquid bottle or a substitution liquid bag filled with the substitution liquid as the substitution liquid supply source.

また、前記置換液供給源として、置換液が充填された置換液ボトル又は置換液バッグを用い、前記血液浄化装置は、透析液回路を備えており、前記制御部は、前記脱血循環工程において、前記除水工程として、前記血液浄化器において前記第2の流量と同じ流量で除水を行うと共に透析する透析工程を行い、前記濾過工程として、前記置換液ラインを介して前記血液回路に置換液を第3の流量で注入し、前記血液浄化器において前記第2の流量に前記第3の流量を加えた流量で除水を行う共に透析する透析濾過工程を行うことが好ましい。 Further, a substitution liquid bottle or a substitution liquid bag filled with a substitution liquid is used as the substitution liquid supply source, the blood purification apparatus is equipped with a dialysate circuit, and the control unit is configured to: As the water removal step, a dialysis step is performed in which water is removed and dialyzed at the same flow rate as the second flow rate in the blood purifier, and as the filtration step, a replacement fluid is introduced into the blood circuit via the replacement fluid line. It is preferable to perform a diafiltration process in which water is injected at a third flow rate, and water is removed and dialyzed at a flow rate that is the sum of the second flow rate and the third flow rate in the blood purifier.

また、前記制御部は、前記脱血工程で、前記血液浄化器において前記第1の流量で除水を行うと共に、前記血液浄化器の上流側及び下流側の両方から前記血液回路に血液を導入することが好ましい。 Further, in the blood removal step, the control unit removes water in the blood purifier at the first flow rate, and introduces blood into the blood circuit from both an upstream side and a downstream side of the blood purifier. It is preferable to do so.

また、前記治療工程は、前記返血工程後に前記血液回路の透析液及び血液を循環させて均質化する均質化工程を更に含むことが好ましい。 Moreover, it is preferable that the treatment step further includes a homogenization step of circulating and homogenizing the dialysate and blood in the blood circuit after the blood return step.

また、前記制御部は、前記均質化工程において、前記血液回路に前記第2の流量で血液を導入すると共に、前記血液浄化器において前記第2の流量と同じ流量で除水を行うことが好ましい。 Further, it is preferable that, in the homogenization step, the control unit introduces blood into the blood circuit at the second flow rate and removes water in the blood purifier at the same flow rate as the second flow rate. .

また、前記制御部は、前記返血工程において、前記血液回路の全てに透析液を流入させて返血することが好ましい。 Further, it is preferable that, in the blood return step, the control unit returns blood by causing dialysate to flow into all of the blood circuits.

また、前記制御部は、前記返血工程において、前記置換液ラインを介して前記血液回路に透析液を注入して返血を行うことが好ましい。 Further, it is preferable that, in the blood return step, the control unit performs blood return by injecting dialysate into the blood circuit via the substituent fluid line.

また、前記制御部は、前記治療工程が所定の回数繰り返されるまでは、前記脱血循環工程において、前記透析工程を行い、その後は、前記透析濾過工程を行うことが好ましい。 Further, it is preferable that the control unit performs the dialysis step in the blood removal and circulation step until the treatment step is repeated a predetermined number of times, and then performs the diafiltration step.

本発明の血液浄化装置によれば、脱血循環工程において少量で脱血を行いながら脱血流量及び置換液注入量分の除水をする濾過工程を行うことで、濾過流量を高めて溶質の除去効率を高めることができる。 According to the blood purification device of the present invention, in the blood removal and circulation process, a small amount of blood is removed while a filtration process is performed in which water is removed by the amount of blood removed and the amount of replacement fluid injected, thereby increasing the filtration flow rate and removing solutes. Efficiency can be increased.

本発明の血液浄化装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of a blood purification device of the present invention. 本発明の血液浄化装置のブロック図である。FIG. 1 is a block diagram of a blood purification device of the present invention. 第1実施形態における片側脱血工程を示す図である。It is a figure which shows the unilateral blood removal process in 1st Embodiment. 図3に示す片側脱血工程の他の例を示す図である。4 is a diagram showing another example of the unilateral blood removal process shown in FIG. 3. FIG. 第1実施形態における脱血循環工程の透析工程を示す図である。It is a figure showing the dialysis process of the blood removal circulation process in a 1st embodiment. 第1実施形態における脱血循環工程の透析濾過工程を示す図である。It is a figure showing the diafiltration process of the blood removal circulation process in a 1st embodiment. 第1実施形態における片側返血工程を示す図である。It is a figure which shows the unilateral blood return process in 1st Embodiment. 第1実施形態における均質化工程を示す図である。It is a figure showing a homogenization process in a 1st embodiment. 図8に示す均質化工程の他の例を示す図である。9 is a diagram showing another example of the homogenization process shown in FIG. 8. FIG. 第2実施形態における両側脱血工程を示す図である。It is a figure which shows the both-side blood removal process in 2nd Embodiment. 第2実施形態における両側返血工程を示す図である。It is a figure which shows the bilateral blood return process in 2nd Embodiment. 本発明の第3実施形態に係る血液浄化装置の概略構成を示す図である。It is a figure showing the schematic structure of the blood purification device concerning a 3rd embodiment of the present invention. 第3実施形態における脱血循環工程の除水工程を示す図である。It is a figure which shows the water removal process of the blood removal circulation process in 3rd Embodiment. 第3実施形態における脱血循環工程の濾過工程を示す図である。It is a figure which shows the filtration process of the blood removal circulation process in 3rd Embodiment. 本発明の第4実施形態に係る血液浄化装置の概略構成を示す図である。It is a figure showing the schematic structure of the blood purification device concerning a 4th embodiment of the present invention. 第4実施形態における脱血循環工程の除水工程を示す図である。It is a figure which shows the water removal process of the blood removal circulation process in 4th Embodiment. 第4実施形態における脱血循環工程の濾過工程を示す図である。It is a figure which shows the filtration process of the blood removal circulation process in 4th Embodiment. 本発明の第5実施形態に係る血液浄化装置の概略構成を示す図である。It is a figure showing the schematic structure of the blood purification device concerning a 5th embodiment of the present invention. 第5実施形態における脱血循環工程の透析工程を示す図である。It is a figure which shows the dialysis process of the blood removal circulation process in 5th Embodiment. 第5実施形態における脱血循環工程の透析濾過工程を示す図である。It is a figure which shows the diafiltration process of the blood removal circulation process in 5th Embodiment.

以下、本発明の血液浄化装置の好ましい各実施形態について、図面を参照しながら説明する。
本発明の第1及び第2実施形態に係る血液浄化装置は、1本の穿刺針で脱血及び返血を行ういわゆるシングルニードル法による血液浄化を実施可能であり、血液回路に置換液の注入を伴わない透析療法、及び、血液回路に置換液を注入してすると共に、置換液相当量の濾過を行いながら血液の浄化を行うオンライン透析濾過療法を実施可能に構成されている。また、本発明の第1及び第2実施形態に係る血液浄化装置は、脱血工程、脱血循環工程、返血工程及び均質化工程等の各工程を、血液回路内の透析液を注入する流れを制御することで連続して自動的に行う自動血液浄化装置である。
第1実施形態では、脱血工程、脱血循環工程、返血工程及び均質化工程を含む治療工程を繰り返し行う血液浄化装置について説明し、第2実施形態では、脱血工程、脱血循環工程及び返血工程を含む治療工程を繰り返し行う血液浄化装置について説明する。
Hereinafter, preferred embodiments of the blood purification device of the present invention will be described with reference to the drawings.
The blood purification apparatus according to the first and second embodiments of the present invention is capable of performing blood purification by the so-called single needle method in which blood is removed and returned with a single puncture needle, and a replacement fluid can be injected into the blood circuit. It is configured to be able to carry out dialysis therapy that does not involve dialysis, and online diafiltration therapy that purifies the blood while injecting a replacement fluid into the blood circuit and filtering an equivalent amount of the replacement fluid. In addition, the blood purification apparatus according to the first and second embodiments of the present invention performs each process such as a blood removal process, a blood removal circulation process, a blood return process, and a homogenization process in the flow of injecting dialysate in the blood circuit. This is an automatic blood purification device that performs continuous and automatic blood purification by controlling.
In the first embodiment, a blood purification device that repeatedly performs a treatment process including a blood removal process, a blood removal circulation process, a blood return process, and a homogenization process will be described. A blood purification device that repeatedly performs a treatment process including a blood process will be described.

<第1実施形態>
図1~図9を参照して第1実施形態について詳細に説明する。
<First embodiment>
The first embodiment will be described in detail with reference to FIGS. 1 to 9.

図1に示す血液浄化装置100は、血液回路110と、血液浄化器120と、透析液回路130と、制御部としての制御装置140と、置換液ライン150と、置換液ポンプ151と、静脈圧センサPSと、を備える。 The blood purification apparatus 100 shown in FIG. A sensor PS is provided.

血液回路110は、動脈側ライン111と、静脈側ライン112と、排液ライン113と、を有する。動脈側ライン111、静脈側ライン112及び排液ライン113は、いずれも液体が流通可能な可撓性を有する軟質のチューブを主体として構成される。 The blood circuit 110 includes an arterial line 111, a venous line 112, and a drainage line 113. The arterial line 111, the venous line 112, and the drainage line 113 are all mainly composed of flexible tubes through which liquid can flow.

動脈側ライン111は、一端側が後述する血液浄化器120の血液導入口122aに接続される。動脈側ライン111には、動脈側接続部111a、動脈側気泡検知器111b及び血液ポンプ111cが配置される。
動脈側接続部111aは、動脈側ライン111の他端側に配置され、Y字状又はT字状に構成される分岐管BPを介して、患者の血管に穿刺される1本の穿刺針SNに接続される。
動脈側気泡検知器111bは、チューブ内の気泡の有無を検出する。
血液ポンプ111cは、動脈側ライン111における動脈側気泡検知器111bよりも下流側に配置される。血液ポンプ111cは、動脈側ライン111を構成するチューブをローラーでしごくことにより、動脈側ライン111の内部の血液やプライミング液等の液体を送出する。
One end of the arterial line 111 is connected to a blood inlet 122a of a blood purifier 120, which will be described later. The artery side line 111 is provided with an artery side connection part 111a, an artery side air bubble detector 111b, and a blood pump 111c.
The artery side connection part 111a is arranged at the other end side of the artery side line 111, and connects one puncture needle SN to be punctured into a patient's blood vessel via a branch pipe BP configured in a Y-shape or a T-shape. connected to.
The arterial air bubble detector 111b detects the presence or absence of air bubbles within the tube.
The blood pump 111c is arranged downstream of the arterial air bubble detector 111b in the arterial line 111. The blood pump 111c pumps out liquid such as blood and priming liquid inside the arterial line 111 by squeezing the tube constituting the arterial line 111 with a roller.

静脈側ライン112は、一端側が後述する血液浄化器120の血液導出口122bに接続される。静脈側ライン112には、静脈側接続部112a、静脈側気泡検知器112b、ドリップチャンバ112c、及び静脈側クランプ112dが配置される。
静脈側接続部112aは、静脈側ラインの他端側に配置され、前述の動脈側接続部111aが接続された分岐管BPを介して、前述の穿刺針SNに接続される。
静脈側気泡検知器112bは、チューブ内の気泡の有無を検出する。
ドリップチャンバ112cは、静脈側気泡検知器112bよりも上流側に配置される。ドリップチャンバ112cは、静脈側ライン112に混入した気泡や凝固した血液等を除去するため、また、静脈圧を測定するため、一定量の血液又は空気を貯留する。
静脈側クランプ112dは、静脈側気泡検知器112bよりも下流側に配置される。静脈側クランプ112dは、静脈側気泡検知器112bによる気泡の検出結果に応じて制御され、静脈側ライン112の流路を開閉する。
One end of the venous line 112 is connected to a blood outlet 122b of a blood purifier 120, which will be described later. The venous line 112 is provided with a venous connection part 112a, a venous bubble detector 112b, a drip chamber 112c, and a venous clamp 112d.
The venous side connection part 112a is arranged on the other end side of the venous side line, and is connected to the above-mentioned puncture needle SN via the branch pipe BP to which the above-mentioned arterial side connection part 111a is connected.
The venous air bubble detector 112b detects the presence or absence of air bubbles within the tube.
The drip chamber 112c is arranged upstream of the venous bubble detector 112b. The drip chamber 112c stores a certain amount of blood or air in order to remove air bubbles, coagulated blood, etc. mixed into the venous line 112, and to measure venous pressure.
The venous clamp 112d is arranged downstream of the venous bubble detector 112b. The venous clamp 112d is controlled according to the result of bubble detection by the venous bubble detector 112b, and opens and closes the flow path of the venous line 112.

排液ライン113は、ドリップチャンバ112cに接続される。排液ライン113には、排液ラインクランプ113aが配置される。排液ライン113は、血液回路110及び血液浄化器120を洗浄して清浄化するプライミング工程でプライミング液を排液するためのラインである。 Drain line 113 is connected to drip chamber 112c. A drain line clamp 113a is arranged on the drain line 113. The drain line 113 is a line for draining a priming liquid in a priming process for washing and cleaning the blood circuit 110 and the blood purifier 120.

血液浄化器120は、筒状に形成された容器本体121と、この容器本体121の内部に収容された透析膜(図示せず)と、を備え、容器本体121の内部は、透析膜により血液側流路と透析液側流路とに区画される(いずれも図示せず)。容器本体121には、血液回路110に連通する血液導入口122a及び血液導出口122bと、透析液回路130に連通する透析液導入口123a及び透析液導出口123bと、が形成される。 The blood purifier 120 includes a cylindrical container body 121 and a dialysis membrane (not shown) housed inside the container body 121. It is divided into a side channel and a dialysate side channel (both not shown). The container body 121 is formed with a blood inlet 122a and a blood outlet 122b that communicate with the blood circuit 110, and a dialysate inlet 123a and a dialysate outlet 123b that communicate with the dialysate circuit 130.

