JP7395991B2 - Optical writing device, image forming device, and light amount detection method - Google Patents

Optical writing device, image forming device, and light amount detection method Download PDF

Info

Publication number
JP7395991B2
JP7395991B2 JP2019212432A JP2019212432A JP7395991B2 JP 7395991 B2 JP7395991 B2 JP 7395991B2 JP 2019212432 A JP2019212432 A JP 2019212432A JP 2019212432 A JP2019212432 A JP 2019212432A JP 7395991 B2 JP7395991 B2 JP 7395991B2
Authority
JP
Japan
Prior art keywords
light
organic
elements
amount
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212432A
Other languages
Japanese (ja)
Other versions
JP2021084231A (en
Inventor
昂紀 植村
義和 渡邊
壮太郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2019212432A priority Critical patent/JP7395991B2/en
Publication of JP2021084231A publication Critical patent/JP2021084231A/en
Application granted granted Critical
Publication of JP7395991B2 publication Critical patent/JP7395991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Heads (AREA)

Description

本開示は、光書き込み装置、画像形成装置および光量検出方法に関し、特に、発光素子の光量検出に要する時間を短縮する技術に関する。 The present disclosure relates to an optical writing device, an image forming apparatus, and a light amount detection method, and particularly relates to a technique for shortening the time required to detect the light amount of a light emitting element.

電子写真方式の画像形成装置は、一様に帯電させた感光体表面を露光して静電潜像を形成するために、光書き込み装置を備えている。光書き込み装置には、LD(Laser Diode)の出射光を偏向走査する光走査型や、半導体LED(Light Emitting Diode)や有機EL(Electro-Luminescence。OLED: Organic LEDともいう。)を多数配列したライン光学型などが知られている。 2. Description of the Related Art An electrophotographic image forming apparatus includes an optical writing device to expose a uniformly charged surface of a photoreceptor to form an electrostatic latent image. The optical writing device is of the optical scanning type that deflects and scans the emitted light of an LD (Laser Diode), or has a large array of semiconductor LEDs (Light Emitting Diodes) or organic EL (Electro-Luminescence. OLEDs: also referred to as organic LEDs). Line optical types are known.

光書き込み装置では、LDやLED、OLEDといった光学素子どうしで露光量を揃えることが、高画質を達成するうえで重要となる。例えば、OLEDは経年劣化や温度特性に起因して光量のバラツキが発生し、画像品質が劣化し得る。 In optical writing devices, it is important to equalize the exposure amount between optical elements such as LD, LED, and OLED in order to achieve high image quality. For example, OLEDs experience variations in light intensity due to aging and temperature characteristics, which can lead to deterioration in image quality.

このような問題に対して、例えば、発光素子ごとの温度特性のバラツキに起因する光量バラツキを補正するために、受光素子を用いて発光素子ごとに光量を検出し、この検出結果に応じて発光素子毎に光量を制御する技術が検討されている(例えば、特許文献1を参照)。このような技術を適用すれば、OLEDを用いた光書き込み装置においても、光量バラツキを補正し、画質を向上させることができる。 To solve this problem, for example, in order to correct for variations in the amount of light caused by variations in the temperature characteristics of each light emitting element, a light receiving element is used to detect the amount of light for each light emitting element, and light is emitted according to the detection result. Techniques for controlling the amount of light for each element are being considered (see, for example, Patent Document 1). If such a technique is applied, even in an optical writing device using an OLED, variations in light amount can be corrected and image quality can be improved.

特開2003-270564号公報Japanese Patent Application Publication No. 2003-270564

OLEDは出射光量が少なく、受光素子の検出信号が微弱であるため、検出信号を増幅する必要がある。しかしながら、検出信号を増幅すると、検出波形に波形なまりが生じる。従って、光量補正に十分な精度で光量を検出するためには、波形なまりが治まるのを待たなければならないので、光量検出に時間がかかってしまう。 Since the OLED emits a small amount of light and the detection signal of the light receiving element is weak, it is necessary to amplify the detection signal. However, when the detection signal is amplified, waveform rounding occurs in the detection waveform. Therefore, in order to detect the amount of light with sufficient accuracy for light amount correction, it is necessary to wait for the waveform rounding to subside, and therefore it takes time to detect the amount of light.

光量検出から光量補正までの処理を、いわゆる紙間において実施する場合に、処理に時間がかかり過ぎると、紙間が長くなってしまうので、印刷速度が低下してしまう、という問題がある。 When processing from light amount detection to light amount correction is performed between so-called paper intervals, if the processing takes too long, the paper interval becomes longer, resulting in a decrease in printing speed, which is a problem.

また、装置の小型化、低コスト化の観点からすれば、受光素子の個数をできるだけ少なくするのが望ましいが、光量検出は個々のOLEDについて順番に行うため、1つの受光素子で光量検出を行うOLEDの個数が多くなると、やはり検出時間が長くなるので、同様の問題が懸念される。 Furthermore, from the viewpoint of downsizing and cost reduction of the device, it is desirable to reduce the number of light receiving elements as much as possible, but since the light amount detection is performed for each OLED in turn, the light amount detection is performed with one light receiving element. As the number of OLEDs increases, the detection time also increases, so there is a concern that the same problem will occur.

本開示は、上述のような問題に鑑みて為されたものであって、OLED等の発光素子の光量を短時間で検出することができる光書き込み装置、画像形成装置および光量検出方法を提供することを目的とする。 The present disclosure has been made in view of the above problems, and provides an optical writing device, an image forming device, and a light amount detection method that can detect the amount of light of a light emitting element such as an OLED in a short time. The purpose is to

上記目的を達成するため、本開示の一形態に係る光書き込み装置は、感光体を露光して静電潜像を形成する光書き込み装置であって、複数の有機EL素子と、前記複数の有機EL素子を2以上の有機EL素子からなる複数の有機EL素子群に分けた場合に、各有機EL素子群に対応して設けられ、当該有機EL素子群に属する各有機EL素子の出射光を前記感光体の外周面上に集光する、複数のマイクロレンズと、前記複数の有機EL素子群に対応して設けられ、当該有機EL素子群に属する有機EL素子ごとに光量を検出する複数の受光素子と、前記受光素子ごとに、当該受光素子が光量を検出する有機EL素子の発光順序を記憶する記憶部と、前記受光素子ごとに、前記有機EL素子前記発光順序にしたがって順次発光させて、前記受光素子に光量を検出させる光量検出部と、前記光量検出部が受光素子に検出させた光量に応じて有機EL素子ごとに光量補正を行う光量補正部と、前記受光素子ごとに、前記光量検出部が当該受光素子に検出させた光量が単調に増加または減少する有機EL素子の順序を、次の発光順序として前記記憶部に記憶させる更新部と、を備えることを特徴とする。 In order to achieve the above object, an optical writing device according to an embodiment of the present disclosure is an optical writing device that exposes a photoconductor to form an electrostatic latent image, and includes a plurality of organic EL elements and a plurality of organic EL elements. When an EL element is divided into a plurality of organic EL element groups each consisting of two or more organic EL elements, a method is provided corresponding to each organic EL element group to detect the emitted light of each organic EL element belonging to the organic EL element group. A plurality of microlenses condensing light onto the outer circumferential surface of the photoreceptor, and a plurality of microlenses provided corresponding to the plurality of organic EL element groups and detecting the amount of light for each organic EL element belonging to the organic EL element group. a light-receiving element; a storage unit that stores, for each of the light-receiving elements, a light emission order of an organic EL element whose amount of light is detected by the light-receiving element ; a light amount detection section that causes the light receiving element to detect the amount of light; a light amount correction section that performs light amount correction for each organic EL element according to the amount of light that the light amount detection section causes the light receiving element to detect; and for each of the light receiving elements; The present invention is characterized by comprising an updating section that causes the storage section to store the order of organic EL elements in which the amount of light detected by the light receiving element monotonically increases or decreases by the light amount detection section as the next light emitting order .

