JP7395289B2 - Electrodes and solid-state batteries applied to solid-state batteries - Google Patents

Electrodes and solid-state batteries applied to solid-state batteries Download PDF

Info

Publication number
JP7395289B2
JP7395289B2 JP2019158974A JP2019158974A JP7395289B2 JP 7395289 B2 JP7395289 B2 JP 7395289B2 JP 2019158974 A JP2019158974 A JP 2019158974A JP 2019158974 A JP2019158974 A JP 2019158974A JP 7395289 B2 JP7395289 B2 JP 7395289B2
Authority
JP
Japan
Prior art keywords
active material
layer
solid electrolyte
solid
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019158974A
Other languages
Japanese (ja)
Other versions
JP2021039848A (en
Inventor
健太 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019158974A priority Critical patent/JP7395289B2/en
Priority to CN202080060946.0A priority patent/CN114342109A/en
Priority to PCT/JP2020/031985 priority patent/WO2021039770A1/en
Publication of JP2021039848A publication Critical patent/JP2021039848A/en
Priority to US17/680,082 priority patent/US20220181706A1/en
Application granted granted Critical
Publication of JP7395289B2 publication Critical patent/JP7395289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、固体電解質を備える固体電池に関する。本発明は特に、該固体電池の正極または負極に適用され電極構造に関する。 The present invention relates to a solid state battery including a solid electrolyte. The present invention particularly relates to an electrode structure applied to the positive electrode or negative electrode of the solid-state battery.

リチウム二次電池は、正極材料としてリチウムコバルト酸化物などのリチウム遷移金属酸化物、負極材料の黒鉛系炭素材料、有機電解液から構成される二次電池。充電時に正極から負極へ、放電時に負極から正極にリチウムイオンが移動することによって電池として作動する。電池の体積や重量当たりに取り出すことができる電気量(エネルギー密度)が他の二次電池に比べて格段に大きいことから、モバイル機器のバッテリーとして広く使われている。一方、有機電解液またはゲルポリマーを用いるため、流動性、軟化性に伴う液漏れ、可燃性に由来する安全性の問題があり、電解質を固体化することが求められている。 A lithium secondary battery is a secondary battery that consists of a lithium transition metal oxide such as lithium cobalt oxide as a positive electrode material, a graphite-based carbon material as a negative electrode material, and an organic electrolyte. It operates as a battery by moving lithium ions from the positive electrode to the negative electrode during charging and from the negative electrode to the positive electrode during discharging. They are widely used as batteries for mobile devices because the amount of electricity that can be extracted per unit of battery volume or weight (energy density) is significantly greater than that of other secondary batteries. On the other hand, since an organic electrolyte or a gel polymer is used, there are problems with fluidity, liquid leakage due to softening properties, and safety due to flammability, and there is a need to solidify the electrolyte.

固体電解質材料としては、無機固体電解質材料は不燃性であり高い安全性を特徴としており全固体リチウム二次電池の実現に向けて開発が行われている(以下、本願明細書では全固体電池と称する)。 As solid electrolyte materials, inorganic solid electrolyte materials are nonflammable and highly safe, and are being developed to realize all-solid-state lithium secondary batteries (hereinafter referred to as all-solid-state batteries). ).

固体電解質材料と電極活物質材料とを混合し固体電解質と電極活物質との微視的な界面に係る比表面積を増加させてリチウムイオンの伝導度を高めることが知られている。特許文献1においては、平板状の正極集電体の両面に、正極活物質粉末と固体電解質粉末を含有する正極合材層を含む正極と、固体電解質層と、負極集電体と、を順次積層して設けた固体電解質を有するリチウム二次電池が開示されている。 It is known that lithium ion conductivity can be increased by mixing a solid electrolyte material and an electrode active material to increase the specific surface area of the microscopic interface between the solid electrolyte and the electrode active material. In Patent Document 1, a positive electrode including a positive electrode composite layer containing a positive electrode active material powder and a solid electrolyte powder, a solid electrolyte layer, and a negative electrode current collector are sequentially formed on both sides of a flat positive electrode current collector. A lithium secondary battery having stacked solid electrolytes is disclosed.