透析液回路130は、いわゆる密閉容量制御方式の透析液回路130により構成される。この透析液回路130は、透析液供給ライン131aと、透析液排液ライン131bと、透析液導入ライン132aと、透析液導出ライン132bと、透析液送液部133と、を備える。また、透析液回路130は、後述する置換液ライン150と接続されて、置換液供給源152として用いられる。 The dialysate circuit 130 is configured by a so-called sealed volume control type dialysate circuit 130. The dialysate circuit 130 includes a dialysate supply line 131a, a dialysate drain line 131b, a dialysate introduction line 132a, a dialysate outlet line 132b, and a dialysate feed section 133. Further, the dialysate circuit 130 is connected to a substituent line 150, which will be described later, and is used as a substituent liquid supply source 152.

透析液送液部133は、透析液チャンバ1331と、バイパスライン1332と、除水/逆濾過ポンプ1333と、を備える。
透析液チャンバ1331は、一定容量(例えば、300mL~500mL)の透析液を収容可能な硬質の容器で構成され、この容器の内部は軟質の隔膜(ダイアフラム)により、送液収容部1331a及び排液収容部1331bに区画される。
バイパスライン1332は、透析液導出ライン132bと透析液排液ライン131bとを接続する。
The dialysate feeding unit 133 includes a dialysate chamber 1331, a bypass line 1332, and a water removal/reverse filtration pump 1333.
The dialysate chamber 1331 is composed of a hard container that can contain a fixed volume (for example, 300 mL to 500 mL) of dialysate, and the interior of this container is separated by a soft diaphragm from the fluid supply storage section 1331a and the drain fluid. It is divided into a housing section 1331b.
Bypass line 1332 connects dialysate lead-out line 132b and dialysate drain line 131b.

除水/逆濾過ポンプ1333は、バイパスライン1332に配置される。除水/逆濾過ポンプ1333は、バイパスライン1332の内部の透析液を透析液排液ライン131b側に流通させる方向(除水方向)及び透析液導出ライン132b側に流通させる方向(逆濾過方向)に送液可能に駆動するポンプにより構成される。 A water removal/reverse filtration pump 1333 is located in the bypass line 1332. The water removal/reverse filtration pump 1333 is configured to flow the dialysate inside the bypass line 1332 toward the dialysate drainage line 131b side (water removal direction) and to flow the dialysate fluid through the dialysate outlet line 132b side (reverse filtration direction). It is composed of a pump that can be driven to send liquid to.

透析液供給ライン131aは、基端側が透析液供給装置(図示せず)に接続され、先端側が透析液チャンバ1331に接続される。透析液供給ライン131aは透析液チャンバ1331の送液収容部1331aに透析液を供給する。 The dialysate supply line 131a is connected to a dialysate supply device (not shown) at its proximal end and to the dialysate chamber 1331 at its distal end. The dialysate supply line 131a supplies dialysate to the liquid supply storage section 1331a of the dialysate chamber 1331.

透析液導入ライン132aは、透析液チャンバ1331と血液浄化器120の透析液導入口123aとを接続し、透析液チャンバ1331の送液収容部1331aに収容された透析液を血液浄化器120の透析液側流路に導入する。 The dialysate introduction line 132 a connects the dialysate chamber 1331 and the dialysate inlet 123 a of the blood purifier 120 , and transfers the dialysate contained in the liquid supply storage section 1331 a of the dialysate chamber 1331 to the blood purifier 120 for dialysis. Introduced into the liquid side channel.

透析液導出ライン132bは、血液浄化器120の透析液導出口123bと透析液チャンバ1331とを接続し、血液浄化器120から排出された透析液を透析液チャンバ1331の排液収容部1331bに導出する。 The dialysate lead-out line 132b connects the dialysate outlet 123b of the blood purifier 120 and the dialysate chamber 1331, and leads the dialysate discharged from the blood purifier 120 to the drain fluid storage section 1331b of the dialysate chamber 1331. do.

透析液排液ライン131bは、基端側が透析液チャンバ1331に接続され、排液収容部1331bに収容された透析液の排液を排出する。 The dialysate drain line 131b is connected at its proximal end to the dialysate chamber 1331, and discharges the dialysate contained in the drain fluid storage section 1331b.

以上の透析液回路130によれば、透析液チャンバ1331を構成する硬質の容器の内部を軟質の隔膜(ダイアフラム)により区画することで、透析液チャンバ1331からの透析液の導出量(送液収容部1331aへの透析液の供給量)と、透析液チャンバ1331(排液収容部1331b)に回収される排液の量と、を同量にできる。
これにより、除水/逆濾過ポンプ1333を停止させた状態では、血液浄化器120に導入される透析液の流量と血液浄化器120から導出される透析液(排液)の量とを同量にできる。また、除水/逆濾過ポンプ1333を除水方向に送液するように駆動させた場合は、血液浄化器120において、血液から所定の速度で所定量の除水(濾過)が行われる。また、除水/逆濾過ポンプ1333を逆濾過方向に送液するように駆動させた場合は、血液浄化器120において、血液回路110に所定量の透析液が注入(逆濾過)される。
According to the dialysate circuit 130 described above, by dividing the inside of the hard container constituting the dialysate chamber 1331 with a soft diaphragm, the amount of dialysate drawn out from the dialysate chamber 1331 (liquid supply capacity The amount of dialysate supplied to the dialysate chamber 1331a (the amount of dialysate supplied to the dialysate chamber 1331a) and the amount of drainage fluid collected in the dialysate chamber 1331 (drainage fluid storage section 1331b) can be made equal.
As a result, when the water removal/reverse filtration pump 1333 is stopped, the flow rate of the dialysate introduced into the blood purifier 120 and the amount of dialysate (effluent) drawn out from the blood purifier 120 are made equal to each other. Can be done. Further, when the water removal/reverse filtration pump 1333 is driven to send liquid in the water removal direction, a predetermined amount of water is removed (filtered) from the blood at a predetermined speed in the blood purifier 120. Further, when the water removal/back filtration pump 1333 is driven to send liquid in the back filtration direction, a predetermined amount of dialysate is injected into the blood circuit 110 in the blood purifier 120 (back filtration).

制御装置140は、情報処理装置(コンピュータ)により構成され、制御プログラムを実行することにより、血液浄化装置100の動作を制御する。
図2に示すように、具体的には、制御装置140は、血液回路110及び透析液回路130に配置された各種のポンプやクランプ等の動作を制御して、血液浄化装置100により行われる各種工程、例えば、脱血工程、脱血循環工程、返血工程及び均質化工程等を実行する。
The control device 140 is constituted by an information processing device (computer), and controls the operation of the blood purification device 100 by executing a control program.
As shown in FIG. 2, specifically, the control device 140 controls the operations of various pumps, clamps, etc. arranged in the blood circuit 110 and the dialysate circuit 130, and controls various operations performed by the blood purification device 100. Steps such as a blood removal step, a blood removal circulation step, a blood return step, and a homogenization step are performed.

置換液ライン150は、置換液供給源152として用いられる透析液回路130内の透析液を置換液として血液回路110に直接注入するためのラインであり、液体が流通可能な可撓性を有する軟質のチューブを主体として構成される。図1に示すように、置換液ライン150の上流側は、透析液回路130の透析液導入ライン132aに接続されている。置換液ライン150の下流側は、前希釈方式の場合は、血液浄化器120の上流側である動脈側ライン111に接続され、後希釈方式の場合は、血液浄化器120の下流側である静脈側ライン112に接続される。 The replacement fluid line 150 is a line for directly injecting the dialysate in the dialysate circuit 130 used as a replacement fluid supply source 152 into the blood circuit 110 as a replacement fluid, and is a flexible line that allows fluid to flow through it. It is mainly composed of tubes. As shown in FIG. 1, the upstream side of the replacement fluid line 150 is connected to the dialysate introduction line 132a of the dialysate circuit 130. The downstream side of the substitution fluid line 150 is connected to the arterial line 111 which is upstream of the blood purifier 120 in the case of the pre-dilution method, and connected to the venous line 111 which is the downstream side of the blood purifier 120 in the case of the post-dilution method. It is connected to the side line 112.

置換液ポンプ151は、置換液ライン150に配置され、透析液回路130(置換液供給源152)から置換液としての透析液を取り出して、血液回路110(動脈側ライン111又は静脈側ライン112)に送液する。 The substituent fluid pump 151 is disposed in the substituent fluid line 150, takes out dialysate as a substituent fluid from the dialysate circuit 130 (substitute fluid supply source 152), and supplies the dialysate to the blood circuit 110 (arterial line 111 or venous line 112). Send liquid to.

静脈圧センサPSは、ドリップチャンバ112cに接続される。静脈圧センサPSは、ドリップチャンバ112cの内部の圧力である静脈圧を検出する。 Venous pressure sensor PS is connected to drip chamber 112c. The venous pressure sensor PS detects venous pressure, which is the pressure inside the drip chamber 112c.

次に、血液浄化装置100を用いて繰り返し行う治療工程について図3~図9を参照して説明する。第1実施形態の治療工程は、図3及び図4に示す脱血工程と、図5及び図6に示す脱血循環工程と、図7に示す返血工程と、図8及び図9に示す均質化工程と、を含む。 Next, treatment steps that are repeatedly performed using the blood purification device 100 will be described with reference to FIGS. 3 to 9. The treatment process of the first embodiment includes a blood removal process shown in FIGS. 3 and 4, a blood removal circulation process shown in FIGS. 5 and 6, a blood return process shown in FIG. 7, and a homogeneous blood removal process shown in FIGS. 8 and 9. and a conversion step.

図3に片側脱血工程を示す。片側脱血工程では、除水/逆濾過ポンプ1333を除水方向に、また、血液ポンプ111cを正回転方向に、同じ第1の流量としての所定の流量(例えば40ml/min)で駆動して、1本の穿刺針SNを介して動脈側ライン111及び血液浄化器120に血液を導入する。例えば、動脈側ライン111及び血液浄化器120の内部の体積(プライミングボリューム)が100ml程度である場合、片側脱血工程には、2.5分程度の時間を要する。
本実施形態の脱血工程においては、脱血した血液から除水は行わずに、血液が血液浄化器120に到達した時点で脱血工程を終了して、次の脱血循環工程に移行する。1回目の治療工程における脱血工程は、プライミング工程の後に行われ、血液回路110にプライミング液としての透析液が充填された状態で行われる。1回目の脱血工程が完了した状態では、静脈側ライン112には、プライミング液として透析液が満たされた状態である。
尚、本実施形態では、片側脱血工程の一例として動脈側ライン111を用いる例を示したが、血液ポンプ111cを停止して、静脈側ライン112を用いて脱血を行ってもよい。
Figure 3 shows the unilateral blood removal process. In the one-sided blood removal step, the water removal/reverse filtration pump 1333 is driven in the water removal direction and the blood pump 111c is driven in the forward rotation direction at a predetermined flow rate (for example, 40 ml/min) as the same first flow rate. , blood is introduced into the arterial line 111 and the blood purifier 120 through one puncture needle SN. For example, when the internal volume (priming volume) of the arterial line 111 and the blood purifier 120 is about 100 ml, the one-sided blood removal process requires about 2.5 minutes.
In the blood removal process of this embodiment, water is not removed from the blood that has been removed, and when the blood reaches the blood purifier 120, the blood removal process is ended and the next blood removal circulation process is started. The blood removal step in the first treatment step is performed after the priming step, and is performed with the blood circuit 110 filled with dialysate as a priming fluid. When the first blood removal step is completed, the venous line 112 is filled with dialysate as a priming fluid.
In this embodiment, an example in which the arterial line 111 is used as an example of the unilateral blood removal process is shown, but the blood pump 111c may be stopped and blood may be removed using the venous line 112.

また、図4に示すように、片側脱血工程の他の例として、静脈側クランプ112dを閉じた状態で、除水/逆濾過ポンプ1333は駆動せずに、血液ポンプ111cを正回転方向に第1の流量として所定の流量(例えば40ml/min)で駆動して、1本の穿刺針SNを介して動脈側ライン111及び血液浄化器120に血液を導入してもよい。血液回路110に導入された血液により、静脈圧センサPSにおいて検出される静脈圧が所定の上限に達したら血液ポンプ111cを停止して脱血工程を終了し、次の脱血循環工程に移行する。 Further, as shown in FIG. 4, as another example of the one-sided blood removal process, with the venous side clamp 112d closed, the water removal/reverse filtration pump 1333 is not driven, and the blood pump 111c is rotated in the forward rotation direction. Blood may be introduced into the arterial line 111 and the blood purifier 120 through one puncture needle SN by driving at a predetermined flow rate (for example, 40 ml/min) as the first flow rate. When the venous pressure detected by the venous pressure sensor PS reaches a predetermined upper limit due to the blood introduced into the blood circuit 110, the blood pump 111c is stopped, the blood removal step is completed, and the next blood removal circulation step is started.