この場合において、出荷前に、前記有機EL素子を順次発光させて、前記受光素子に光量を検出させる出荷前検出部と、前記受光素子ごとに、前記出荷前検出部が当該受光素子に検出させた光量が単調に増加または減少する有機EL素子の順序を、発光順序として前記記憶部に記憶させる初期設定部と、を備えてもよい。 In this case, the pre-shipment detection section causes the organic EL elements to sequentially emit light and causes the light receiving element to detect the amount of light, and the pre-shipment detection section causes the light receiving element to detect the amount of light for each of the light receiving elements. The display device may further include an initial setting unit that causes the storage unit to store, as a light emitting order, an order in which organic EL elements monotonically increase or decrease in light amount.

また、本開示の別の一形態に係る光書き込み装置は、感光体を露光して静電潜像を形成する光書き込み装置であって、複数の有機EL素子と、前記複数の有機EL素子を2以上の有機EL素子からなる複数の有機EL素子群に分けた場合に、各有機EL素子群に対応して設けられ、当該有機EL素子群に属する各有機EL素子の出射光を前記感光体の外周面上に集光する、複数のマイクロレンズと、前記複数の有機EL素子群に対応して設けられ、当該有機EL素子群に属する有機EL素子ごとに光量を検出する複数の受光素子と、前記受光素子ごとに、当該受光素子が光量を検出する有機EL素子の発光順序を記憶する記憶部と、前記受光素子ごとに、前記有機EL素子を前記発光順序にしたがって順次発光させて、前記受光素子に光量を検出させる光量検出部と、前記光量検出部が受光素子に検出させた光量に応じて有機EL素子ごとに光量補正を行う光量補正部と、前記受光素子ごとに、前記光量検出部による補正後の有機EL素子ごとの出射光量に、当該有機EL素子ごとの当該受光素子への入射効率を乗算して得られた入射光量が単調に増加または減少する当該有機EL素子の順序を、次の発光順序として前記記憶部に記憶させる更新部と、を備えることを特徴とする。 Further, an optical writing device according to another embodiment of the present disclosure is an optical writing device that exposes a photoreceptor to form an electrostatic latent image, and includes a plurality of organic EL elements and a plurality of organic EL elements. When divided into a plurality of organic EL element groups consisting of two or more organic EL elements, each organic EL element is provided corresponding to each organic EL element group, and the emitted light of each organic EL element belonging to the organic EL element group is transferred to the photoreceptor. a plurality of microlenses that condense light on the outer peripheral surface of the organic EL element group; and a plurality of light receiving elements that are provided corresponding to the plurality of organic EL element groups and detect the amount of light for each organic EL element belonging to the organic EL element group. , a storage unit that stores, for each of the light receiving elements, the light emission order of the organic EL elements whose light intensity is detected by the light receiving element; a light amount detection section that causes the light receiving element to detect the amount of light; a light amount correction section that performs light amount correction for each organic EL element according to the amount of light detected by the light receiving element by the light amount detection section; The order of the organic EL elements in which the incident light amount obtained by multiplying the output light amount of each organic EL element after correction by the department by the incident efficiency of each organic EL element to the light receiving element is monotonically increased or decreased. , and an updating section that causes the storage section to store the next light emission order.

この場合において、出荷前に、前記受光素子ごとに、前記有機EL素子に対応するマイクロレンズのレンズ効率の逆数に、当該有機EL素子ごとの当該受光素子への入射効率を乗算して、当該算出値が単調に増加または減少する有機EL素子の順序を、発光順序として前記記憶部に記憶させる初期設定部を備えてもよい。 In this case, before shipping , for each light receiving element, the reciprocal of the lens efficiency of the microlens corresponding to the organic EL element is multiplied by the efficiency of incidence on the light receiving element for each organic EL element, and the calculation is performed. The light emitting device may include an initial setting section that causes the storage section to store an order of organic EL elements whose values monotonically increase or decrease as a light emission order .

また、本開示の一形態に係る画像形成装置は、感光体と、前記感光体表面を一様に帯電させる帯電装置と、本開示の一形態に係る光書き込み装置と、を備え、前記一様に帯電した感光体表面に、前記光書き込み装置の出射光を照射して、静電潜像を形成してもよい。 Further, an image forming apparatus according to an embodiment of the present disclosure includes a photoreceptor, a charging device that uniformly charges a surface of the photoreceptor, and an optical writing device according to an embodiment of the present disclosure. An electrostatic latent image may be formed by irradiating the surface of the photoreceptor charged with light emitted from the optical writing device.

また、本開示の一形態に係る光量検出方法は、複数の有機EL素子と、前記複数の有機EL素子を2以上の有機EL素子からなる複数の有機EL素子群に分けた場合に、各有機EL素子群に対応して設けられ、当該有機EL素子群に属する各有機EL素子の出射光を感光体の外周面上に集光する複数のマイクロレンズと、前記複数の有機EL素子群に対応して設けられ、当該有機EL素子群に属する有機EL素子ごとに光量を検出する複数の受光素子と、前記受光素子ごとに、当該受光素子が光量を検出する有機EL素子の発光順序を記憶する記憶部と、を有し、前記感光体を露光して静電潜像を形成する光書き込み装置が使用する光量検出方法であって、前記受光素子ごとに、前記記憶部に記憶されている順番で、前記有機EL素子を順次発光させて、前記受光素子に光量を検出させる光量検出ステップと、前記受光素子ごとに、前記光量検出ステップにおいて当該受光素子が検出した光量が単調に増加または減少する有機EL素子の順序を、次の発光順序として前記記憶部に記憶させる更新ステップと、を含むことを特徴とする。 Further, in the light amount detection method according to one embodiment of the present disclosure, when the plurality of organic EL elements and the plurality of organic EL elements are divided into a plurality of organic EL element groups each including two or more organic EL elements, each organic EL element a plurality of microlenses that are provided corresponding to the EL element group and condense emitted light from each organic EL element belonging to the organic EL element group onto the outer peripheral surface of the photoreceptor ; A plurality of light-receiving elements are provided correspondingly to detect the amount of light for each organic EL element belonging to the organic EL element group, and for each of the light-receiving elements, a light emission order of the organic EL elements whose light amount is detected by the light-receiving element is stored. A light amount detection method used in an optical writing device that exposes the photoreceptor to form an electrostatic latent image, the method comprising: a storage section that stores information for each of the light receiving elements in the storage section; a light amount detection step of sequentially causing the organic EL elements to emit light and causing the light receiving element to detect the amount of light; and for each of the light receiving elements, the amount of light detected by the light receiving element in the light amount detecting step monotonically increases or decreases. The method is characterized in that it includes an updating step of storing the order of the organic EL elements to be emitted in the storage section as the next light emission order.

このようにすれば、前記検出光量が単調に増加または減少すると推定される順序で、発光素子を発光させるので、発光素子の光量検出に要する時間を短縮することができる。 In this way, the light emitting elements are caused to emit light in the order in which the detected light amount is estimated to monotonically increase or decrease, so the time required to detect the light amount of the light emitting elements can be shortened.