また、リチウムを含む電極活物質は、充放電に伴いリチウムイオンの注入、放出が生じる、このとき、電極活物質層の体積膨張、収縮が生じ、電極活物質を含む電極層にクラックが発生し、イオン伝導を阻害する要因となることが知られている。このような充放電に伴う電池の反りや性能低下の対策として、電極活物質層の層厚方向において所定の勾配を持たせることが知られている。特許文献2は、固体電解質層の側から集電体層の側に向かって電極活物質の濃度と空隙率を増加する第一の勾配を有する複合活物質層を備えた全固体電池を開示している。特許文献2に記載の全固体電池は、第一の勾配を補償するように固体電解質層の側から集電体層の側に向かって固体電解質の濃度が減少する第二の勾配を備える複合活物質層を備えている。 In addition, when an electrode active material containing lithium is charged and discharged, lithium ions are injected and released. At this time, the electrode active material layer expands and contracts in volume, and cracks occur in the electrode layer containing the electrode active material. , is known to be a factor that inhibits ion conduction. As a countermeasure against battery warping and performance deterioration due to such charging and discharging, it is known to provide an electrode active material layer with a predetermined gradient in the layer thickness direction. Patent Document 2 discloses an all-solid-state battery including a composite active material layer having a first gradient in which the concentration and porosity of an electrode active material increase from the solid electrolyte layer side to the current collector layer side. ing. The all-solid-state battery described in Patent Document 2 includes a composite active material having a second gradient in which the concentration of the solid electrolyte decreases from the solid electrolyte layer side to the current collector layer side so as to compensate for the first gradient. It has a material layer.

特開2009-146657号公報Japanese Patent Application Publication No. 2009-146657 特開2012-104270号公報Japanese Patent Application Publication No. 2012-104270

特許文献1および特許文献2に記載の固体電池に適用される電極は、活物質層内の正極活物質と固体電解質の界面のうち、キャリア輸送抵抗が低いためリチウムイオン(正極活物質)の受け渡しが集電体層側に集中する。この結果、正極活物質の体積変化が正極活物質と集電体との接触部にクラックが発生してキャリア輸送抵抗が実効的に減少することが懸念される。 The electrodes applied to the solid-state batteries described in Patent Document 1 and Patent Document 2 have low carrier transport resistance at the interface between the positive electrode active material and the solid electrolyte in the active material layer, so that lithium ions (positive electrode active material) are not transferred. is concentrated on the current collector layer side. As a result, there is concern that the change in volume of the positive electrode active material may cause cracks to occur at the contact portion between the positive electrode active material and the current collector, resulting in an effective reduction in carrier transport resistance.

本願発明は、充放電サイクルによるキャリア輸送能の低下が改善された集電体と電極活物質とを含有する全固体電池に適用される電極を提供することを目的とする。また、本願発明は、信頼性の高い全固体電池を提供することを目的とする。 An object of the present invention is to provide an electrode that can be applied to an all-solid-state battery and includes an electrode active material and a current collector that is improved in carrier transport ability due to charge/discharge cycles. Moreover, the present invention aims to provide a highly reliable all-solid-state battery.