図5に、脱血循環工程で行われる除水工程としての透析工程を示す。透析工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、除水/逆濾過ポンプ1333を第2の流量として所定の除水速度(例えば、10ml/min)で駆動する。また、透析液回路130において所定の流量(例えば、400ml/min)透析液チャンバ1331(送液収容部1331a)から血液浄化器120に透析液を導出させる。これにより、透析液導入ライン132aを通じて血液浄化器120に所定の流量(例えば、400ml/min)で透析液が導入され、透析液導出ライン132bには、所定の流量に第2の流量を加えた流量(例えば410ml/mim)で除水された水分を含む透析液が導出される。
つまり、血液浄化器120において、患者の余剰水分及び老廃物の除去を行いながら、除水速度と同じ流量(第2の流量)で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。
透析工程では、血液回路110に置換液を注入せず、血液回路110内を循環する血液を透析しながら徐々に濃縮させる。これにより、主に尿素等の小分子量物質が除去される。透析工程は、例えば、血液浄化器120の血液導出口122b近傍に血液濃度センサを配置してヘマトクリット値を監視しながら行い、ヘマトクリット値が所定の値に到達するまで血液が濃縮されると終了する。そして、次の返血工程に移行する。
ここで、血液は濃度が上昇するにつれて、その粘度も上昇し、特にヘマトクリット値が50%を超えると粘度が急激に上昇することが知られている。粘度の上昇により、血液浄化器120の透析膜が目詰まりしやくなり、透析膜の劣化を招く。そのため、ヘマトクリット値が50%を超えないように血液を濃縮させることが好ましい。
また、透析工程は、所定の時間の経過や、所定の除水量(脱血量)の到達を目安に終了してもよい。
FIG. 5 shows a dialysis process as a water removal process performed in the blood removal and circulation process. In the dialysis process, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the water removal/reverse filtration pump 1333 is driven as a second flow rate at a predetermined flow rate. It is driven at a water removal rate (for example, 10 ml/min). Further, in the dialysate circuit 130, the dialysate is led out from the dialysate chamber 1331 (liquid feeding storage section 1331a) to the blood purifier 120 at a predetermined flow rate (for example, 400 ml/min). As a result, the dialysate is introduced into the blood purifier 120 through the dialysate introduction line 132a at a predetermined flow rate (for example, 400 ml/min), and the dialysate is introduced into the dialysate outlet line 132b at a predetermined flow rate plus a second flow rate. A dialysate containing water from which water has been removed is discharged at a flow rate (for example, 410 ml/mim).
That is, in the blood purifier 120, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate) while removing excess water and waste from the patient, and the blood introduced in the blood removal process and The newly introduced blood is circulated in the blood circuit 110.
In the dialysis process, the blood circulating in the blood circuit 110 is gradually concentrated while being dialyzed without injecting a substituent into the blood circuit 110. This mainly removes small molecular weight substances such as urea. The dialysis process is performed while monitoring the hematocrit value by placing a blood concentration sensor near the blood outlet 122b of the blood purifier 120, and ends when the blood is concentrated until the hematocrit value reaches a predetermined value. . Then, the process moves to the next blood return process.
It is known that as the concentration of blood increases, the viscosity of blood also increases, and particularly when the hematocrit value exceeds 50%, the viscosity increases rapidly. Due to the increase in viscosity, the dialysis membrane of the blood purifier 120 becomes easily clogged, leading to deterioration of the dialysis membrane. Therefore, it is preferable to concentrate blood so that the hematocrit value does not exceed 50%.
Further, the dialysis step may be terminated after a predetermined time has elapsed or when a predetermined water removal amount (blood removal amount) is reached.

図6に、脱血循環工程で行われる濾過工程としての透析濾過工程を示す。透析濾過工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、除水/逆濾過ポンプ1333を所定の除水速度(例えば、10ml/min)で駆動し、更に置換液ポンプ151を第3の流量として所定の置換液速度Qで駆動する。また、透析液回路130において、所定の流量(例えば、400+Qml/min)で透析液チャンバ1331(送液収容部1331a)から血液浄化器120に透析液を導出させる。これにより、透析液導入ライン132aを通じて血液浄化器120に所定の流量(例えば、400ml/min)で透析液が導入され、透析液導出ライン132bには、所定の流量に第2の流量及び第3の流量を加えた流量(例えば400+10+Qml/mim)で除水された水分を含む透析液が導出される。FIG. 6 shows a diafiltration process as a filtration process performed in the blood removal and circulation process. In the diafiltration process, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the water removal/reverse filtration pump 1333 is driven at a predetermined water removal rate (for example, 200 ml/min). For example, the substituent liquid pump 151 is driven at a predetermined substituent liquid rate QR as a third flow rate. Further, in the dialysate circuit 130, the dialysate is led out from the dialysate chamber 1331 (liquid feeding storage section 1331a) to the blood purifier 120 at a predetermined flow rate (for example, 400+Q R ml/min). As a result, the dialysate is introduced into the blood purifier 120 through the dialysate introduction line 132a at a predetermined flow rate (for example, 400 ml/min), and the dialysate is introduced into the dialysate outlet line 132b at a predetermined flow rate, a second flow rate, and a third flow rate. A dialysate containing water from which water has been removed is delivered at a flow rate (for example, 400 + 10 + Q R ml/mim).

つまり、透析濾過工程では、血液回路110に所定の流量Q(第3の流量)で置換液として透析液を注入しながら、血液浄化器120において老廃物の除去と患者の余剰水分の除水速度である第2の流量(10ml/min)に置換液注入量Q(第3の流量)を加えた流量で除水を行う。また、除水速度(第2の流量)と同じ流量で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。That is, in the diafiltration process, while injecting dialysate as a replacement fluid into the blood circuit 110 at a predetermined flow rate Q R (third flow rate), the blood purifier 120 removes waste products and dehydrates the patient's excess water. Water removal is performed at a flow rate that is the sum of the second flow rate (10 ml/min) and the replacement liquid injection amount Q R (third flow rate). Further, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate), and the blood introduced in the blood removal process and the newly introduced blood are circulated in the blood circuit 110.

また、血液ポンプ111cの流量により決まる血液回路110の循環流量は、脱血の流量(第2の流量)に依存せずに任意に設定可能である。よって、脱血の流量(第2の流量)が小さくても循環流量を大きくすることができ、特に後希釈方式の場合に血液濃縮の観点から血流量(循環流量)の1/4程度に制限される濾過流量を大きくすることができる。よって、更に溶質の除去効率を高めることができる。
透析濾過工程では、血液浄化器120において、大量の濾過が行われて低分子量蛋白等の大分子量物質が主に除去される。また、透析工程と同様に、血液回路110内を循環する血液を徐々に濃縮させ、血液濃度、経過時間や除水量(脱血量)等を目安に透析濾過工程を終了して、次の返血工程に移行する。
Further, the circulation flow rate of the blood circuit 110 determined by the flow rate of the blood pump 111c can be arbitrarily set without depending on the blood removal flow rate (second flow rate). Therefore, even if the blood removal flow rate (second flow rate) is small, the circulation flow rate can be increased, and especially in the case of the post-dilution method, it is limited to about 1/4 of the blood flow rate (circulation flow rate) from the viewpoint of hemoconcentration. The filtration flow rate can be increased. Therefore, the solute removal efficiency can be further improved.
In the diafiltration process, a large amount of filtration is performed in the blood purifier 120 to mainly remove large molecular weight substances such as low molecular weight proteins. In addition, similarly to the dialysis process, the blood circulating in the blood circuit 110 is gradually concentrated, and the diafiltration process is completed based on the blood concentration, elapsed time, amount of water removed (blood removal amount), etc., and then the next return is performed. Move on to the blood process.

図7に、片側返血工程を示す。本実施形態の片側返血工程では、血液ポンプ111cは停止し、静脈側クランプ112dを開とした状態で、除水/逆濾過ポンプ1333を逆濾過方向に所定の流量(例えば、60ml/min)で駆動し、更に置換液ポンプ151を除水/逆濾過ポンプ1333と同じ流量で駆動する。このように各種ポンプ及びクランプを制御して、置換液ライン150を介して血液回路110に透析液(置換液)を注入して、静脈側ライン112から1本の穿刺針SNを介して血液を導出して、患者に血液を戻す。例えば、静脈側ライン112及び血液浄化器120の内部の体積(プライミングボリューム)が100ml程度である場合、注入された透析液が穿刺針SN近傍まで到達するには、1.7分程度の時間を要する。返血終了後には、次の均質化工程に移行する。返血に用いられなかった動脈側ライン111は、濃縮された血液で満たされた状態である。
尚、本実施形態では、片側返血工程の一例として静脈側ライン112を用いる例を示したが、血液ポンプ111cを除水/逆濾過ポンプ1333と同じ流量で逆回転方向に駆動して、動脈側ライン111を用いて返血を行ってもよい。また、本実施形態では、置換液ライン150を介して透析液(置換液)を血液回路110に注入して返血を行う場合を示したが、血液浄化器120において逆濾過透析液を注入することにより、返血を行ってもよい。
FIG. 7 shows the unilateral blood return process. In the unilateral blood return step of this embodiment, the blood pump 111c is stopped, the venous side clamp 112d is opened, and the water removal/reverse filtration pump 1333 is operated at a predetermined flow rate (for example, 60 ml/min) in the reverse filtration direction. Furthermore, the substituent liquid pump 151 is driven at the same flow rate as the water removal/reverse filtration pump 1333. By controlling the various pumps and clamps in this way, dialysate (substitute fluid) is injected into the blood circuit 110 via the substituent line 150, and blood is drawn from the venous line 112 via the single puncture needle SN. and return blood to the patient. For example, if the internal volume (priming volume) of the venous line 112 and blood purifier 120 is about 100 ml, it takes about 1.7 minutes for the injected dialysate to reach the vicinity of the puncture needle SN. It takes. After the blood is returned, the next homogenization step is started. The arterial line 111, which is not used for blood return, is filled with concentrated blood.
In this embodiment, an example is shown in which the venous line 112 is used as an example of the unilateral blood return process, but the blood pump 111c is driven in the reverse rotation direction at the same flow rate as the water removal/reverse filtration pump 1333, and the arterial Blood may be returned using the side line 111. Furthermore, in this embodiment, a case has been described in which dialysate (substitute fluid) is injected into the blood circuit 110 via the substituent fluid line 150 to return blood. Depending on the situation, blood may be returned.

図8に、均質化工程を示す。均質化工程は、返血工程後に、血液回路110に濃縮された血液が残っており、かつ、その血液が残っているラインを介して、脱血工程で脱血が行われる場合に、血液回路110内の透析液(置換液)及び血液を循環させて濃度を均質化する工程である。この均質化工程を行うことにより、脱血工程において、残留した血液が過剰に濃縮されるのを防いで脱血量を確保する。また、透析液回路130において所定の流量で透析液を流通させることで、血液浄化器120に透析液が流入して、拡散による小分子量物質の除去(透析)が行われる。
本実施形態では、除水/逆濾過ポンプ1333及び置換液ポンプ151を停止させた状態において透析液回路130に400ml/minで透析液を流通させ、血液ポンプ111cを一例として200ml/minで正回転方向に駆動して、残留した血液及び透析液を循環させて均質化すると共に透析を行う。
FIG. 8 shows the homogenization process. The homogenization process is performed when concentrated blood remains in the blood circuit 110 after the blood return process, and blood is removed in the blood removal process via the line in which the blood remains. This is a step of circulating the dialysate (substitute fluid) and blood in the 110 to homogenize their concentrations. By performing this homogenization step, the remaining blood is prevented from being excessively concentrated in the blood removal step, and the amount of blood removed is ensured. Further, by circulating the dialysate at a predetermined flow rate in the dialysate circuit 130, the dialysate flows into the blood purifier 120, and small molecular weight substances are removed (dialysis) by diffusion.
In this embodiment, the dialysate is passed through the dialysate circuit 130 at a rate of 400 ml/min while the water removal/reverse filtration pump 1333 and the substituent pump 151 are stopped, and the blood pump 111c, for example, is rotated forward at a rate of 200 ml/min. The remaining blood and dialysate are circulated and homogenized, and dialysis is performed.

また、図9に示すように、除水/逆濾過ポンプ1333を除水方向に、一例として10ml/minの流量で駆動し、均質化しながら患者の体液を除水すると共に少量の脱血を行ってもよい。このように、脱血循環工程に続いて均質化工程においても少量の脱血を行いながら除水を継続するとこで、患者の体液から除水すべき所定の除水量を除水するまでの時間を短縮すると共に透析効率(除去効率)を向上させることができる。 In addition, as shown in FIG. 9, the water removal/reverse filtration pump 1333 is driven in the water removal direction at a flow rate of 10 ml/min, for example, to remove water from the patient's body fluid while homogenizing it, and to remove a small amount of blood. It's okay. In this way, by continuing water removal while removing a small amount of blood in the homogenization step following the blood removal circulation step, the time required to remove a predetermined amount of water from the patient's body fluid can be reduced. It is possible to shorten the time and improve dialysis efficiency (removal efficiency).

このように、均質化工程を数分程度行った後、終了して、次の治療工程の脱血工程に移行する。 In this way, after the homogenization process is performed for several minutes, it is completed and the next treatment process, the blood removal process, is started.

2回目以降の治療工程における脱血工程では、透析液により希釈された血液が残った状態である。
例えば、2回目以降の脱血工程において、図3で説明したように40ml/minで除水を行うと、動脈側ライン111に残る希釈された血液が濃縮される。動脈側ライン111に残る希釈血液をすべて濾過しようとすると、血液が過剰に濃縮されてしまい、血液浄化器120において血液が凝固して詰まりを生じてしまう。そのため、脱血に用いるラインに血液濃度センサを設けて、所定の濃度(例えば、ヘマトクリット値で50%)になるまで除水を行いつつ、その除水量に相当する量を脱血して血液回路に新たに導入して、脱血工程を終了し、次の脱血循環工程に移行する。
In the blood removal step in the second and subsequent treatment steps, blood diluted with the dialysate remains.
For example, in the second and subsequent blood removal steps, if water is removed at a rate of 40 ml/min as explained in FIG. 3, the diluted blood remaining in the arterial line 111 will be concentrated. If an attempt is made to filter all of the diluted blood remaining in the arterial line 111, the blood will become excessively concentrated, and the blood will coagulate in the blood purifier 120, causing a blockage. Therefore, a blood concentration sensor is installed in the line used for blood removal, and while water is removed until a predetermined concentration (for example, 50% in terms of hematocrit value) is reached, an amount of blood corresponding to the amount of water removed is removed and the blood circuit is removed. is newly introduced to complete the blood removal process and move on to the next blood removal circulation process.