本開示の実施の形態に係る画像形成装置の主要な構成を示す図である。1 is a diagram showing the main configuration of an image forming apparatus according to an embodiment of the present disclosure. 光書き込み装置100の主要な光学構成を示す図である。1 is a diagram showing the main optical configuration of an optical writing device 100. FIG. G1レンズ211の主要な構成を示す平面図である。FIG. 2 is a plan view showing the main configuration of a G1 lens 211. FIG. 絞り213の主要な構成を示す平面図である。FIG. 2 is a plan view showing the main configuration of an aperture 213. FIG. 発光基板200の主要な構成を示す平面図である。2 is a plan view showing the main configuration of a light emitting substrate 200. FIG. (a)は発光素子510の出射光量に対する受光素子203の入射光量であるPD入射効率を説明する図であり、(b)は感光体ドラム101の外周面における露光量(PD面上光量)を発光素子510どうしで揃えた場合における、発光素子510毎の発光光量と、発光素子510毎の受光素子203の入射光量(PD入射光量)を説明するグラフである。(a) is a diagram illustrating the PD incidence efficiency, which is the amount of light incident on the light receiving element 203 relative to the amount of light emitted from the light emitting element 510, and (b) is a diagram illustrating the amount of exposure on the outer peripheral surface of the photoreceptor drum 101 (the amount of light on the PD surface). It is a graph explaining the amount of light emitted by each light emitting element 510 and the amount of light incident on the light receiving element 203 (PD incident light amount) for each light emitting element 510 when the light emitting elements 510 are aligned. 制御部150の主要な構成を示すブロック図である。2 is a block diagram showing the main configuration of a control section 150. FIG. 光書き込み装置100の主要な制御構成を示すブロック図である。1 is a block diagram showing the main control configuration of an optical writing device 100. FIG. (a)は増幅器803によって増幅された受光素子203の検出電位の変遷を例示するグラフであり、(b)は順番テーブル805における順番で発光素子510を点灯した場合における受光素子203の入射光量を例示するグラフである。(a) is a graph illustrating the transition of the detection potential of the light receiving element 203 amplified by the amplifier 803, and (b) is a graph showing the amount of light incident on the light receiving element 203 when the light emitting elements 510 are turned on in the order in the order table 805. This is an illustrative graph. 光書き込み装置100の光量補正動作を説明するフローチャートである。5 is a flowchart illustrating a light amount correction operation of the optical writing device 100. 本開示の変形例に係る順番テーブル805における順番で発光素子510を点灯した場合における受光素子203の入射光量を例示するグラフである。It is a graph illustrating the amount of light incident on the light receiving element 203 when the light emitting elements 510 are turned on in the order in the order table 805 according to a modification of the present disclosure.

以下、本開示に係る光書き込み装置、画像形成装置および光量検出方法の実施の形態について、図面を参照しながら説明する。
[1]画像形成装置の構成
まず、本実施の形態に係る画像形成装置の構成について説明する。
Embodiments of an optical writing device, an image forming device, and a light amount detection method according to the present disclosure will be described below with reference to the drawings.
[1] Configuration of Image Forming Apparatus First, the configuration of the image forming apparatus according to the present embodiment will be described.

図1に示すように、画像形成装置1は、所謂タンデム方式のカラープリンターであって、イエロー(Y)、マゼンタ(M)、シアン(C)及びブラック(K)各色のトナー像を形成する作像部110Y、110M、110C及び110Kを備えている。作像部110Y、110M、110C及び110Kは、矢印A方向に回転する感光体ドラム101Y、101M、101C及び101Kを有している。 As shown in FIG. 1, an image forming apparatus 1 is a so-called tandem color printer, and is capable of forming toner images of yellow (Y), magenta (M), cyan (C), and black (K). It includes image sections 110Y, 110M, 110C, and 110K. The image forming units 110Y, 110M, 110C, and 110K have photoreceptor drums 101Y, 101M, 101C, and 101K that rotate in the direction of arrow A.

感光体ドラム101Y、101M、101C及び101Kの周囲には外周面に沿って順に帯電装置102Y、102M、102C及び102K、光書き込み装置100Y、100M、100C及び100K、現像装置103Y、103M、103C及び103K、1次転写ローラー104Y、104M、104C及び104K及びクリーニング装置105Y、105M、105C及び105Kが配設されている。 Around the photoreceptor drums 101Y, 101M, 101C and 101K, charging devices 102Y, 102M, 102C and 102K, optical writing devices 100Y, 100M, 100C and 100K, and developing devices 103Y, 103M, 103C and 103K are arranged in order along the outer peripheral surface. , primary transfer rollers 104Y, 104M, 104C, and 104K, and cleaning devices 105Y, 105M, 105C, and 105K are provided.

帯電装置102Y、102M、102C及び102Kは感光体ドラム101Y、101M、101C及び101Kの外周面を一様に帯電させる。光書き込み装置100Y、100M、100C及び100Kは、いわゆるOLED-PH(Organic Light Emitting Diode - Print Head)であって、感光体ドラム101Y、101M、101C及び101Kの外周面を露光して静電潜像を形成する。 The charging devices 102Y, 102M, 102C, and 102K uniformly charge the outer peripheral surfaces of the photoreceptor drums 101Y, 101M, 101C, and 101K. The optical writing devices 100Y, 100M, 100C and 100K are so-called OLED-PH (Organic Light Emitting Diode - Print Head), which expose the outer peripheral surfaces of the photoreceptor drums 101Y, 101M, 101C and 101K to form electrostatic latent images. form.

現像装置103Y、103M、103C及び103KはYMCK各色のトナーを供給して静電潜像を現像し、YMCK各色のトナー像を形成する。1次転写ローラー104Y、104M、104C及び104Kは感光体ドラム101Y、101M、101C及び101Kが担持するトナー像を中間転写ベルト106へ静電転写する(1次転写)。 The developing devices 103Y, 103M, 103C, and 103K supply toners of each color of YMCK to develop the electrostatic latent image, thereby forming toner images of each color of YMCK. Primary transfer rollers 104Y, 104M, 104C, and 104K electrostatically transfer the toner images carried by photoreceptor drums 101Y, 101M, 101C, and 101K onto intermediate transfer belt 106 (primary transfer).

クリーニング装置105Y、105M、105C及び105Kは、1次転写後に感光体ドラム101Y、101M、101C及び101Kの外周面上に残留する電荷を除電すると共に残留トナーを除去する。なお、以下において、作像部110Y、110M、110C及び110Kに共通する構成について説明する際にはYMCKの文字を省略する。 The cleaning devices 105Y, 105M, 105C, and 105K eliminate charges remaining on the outer peripheral surfaces of the photoreceptor drums 101Y, 101M, 101C, and 101K after the primary transfer, and remove residual toner. Note that, below, when describing the configuration common to the image forming units 110Y, 110M, 110C, and 110K, the letters YMCK will be omitted.

中間転写ベルト106は、無端状のベルトであって、2次転写ローラー対107及び従動ローラー108、109に張架されており、矢印B方向に回転走行する。この回転走行に合わせて1次転写することによって、YMCK各色のトナー像が互いに重ね合わされカラートナー像が形成される。中間転写ベルト106はカラートナー像を担持した状態で回転走行することによって、カラートナー像を2次転写ローラー対107の2次転写ニップまで搬送する。 The intermediate transfer belt 106 is an endless belt, stretched around a pair of secondary transfer rollers 107 and driven rollers 108 and 109, and rotates in the direction of arrow B. By performing primary transfer in accordance with this rotational movement, toner images of each color of YMCK are superimposed on each other to form a color toner image. The intermediate transfer belt 106 rotates while carrying the color toner image, thereby conveying the color toner image to a secondary transfer nip of a pair of secondary transfer rollers 107 .

2次転写ローラー対107を構成する2つのローラーは互いに圧接されることによって2次転写ニップを形成する。これらのローラー間には2次転写電圧が印加されている。中間転写ベルト106によるカラートナー像の搬送にタイミングを合わせて給紙トレイ120から記録シートSが供給されると、2次転写ニップにおいてカラートナー像が記録シートSに静電転写される(2次転写)。 The two rollers forming the secondary transfer roller pair 107 are pressed against each other to form a secondary transfer nip. A secondary transfer voltage is applied between these rollers. When the recording sheet S is supplied from the paper feed tray 120 in synchronization with the conveyance of the color toner image by the intermediate transfer belt 106, the color toner image is electrostatically transferred onto the recording sheet S in the secondary transfer nip (secondary transfer). transcription).