本発明の実施形態に係る電極は、集電体層と、前記集電体層と一部が接する活物質と固体電解質とを含有する活物質層と、が積層された固体電池に適用される電極であって、
前記活物質層は、前記集電体層と接する側に向う層厚方向において、前記活物質が減少する濃度勾配を呈する領域を有し、前記層厚方向における前記領域において前記固体電解質は増加する濃度勾配を呈するとともに、前記活物質層は、前記層厚方向における前記領域において減少する濃度勾配を呈する導電助剤をさらに含有することを特徴とする。
また、本発明の実施形態に係る電極は、集電体層と、前記集電体層と一部が接する活物質とリチウムを含有する固体電解質とを含有する活物質層と、が積層された固体電池に適用される電極であって、
前記活物質層は、前記集電体層と接する側に向う層厚方向において、前記活物質が減少する濃度勾配を呈する領域を有し、前記層厚方向における前記領域において前記固体電解質は増加する濃度勾配を呈し、
前記固体電解質は、ホウ酸リチウム、アルミニウム置換リン酸ゲルマニウムリチウム、およびLLZの少なくともいずれかを含むことを特徴とする。
また、本発明の実施形態に係る固体電池は、集電体層と、前記集電体層と一部が接する活物質と固体電解質とを含有する活物質層と、が積層された固体電池に適用される電極であって、
前記活物質層は、前記集電体層と接する側に向う層厚方向において、前記活物質が減少する濃度勾配を呈する領域を有し、前記層厚方向における前記領域において前記固体電解質は増加する濃度勾配を呈する電極と、
前記集電体層と接する側の反対側において、前記活物質層に接する固体電解質層と、
を備え、
前記固体電解質層が含有する固体電解質と、前記活物質層が含有する前記固体電解質とは組成が異なることを特徴とする。
The electrode according to the embodiment of the present invention is applied to a solid state battery in which a current collector layer and an active material layer containing an active material and a solid electrolyte that are partially in contact with the current collector layer are laminated. An electrode,
The active material layer has a region exhibiting a concentration gradient in which the active material decreases in the layer thickness direction toward the side in contact with the current collector layer, and the solid electrolyte increases in the region in the layer thickness direction. The active material layer is characterized in that the active material layer further contains a conductive additive that exhibits a concentration gradient that decreases in the region in the layer thickness direction .
Further, the electrode according to the embodiment of the present invention includes a current collector layer and an active material layer containing an active material and a lithium-containing solid electrolyte that are partially in contact with the current collector layer. An electrode applied to a solid-state battery,
The active material layer has a region exhibiting a concentration gradient in which the active material decreases in the layer thickness direction toward the side in contact with the current collector layer, and the solid electrolyte increases in the region in the layer thickness direction. exhibits a concentration gradient,
The solid electrolyte is characterized in that it contains at least one of lithium borate, aluminum-substituted lithium germanium phosphate, and LLZ.
Further, a solid state battery according to an embodiment of the present invention is a solid state battery in which a current collector layer and an active material layer containing an active material and a solid electrolyte that are partially in contact with the current collector layer are stacked. An applied electrode,
The active material layer has a region exhibiting a concentration gradient in which the active material decreases in the layer thickness direction toward the side in contact with the current collector layer, and the solid electrolyte increases in the region in the layer thickness direction. an electrode exhibiting a concentration gradient;
a solid electrolyte layer in contact with the active material layer on the side opposite to the side in contact with the current collector layer;
Equipped with
The solid electrolyte contained in the solid electrolyte layer and the solid electrolyte contained in the active material layer have different compositions.

本発明によれば、充放電サイクルによるキャリア輸送能の低下が改善された集電体と電極活物質とを含有する全固体電池に適用される電極を提供することが可能となる。また、本願発明は、信頼性の高い全固体電池を提供することが可能となる。 According to the present invention, it is possible to provide an electrode that is applied to an all-solid-state battery and includes an electrode active material and a current collector in which the decrease in carrier transport ability due to charge/discharge cycles is improved. Further, the present invention makes it possible to provide a highly reliable all-solid-state battery.

本発明の第1の実施形態に係る正極側の電極の積層構造(a)と、正極活物質層の層厚方向における含有成分の体積分率分布(b)を示すものである。1 shows a laminated structure (a) of a positive electrode according to a first embodiment of the present invention, and (b) a volume fraction distribution of contained components in the layer thickness direction of a positive electrode active material layer. 本発明の第2の実施形態に係る全固体電池の積層構造を示すものである。It shows the laminated structure of an all-solid-state battery according to a second embodiment of the present invention. 本発明の第3~第5の実施形態に係る正極活物質層の層厚方向における含有成分の体積分率分布(a)~(c)を示すものである。3 shows volume fraction distributions (a) to (c) of components contained in the positive electrode active material layers in the layer thickness direction according to the third to fifth embodiments of the present invention.

以下に、本発明の好ましい実施形態を、図面を用いて詳細に説明する。これらの実施形態に記載されている構成部材の寸法、材質、形状、その相対配置などは、この発明の範囲を限定する趣旨のものではない。 Below, preferred embodiments of the present invention will be described in detail using the drawings. The dimensions, materials, shapes, relative arrangements, etc. of the constituent members described in these embodiments are not intended to limit the scope of the present invention.

(第1の実施形態)
まず、第1の実施形態に係る電極として正極活物質層20を備える正極について説明する。図1(a)、(b)は、それぞれ、本実施形態に係る正極30を示す断面構成図と、正極活物質層20の層厚方向220における含有成分の体積分率の分布を示すグラフである。
(First embodiment)
First, a positive electrode including a positive electrode active material layer 20 will be described as an electrode according to the first embodiment. FIGS. 1A and 1B are a cross-sectional diagram showing the positive electrode 30 according to the present embodiment, and a graph showing the volume fraction distribution of the contained components in the layer thickness direction 220 of the positive electrode active material layer 20, respectively. be.