以上、説明した治療工程を繰り返し行うことにより、除水及び溶質の除去を行う。 By repeating the treatment steps described above, water removal and solute removal are performed.

前述したように、本実施形態では、脱血循環工程において除水工程としての透析工程及び濾過工程としての透析濾過工程のいずれか一方を選択して実施する。以下に脱血循環工程における制御方法について説明する。
血液回路110に注入された置換液を濾過するために血液浄化器120における濾過流量が大きくなる透析濾過においては、治療開始初期においてアルブミン漏出量が過大になり、一定時間を経過すると漏出量が少なくなることが報告されている。そこで、本実施形態の血液浄化装置100において、アルブミン漏出が少なくなるまで、つまり、治療工程が所定の回数繰り返されるまでは、脱血循環工程において除水工程としての透析工程を行い、その後、脱血循環工程において濾過工程としての透析濾過工程を行うことが好ましい。これにより、血液浄化療法の前半において濾過流量を患者の余剰水分を除去するための除水速度と同じ程度の小流量としてアルブミンの漏出を抑えると共に、透析を行うことで主に小分子量物質の除去を行うことができ、後半において濾過流量を大きく主に大分子量物質の除去を行うことができる。このように脱血循環工程を制御することで、小分子量物質及び大分子量物質の両方の除去効率を向上させつつ、アルブミンの漏出量を低減することできる。
As described above, in this embodiment, either one of the dialysis process as a water removal process and the diafiltration process as a filtration process is selected and implemented in the blood removal and circulation process. The control method in the blood removal circulation process will be explained below.
In diafiltration, in which the filtration flow rate in the blood purifier 120 increases in order to filter the replacement fluid injected into the blood circuit 110, the amount of albumin leaked becomes excessive at the beginning of treatment, and after a certain period of time, the leaked amount decreases. It has been reported that this will happen. Therefore, in the blood purification device 100 of the present embodiment, the dialysis process is performed as a water removal process in the blood removal circulation process until the albumin leakage decreases, that is, until the treatment process is repeated a predetermined number of times, and then the blood removal circulation process is performed. It is preferable to perform a diafiltration step as a filtration step in the process. As a result, in the first half of blood purification therapy, the filtration flow rate is set to a low flow rate that is similar to the water removal rate used to remove excess water from the patient, suppressing the leakage of albumin, and dialysis mainly removes small molecular weight substances. In the second half, the filtration flow rate is increased to mainly remove large molecular weight substances. By controlling the blood removal circulation process in this manner, the amount of albumin leakage can be reduced while improving the removal efficiency of both small and large molecular weight substances.

以上説明した第1実施形態の血液浄化装置100によれば、以下のような効果を奏する。 According to the blood purification apparatus 100 of the first embodiment described above, the following effects are achieved.

(1)1本の穿刺針SNで脱血及び返血を交互に行う血液浄化装置100において、制御装置140に、血液回路110に第1の流量で血液を導入する脱血工程と、血液回路110に第1の流量よりも小さい第2の流量で血液を導入すると共に、脱血工程で導入された血液及び第2の流量で導入される血液を血液回路110で循環させる脱血循環工程と、血液回路110に置換液を注入して血液回路から血液を導出する返血工程と、を含む治療工程を繰り返し行わせ、脱血循環工程を、血液浄化器120において第2の流量と同じ流量で除水を行う除水工程、又は置換液ライン150を介して血液回路110に置換液を第3の流量で注入すると共に、血液浄化器120において第2の流量に第3の流量を加えた流量で除水を行う濾過工程のいずれか一方で行わせた。これにより、脱血循環工程で行われる濾過工程において、脱血の流量(第2の流量)が、患者の余剰水分を除去するための除水速度と同じ程度の小流量であっても、大きい濾過流量で濾過を行うことができ、主に大分子量物質(低分子量蛋白)の除去効率を高めることができる。また、脱血循環工程において、脱血の流量(第2の流量)は、患者の余剰水分を除去するための除水速度と同じ程度の小流量であるので、脱血循環工程の時間を長くすることができ、治療工程にかかる時間を長くすることができる。よって、治療工程の繰り返し回数を少なくことができるので、脱血工程や返血工程にかかる時間が透析治療の所要時間に与える影響が小さいので、脱血工程における血液の導入流量(第1の流量)及び返血工程における血液の導出流量(返血流量)を大きくしなくてもよい。よって、バスキュラーアクセスの血流量が少ない患者に対しても本発明を適用することができる。また、血液ポンプ111cの流量により決まる血液回路110の循環流量は、脱血の流量(第2の流量)に依存せずに任意に設定可能である。よって、脱血の流量(第2の流量)が小さくても循環流量を大きくすることができ、特に後希釈方式の場合に血液濃縮の観点から血流量(循環流量)の1/4程度に制限される濾過流量を大きくすることができる。よって、更に溶質の除去効率を高めることができる。また、透析効率が高いため、今までシングルニードル法の治療の適応にならなかった患者に対しても適応可能となる。 (1) In the blood purification device 100 that alternately performs blood removal and blood return with one puncture needle SN, the control device 140 is configured to perform a blood removal process in which blood is introduced into the blood circuit 110 at a first flow rate, and a blood circuit a blood removal circulation step in which blood is introduced into the blood circuit 110 at a second flow rate smaller than the first flow rate, and the blood introduced in the blood removal step and the blood introduced at the second flow rate are circulated in the blood circuit 110; A treatment process including a blood return process in which a replacement fluid is injected into the blood circuit 110 and blood is drawn out from the blood circuit is repeatedly performed, and a blood removal circulation process is performed in the blood purifier 120 at the same flow rate as the second flow rate. In the water removal process, or injecting the substituting liquid into the blood circuit 110 via the substituting liquid line 150 at a third flow rate, the blood purifier 120 uses a flow rate that is the sum of the second flow rate and the third flow rate. One of the filtration steps to remove water was performed. As a result, in the filtration process performed in the blood removal circulation process, even if the blood removal flow rate (second flow rate) is as small as the water removal rate for removing excess water from the patient, a large filtration rate can be achieved. Filtration can be performed at a flow rate, and the removal efficiency of mainly large molecular weight substances (low molecular weight proteins) can be increased. In addition, in the blood removal circulation process, the blood removal flow rate (second flow rate) is a small flow rate that is about the same as the water removal rate for removing excess water from the patient, so the time of the blood removal circulation process can be lengthened. This allows the treatment process to take longer. Therefore, the number of repetitions of the treatment process can be reduced, and the time required for the blood removal process and blood return process has little effect on the time required for dialysis treatment. ) and the blood flow rate (return blood flow rate) in the blood return step need not be increased. Therefore, the present invention can also be applied to patients with low blood flow through vascular access. Further, the circulation flow rate of the blood circuit 110 determined by the flow rate of the blood pump 111c can be arbitrarily set without depending on the blood removal flow rate (second flow rate). Therefore, even if the blood removal flow rate (second flow rate) is small, the circulation flow rate can be increased, and especially in the case of the post-dilution method, it is limited to about 1/4 of the blood flow rate (circulation flow rate) from the viewpoint of hemoconcentration. The filtration flow rate can be increased. Therefore, the solute removal efficiency can be further improved. Furthermore, because of its high dialysis efficiency, it can be applied to patients who were not previously eligible for single-needle therapy.

(2)血液浄化装置100を、置換液供給源152として透析液回路130を含んで構成し、置換液として透析液を用い、制御装置140に、除水工程として、血液浄化器120において第2の流量と同じ流量で除水を行うと共に透析を行う透析工程を行わせ、濾過工程として、置換液ライン150を介して血液回路110に置換液を第3の流量で注入し、血液浄化器120において第2の流量に第3の流量を加えた流量で除水を行うと共に透析する透析濾過工程を行わせた。これにより、小分子量物質及び大分子量物質の両方の除去効率を向上させることができる。 (2) The blood purification device 100 is configured to include the dialysate circuit 130 as the substituent fluid supply source 152, the dialysate is used as the substituent fluid, and the control device 140 is configured to include the dialysate circuit 130 as the substituent fluid supply source 152. A dialysis process is performed in which water is removed and dialysis is performed at the same flow rate as that of the blood purifier 120 , and as a filtration process, the substitution liquid is injected into the blood circuit 110 via the substitution liquid line 150 at a third flow rate. A diafiltration process was performed in which water was removed and dialyzed at a flow rate that was the sum of the second flow rate and the third flow rate. Thereby, the removal efficiency of both small molecular weight substances and large molecular weight substances can be improved.

(3)治療工程を、返血工程において、血液回路110の一部に置換液(透析液)を流入させて返血し、血液回路110のうち脱血に用いるラインに返血されなかった血液が残る場合、返血工程後に血液回路110の置換液(透析液)及び血液を循環させて均質化する均質化工程を更に含むものとした。これにより、脱血工程における残留血液の過濃縮を防ぐと共に、新たに血液回路110に導入される脱血量を確保することができる。よって、溶質の除去効率(透析効率)を向上させることができる。 (3) In the treatment process, in the blood return process, replacement fluid (dialysate) is flowed into a part of the blood circuit 110 to return the blood, and blood that is not returned to the line used for blood removal in the blood circuit 110 is If there remains, a homogenization step is further included in which the replacement fluid (dialysate) and blood in the blood circuit 110 are circulated and homogenized after the blood return step. This prevents over-concentration of residual blood in the blood removal process, and also ensures the amount of blood newly introduced into the blood circuit 110. Therefore, solute removal efficiency (dialysis efficiency) can be improved.

(4)制御装置140に、均質化工程において、血液回路110に第2の流量で血液を導入すると共に、血液浄化器120において第2の流量と同じ流量で除水を行わせた。これにより、均質化工程においても脱血及び除水を行うことで、溶質の除去効率(透析効率)を向上させると共に、穿刺針SNと血液回路110との間で血液が滞留することを防ぐことにより血液の凝固のおそれを低減できる。 (4) In the homogenization process, the control device 140 introduced blood into the blood circuit 110 at the second flow rate and caused the blood purifier 120 to remove water at the same flow rate as the second flow rate. As a result, by removing blood and removing water even in the homogenization process, solute removal efficiency (dialysis efficiency) is improved and blood is prevented from stagnation between the puncture needle SN and the blood circuit 110. This can reduce the risk of blood coagulation.

(5)制御装置140に、返血工程において、置換液ライン150を介して血液回路110に置換液(透析液)を注入して返血を行わせた。これにより、置換液ライン150を介して透析液を血液回路110に注入することができるので、透水性が小さく逆濾過が困難な血液浄化器や、積層型の血液浄化器を用いる場合であっても、本発明の血液浄化装置を適用することができる。 (5) In the blood return process, the control device 140 was caused to inject a substituent fluid (dialysate) into the blood circuit 110 via the substituent fluid line 150 to return blood. As a result, the dialysate can be injected into the blood circuit 110 via the substitution fluid line 150, so that it is possible to inject the dialysate into the blood circuit 110, even when using a blood purifier with low water permeability that makes backfiltration difficult or a laminated blood purifier. The blood purification device of the present invention can also be applied.

(6)制御装置140に、治療工程が所定の回数繰り返されるまでは、脱血循環工程において、除水工程を行わせ、その後は、濾過工程を行わせた。このように脱血循環工程を制御することで、濾過工程における大分子量物質の除去効率を向上させつつ、アルブミンの漏出量を低減することできる。 (6) The control device 140 was caused to perform the water removal step in the blood removal and circulation step until the treatment step was repeated a predetermined number of times, and thereafter to perform the filtration step. By controlling the blood removal and circulation process in this way, it is possible to reduce the amount of albumin leakage while improving the removal efficiency of large molecular weight substances in the filtration process.

<第2実施形態>
次に、第2実施形態にかかる血液浄化装置100を用いて繰り返し行う治療工程について図10及び図11を参照して説明する。第1実施形態で説明したものと同様の構成のものは、同じ符号を付して説明を省略する。
第2実施形態の治療工程は、脱血工程、脱血循環工程及び返血工程を含み、脱血循環工程については、第1実施形態で説明したものと同様であるので、説明を省略し、脱血工程及び返血工程について説明する。
<Second embodiment>
Next, a treatment process repeatedly performed using the blood purification apparatus 100 according to the second embodiment will be described with reference to FIGS. 10 and 11. Components having the same configuration as those described in the first embodiment are given the same reference numerals, and the description thereof will be omitted.
The treatment process of the second embodiment includes a blood removal process, a blood removal circulation process, and a blood return process, and the blood removal and circulation process is the same as that described in the first embodiment, so the explanation will be omitted. The process and blood return process will be explained.

図10に両側脱血工程を示す。両側脱血工程では、除水/逆濾過ポンプ1333を除水方向に第1の流量としての所定の流量(例えば40ml/min)で駆動して、血液ポンプ111cを正回転方向に第1の流量の半分の流量(例えば20ml/min)で駆動する。このように各種ポンプを制御することで、1本の穿刺針SNを介して動脈側ライン111及び静脈側ライン112の両側から血液浄化器120に向かって血液を導入することができる。例えば、血液回路110及び血液浄化器120の内部の体積(プライミングボリューム)が200ml程度である場合、両側脱血工程には、5分程度の時間を要する。本実施形態の脱血工程においては、血液から除水は行わずに、血液が血液浄化器120に到達した時点で脱血工程を終了して、次の脱血循環工程に移行する。両側脱血工程で脱血した場合、血液回路110内は、ほぼ血液で満たされた状態となる。よって、次の脱血循環工程では、血液が透析液で余分に希釈されていないので、透析効率を向上させることができる。 Figure 10 shows the bilateral blood removal process. In the double-sided blood removal step, the water removal/reverse filtration pump 1333 is driven in the water removal direction at a predetermined flow rate (for example, 40 ml/min) as the first flow rate, and the blood pump 111c is driven in the forward rotation direction at the first flow rate. drive at half the flow rate (for example, 20 ml/min). By controlling the various pumps in this way, blood can be introduced toward the blood purifier 120 from both sides of the arterial line 111 and the venous line 112 via one puncture needle SN. For example, when the internal volume (priming volume) of the blood circuit 110 and the blood purifier 120 is about 200 ml, the bilateral blood removal process takes about 5 minutes. In the blood removal process of this embodiment, water is not removed from the blood, and the blood removal process is ended when the blood reaches the blood purifier 120, and the next blood removal circulation process is started. When blood is removed in the bilateral blood removal process, the inside of the blood circuit 110 is almost filled with blood. Therefore, in the next blood removal and circulation step, the blood is not diluted excessively with the dialysate, so that the dialysis efficiency can be improved.