記録シートSは、カラートナー像を担持した状態で定着装置130まで搬送され、カラートナー像を熱定着された後、排紙トレイ140上へ排出される。 The recording sheet S carrying the color toner image is conveyed to the fixing device 130, and after the color toner image is thermally fixed, the recording sheet S is discharged onto the paper discharge tray 140.

画像形成装置1は、更に制御部150を備えている。制御部150は、PC(Personal Computer)等の外部装置から印刷ジョブを受け付けると、画像形成装置1の動作を制御して画像形成を実行させる。 The image forming apparatus 1 further includes a control section 150. When the control unit 150 receives a print job from an external device such as a PC (Personal Computer), the control unit 150 controls the operation of the image forming apparatus 1 to execute image formation.

また、検出部160は、中間転写ベルト106が担持するYMCK各色のモノクロトナー像を検出する。検出部160としては、例えば、CCD(Charge Coupled Device)センサーを用いることができるが、他のセンサーを用いてもよい。
[2]光書き込み装置100の構成
次に、光書き込み装置100の構成について説明する。
Further, the detection unit 160 detects the monochrome toner images of each color of YMCK carried by the intermediate transfer belt 106. As the detection unit 160, for example, a CCD (Charge Coupled Device) sensor can be used, but other sensors may also be used.
[2] Configuration of optical writing device 100 Next, the configuration of the optical writing device 100 will be described.

図2に示すように、光書き込み装置100は、発光基板200とマイクロレンズアレイ210とを不図示のホルダーで支持したものである。ホルダーは、ゴミが入らないように、発光基板200とマイクロレンズアレイ210とを覆っている。また、光書き込み装置100と画像形成装置1の各部とを接続するためのケーブル等についても図示が省略されている。 As shown in FIG. 2, the optical writing device 100 includes a light emitting substrate 200 and a microlens array 210 supported by a holder (not shown). The holder covers the light emitting substrate 200 and the microlens array 210 to prevent dust from entering. Further, illustrations of cables and the like for connecting the optical writing device 100 and each part of the image forming apparatus 1 are also omitted.

マイクロレンズアレイ210は、G1レンズ211、G2レンズ212および絞り213を備えており、2枚玉のテレセントリック光学系になっている。G1レンズ211はガラス基板211bと樹脂製のマイクロレンズ211lとからなり、G2レンズ212はガラス基板212bと樹脂製のマイクロレンズ212lとからなっている。絞り213は不透明かつ平板な部材であって、光軸方向からの平面視においてマイクロレンズ211l、212lに対応する位置に貫通孔213hが設けられている。 The microlens array 210 includes a G1 lens 211, a G2 lens 212, and an aperture 213, and is a two-element telecentric optical system. The G1 lens 211 consists of a glass substrate 211b and a resin microlens 211l, and the G2 lens 212 consists of a glass substrate 212b and a resin microlens 212l. The diaphragm 213 is an opaque and flat member, and is provided with through holes 213h at positions corresponding to the microlenses 211l and 212l when viewed in plan from the optical axis direction.

G1レンズ211は発光基板200の出射光を平行化し、絞り213は平行化された光の通過範囲を制限し、G2レンズ212は平行光を感光体ドラム101の外周面上に集光する。なお、G1レンズ211はガラス基板211bの両面にマイクロレンズ211lが形成されているのに対して、G2レンズ212はガラス基板212bのG1レンズ211に対向する主面にのみマイクロレンズ212lが形成されている。 The G1 lens 211 collimates the light emitted from the light emitting substrate 200, the aperture 213 limits the passage range of the collimated light, and the G2 lens 212 focuses the collimated light onto the outer peripheral surface of the photoreceptor drum 101. Note that the G1 lens 211 has microlenses 211l formed on both sides of the glass substrate 211b, whereas the G2 lens 212 has microlenses 212l formed only on the main surface of the glass substrate 212b facing the G1 lens 211. There is.

図3に示すように、G1レンズ211は主走査方向に長尺になっている。光軸方向からの平面視において、マイクロレンズ211lは主走査方向に沿って千鳥状に配列されている。本実施の形態においては、3個の結像レンズから構成された結像レンズ列301が主走査方向に沿って配設されている。マイクロレンズ211lの外径R1は数μmから数mmまでの範囲内である。G2レンズ212は光軸方向からの平面視においてG1レンズ211と同様の構成を備えている。 As shown in FIG. 3, the G1 lens 211 is elongated in the main scanning direction. In plan view from the optical axis direction, the microlenses 211l are arranged in a staggered manner along the main scanning direction. In this embodiment, an imaging lens array 301 composed of three imaging lenses is arranged along the main scanning direction. The outer diameter R1 of the microlens 211l is within the range of several μm to several mm. The G2 lens 212 has the same configuration as the G1 lens 211 when viewed in plan from the optical axis direction.

図4に示すように、絞り213もまた主走査方向に長尺になっており、光軸方向からの平面視において、マイクロレンズ211l、212lに対応する位置に貫通孔213hが設けられている。このため、貫通孔列213hもまた千鳥配列になっている。貫通孔213hの外径はマイクロレンズ211lの外径よりも小さい。 As shown in FIG. 4, the aperture 213 is also elongated in the main scanning direction, and through holes 213h are provided at positions corresponding to the microlenses 211l and 212l when viewed in plan from the optical axis direction. Therefore, the through hole rows 213h are also arranged in a staggered manner. The outer diameter of the through hole 213h is smaller than the outer diameter of the microlens 211l.

発光基板200は、ガラス基板202上に発光素子群201と当該発光素子群201の出射光を発光素子ごとに受光する受光素子203とを形成したものである。図5に示すように、発光基板200もまた主走査方向に長尺になっており、光軸方向からの平面視において、マイクロレンズ211l、212lおよび貫通孔213hに対応する位置に発光素子群201が設けられている。すなわち、光軸方向からの平面視において、発光素子群201が主走査方向に沿って千鳥状に配列されている。 The light-emitting substrate 200 has a light-emitting element group 201 and a light-receiving element 203 that receives light emitted from the light-emitting element group 201 for each light-emitting element on a glass substrate 202. As shown in FIG. 5, the light emitting substrate 200 is also elongated in the main scanning direction, and a light emitting element group 201 is located at a position corresponding to the microlenses 211l, 212l and the through hole 213h when viewed from the optical axis direction. is provided. That is, in plan view from the optical axis direction, the light emitting element group 201 is arranged in a staggered manner along the main scanning direction.

発光素子群201はそれぞれ複数の発光素子510を千鳥配置したものである。発光素子510としてはOLEDを用いる。発光素子群201と受光素子203と組はどちらもマイクロレンズ211l、212lおよび貫通孔213hと1対1に対応しており、発光素子群201の出射光は、対応するマイクロレンズ211l、212lおよび貫通孔213hを経由して、感光体ドラム101の外周面上に発光素子510ごとに集光される。 Each light emitting element group 201 has a plurality of light emitting elements 510 arranged in a staggered manner. As the light emitting element 510, an OLED is used. Both the light emitting element group 201 and the light receiving element 203 have a one-to-one correspondence with the micro lenses 211l, 212l and the through hole 213h, and the light emitted from the light emitting element group 201 is transmitted through the corresponding micro lenses 211l, 212l and the through hole 213h. The light is focused on the outer peripheral surface of the photoreceptor drum 101 for each light emitting element 510 via the hole 213h.