正極30は、図1(a)に示す通り、集電体層10、正極活物質120と固体電解質140を含む活物質層20を有している。活物質層20は複合活物質層と言う場合がある。 The positive electrode 30 has a current collector layer 10, an active material layer 20 including a positive electrode active material 120, and a solid electrolyte 140, as shown in FIG. 1(a). The active material layer 20 may be referred to as a composite active material layer.

集電体層10は、不図示の外部回路、活物質層との間で電子伝導を行う導体である。集電体層10は、銅、アルミ二ウム等の金属の自立膜、金属箔、樹脂ベースとの積層形態が採用される。 The current collector layer 10 is a conductor that conducts electrons between an external circuit (not shown) and an active material layer. The current collector layer 10 is in the form of a laminate of a self-supporting film of metal such as copper or aluminum, metal foil, or a resin base.

活物質層20は、サブレイヤーとして正極活物質120と固体電解質140の体積分率が互いに異なる活物質層20a、20b、20cを備えている。 The active material layer 20 includes active material layers 20a, 20b, and 20c as sublayers in which the volume fractions of the positive electrode active material 120 and the solid electrolyte 140 are different from each other.

活物質層20a~20cは、図1(b)に示すように、集電体10に近い側のサブレイヤーほど、正極活物質120の体積分率が低く、固体電解質140の体積分率が高い、積層方向200の体積分率のプロファイルを呈している。すなわち、本実施形態の正極30は、積層方向200において、正極活物質と固体電解質の間で、逆方向の傾きを有する濃度勾配を呈していると換言される。 In the active material layers 20a to 20c, as shown in FIG. 1(b), the closer the sublayer is to the current collector 10, the lower the volume fraction of the positive electrode active material 120 and the higher the volume fraction of the solid electrolyte 140. , exhibiting a volume fraction profile in the stacking direction 200. In other words, the positive electrode 30 of this embodiment exhibits a concentration gradient having an inclination in the opposite direction between the positive electrode active material and the solid electrolyte in the stacking direction 200.

本実施形態の正極活物質120はLiCoO(コバルト酸リチウム:以下LCOと略す場合がある。)、固体電荷質140は、LiBO(ホウ酸リチウム:以下LBOと略す場合がある)である。本実施形態の正極活物質120(LCO)と、固体電荷質140(LBO)は、それぞれ粒度分布、平均粒径が異なり、平均粒径において、LCOがLBOの2~3倍程度を大きい。 The positive electrode active material 120 of this embodiment is LiCoO 2 (lithium cobalt oxide: hereinafter sometimes abbreviated as LCO), and the solid charge material 140 is Li 3 BO 3 (lithium borate: hereinafter sometimes abbreviated as LBO). be. The positive electrode active material 120 (LCO) and the solid charge material 140 (LBO) of this embodiment have different particle size distributions and average particle diameters, and the average particle diameter of LCO is about 2 to 3 times larger than that of LBO.

正極活物質、固体電荷質が層厚方向(積層方向200に同じ)において、体積分率の勾配を呈しない従来の活物質層の集電体層側は、固体電解質からの正極活物質への経路においてリチウムイオンの受け渡しが集中する。これは、かかる固体電解質からの正極活物質への経路のキャリア輸送抵抗が低いためと考えられる。このため、従来の複合正極活物質層では正極活物質の体積変化が生ずる領域が集中し、そのクラック等の影響が増大する。
本実施形態に係る正極30(電極30)は、活物質層20の集電体層10の側において、正極活物質120の含有比率を制限するとともに固体電解質140が正極活物質120の体積変化を吸収するように配置されている。
In the current collector layer side of the conventional active material layer, where the positive electrode active material and the solid charge material do not exhibit a volume fraction gradient in the layer thickness direction (same as the stacking direction 200), the positive electrode active material from the solid electrolyte is The delivery of lithium ions is concentrated along the route. This is considered to be because the carrier transport resistance of the path from the solid electrolyte to the positive electrode active material is low. For this reason, in the conventional composite positive electrode active material layer, regions where the volumetric change of the positive electrode active material occurs is concentrated, and the effects of cracks and the like are increased.
In the positive electrode 30 (electrode 30) according to the present embodiment, the content ratio of the positive electrode active material 120 is limited on the side of the current collector layer 10 of the active material layer 20, and the solid electrolyte 140 prevents the volume change of the positive electrode active material 120. arranged to absorb.