図11に、両側返血工程を示す。本実施形態の両側返血工程では、静脈側クランプ112dを開とした状態で、除水/逆濾過ポンプ1333を逆濾過方向に所定の流量(例えば、60ml/min)で駆動し、更に置換液ポンプ151を除水/逆濾過ポンプ1333と同じ流量で駆動すると共に、血液ポンプ111cを逆回転方向に、置換液注入量の半分の流量(30ml/min)で駆動する。このように各種ポンプ及びクランプを制御して、置換液ライン150を介して血液回路110の動脈側ライン111及び静脈側ライン112に置換液としての透析液を注入して、1本の穿刺針SNを介して血液を導出して、患者に血液を戻す。例えば、血液回路110及び血液浄化器120の内部の体積(プライミングボリューム)が200ml程度である場合、注入された置換液(透析液)が穿刺針SN近傍まで到達するには、3.3分程度の時間を要する。返血終了後は、血液回路110には、残留血液はなく、ほぼ置換液(透析液)で満たされるので、第1実施形態で説明した均質化工程は不要であり、次の治療工程における脱血工程に移行する。このように均質化工程を行う必要がないので、その分、治療工程の時間(透析時間)を短縮することができ、除去効率(透析効率)を向上させることができる。また、本実施形態では、置換液ライン150を介して透析液(置換液)を血液回路110に注入して返血を行う場合を示したが、血液浄化器120において逆濾過が可能な場合は、逆濾過透析液を注入することにより返血を行ってもよい。 FIG. 11 shows the bilateral blood return process. In the bilateral blood return process of this embodiment, with the venous side clamp 112d open, the water removal/reverse filtration pump 1333 is driven in the reverse filtration direction at a predetermined flow rate (for example, 60 ml/min), and the replacement liquid is The pump 151 is driven at the same flow rate as the water removal/reverse filtration pump 1333, and the blood pump 111c is driven in the reverse direction at a flow rate (30 ml/min) that is half the amount of substituent injected. By controlling the various pumps and clamps in this way, dialysate as a replacement fluid is injected into the arterial line 111 and venous line 112 of the blood circuit 110 via the replacement fluid line 150, and one puncture needle SN and return the blood to the patient. For example, if the internal volume (priming volume) of the blood circuit 110 and blood purifier 120 is about 200 ml, it takes about 3.3 minutes for the injected replacement fluid (dialysate) to reach the vicinity of the puncture needle SN. It takes time. After the blood return is completed, there is no residual blood in the blood circuit 110 and it is almost filled with the replacement fluid (dialysate), so the homogenization step described in the first embodiment is unnecessary, and the desorption process in the next treatment step is unnecessary. Move on to the blood process. Since it is not necessary to perform the homogenization step in this way, the time of the treatment step (dialysis time) can be shortened accordingly, and the removal efficiency (dialysis efficiency) can be improved. Furthermore, in this embodiment, a case has been described in which dialysate (substitute fluid) is injected into the blood circuit 110 via the substitution fluid line 150 to return blood, but if back filtration is possible in the blood purifier 120, , blood may be returned by injecting back-filtered dialysate.

以上説明した第2実施形態の血液浄化装置100によれば、上述の効果(1)~(6)に加えて、以下のような効果を奏する。 According to the blood purification device 100 of the second embodiment described above, in addition to the effects (1) to (6) described above, the following effects are achieved.

(7)制御装置140に、脱血工程で、血液浄化器120において第1の流量で除水を行うと共に、血液浄化器120の上流側及び下流側の両方から血液回路110に血液を導入させた。これにより、血液回路110がほぼ血液で満たされ、脱血循環工程において片側脱血に比べて血液が希釈されていないので、効率よく除水でき、また、透析を行う場合、濃度差に依存する小分子量物質の除去効率を向上させることができる。 (7) In the blood removal process, the control device 140 performs water removal in the blood purifier 120 at the first flow rate, and causes the blood to be introduced into the blood circuit 110 from both the upstream and downstream sides of the blood purifier 120. Ta. As a result, the blood circuit 110 is almost filled with blood, and the blood is not diluted in the blood removal circulation process compared to unilateral blood removal, so water can be efficiently removed. The removal efficiency of molecular weight substances can be improved.

(8)制御装置140に、返血工程において、血液回路110の全てに置換液(透析液)を流入させて返血させた。これにより、返血工程後の均質化工程を行わなくても、次の脱血工程において脱血量が確保でき、また、治療工程にかかる時間(透析時間)が短縮されるので除去効率(透析効率)を向上させることができる。 (8) In the blood return step, the control device 140 caused the replacement fluid (dialysate) to flow into all of the blood circuits 110 to return blood. As a result, the amount of blood removed can be secured in the next blood removal process without the need for a homogenization process after the blood return process, and the time required for the treatment process (dialysis time) is shortened, so the removal efficiency (dialysis time) is reduced. efficiency).

次に、本発明の第3実施形態及び第4実施形態に係る血液浄化装置について説明する。第3及び第4実施形態に係る血液浄化装置は、血液浄化器において透析を行わない点で第1実施形態及び第2実施形態に係る血液浄化装置と異なる。第3実施形態では、置換液供給源として透析液回路を用いるオンライン濾過療法を実施可能な血液浄化装置について説明し、第4実施形態では、置換液供給源として置換液ボトルや置換液バッグを用いるオフライン濾過療法を実施可能な血液浄化装置について説明する。また、本発明の第1実施形態及び第2実施形態の場合と同様に、第3実施形態及び第4実施形態に係る血液浄化装置は、脱血工程、脱血循環工程、返血工程及び均質化工程等の各工程を、血液回路内に置換液を注入する流れを制御することで連続して自動的に行う自動血液浄化装置である。 Next, blood purification devices according to the third and fourth embodiments of the present invention will be described. The blood purification apparatuses according to the third and fourth embodiments differ from the blood purification apparatuses according to the first and second embodiments in that dialysis is not performed in the blood purifier. In the third embodiment, a blood purification device that can perform online filtration therapy using a dialysate circuit as a substituent fluid supply source will be described, and in the fourth embodiment, a substituent bottle or a substituent bag is used as a substituent fluid supply source. A blood purification device capable of performing offline filtration therapy will be described. Further, as in the first and second embodiments of the present invention, the blood purification apparatuses according to the third and fourth embodiments include a blood removal process, a blood removal circulation process, a blood return process, and a homogenization process. This is an automatic blood purification device that automatically performs each process continuously by controlling the flow of injecting a replacement fluid into the blood circuit.

<第3実施形態>
図12~図14を参照して第3実施形態について詳細に説明する。第1実施形態及び第2実施形態で説明したものと同様の構成については、同じ符号を付して説明を省略する。
<Third embodiment>
The third embodiment will be described in detail with reference to FIGS. 12 to 14. Components similar to those described in the first embodiment and the second embodiment are given the same reference numerals and the description thereof will be omitted.

図12に示す血液浄化装置100Aは、血液回路110と、血液浄化器120と、透析液回路130Aと、制御部としての制御装置140と、置換液ライン150と、置換液ポンプ151と、静脈圧センサPSと、を備える。 The blood purification apparatus 100A shown in FIG. 12 includes a blood circuit 110, a blood purifier 120, a dialysate circuit 130A, a control device 140 as a control section, a substituent line 150, a substituent pump 151, and a venous pressure A sensor PS is provided.

透析液回路130Aは、いわゆる密閉容量制御方式の透析液回路130Aにより構成される。この透析液回路130Aは、透析液供給ライン131aと、透析液排液ライン131bと、透析液導入ライン132aと、透析液導出ライン132bと、透析液送液部133と、を備える。また、透析液回路130は、後述する置換液ライン150と接続されて、置換液供給源152Aとして用いられる。透析液回路130Aの各構成は、第1実施形態及び第2実施形態のものと同様であるので説明を省略し、接続のされ方が異なる透析液導入ライン132a及び透析液導出ライン132bについて説明する。 The dialysate circuit 130A is configured by a so-called sealed volume control type dialysate circuit 130A. The dialysate circuit 130A includes a dialysate supply line 131a, a dialysate drain line 131b, a dialysate introduction line 132a, a dialysate outlet line 132b, and a dialysate feed section 133. Further, the dialysate circuit 130 is connected to a substituent line 150, which will be described later, and is used as a substituent liquid supply source 152A. Each configuration of the dialysate circuit 130A is the same as that of the first embodiment and the second embodiment, so the explanation will be omitted, and the dialysate introduction line 132a and dialysate output line 132b, which are connected differently, will be explained. .

透析液導入ライン132aは、透析液チャンバ1331と透析液導出ライン132bとを接続し、透析液チャンバ1331の送液収容部1331aに収容された透析液を透析液導出ライン132bに導入する。 The dialysate introduction line 132a connects the dialysate chamber 1331 and the dialysate lead-out line 132b, and introduces the dialysate contained in the liquid feeding storage section 1331a of the dialysate chamber 1331 into the dialysate lead-out line 132b.

透析液導出ライン132bは、血液浄化器120の透析液導出口123bと透析液チャンバ1331とを接続し、血液浄化器120から排出された水分を透析液チャンバ1331の排液収容部1331bに導出する。 The dialysate lead-out line 132b connects the dialysate outlet 123b of the blood purifier 120 and the dialysate chamber 1331, and leads the water discharged from the blood purifier 120 to the drain fluid storage section 1331b of the dialysate chamber 1331. .

以上の透析液回路130Aによれば、透析液チャンバ1331を構成する硬質の容器の内部を軟質の隔膜(ダイアフラム)により区画することで、透析液チャンバ1331からの透析液の導出量(送液収容部1331aへの透析液の供給量)と、透析液チャンバ1331(排液収容部1331b)に回収される排液の量と、を同量にできる。
これにより、除水/逆濾過ポンプ1333を停止させた状態では、透析液チャンバ1331の送液収容部1331aから導出された透析液は、透析液導入ライン132a及び透析液導出ライン132bを介して排液収容部1331bに導入される。また、除水/逆濾過ポンプ1333を除水方向に送液するように駆動させた場合は、血液浄化器120において、血液から所定の速度で所定量の除水(濾過)が行われる。また、除水/逆濾過ポンプ1333を逆濾過方向に送液するように駆動させた場合は、血液浄化器120において、血液回路110に所定量の透析液が注入(逆濾過)される。
According to the above dialysate circuit 130A, by dividing the inside of the hard container constituting the dialysate chamber 1331 with a soft diaphragm, the amount of dialysate drawn out from the dialysate chamber 1331 (liquid supply capacity The amount of dialysate supplied to the dialysate chamber 1331a (the amount of dialysate supplied to the dialysate chamber 1331a) and the amount of drainage fluid collected in the dialysate chamber 1331 (drainage fluid storage section 1331b) can be made equal.
As a result, when the water removal/reverse filtration pump 1333 is stopped, the dialysate drawn out from the liquid supply storage section 1331a of the dialysate chamber 1331 is discharged via the dialysate introduction line 132a and the dialysate outlet line 132b. The liquid is introduced into the liquid storage section 1331b. Further, when the water removal/reverse filtration pump 1333 is driven to send liquid in the water removal direction, a predetermined amount of water is removed (filtered) from the blood at a predetermined speed in the blood purifier 120. Further, when the water removal/back filtration pump 1333 is driven to send liquid in the back filtration direction, a predetermined amount of dialysate is injected into the blood circuit 110 in the blood purifier 120 (back filtration).

次に、血液浄化装置100Aを用いて繰り返し行う治療工程のうち、除水工程又は濾過工程を行う脱血循環工程について図13及び図14を参照して説明する。返血工程(片側、両側)及び均質化工程については、第1実施形態及び第2実施形態で説明したものと同様であるので、説明を省略する。 Next, among the treatment steps repeatedly performed using the blood purification device 100A, a blood removal circulation step in which a water removal step or a filtration step is performed will be described with reference to FIGS. 13 and 14. The blood return process (on one side, both sides) and the homogenization process are the same as those described in the first embodiment and the second embodiment, so their explanation will be omitted.

図13に、脱血循環工程で行われる除水工程を示す。除水工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、除水/逆濾過ポンプ1333を第2の流量として所定の除水速度(例えば、10ml/min)で駆動する。また、置換液ポンプ151を停止させた状態において所定の流量(例えば、400ml/min)で透析液チャンバ1331の送液収容部1331aから透析液を導出させる。つまり、血液浄化器120において、患者の余剰水分の除去を行いながら、除水速度と同じ流量(第2の流量)で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。 FIG. 13 shows the water removal process performed in the blood removal circulation process. In the water removal process, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the water removal/reverse filtration pump 1333 is driven as a second flow rate at a predetermined flow rate. It is driven at a water removal rate of (for example, 10 ml/min). Further, with the substituent pump 151 stopped, the dialysate is drawn out from the liquid supply storage section 1331a of the dialysate chamber 1331 at a predetermined flow rate (for example, 400 ml/min). That is, in the blood purifier 120, while removing excess water from the patient, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate), and blood introduced in the blood removal process and newly introduced blood are removed. The blood is circulated in a blood circuit 110.