図6(a)に示すように、発光素子510と光学素子(マイクロレンズ211l、212lおよび貫通孔213h)並びに感光体ドラム101との位置関係は固定されているため、発光素子510毎の光学素子の集光力もまた固定されている。感光体ドラム101の外周面上での露光量のバラツキを無くすためには、発光素子510はそれぞれ光学素子の集光力に応じた光量で発光する必要がある(図6(b))。 As shown in FIG. 6A, since the positional relationship between the light emitting element 510, the optical elements (microlenses 211l, 212l, and through hole 213h), and the photosensitive drum 101 is fixed, the optical element for each light emitting element 510 The light gathering power of is also fixed. In order to eliminate variations in the amount of exposure on the outer peripheral surface of the photoreceptor drum 101, each light emitting element 510 needs to emit light with an amount of light corresponding to the light gathering power of the optical element (FIG. 6(b)).

また、発光素子510毎に受光素子203との位置関係が異なっているため、発光素子510の出射光量に対する受光素子203への入射する光量の割合であるPD(Photo Detector)入射効率もまた発光素子510毎に異なる。従って、発光素子510の光量検出の際には、受光素子203の検出光量とPD入射効率とを併せて考慮する必要がある(図6(b))。
[3]制御部150の構成
次に、制御部150の構成について説明する。
Furthermore, since the positional relationship with the light receiving element 203 differs for each light emitting element 510, the PD (Photo Detector) incidence efficiency, which is the ratio of the amount of light incident on the light receiving element 203 to the amount of light emitted from the light emitting element 510, also differs between the light emitting elements. Different for each 510. Therefore, when detecting the amount of light from the light emitting element 510, it is necessary to consider both the amount of light detected by the light receiving element 203 and the PD incidence efficiency (FIG. 6(b)).
[3] Configuration of control unit 150 Next, the configuration of control unit 150 will be described.

図6に示すように、制御部150は、CPU(Central Processing Unit)601、ROM(Read Only Memory)602およびRAM(Random Access Memory)603等を備えており、画像形成装置1に電源が投入されると、CPU601はROM602からブートプログラムを読み出して起動し、RAM603を作業用の記憶領域として、HDD(Hard Disk Drive)604から読み出したOS(Operating System)や制御プログラムを実行する。 As shown in FIG. 6, the control unit 150 includes a CPU (Central Processing Unit) 601, a ROM (Read Only Memory) 602, a RAM (Random Access Memory) 603, etc. Then, the CPU 601 reads the boot program from the ROM 602 and starts it up, and uses the RAM 603 as a working storage area to execute the OS (Operating System) and control programs read from the HDD (Hard Disk Drive) 604.

CPU601は、更にNIC(Network Interface Card)605を用いて、LAN607に接続されているパーソナル・コンピューター(PC: Personal Computer)等の外部装置から印刷ジョブを受け付けると、作像部110Y、110M、110Cおよび110Kや定着装置130等を制御して記録シートS上に画像を形成する。 Further, when the CPU 601 receives a print job from an external device such as a personal computer (PC) connected to the LAN 607 using the NIC (Network Interface Card) 605, the CPU 601 sends the image forming units 110Y, 110M, 110C and the like. 110K, a fixing device 130, etc., to form an image on the recording sheet S.

ASIC(Application Specific Integrated Circuit)606は、光書き込み装置100に対する制御を行う。光書き込み装置100は、ドライバーIC(Integrated Circuit)610を備えている。ドライバーIC610は、ASICからの制御信号を受け付けると、発光素子510の点消灯など、光書き込み装置100の動作を制御する。
[4]光書き込み装置100の構成
次に、光書き込み装置100の構成について説明する。
An ASIC (Application Specific Integrated Circuit) 606 controls the optical writing device 100. The optical writing device 100 includes a driver IC (Integrated Circuit) 610. Upon receiving a control signal from the ASIC, the driver IC 610 controls operations of the optical writing device 100, such as turning on and off the light emitting element 510.
[4] Configuration of optical writing device 100 Next, the configuration of the optical writing device 100 will be described.

図8に示すように、光書き込み装置100にはドライバーIC610が搭載されている。ドライバー610の制御部801はASIC606から画像データを受け付けると、当該画像データから発光素子510毎のVIDEO信号を生成して、定電流源802に入力する。定電流源802が、VIDEO信号に応じた電流量の駆動電流を発光素子510に供給すると、当該駆動電流に応じた光量で発光素子510が発光する。 As shown in FIG. 8, the optical writing device 100 is equipped with a driver IC 610. When the control unit 801 of the driver 610 receives image data from the ASIC 606, it generates a VIDEO signal for each light emitting element 510 from the image data and inputs it to the constant current source 802. When the constant current source 802 supplies the light emitting element 510 with a drive current having an amount of current corresponding to the VIDEO signal, the light emitting element 510 emits light with an amount of light corresponding to the drive current.

発光素子510の光量検出時には、同じ光学素子(マイクロレンズ211l、212lおよび貫通孔213h)に対応する複数の発光素子510が順番に点灯し、受光素子203が発光素子510毎に光量を検出する。受光素子203の検出信号は、増幅器803によって増幅され、制御部801に入力される。このため、検出信号にはなまりが発生する。 When detecting the light amount of the light emitting element 510, a plurality of light emitting elements 510 corresponding to the same optical element (microlenses 211l, 212l and through hole 213h) are turned on in order, and the light receiving element 203 detects the light amount for each light emitting element 510. The detection signal of the light receiving element 203 is amplified by the amplifier 803 and input to the control section 801. Therefore, the detection signal is distorted.

例えば、図9(a)に示すように、受光素子203の検出信号が新たな受光量を検出する前の電位(以下、「検出前電位」という。)から検出後の電位(以下、「検出後電位」という。)に移行する際には、検出前電位から検出後電位に近づくに連れて、電位の変化速度が漸減するため、電位が検出後電位に収束するのに時間がかかる。 For example, as shown in FIG. 9(a), the detection signal of the light receiving element 203 changes from the potential before detecting a new amount of light received (hereinafter referred to as "pre-detection potential") to the potential after detection (hereinafter referred to as "detection potential"). When shifting to the post-detection potential (hereinafter referred to as "post-detection potential"), the rate of change in potential gradually decreases as the pre-detection potential approaches the post-detection potential, so it takes time for the potential to converge to the post-detection potential.

また、検出前電位と検出後電位との電位差が大きいほど、検出前電位から検出後電位まで移行するのに要する時間が長くなる。このため、検出前電位よりも検出後電位の方が高くなったり、低くなったりを繰り返すと、電位の移行時間の総和が大きくなるので、光量検出に要する時間が長くなってしまう。 Furthermore, the larger the potential difference between the pre-detection potential and the post-detection potential, the longer the time required to shift from the pre-detection potential to the post-detection potential. For this reason, if the post-detection potential repeatedly becomes higher and lower than the pre-detection potential, the total transition time of the potential increases, and the time required to detect the amount of light increases.

これに対して、本実施の形態では、記憶部804に光量検出時に発光素子510を点灯させる順番を設定した順番テーブル805が記憶させており、この順番は、図9(b)に示すように、次回の光量検出時に、受光素子203の受光素子203の入射光量(PD入射光量)の降順になると推定される順序になっている。このようにすれば、順番テーブル805で設定された順番において隣り合う発光素子510どうしで受光素子203の入射光量の差が小さくなると期待されるので、受光素子203の検出電位の差が小さくなり、検出電位の移行時間を短縮することができる。 In contrast, in the present embodiment, an order table 805 is stored in the storage unit 804 in which the order in which the light emitting elements 510 are turned on when detecting the amount of light is stored, and this order is stored as shown in FIG. 9(b). , the order is estimated to be in descending order of the amount of light incident on the light receiving element 203 (the amount of light incident on the PD) at the time of the next light amount detection. By doing this, it is expected that the difference in the amount of light incident on the light receiving elements 203 between adjacent light emitting elements 510 in the order set in the order table 805 will be reduced, so the difference in the detection potential of the light receiving elements 203 will be reduced. The transition time of the detection potential can be shortened.

なお、制御部801は、受光素子203の検出電位が安定した時点で、発光中の発光素子210を消灯し、次の発光素子210を点灯する。
[5]光書き込み装置100の動作
次に、光書き込み装置100の動作について説明する。
Note that, when the detected potential of the light receiving element 203 becomes stable, the control unit 801 turns off the light emitting element 210 that is currently emitting light, and turns on the next light emitting element 210.
[5] Operation of optical writing device 100 Next, the operation of optical writing device 100 will be explained.

図10に示すように、光書き込み装置100は、紙間になると(S1001:YES)、記憶部804から順番テーブル805を読み出すとともに(S1002)、発光素子510の点灯順位を表す作業用変数iの値を1に初期化する(S1003)。 As shown in FIG. 10, when the paper interval is reached (S1001: YES), the optical writing device 100 reads out the order table 805 from the storage unit 804 (S1002), and sets the working variable i representing the lighting order of the light emitting elements 510. The value is initialized to 1 (S1003).

次に、光書き込み装置100は、順番テーブル805を参照して、点灯順位がi番目の発光素子を特定し、点灯する(S1004)。その後、i番目の発光素子の出射光を受光した受光素子203の出力を増幅器803が増幅した検出電位を繰り返し参照して(S1005)、検出電位が安定したら(S1006:YES)、当該検出電位を記録して(S1007)、i番目の発光素子510を消灯する(S1008)。 Next, the optical writing device 100 refers to the order table 805, identifies the light emitting element with the i-th lighting order, and lights it up (S1004). After that, the amplifier 803 amplifies the output of the light receiving element 203 that received the light emitted from the i-th light emitting element, and repeatedly refers to the detection potential (S1005), and when the detection potential becomes stable (S1006: YES), the detection potential is The information is recorded (S1007), and the i-th light emitting element 510 is turned off (S1008).

その後、点灯順位iが発光素子数N未満である場合には(S1009:YES)、点灯順位iの値を1だけ増加させて、ステップS1004に進み、上記の処理を繰り返す。また、点灯順位iが発光素子数Nに達した場合には(S1009:NO)、発光素子510毎に記録しておいた検出電位を読み出して、当該発光素子510の駆動電流量を補正する(S1010)。 After that, if the lighting order i is less than the number N of light emitting elements (S1009: YES), the value of the lighting order i is increased by 1, the process advances to step S1004, and the above process is repeated. Further, when the lighting order i reaches the number N of light emitting elements (S1009: NO), the detected potential recorded for each light emitting element 510 is read out, and the drive current amount of the light emitting element 510 is corrected ( S1010).

例えば、発光素子510毎の検出電位から発光素子510毎に受光素子203に入射した光量を求め、当該入射光量をPD入射効率で除算して発光素子510毎の出射光量を求める。次に、発光素子510毎の出射光量に発光素子510毎のレンズ効率を乗算して発光素子510毎の露光量を求めて、発光素子510どうしで共通の露光量の目標値と比較し、当該発光素子510の駆動電流量を補正する。 For example, the amount of light incident on the light receiving element 203 for each light emitting element 510 is determined from the detected potential of each light emitting element 510, and the amount of emitted light for each light emitting element 510 is determined by dividing the amount of incident light by the PD incidence efficiency. Next, the amount of light emitted from each light emitting element 510 is multiplied by the lens efficiency of each light emitting element 510 to obtain the amount of exposure for each light emitting element 510, and this is compared with the target value of the exposure amount common to the light emitting elements 510. The amount of driving current of the light emitting element 510 is corrected.

なお、発光素子510毎にレンズ効率を記憶して、発光素子510毎に出射光量から露光量を算出するのに代えて、発光素子510毎に予め出射光量の目標値を記憶しておいてもよい。 Note that instead of storing the lens efficiency for each light emitting element 510 and calculating the exposure amount from the amount of emitted light for each light emitting element 510, a target value of the amount of emitted light may be stored in advance for each light emitting element 510. good.

また、発光素子510毎に記録しておいた検出電位を読み出して、当該検出電位の降順になるように、順番テーブル805の順番を設定し直して(S1011)、ステップS1001へ進み、上記の処理を繰り返す。画像形成装置1の使い方が一定の傾向を有している場合には、次回の光量検出時にも今回の検出するであろう光量と同様の大小関係を有する光量が検出される可能性が高いと推定される。 Further, the detected potential recorded for each light emitting element 510 is read out, and the order of the order table 805 is reset so that it is in descending order of the detected potential (S1011), and the process advances to step S1001 to perform the above processing. repeat. If the usage of the image forming apparatus 1 has a certain tendency, there is a high possibility that the next time the light amount is detected, a light amount having the same magnitude relationship as the current amount of light will be detected. Presumed.

従って、今回の検出光量の降順を順番テーブル805の順番に設定すれば、順番テーブル805における順番において前後する発光素子510どうしで検出電位の差が小さくなるので、発光素子510の光量検出に要する時間を最小化することができる。
[6]変形例
以上、本開示を実施の形態に基づいて説明してきたが、本開示が上述の実施の形態に限定されないのは勿論であり、以下のような変形例を実施することができる。
(6-1)上記実施の形態においては、発光素子510ごとの検出電位が低くなる順番になるように、順番テーブル805を設定する場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、これに代えて図11に示すように、発光素子510ごとの検出電位が高くなる順番になるように、順番テーブル805を設定してもよい。このようにしても、順番テーブル805における順番において前後する発光素子510どうしで検出電位の差が小さくなるので、発光素子510の光量検出に要する時間を最小化することができる。
(6-2)上記実施の形態においては、ステップS1011において、発光素子510毎の検出電位の順に順番テーブル805の順番を設定し直す場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、これに代えて次のようにしてもよい。
Therefore, if the descending order of the detected light amount this time is set in the order of the order table 805, the difference in detection potential between the light emitting elements 510 that come before and after in the order in the order table 805 will be small, so the time required to detect the light amount of the light emitting elements 510 will be reduced. can be minimized.
[6] Modifications Although the present disclosure has been described above based on the embodiments, it goes without saying that the present disclosure is not limited to the above-described embodiments, and the following modifications can be implemented. .
(6-1) In the above embodiment, an example has been described in which the order table 805 is set so that the detected potential of each light emitting element 510 is set in the order of decreasing, but the present disclosure is not limited to this. Needless to say, instead of this, as shown in FIG. 11, the order table 805 may be set so that the detected potential of each light emitting element 510 is in an increasing order. Even in this case, the difference in detection potential between the light-emitting elements 510 that precede and follow each other in the order in the order table 805 becomes small, so the time required to detect the amount of light from the light-emitting elements 510 can be minimized.
(6-2) In the above embodiment, the case where the order of the order table 805 is reset in step S1011 in the order of the detected potential of each light emitting element 510 has been described as an example, but the present disclosure is not limited to this. Needless to say, the following may be used instead.

例えば、ステップS1010において補正後の駆動電流量から予測される発光素子510毎の出射光量にPD入射効率を乗算して受光素子203への入射光量を算出し、当該入射光量の順に順番テーブル805の順番を設定し直してもよい。
(6-3)上記実施の形態においては特に言及しなかったが、光書き込み装置100の出荷前に、発光素子510を順次発光させて、受光素子203に入射光量を検出させ、受光素子203による検出光量の降順または昇順で、発光素子510の番号を順番テーブル805に記憶させてもよい。
For example, in step S1010, the amount of light emitted from each light emitting element 510 predicted from the corrected amount of drive current is multiplied by the PD incident efficiency to calculate the amount of light incident on the light receiving element 203, and the amount of light incident on the light receiving element 203 is calculated in the order of the amount of incident light. You may reset the order.
(6-3) Although not specifically mentioned in the above embodiment, before the optical writing device 100 is shipped, the light emitting elements 510 are sequentially made to emit light, and the light receiving element 203 detects the amount of incident light. The numbers of the light emitting elements 510 may be stored in the order table 805 in descending or ascending order of the amount of detected light.