除水工程では、血液回路110に置換液を注入せず、血液回路110内を循環する血液を徐々に濃縮させる。本実施形態では透析を行わないので、除水工程では小分量物質の除去効果は期待できないが、治療工程が所定の回数繰り返されるまでは、脱血循環工程において除水工程を行うことで、後に行われる濾過工程においてアルブミン漏出量を少なくすることができる。 In the water removal step, the blood circulating in the blood circuit 110 is gradually concentrated without injecting a replacement liquid into the blood circuit 110. Since dialysis is not performed in this embodiment, the effect of removing small amounts of substances cannot be expected in the water removal process, but until the treatment process is repeated a predetermined number of times, the water removal process can be performed in the blood removal and circulation process, so that it can be carried out later. It is possible to reduce the amount of albumin leaked in the filtration process.

除水工程は、第1実施形態及び第2実施形態と同様に、ヘマトクリット値が所定の値に到達するまで血液が濃縮されると終了する。そして、次の返血工程に移行する。
また、除水工程は、所定の時間の経過や、所定の除水量(脱血量)の到達を目安に終了してもよい。
The water removal step ends when the blood is concentrated until the hematocrit value reaches a predetermined value, similarly to the first and second embodiments. Then, the process moves to the next blood return process.
Further, the water removal step may be terminated after a predetermined time has elapsed or when a predetermined water removal amount (blood removal amount) is reached.

図14に、脱血循環工程で行われる濾過工程を示す。濾過工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、除水/逆濾過ポンプ1333を所定の除水速度(例えば、10ml/min)で駆動し、更に置換液ポンプ151を第3の流量として所定の置換液速度Qで駆動しつつ透析液チャンバ1331の送液収容部1331aから所定の流量(例えば、400+Qml/min)で透析液を導出させる。
つまり、濾過工程においては、血液回路110に所定の流量Q(第3の流量)で置換液として透析液を注入しながら、血液浄化器120において老廃物の除去と患者の余剰水分の除水速度である第2の流量(10ml/min)に置換液注入量Q(第3の流量)を加えた流量で除水を行う。また、除水速度(第2の流量)と同じ流量で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。また、血液ポンプ111cの流量により決まる血液回路110の循環流量は、脱血の流量(第2の流量)に依存せずに任意に設定可能である。よって、脱血の流量(第2の流量)が小さくても循環流量を大きくすることができ、特に後希釈方式の場合に血液濃縮の観点から血流量(循環流量)の1/4程度に制限される濾過流量を大きくすることができる。よって、更に溶質の除去効率を高めることができる。
濾過工程では、血液浄化器120において、大量の濾過が行われて低分子量蛋白等の大分子量物質が主に除去される。また、除水工程と同様に、血液回路110内を循環する血液を徐々に濃縮させ、血液濃度、経過時間や除水量(脱血量)等を目安に濾過工程を終了して、次の返血工程に移行する。
FIG. 14 shows the filtration step performed in the blood removal circulation step. In the filtration process, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the water removal/reverse filtration pump 1333 is driven at a predetermined water removal rate (for example, 200 ml/min). , 10 ml/min), and while driving the substituent liquid pump 151 at a predetermined substituate rate Q R as the third flow rate, a predetermined flow rate (for example, 400+Q R ml/min).
That is, in the filtration step, while injecting dialysate as a replacement fluid into the blood circuit 110 at a predetermined flow rate Q R (third flow rate), the blood purifier 120 removes waste products and dehydrates the patient's excess water. Water removal is performed at a flow rate that is the sum of the second flow rate (10 ml/min) and the replacement liquid injection amount Q R (third flow rate). Further, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate), and the blood introduced in the blood removal process and the newly introduced blood are circulated in the blood circuit 110. Further, the circulation flow rate of the blood circuit 110 determined by the flow rate of the blood pump 111c can be arbitrarily set without depending on the blood removal flow rate (second flow rate). Therefore, even if the blood removal flow rate (second flow rate) is small, the circulation flow rate can be increased, and especially in the case of the post-dilution method, it is limited to about 1/4 of the blood flow rate (circulation flow rate) from the viewpoint of hemoconcentration. The filtration flow rate can be increased. Therefore, the solute removal efficiency can be further improved.
In the filtration process, a large amount of filtration is performed in the blood purifier 120 to mainly remove large molecular weight substances such as low molecular weight proteins. In addition, similarly to the water removal process, the blood circulating in the blood circuit 110 is gradually concentrated, and the filtration process is completed based on the blood concentration, elapsed time, water removal amount (blood removal amount), etc., and then the next return Move on to the blood process.

以上説明した第3実施形態の血液浄化装置100Aによれば、上述の効果(1)及び(3)~(8)に加えて、以下のような効果を奏する。 According to the blood purification apparatus 100A of the third embodiment described above, in addition to the effects (1) and (3) to (8) described above, the following effects are achieved.

(9)1本の穿刺針SNで脱血及び返血を交互に行う血液浄化装置100Aを、置換液供給源として透析液回路130Aを含んで構成すると共に、透析液回路130Aを血液浄化器120に透析液を流入させないように構成し、制御装置140に、血液回路110に第1の流量で血液を導入する脱血工程と、血液回路110に第1の流量よりも小さい第2の流量で血液を導入すると共に、脱血工程で導入された血液及び第2の流量で導入される血液を血液回路110で循環させる脱血循環工程と、血液回路110に置換液として透析液を注入して血液回路から血液を導出する返血工程と、を含む治療工程を繰り返し行わせ、脱血循環工程を、血液浄化器120において第2の流量と同じ流量で除水を行う除水工程、又は置換液ライン150を介して血液回路110に置換液として透析液を第3の流量で注入すると共に、血液浄化器120において第2の流量に第3の流量を加えた流量で除水を行う濾過工程のいずれか一方で行わせた。これにより、オンライン血液濾過療法においても、大きい濾過流量で濾過を行うことができる。 (9) A blood purification device 100A that alternately performs blood removal and blood return with one puncture needle SN is configured to include a dialysate circuit 130A as a replacement fluid supply source, and the dialysate circuit 130A is connected to a blood purifier 120. The control device 140 performs a blood removal step of introducing blood into the blood circuit 110 at a first flow rate, and a second flow rate smaller than the first flow rate into the blood circuit 110. A blood removal circulation step in which blood is introduced and the blood introduced in the blood removal step and blood introduced at a second flow rate are circulated in the blood circuit 110, and a dialysate is injected as a replacement fluid into the blood circuit 110 to remove the blood. A treatment process including a blood return process in which blood is drawn out from the circuit is repeated, and the blood removal circulation process is replaced by a water removal process in which water is removed at the same flow rate as the second flow rate in the blood purifier 120, or a replacement liquid line. A filtration process in which dialysate is injected as a replacement fluid into the blood circuit 110 at a third flow rate via the blood purifier 120 and water is removed at a flow rate that is the sum of the second flow rate and the third flow rate. I had him do it on the other hand. Thereby, even in online hemofiltration therapy, filtration can be performed with a large filtration flow rate.

<第4実施形態>
図15~図17を参照して第4実施形態について詳細に説明する。第1~第3実施形態で説明したものと同様の構成のものは、同じ符号を付して説明を省略する。
<Fourth embodiment>
The fourth embodiment will be described in detail with reference to FIGS. 15 to 17. Components having the same configuration as those described in the first to third embodiments are given the same reference numerals, and the description thereof will be omitted.

図15に示す血液浄化装置100Bは、血液回路110と、血液浄化器120と、制御部としての制御装置140と、置換液ライン150と、置換液ポンプ151と、置換液供給源152Bと、静脈圧センサPSと、濾液ライン160と、濾液ポンプ161と、を備える。 The blood purification device 100B shown in FIG. 15 includes a blood circuit 110, a blood purifier 120, a control device 140 as a control section, a substitution fluid line 150, a substitution fluid pump 151, a substitution fluid supply source 152B, and a vein. It includes a pressure sensor PS, a filtrate line 160, and a filtrate pump 161.

置換液供給源152Bとしては、置換液が充填された置換液ボトル又は置換液バッグが用いられる。図15に示すように、置換液ライン150の上流側は、置換液供給源152Bに接続されている。 As the substitution liquid supply source 152B, a substitution liquid bottle or a substitution liquid bag filled with substitution liquid is used. As shown in FIG. 15, the upstream side of the replacement liquid line 150 is connected to a replacement liquid supply source 152B.

濾液ライン160は、血液浄化器120の透析液導出口123bと接続され、血液浄化器120で濾過された濾液を排出する。 The filtrate line 160 is connected to the dialysate outlet 123b of the blood purifier 120, and discharges the filtrate filtered by the blood purifier 120.

濾液ポンプ161は、濾液ライン160に設けられ、血液浄化器120に陰圧をかけて所定の流量で液体を濾過するためのポンプである。 The filtrate pump 161 is a pump that is provided in the filtrate line 160 and applies negative pressure to the blood purifier 120 to filter the liquid at a predetermined flow rate.

次に、血液浄化装置100Bを用いて繰り返し行う治療工程のうち、除水工程又は濾過工程を行う脱血循環工程について図16及び図17を参照して説明する。返血工程(片側、両側)及び均質化工程については、第1実施形態及び第2実施形態で説明したものと同様であるので、説明を省略する。 Next, among the treatment steps repeatedly performed using the blood purification device 100B, a blood removal circulation step in which a water removal step or a filtration step is performed will be described with reference to FIGS. 16 and 17. The blood return process (on one side, both sides) and the homogenization process are the same as those described in the first embodiment and the second embodiment, so their explanation will be omitted.

図16に、脱血循環工程で行われる除水工程を示す。除水工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、濾液ポンプ161を第2の流量として所定の除水速度(例えば、10ml/min)で駆動する。つまり、血液浄化器120において、患者の余剰水分の除去を行いながら、除水速度と同じ流量(第2の流量)で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。 FIG. 16 shows the water removal process performed in the blood removal and circulation process. In the water removal process, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the filtrate pump 161 is driven at a predetermined water removal rate with the second flow rate. (for example, 10 ml/min). That is, in the blood purifier 120, while removing excess water from the patient, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate), and blood introduced in the blood removal process and newly introduced blood are removed. The blood is circulated in a blood circuit 110.

除水工程では、血液回路110に置換液を注入せず、血液回路110内を循環する血液を徐々に濃縮させる。本実施形態では透析を行わないので、除水工程では小分量物質の除去効果は期待できないが、治療工程が所定の回数繰り返されるまでは、脱血循環工程において除水工程を行うことで、後に行われる濾過工程においてアルブミン漏出量を少なくすることができる。 In the water removal step, the blood circulating in the blood circuit 110 is gradually concentrated without injecting a replacement liquid into the blood circuit 110. Since dialysis is not performed in this embodiment, the effect of removing small amounts of substances cannot be expected in the water removal process, but until the treatment process is repeated a predetermined number of times, the water removal process can be performed in the blood removal and circulation process, so that it can be carried out later. It is possible to reduce the amount of albumin leaked in the filtration process.

除水工程は、第1実施形態~第3実施形態と同様に、ヘマトクリット値が所定の値に到達するまで血液が濃縮されると終了する。そして、次の返血工程に移行する。
また、除水工程は、所定の時間の経過や、所定の除水量(脱血量)の到達を目安に終了してもよい。
Similar to the first to third embodiments, the water removal step ends when the blood is concentrated until the hematocrit value reaches a predetermined value. Then, the process moves to the next blood return process.
Further, the water removal step may be terminated after a predetermined time has elapsed or when a predetermined water removal amount (blood removal amount) is reached.

図17に、脱血循環工程で行われる濾過工程を示す。濾過工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、置換液ポンプ151を第3の流量として所定の置換液速度Qで駆動し、更に、濾液ポンプ161を所定の除水速度(例えば、10ml/min)に、所定の置換液速度Q(第3の流量)を加えた速度で駆動する。つまり、血液回路110に所定の流量Q(第3の流量)で置換液を注入しながら、血液浄化器120において老廃物の除去と患者の余剰水分の除水速度である第2の流量(10ml/min)に置換液注入量Q(第3の流量)を加えた流量で除水を行う。また、除水速度(第2の流量)と同じ流量で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。また、血液ポンプ111cの流量により決まる血液回路110の循環流量は、脱血の流量(第2の流量)に依存せずに任意に設定可能である。よって、脱血の流量(第2の流量)が小さくても循環流量を大きくすることができ、特に後希釈方式の場合に血液濃縮の観点から血流量(循環流量)の1/4程度に制限される濾過流量を大きくすることができる。よって、更に溶質の除去効率を高めることができる。
濾過工程では、血液浄化器120において、大量の濾過が行われて低分子量蛋白等の大分子量物質が主に除去される。また、除水工程と同様に、血液回路110内を循環する血液を徐々に濃縮させ、血液濃度、経過時間や除水量(脱血量)等を目安に濾過工程を終了して、次の返血工程に移行する。
FIG. 17 shows the filtration step performed in the blood removal circulation step. In the filtration step, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the substituent liquid pump 151 is driven at a third flow rate to maintain a predetermined substituent liquid rate. Q R , and the filtrate pump 161 is further driven at a predetermined water removal rate (for example, 10 ml/min) plus a predetermined replacement liquid rate Q R (third flow rate). In other words, while injecting the replacement fluid into the blood circuit 110 at a predetermined flow rate Q R (third flow rate), the blood purifier 120 removes waste products and the second flow rate ( Water removal is performed at a flow rate equal to 10 ml/min) plus the replacement liquid injection amount Q R (third flow rate). Further, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate), and the blood introduced in the blood removal process and the newly introduced blood are circulated in the blood circuit 110. Further, the circulation flow rate of the blood circuit 110 determined by the flow rate of the blood pump 111c can be arbitrarily set without depending on the blood removal flow rate (second flow rate). Therefore, even if the blood removal flow rate (second flow rate) is small, the circulation flow rate can be increased, and especially in the case of the post-dilution method, it is limited to about 1/4 of the blood flow rate (circulation flow rate) from the viewpoint of hemoconcentration. The filtration flow rate can be increased. Therefore, the solute removal efficiency can be further improved.
In the filtration process, a large amount of filtration is performed in the blood purifier 120 to mainly remove large molecular weight substances such as low molecular weight proteins. In addition, similarly to the water removal process, the blood circulating in the blood circuit 110 is gradually concentrated, and the filtration process is completed based on the blood concentration, elapsed time, water removal amount (blood removal amount), etc., and then the next return Move on to the blood process.

以上説明した第4実施形態の血液浄化装置100Bによれば、上述の効果(1)及び(3)~(8)に加えて、以下のような効果を奏する。 According to the blood purification apparatus 100B of the fourth embodiment described above, in addition to the effects (1) and (3) to (8) described above, the following effects are achieved.

(10)1本の穿刺針SNで脱血及び返血を交互に行う血液浄化装置100Bにおいて、置換液供給源152Bとして置換液ボトル又は置換液バッグを用い、制御装置140に、血液回路110に第1の流量で血液を導入する脱血工程と、血液回路110に第1の流量よりも小さい第2の流量で血液を導入すると共に、脱血工程で導入された血液及び第2の流量で導入される血液を血液回路110で循環させる脱血循環工程と、血液回路110に置換液を注入して血液回路から血液を導出する返血工程と、を含む治療工程を繰り返し行わせ、脱血循環工程を、血液浄化器120において第2の流量と同じ流量で除水を行う除水工程、又は置換液ライン150を介して血液回路110に置換液を第3の流量で注入すると共に、血液浄化器120において第2の流量に第3の流量を加えた流量で除水を行う濾過工程のいずれか一方で行わせた。これにより、オフライン血液濾過療法においても、大きい濾過流量で濾過を行うことができる。 (10) In the blood purification device 100B that performs blood removal and blood return alternately with one puncture needle SN, a replacement fluid bottle or a replacement fluid bag is used as the replacement fluid supply source 152B, and the blood circuit 110 is connected to the control device 140. A blood removal process in which blood is introduced at a first flow rate, and blood is introduced into the blood circuit 110 at a second flow rate smaller than the first flow rate, and the blood introduced in the blood removal process and the second flow rate are The blood removal and circulation process includes a blood removal and circulation process in which introduced blood is circulated through the blood circuit 110, and a blood return process in which a replacement fluid is injected into the blood circuit 110 and blood is drawn out from the blood circuit, and the blood removal and circulation process is performed repeatedly. A water removal step is performed in which water is removed at the same flow rate as the second flow rate in the blood purifier 120, or a replacement liquid is injected into the blood circuit 110 at a third flow rate via the replacement liquid line 150, and the blood purifier At step 120, one of the filtration steps was performed in which water was removed at a flow rate that was the sum of the second flow rate and the third flow rate. Thereby, even in offline hemofiltration therapy, filtration can be performed with a large filtration flow rate.

次に、本発明の第5実施形態に係る血液浄化装置について説明する。第5実施形態に係る血液浄化装置は、置換液供給源が透析液回路でない点で第1実施形態及び第2実施形態に係る血液浄化装置とは異なり、濾過及び透析を行う点で第3実施形態及び第4実施形態に係る血液浄化装置とは異なる。第5実施形態では、置換液供給源として置換液ボトルや置換液バッグを用いるオフライン透析濾過療法を実施可能な血液浄化装置について説明する。また、本発明の第1実施形態~第4実施形態の場合と同様に、第5実施形態に係る血液浄化装置は、脱血工程、脱血循環工程、返血工程及び均質化工程等の各工程を、血液回路内の置換液や透析液を注入する流れを制御することで連続して自動的に行う自動血液浄化装置である。 Next, a blood purification device according to a fifth embodiment of the present invention will be described. The blood purification device according to the fifth embodiment differs from the blood purification devices according to the first and second embodiments in that the replacement fluid supply source is not a dialysate circuit, and the blood purification device according to the third embodiment performs filtration and dialysis. This configuration is different from the blood purification device according to the fourth embodiment. In the fifth embodiment, a blood purification apparatus capable of performing offline diafiltration therapy using a replacement fluid bottle or a replacement fluid bag as a replacement fluid supply source will be described. Further, as in the first to fourth embodiments of the present invention, the blood purification device according to the fifth embodiment is capable of performing each step of blood removal, blood removal and circulation, blood return, and homogenization. This is an automatic blood purification device that continuously and automatically performs the following steps by controlling the flow of injecting replacement fluid and dialysate into the blood circuit.

<第5実施形態>
図18~図20を参照して第5実施形態について詳細に説明する。第1実施形態~第4実施形態で説明したものと同様の構成については、同じ符号を付して説明を省略する。
<Fifth embodiment>
The fifth embodiment will be described in detail with reference to FIGS. 18 to 20. Components similar to those described in the first to fourth embodiments are given the same reference numerals and descriptions thereof will be omitted.

図18に示す血液浄化装置100Cは、血液回路110と、血液浄化器120と、透析液回路130と、制御部としての制御装置140と、置換液ライン150と、置換液ポンプ151と、置換液供給源152Cと、静脈圧センサPSと、を備える。 The blood purification device 100C shown in FIG. 18 includes a blood circuit 110, a blood purifier 120, a dialysate circuit 130, a control device 140 as a control section, a replacement fluid line 150, a replacement fluid pump 151, and a replacement fluid. It includes a supply source 152C and a venous pressure sensor PS.

置換液供給源152Cとしては、置換液が充填された置換液ボトル又は置換液バッグが用いられる。図18に示すように、置換液ライン150の上流側は、置換液供給源152Cに接続されている。 As the substitution liquid supply source 152C, a substitution liquid bottle or a substitution liquid bag filled with substitution liquid is used. As shown in FIG. 18, the upstream side of the replacement liquid line 150 is connected to a replacement liquid supply source 152C.

次に、血液浄化装置100Cを用いて繰り返し行う治療工程のうち、除水工程としての透析工程又は濾過工程としての透析濾過工程を行う脱血循環工程について図19及び図20を参照して説明する。返血工程(片側、両側)及び均質化工程については、第1及び第2実施形態で説明したものと同様であるので、説明を省略する。 Next, among the treatment steps repeatedly performed using the blood purification device 100C, a blood removal circulation step in which a dialysis step as a water removal step or a diafiltration step as a filtration step is performed will be described with reference to FIGS. 19 and 20. The blood return process (on one side, both sides) and the homogenization process are the same as those described in the first and second embodiments, so a description thereof will be omitted.

図19に、脱血循環工程で行われる除水工程としての透析工程を示す。透析工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、除水/逆濾過ポンプ1333を第2の流量として所定の除水速度(例えば、10ml/min)で駆動する。また、透析液回路130において所定の流量(例えば、400ml/min)透析液チャンバ1331(送液収容部1331a)から血液浄化器120に透析液を導出させる。これにより、透析液導入ライン132aを通じて血液浄化器120に所定の流量(例えば、400ml/min)で透析液が導入され、透析液導出ライン132bには、所定の流量に第2の流量を加えた流量(例えば410ml/mim)で除水された水分を含む透析液が導出される。
つまり、血液浄化器120において、患者の余剰水分及び老廃物の除去を行いながら、除水速度と同じ流量(第2の流量)で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。
FIG. 19 shows a dialysis process as a water removal process performed in the blood removal and circulation process. In the dialysis process, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the water removal/reverse filtration pump 1333 is driven as a second flow rate at a predetermined flow rate. It is driven at a water removal rate (for example, 10 ml/min). Further, in the dialysate circuit 130, the dialysate is led out from the dialysate chamber 1331 (liquid feeding storage section 1331a) to the blood purifier 120 at a predetermined flow rate (for example, 400 ml/min). As a result, the dialysate is introduced into the blood purifier 120 through the dialysate introduction line 132a at a predetermined flow rate (for example, 400 ml/min), and the dialysate is introduced into the dialysate outlet line 132b at a predetermined flow rate plus a second flow rate. A dialysate containing water from which water has been removed is discharged at a flow rate (for example, 410 ml/mim).
That is, in the blood purifier 120, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate) while removing excess water and waste from the patient, and the blood introduced in the blood removal process and The newly introduced blood is circulated in the blood circuit 110.

透析工程では、血液回路110に置換液を注入せず、血液回路110内を循環する血液を透析しながら徐々に濃縮させる。これにより、主に尿素等の小分子量物質が除去される。透析工程は、例えば、血液浄化器120の血液導出口122b近傍に血液濃度センサを配置してヘマトクリット値を監視しながら行い、ヘマトクリット値が所定の値に到達するまで血液が濃縮されると終了する。そして、次の返血工程に移行する。 In the dialysis process, the blood circulating in the blood circuit 110 is gradually concentrated while being dialyzed without injecting a substituent into the blood circuit 110. This mainly removes small molecular weight substances such as urea. The dialysis process is performed while monitoring the hematocrit value by placing a blood concentration sensor near the blood outlet 122b of the blood purifier 120, and ends when the blood is concentrated until the hematocrit value reaches a predetermined value. . Then, the process moves to the next blood return process.

図20に、脱血循環工程で行われる透析濾過工程を示す。透析濾過工程では、血液ポンプ111cを正回転方向に所定の流量(例えば、200ml/min)となるまで徐々に速度を上げて駆動すると共に、置換液ポンプ151を第3の流量として所定の置換液速度Qで駆動し、更に、除水/逆濾過ポンプ1333を所定の除水速度(例えば、10ml/min)に置換液速度Q(第3の流量)を加えた速度(Q+10ml/min)で駆動する。また、透析液回路130において、所定の流量(例えば、400ml/min)で透析液チャンバ1331(送液収容部1331a)から血液浄化器120に透析液を導出させる。これにより、透析液導入ライン132aを通じて血液浄化器120に所定の流量(例えば、400ml/min)で透析液が導入され、透析液導出ライン132bには、所定の流量に第2の流量及び第3の流量を加えた流量(例えば400+10+Qml/mim)で除水された水分を含む透析液が導出される。FIG. 20 shows the diafiltration step performed in the blood removal and circulation step. In the diafiltration process, the blood pump 111c is driven in the forward rotation direction at a gradually increasing speed until a predetermined flow rate (for example, 200 ml/min) is reached, and the substituent liquid pump 151 is driven at a third flow rate to supply a predetermined substituent liquid. The water removal/reverse filtration pump 1333 is driven at a speed Q R (for example, 10 ml/min) plus the replacement liquid speed Q R (third flow rate) (Q R +10 ml/min). min). Further, in the dialysing fluid circuit 130, the dialysing fluid is led out from the dialysing fluid chamber 1331 (liquid feeding storage section 1331a) to the blood purifier 120 at a predetermined flow rate (for example, 400 ml/min). As a result, the dialysate is introduced into the blood purifier 120 through the dialysate introduction line 132a at a predetermined flow rate (for example, 400 ml/min), and the dialysate is introduced into the dialysate outlet line 132b at a predetermined flow rate, a second flow rate, and a third flow rate. A dialysate containing water from which water has been removed is delivered at a flow rate (for example, 400 + 10 + Q R ml/mim).

つまり、血液回路110に所定の流量Q(第3の流量)で置換液を注入しながら、血液浄化器120において老廃物の除去と患者の余剰水分の除水速度である第2の流量(10ml/min)に置換液注入量Q(第3の流量)を加えた流量で除水を行う。また、除水速度(第2の流量)と同じ流量で少量の脱血を行い、脱血工程で導入された血液及び新たに導入される血液を血液回路110で循環させる。In other words, while injecting the replacement fluid into the blood circuit 110 at a predetermined flow rate Q R (third flow rate), the blood purifier 120 removes waste products and the second flow rate ( Water removal is performed at a flow rate equal to 10 ml/min) plus the replacement liquid injection amount Q R (third flow rate). Further, a small amount of blood is removed at the same flow rate as the water removal rate (second flow rate), and the blood introduced in the blood removal process and the newly introduced blood are circulated in the blood circuit 110.

また、血液ポンプ111cの流量により決まる血液回路110の循環流量は、脱血の流量(第2の流量)に依存せずに任意に設定可能である。よって、脱血の流量(第2の流量)が小さくても循環流量を大きくすることができ、特に後希釈方式の場合に血液濃縮の観点から血流量(循環流量)の1/4程度に制限される濾過流量を大きくすることができる。よって、更に溶質の除去効率を高めることができる。 Further, the circulation flow rate of the blood circuit 110 determined by the flow rate of the blood pump 111c can be arbitrarily set without depending on the blood removal flow rate (second flow rate). Therefore, even if the blood removal flow rate (second flow rate) is small, the circulation flow rate can be increased, and especially in the case of the post-dilution method, it is limited to about 1/4 of the blood flow rate (circulation flow rate) from the viewpoint of hemoconcentration. The filtration flow rate can be increased. Therefore, the solute removal efficiency can be further improved.

透析濾過工程では、血液浄化器120において、大量の濾過が行われて低分子量蛋白等の大分子量物質が主に除去される。また、透析工程と同様に、血液回路110内を循環する血液を徐々に濃縮させ、血液濃度、経過時間や除水量(脱血量)等を目安に透析濾過工程を終了して、次の返血工程に移行する。 In the diafiltration process, a large amount of filtration is performed in the blood purifier 120 to mainly remove large molecular weight substances such as low molecular weight proteins. In addition, similarly to the dialysis process, the blood circulating in the blood circuit 110 is gradually concentrated, and the diafiltration process is completed based on the blood concentration, elapsed time, amount of water removed (blood removal amount), etc., and then the next return is performed. Move on to the blood process.

以上説明した第5実施形態の血液浄化装置100Cによれば、上述の効果(1)及び(3)~(8)に加えて、以下のような効果を奏する。 According to the blood purification apparatus 100C of the fifth embodiment described above, in addition to the effects (1) and (3) to (8) described above, the following effects are achieved.