また、受光素子203に入射光量を検出させる代わりに、発光素子510毎のレンズ効率の逆数に、発光素子510毎のPD入射効率を乗算した値を算出して、当該算出値の降順または昇順で、発光素子510の番号を順番テーブル805に記憶させてもよい。
(6-4)本開示は、光書き込み装置100の制御部701が使用する方法であるとしてもよい。
(6-5)上記実施の形態においては、画像形成装置1がタンデム方式のカラープリンターである場合を例にとって説明したが、本開示がこれに限定されないのは言うまでもなく、これに代えて、タンデム方式以外のカラープリンターであってもよいし、モノクロプリンターであってもよい。
Moreover, instead of having the light receiving element 203 detect the amount of incident light, a value is calculated by multiplying the reciprocal of the lens efficiency of each light emitting element 510 by the PD incident efficiency of each light emitting element 510, and the calculated values are sorted in descending or ascending order. , the numbers of the light emitting elements 510 may be stored in the order table 805.
(6-4) The present disclosure may be a method used by the control unit 701 of the optical writing device 100.
(6-5) In the above embodiment, the case where the image forming apparatus 1 is a tandem color printer has been described as an example, but it goes without saying that the present disclosure is not limited to this. It may be a color printer of a different type, or it may be a monochrome printer.

また、スキャナーを備えたコピー装置や、ファクシミリ通信機能を備えたファクシミリ装置に本開示を適用してもよいし、これらの機能を兼ね備えた複合機(MFP: Multi-Function Peripheral)に本開示を適用しても同様の効果を得ることができる。 Additionally, the present disclosure may be applied to a copying device equipped with a scanner, a facsimile device equipped with a facsimile communication function, or a multi-function peripheral (MFP) that has both of these functions. You can also get the same effect.

本開示に係る光書き込み装置および画像形成装置は、発光素子の光量補正のための光量検出を短時間が完了することができる装置として有用である。 The optical writing device and image forming device according to the present disclosure are useful as devices that can complete light amount detection for light amount correction of light emitting elements in a short time.

1………画像形成装置
100…光書き込み装置100
203…受光素子
510…発光素子
803…増幅器
805…順番テーブル
1... Image forming device 100... Optical writing device 100
203... Light receiving element 510... Light emitting element 803... Amplifier 805... Order table

Claims (6)

感光体を露光して静電潜像を形成する光書き込み装置であって、
複数の有機EL素子と、
前記複数の有機EL素子を2以上の有機EL素子からなる複数の有機EL素子群に分けた場合に、各有機EL素子群に対応して設けられ、当該有機EL素子群に属する各有機EL素子の出射光を前記感光体の外周面上に集光する、複数のマイクロレンズと、
前記複数の有機EL素子群に対応して設けられ、当該有機EL素子群に属する有機EL素子ごとに光量を検出する複数の受光素子と、
前記受光素子ごとに、当該受光素子が光量を検出する有機EL素子の発光順序を記憶する記憶部と、
前記受光素子ごとに、前記有機EL素子を前記発光順序にしたがって順次発光させて、前記受光素子に光量を検出させる光量検出部と、
前記光量検出部が受光素子に検出させた光量に応じて有機EL素子ごとに光量補正を行う光量補正部と、
前記受光素子ごとに、前記光量検出部が当該受光素子に検出させた光量が単調に増加または減少する有機EL素子の順序を、次の発光順序として前記記憶部に記憶させる更新部と、を備える
ことを特徴とする光書き込み装置。
An optical writing device that exposes a photoreceptor to form an electrostatic latent image,
multiple organic EL elements;
When the plurality of organic EL elements are divided into a plurality of organic EL element groups consisting of two or more organic EL elements, each organic EL element provided corresponding to each organic EL element group and belonging to the organic EL element group. a plurality of microlenses that condense the emitted light onto the outer peripheral surface of the photoreceptor;
a plurality of light receiving elements that are provided corresponding to the plurality of organic EL element groups and detect the amount of light for each organic EL element belonging to the organic EL element group;
a storage unit that stores, for each of the light receiving elements, the light emission order of the organic EL elements whose light quantities are detected by the light receiving elements;
a light amount detection unit that sequentially causes the organic EL element to emit light according to the light emission order for each of the light receiving elements, and causes the light receiving element to detect the amount of light;
a light amount correction section that performs light amount correction for each organic EL element according to the amount of light detected by the light receiving element by the light amount detection section;
For each of the light receiving elements, an updating unit stores in the storage unit the order of organic EL elements in which the amount of light detected by the light receiving element monotonically increases or decreases as the next light emitting order. An optical writing device characterized by:
出荷前に、前記有機EL素子を順次発光させて、前記受光素子に光量を検出させる出荷前検出部と、
前記受光素子ごとに、前記出荷前検出部が当該受光素子に検出させた光量が単調に増加または減少する有機EL素子の順序を、発光順序として前記記憶部に記憶させる初期設定部と、を備える
ことを特徴とする請求項1に記載の光書き込み装置。
a pre-shipment detection unit that sequentially causes the organic EL elements to emit light and causes the light receiving element to detect the amount of light before shipping;
For each of the light receiving elements, an initial setting unit stores in the storage unit an order of organic EL elements in which the amount of light detected by the light receiving element by the pre-shipment detection unit monotonically increases or decreases as a light emitting order. The optical writing device according to claim 1, characterized in that:
感光体を露光して静電潜像を形成する光書き込み装置であって、
複数の有機EL素子と、
前記複数の有機EL素子を2以上の有機EL素子からなる複数の有機EL素子群に分けた場合に、各有機EL素子群に対応して設けられ、当該有機EL素子群に属する各有機EL素子の出射光を前記感光体の外周面上に集光する、複数のマイクロレンズと、
前記複数の有機EL素子群に対応して設けられ、当該有機EL素子群に属する有機EL素子ごとに光量を検出する複数の受光素子と、
前記受光素子ごとに、当該受光素子が光量を検出する有機EL素子の発光順序を記憶する記憶部と、
前記受光素子ごとに、前記有機EL素子を前記発光順序にしたがって順次発光させて、前記受光素子に光量を検出させる光量検出部と、
前記光量検出部が受光素子に検出させた光量に応じて有機EL素子ごとに光量補正を行う光量補正部と、
前記受光素子ごとに、前記光量検出部による補正後の有機EL素子ごとの出射光量に、当該有機EL素子ごとの当該受光素子への入射効率を乗算して得られた入射光量が単調に増加または減少する当該有機EL素子の順序を、次の発光順序として前記記憶部に記憶させる更新部と、を備える
ことを特徴とする光書き込み装置。
An optical writing device that exposes a photoreceptor to form an electrostatic latent image,
multiple organic EL elements;
When the plurality of organic EL elements are divided into a plurality of organic EL element groups consisting of two or more organic EL elements, each organic EL element provided corresponding to each organic EL element group and belonging to the organic EL element group. a plurality of microlenses that condense the emitted light onto the outer peripheral surface of the photoreceptor;
a plurality of light receiving elements that are provided corresponding to the plurality of organic EL element groups and detect the amount of light for each organic EL element belonging to the organic EL element group;
a storage unit that stores, for each of the light receiving elements, the light emission order of the organic EL elements whose light quantities are detected by the light receiving elements;
a light amount detection unit that sequentially causes the organic EL element to emit light according to the light emission order for each of the light receiving elements, and causes the light receiving element to detect the amount of light;
a light amount correction section that performs light amount correction for each organic EL element according to the amount of light detected by the light receiving element by the light amount detection section;
For each of the light-receiving elements, the amount of incident light obtained by multiplying the output light amount of each organic EL element after correction by the light-amount detection unit by the incident efficiency of each organic EL element to the light-receiving element increases monotonically, or An optical writing device comprising: an updating unit that stores the decreasing order of the organic EL elements as the next light emitting order in the storage unit.
出荷前に、前記受光素子ごとに、前記有機EL素子に対応するマイクロレンズのレンズ効率の逆数に、当該有機EL素子ごとの当該受光素子への入射効率を乗算して、当該算出値が単調に増加または減少する有機EL素子の順序を、発光順序として前記記憶部に記憶させる初期設定部を備える
ことを特徴とする請求項3に記載の光書き込み装置。
Before shipping, for each light-receiving element, the reciprocal of the lens efficiency of the microlens corresponding to the organic EL element is multiplied by the efficiency of incidence on the light-receiving element for each organic EL element, so that the calculated value becomes monotonous. 4. The optical writing device according to claim 3, further comprising an initial setting section that stores the order of increasing or decreasing organic EL elements in the storage section as a light emission order.
感光体と、
前記感光体表面を一様に帯電させる帯電装置と、
請求項1から4のいずれかに記載の光書き込み装置と、を備え、
前記一様に帯電した感光体表面に、前記光書き込み装置の出射光を照射して、静電潜像を形成する
ことを特徴とする画像形成装置。
a photoreceptor;
a charging device that uniformly charges the surface of the photoreceptor;
An optical writing device according to any one of claims 1 to 4,
An image forming apparatus characterized in that the uniformly charged surface of the photoreceptor is irradiated with light emitted from the optical writing device to form an electrostatic latent image.
複数の有機EL素子と、前記複数の有機EL素子を2以上の有機EL素子からなる複数の有機EL素子群に分けた場合に、各有機EL素子群に対応して設けられ、当該有機EL素子群に属する各有機EL素子の出射光を感光体の外周面上に集光する複数のマイクロレンズと、前記複数の有機EL素子群に対応して設けられ、当該有機EL素子群に属する有機EL素子ごとに光量を検出する複数の受光素子と、前記受光素子ごとに、当該受光素子が光量を検出する有機EL素子の発光順序を記憶する記憶部と、を有し、前記感光体を露光して静電潜像を形成する光書き込み装置が使用する光量検出方法であって、
前記受光素子ごとに、前記記憶部に記憶されている順番で、前記有機EL素子を順次発光させて、前記受光素子に光量を検出させる光量検出ステップと、
前記受光素子ごとに、前記光量検出ステップにおいて当該受光素子が検出した光量が単調に増加または減少する有機EL素子の順序を、次の発光順序として前記記憶部に記憶させる更新ステップと、を含む
ことを特徴とする光量検出方法。
A plurality of organic EL elements, and when the plurality of organic EL elements are divided into a plurality of organic EL element groups consisting of two or more organic EL elements, a plurality of organic EL elements are provided corresponding to each organic EL element group, and the organic EL element A plurality of microlenses converge the emitted light of each organic EL element belonging to the group onto the outer peripheral surface of the photoreceptor , and a plurality of microlenses are provided corresponding to the plurality of organic EL element groups and are arranged to condense the emitted light of each organic EL element belonging to the organic EL element group. a plurality of light-receiving elements that detect the amount of light for each EL element, and a storage section that stores, for each of the light-receiving elements, the light emission order of the organic EL elements whose light amount is detected by the light-receiving element, and exposes the photoreceptor to light. A light amount detection method used by an optical writing device that forms an electrostatic latent image by
a light amount detection step of sequentially causing the organic EL elements to emit light for each of the light receiving elements in the order stored in the storage unit, and causing the light receiving elements to detect the amount of light;
For each of the light receiving elements, an updating step of storing in the storage unit the order of organic EL elements in which the amount of light detected by the light receiving element monotonically increases or decreases in the light amount detection step as the next light emitting order. A light amount detection method characterized by:
JP2019212432A 2019-11-25 2019-11-25 Optical writing device, image forming device, and light amount detection method Active JP7395991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212432A JP7395991B2 (en) 2019-11-25 2019-11-25 Optical writing device, image forming device, and light amount detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212432A JP7395991B2 (en) 2019-11-25 2019-11-25 Optical writing device, image forming device, and light amount detection method

Publications (2)

Publication Number Publication Date
JP2021084231A JP2021084231A (en) 2021-06-03
JP7395991B2 true JP7395991B2 (en) 2023-12-12

Family

ID=76086530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212432A Active JP7395991B2 (en) 2019-11-25 2019-11-25 Optical writing device, image forming device, and light amount detection method

Country Status (1)

Country Link
JP (1) JP7395991B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270564A (en) 2002-03-15 2003-09-25 Fuji Xerox Co Ltd Optical scanner
JP2006278403A (en) 2005-03-28 2006-10-12 Fuji Xerox Co Ltd Light emitting element driving device and image forming apparatus
JP2010046900A (en) 2008-08-21 2010-03-04 Canon Inc Image forming apparatus and automatic power control method thereof
JP2010214681A (en) 2009-03-16 2010-09-30 Seiko Epson Corp Method for regulating light quantity of exposure head and method for forming image

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270564A (en) 2002-03-15 2003-09-25 Fuji Xerox Co Ltd Optical scanner
JP2006278403A (en) 2005-03-28 2006-10-12 Fuji Xerox Co Ltd Light emitting element driving device and image forming apparatus
JP2010046900A (en) 2008-08-21 2010-03-04 Canon Inc Image forming apparatus and automatic power control method thereof
JP2010214681A (en) 2009-03-16 2010-09-30 Seiko Epson Corp Method for regulating light quantity of exposure head and method for forming image

Also Published As

Publication number Publication date
JP2021084231A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US7728862B2 (en) Optical scanning apparatus
US6717606B2 (en) Optical print head and image forming apparatus using a rod lens with a predetermined conjugate length
US20140153010A1 (en) Optical-writing control device, image forming apparatus, and method of controlling optical writing device
JP2013226665A (en) Image forming apparatus
US20130141511A1 (en) Image forming apparatus
JP6825416B2 (en) Optical writing device and image forming device equipped with it
US20140363207A1 (en) Light beam detection circuit, light beam scan unit and image forming apparatus
JP4677277B2 (en) Optical scanning device and image forming apparatus using the same
JP7395991B2 (en) Optical writing device, image forming device, and light amount detection method
JP5817764B2 (en) Optical writing apparatus and image forming apparatus
US9625865B2 (en) Image forming apparatus and control method for image forming apparatus
JP2011170036A (en) Focusing element, focusing element array, exposure device, and image forming apparatus
US8446649B2 (en) Optical scanning apparatus and image forming apparatus
JP2008026539A (en) Image forming device
JP5888159B2 (en) Image reading apparatus, image forming apparatus, and program
US6473106B2 (en) LED head, image forming apparatus, and method of measuring amount of light from LED array
JP7073683B2 (en) Image forming device
JP7040144B2 (en) Optical writing device and image forming device
US20150212465A1 (en) Fixing apparatus and image-forming apparatus
JP2014004790A (en) Image forming apparatus
CN112485991A (en) Image forming apparatus with a toner supply device
JP2004042518A (en) Exposure unit, exposure device, and image formation apparatus equipped with the same
JP6467461B2 (en) Image forming apparatus and exposure apparatus
US7706725B2 (en) Full-color image forming apparatus having variable power light source
JP2010046917A (en) Exposure head, control method for exposure head and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7395991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150