(11)1本の穿刺針SNで脱血及び返血を交互に行う血液浄化装置100Cにおいて、置換液供給源152Cとして置換液ボトル又は置換液バッグを用い、制御装置140に、血液回路110に第1の流量で血液を導入する脱血工程と、血液回路110に第1の流量よりも小さい第2の流量で血液を導入すると共に、脱血工程で導入された血液及び第2の流量で導入される血液を血液回路110で循環させる脱血循環工程と、血液回路110に置換液を注入して血液回路から血液を導出する返血工程と、を含む治療工程を繰り返し行わせ、脱血循環工程を、血液浄化器120において第2の流量と同じ流量で除水を行うと共に透析をする透析工程、又は置換液ライン150を介して血液回路110に置換液を第3の流量で注入し、血液浄化器120において第2の流量に第3の流量を加えた流量で除水を行うと共に透析する透析濾過工程のいずれか一方で行わせた。これにより、オフライン血液透析濾過療法においても、大きい濾過流量で濾過を行うことができる。 (11) In the blood purification device 100C that performs blood removal and blood return alternately with one puncture needle SN, a replacement fluid bottle or a replacement fluid bag is used as the replacement fluid supply source 152C, and the blood circuit 110 is connected to the control device 140. A blood removal process in which blood is introduced at a first flow rate, and blood is introduced into the blood circuit 110 at a second flow rate smaller than the first flow rate, and the blood introduced in the blood removal process and the second flow rate are The blood removal and circulation process includes a blood removal and circulation process in which introduced blood is circulated through the blood circuit 110, and a blood return process in which a replacement fluid is injected into the blood circuit 110 and blood is drawn out from the blood circuit, and the blood removal and circulation process is performed repeatedly. A dialysis process is performed in which water is removed and dialyzed at the same flow rate as the second flow rate in the blood purifier 120, or a substituent liquid is injected into the blood circuit 110 via the substituent line 150 at a third flow rate, and the blood In the purifier 120, water was removed at a flow rate that was the sum of the second flow rate and the third flow rate, and at the same time, either one of the diafiltration steps was performed. Thereby, even in offline hemodiafiltration therapy, filtration can be performed with a large filtration flow rate.

100、100A、100B、100C 血液浄化装置
110 血液回路
111 動脈側ライン
111c 血液ポンプ
112 静脈側ライン
120 血液浄化器
130 透析液回路
133 透析液送液部
140 制御部
150 置換液ライン
151 置換液ポンプ
152A、152B、152C 置換液供給源
160 濾液ライン
161 濾液ポンプ
PS 静脈圧モニタ
SN 穿刺針
100, 100A, 100B, 100C Blood purification device 110 Blood circuit 111 Arterial line 111c Blood pump 112 Venous line 120 Blood purifier 130 Dialysate circuit 133 Dialysate fluid feeding section 140 Control section 150 Substitute fluid line 151 Substitute fluid pump 152A , 152B, 152C Substitute fluid supply source 160 Filtrate line 161 Filtrate pump PS Venous pressure monitor SN Puncture needle

Claims (11)

1本の穿刺針で脱血及び返血を交互に行う血液浄化装置であって、
血液浄化器と、血液回路と、置換液供給源と、前記血液回路と前記置換液供給源とを接続する置換液ラインと、制御部と、を備え、
前記制御部は、
前記血液回路に第1の流量で血液を導入する脱血工程と、
前記血液回路に前記第1の流量よりも小さい第2の流量で血液を導入すると共に、前記脱血工程で導入された血液及び前記第2の流量で導入される血液を前記血液回路で循環させる脱血循環工程と、
前記血液回路に置換液を注入して前記血液回路から血液を導出する返血工程と、を含む治療工程を繰り返し行い、
前記脱血循環工程を、前記血液浄化器において前記第2の流量と同じ流量で除水を行う除水工程、及び/又は前記置換液ラインを介して前記血液回路に置換液を第3の流量で注入すると共に、前記血液浄化器において前記第2の流量に前記第3の流量を加えた流量で除水を行う濾過工程のいずれかにて行う血液浄化装置。
A blood purification device that alternately removes blood and returns blood with a single puncture needle,
A blood purifier, a blood circuit, a replacement fluid supply source, a replacement fluid line connecting the blood circuit and the replacement fluid supply source, and a control unit,
The control unit includes:
a blood removal step of introducing blood into the blood circuit at a first flow rate;
Blood is introduced into the blood circuit at a second flow rate smaller than the first flow rate, and the blood introduced in the blood removal step and the blood introduced at the second flow rate are circulated in the blood circuit. Blood removal circulation process,
Repeating a treatment process including a blood return process of injecting a replacement fluid into the blood circuit and drawing blood from the blood circuit,
The blood removal circulation step may include a water removal step in which water is removed in the blood purifier at the same flow rate as the second flow rate, and/or a replacement fluid is introduced into the blood circuit via the replacement fluid line at a third flow rate. A blood purification device that performs any of the filtration steps in which water is injected and water is removed in the blood purifier at a flow rate that is the sum of the second flow rate and the third flow rate.
前記置換液供給源として透析液回路を備え、置換液として透析液を用い、
前記制御部は、前記脱血循環工程において、
前記除水工程として、前記血液浄化器において前記第2の流量と同じ流量で除水を行うと共に透析する透析工程を行い、
前記濾過工程として、前記置換液ラインを介して前記血液回路に置換液を第3の流量で注入し、前記血液浄化器において前記第2の流量に前記第3の流量を加えた流量で除水を行う共に透析する透析濾過工程を行う請求項1に記載の血液浄化装置。
A dialysate circuit is provided as the replacement fluid supply source, and a dialysate is used as the replacement fluid,
In the blood removal circulation step, the control unit includes:
As the water removal step, a dialysis step is performed in which water is removed at the same flow rate as the second flow rate in the blood purifier and dialyzed;
In the filtration step, a replacement fluid is injected into the blood circuit via the replacement fluid line at a third flow rate, and water is removed in the blood purifier at a flow rate equal to the third flow rate added to the second flow rate. The blood purification apparatus according to claim 1, which performs a diafiltration step in which dialysis is performed at the same time as dialysis.
前記置換液供給源として透析液回路を備え、置換液として透析液を用い、
前記透析液回路は、前記血液浄化器に透析液を流入させないように構成される請求項1に記載の血液浄化装置。
A dialysate circuit is provided as the replacement fluid supply source, and a dialysate is used as the replacement fluid,
The blood purification device according to claim 1, wherein the dialysate circuit is configured to prevent dialysate from flowing into the blood purifier.
前記置換液供給源として、置換液が充填された置換液ボトル又は置換液バッグを用いる請求項1に記載の血液浄化装置。 The blood purification device according to claim 1, wherein a substitution liquid bottle or a substitution liquid bag filled with a substitution liquid is used as the substitution liquid supply source. 前記置換液供給源として、置換液が充填された置換液ボトル又は置換液バッグを用い、
透析液回路を備え、
前記制御部は、前記脱血循環工程において、
前記除水工程として、前記血液浄化器において前記第2の流量と同じ流量で除水を行うと共に透析する透析工程を行い、
前記濾過工程として、前記置換液ラインを介して前記血液回路に置換液を第3の流量で注入し、前記血液浄化器において前記第2の流量に前記第3の流量を加えた流量で除水を行う共に透析する透析濾過工程を行う請求項1に記載の血液浄化装置。
Using a replacement liquid bottle or a replacement liquid bag filled with the replacement liquid as the replacement liquid supply source,
Equipped with a dialysate circuit,
In the blood removal circulation step, the control unit includes:
As the water removal step, a dialysis step is performed in which water is removed at the same flow rate as the second flow rate in the blood purifier and dialyzed;
In the filtration step, a replacement fluid is injected into the blood circuit via the replacement fluid line at a third flow rate, and water is removed in the blood purifier at a flow rate equal to the third flow rate added to the second flow rate. The blood purification apparatus according to claim 1, which performs a diafiltration step in which dialysis is performed at the same time as dialysis.
前記制御部は、前記脱血工程で、前記血液浄化器において前記第1の流量で除水を行うと共に、前記血液浄化器の上流側及び下流側の両方から前記血液回路に血液を導入する請求項1~5のいずれかに記載の血液浄化装置。 The control unit is configured to remove water in the blood purifier at the first flow rate in the blood removal step, and introduce blood into the blood circuit from both upstream and downstream sides of the blood purifier. Item 5. The blood purification device according to any one of Items 1 to 5. 前記治療工程は、前記返血工程後に前記血液回路の置換液及び血液を循環させて均質化する均質化工程を更に含む請求項1~6のいずれかに記載の血液浄化装置。 The blood purification device according to any one of claims 1 to 6, wherein the treatment step further includes a homogenization step of circulating and homogenizing the replacement fluid and blood in the blood circuit after the blood return step. 前記制御部は、前記均質化工程において、前記血液回路に前記第2の流量で血液を導入すると共に、前記血液浄化器において前記第2の流量と同じ流量で除水を行う請求項7に記載の血液浄化装置。 8. The control unit, in the homogenizing step, introduces blood into the blood circuit at the second flow rate and removes water in the blood purifier at the same flow rate as the second flow rate. blood purification device. 前記制御部は、前記返血工程において、前記血液回路の全てに置換液を流入させて返血する請求項1~6のいずれかに記載の血液浄化装置。 The blood purification device according to any one of claims 1 to 6, wherein, in the blood return step, the control unit returns blood by causing a replacement fluid to flow into all of the blood circuits. 前記制御部は、前記返血工程において、前記置換液ラインを介して前記血液回路に置換液を注入して返血を行う請求項1~9のいずれかに記載の血液浄化装置。 The blood purification device according to any one of claims 1 to 9, wherein the control unit returns blood by injecting a substitution fluid into the blood circuit via the substitution fluid line in the blood return step. 前記制御部は、
前記治療工程が所定の回数繰り返されるまでは、前記脱血循環工程において、前記除水工程を行い、その後は、前記濾過工程を行う請求項1~10のいずれかに記載の血液浄化装置。
The control unit includes:
The blood purification device according to any one of claims 1 to 10, wherein the water removal step is performed in the blood removal and circulation step until the treatment step is repeated a predetermined number of times, and thereafter the filtration step is performed.
JP2021548318A 2019-09-24 2020-04-24 blood purification device Active JP7396362B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019173229 2019-09-24
JP2019173229 2019-09-24
PCT/JP2020/017746 WO2021059573A1 (en) 2019-09-24 2020-04-24 Blood purification device

Publications (2)

Publication Number Publication Date
JPWO2021059573A1 JPWO2021059573A1 (en) 2021-04-01
JP7396362B2 true JP7396362B2 (en) 2023-12-12

Family

ID=75166941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021548318A Active JP7396362B2 (en) 2019-09-24 2020-04-24 blood purification device

Country Status (3)

Country Link
JP (1) JP7396362B2 (en)
CN (1) CN114423468A (en)
WO (1) WO2021059573A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277569B2 (en) 1992-09-30 2002-04-22 株式会社ジェイ・エム・エス Hemodiafiltration equipment
JP2005006980A (en) 2003-06-19 2005-01-13 Jms Co Ltd Hemodiafiltration device and its method
WO2012017959A1 (en) 2010-08-05 2012-02-09 日機装株式会社 Blood purifying device, and method for inspecting for liquid leakage therein
WO2018190433A1 (en) 2017-04-13 2018-10-18 株式会社ジェイ・エム・エス Method and device for determining state of connection of liquid replenishing line to blood circuit in hemodialysis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277569B2 (en) 1992-09-30 2002-04-22 株式会社ジェイ・エム・エス Hemodiafiltration equipment
JP2005006980A (en) 2003-06-19 2005-01-13 Jms Co Ltd Hemodiafiltration device and its method
WO2012017959A1 (en) 2010-08-05 2012-02-09 日機装株式会社 Blood purifying device, and method for inspecting for liquid leakage therein
WO2018190433A1 (en) 2017-04-13 2018-10-18 株式会社ジェイ・エム・エス Method and device for determining state of connection of liquid replenishing line to blood circuit in hemodialysis device

Also Published As

Publication number Publication date
WO2021059573A1 (en) 2021-04-01
JPWO2021059573A1 (en) 2021-04-01
CN114423468A (en) 2022-04-29

Similar Documents

Publication Publication Date Title
JP6685374B2 (en) Blood purification device and priming method thereof
JP3695506B2 (en) Dialysis machine and washing priming method
US6132616A (en) Method for flushing and filling of an extracorporeal blood circulation system of a dialysis machine
US5902476A (en) Artificial kidney for frequent (daily) hemodialysis
JP4091873B2 (en) Dialysis machine
JP4853956B2 (en) Blood circuit priming method
JP2000107283A (en) Dialysis apparatus and washing priming method
US20070185430A1 (en) Fluid, circuits, systems, and processes for extracorporeal blood processing
JP2002325837A (en) Automatic blood dialyzer system
CN110944692B (en) Method for operating a blood treatment device, control unit for carrying out the method and treatment device
CA3082247A1 (en) Extracorporeal blood treatment apparatus
JP3906477B2 (en) Method for priming blood circuit
US9095664B2 (en) Method and system for providing priming and restitution liquids for an extracorporeal blood treatment
JP3858260B2 (en) Blood purification equipment
JP7396362B2 (en) blood purification device
US20210213189A1 (en) Blood purification apparatus
JPH11226121A (en) Maintaining method and maintaining device for extracorporeal circulation teletherapeutic unit
WO2021059818A1 (en) Blood purification device
JP4442826B2 (en) Blood purification apparatus and priming method thereof
JP7293761B2 (en) Determining method for dialysis machine and circuit set
JP7367425B2 (en) blood purification device
JP7396180B2 (en) Dialysis device and control method
JP2011160924A (en) Blood purifier and liquid discharge method inside blood circuit in blood purifier
JP6642695B2 (en) Hemodialysis machine and control program
JP2003260129A (en) Hypertonic solution injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150