本実施形態において、固体電解質140は、粒径が正極活物質120より小さく、正極活物質120へのキャリア輸送に係る接点の密度を、集電体層10の側で多く担保すると考えられる。また、固体電解質140は、粒径が正極活物質120より小さく二次粒子を構成し、正極活物質120の体積変化を、二次粒子の変形により吸収し、応力の軽減効果を担保すると考えられる。また、正極活物質120の体積変化を、固体電解質140の一次の変位により吸収し、応力の軽減効果を担保すると換言される。 正極活物質層20に含まれるサブレイヤー20a、20b、20cは、各層において、印刷版、電子写真法、インクジェット法、マスク法、等のパターニング法を利用して、堆積する面密度を制御することで、各層の体積密度分布を形成することが可能である。 In this embodiment, the solid electrolyte 140 has a smaller particle size than the positive electrode active material 120 and is considered to ensure a high density of contacts related to carrier transport to the positive electrode active material 120 on the current collector layer 10 side. Further, the solid electrolyte 140 constitutes secondary particles whose particle size is smaller than that of the positive electrode active material 120, and it is considered that the volume change of the positive electrode active material 120 is absorbed by the deformation of the secondary particles, thereby ensuring the effect of reducing stress. . In other words, the change in volume of the positive electrode active material 120 is absorbed by the primary displacement of the solid electrolyte 140, thereby ensuring the effect of reducing stress. The sublayers 20a, 20b, and 20c included in the positive electrode active material layer 20 can control the areal density of each layer by using a patterning method such as a printing plate, electrophotography, inkjet method, or mask method. It is possible to form the volume density distribution of each layer.

本実施形態では、集電体層10の近い側に位置する正極活物質層20aと20bの間の濃度勾配が、集電体層10から遠い側の正極活物質層20bと20cの間の濃度勾配より大きい非線形な濃度勾配を呈している。 In this embodiment, the concentration gradient between the positive electrode active material layers 20a and 20b located on the side closer to the current collector layer 10 is different from the concentration gradient between the positive electrode active material layers 20b and 20c located on the side far from the current collector layer 10. It exhibits a nonlinear concentration gradient that is larger than the gradient.

正極活物質120は、例えば、リチウムを含有する複合金属酸化物、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウムを含有する複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物または、金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、例えば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、B等が挙げられる。異種元素は1種でも2種以上でも構わない。これらのなかでも、リチウムを含有する複合金属酸化物が好ましい。リチウムを含有する複合金属酸化物は、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCoMn1-y、LiNi1-y、LiMnが挙げられる。リチウムを含有する複合金属酸化物は、さらに、LiMn2-yMyO、LiMPO、LiMPOF、が挙げられる。式中のMは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBよりなる群から選ばれる少なくとも1種。式中のx,y,zは、0<x≦1.2、0<y<0.9、2.0≦z≦2.3。リチウムを含有する複合金属酸化物は、さらに、LiMeO(式中のMeは、Me=MxMyMz:MeおよびMは遷移金属、x+y+z=1)が挙げられる。リチウムを含有する複合金属酸化物の具体例は、LiCoO(LCO:コバルト酸リチウム)、LiNi0.5Mn1.5(LNMO:ニッケルマンガン酸リチウム)が挙げられる。また、リチウムを含有する複合金属酸化物の具体例は、LiFePO(LFP:リン酸鉄リチウム)、Li(PO(LVP:リン酸バナジウムリチウム)が挙げられる。また、上記正極材料は、導電助剤を含んでいてもよい。導電助剤としては、例えば、天然黒鉛、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、フッ化カーボン粉末、が挙げられる。また、導電助剤としては、炭素繊維、カーボンナノチューブ、金属繊維等の導電性繊維、フッ化カーボン、アルミニウム等の金属粉末、酸化亜鉛等の導電性ウィスカー、酸化チタン等の導電性金属酸化物、フェニレン誘電体等の有機導電性材料、が挙げられる。 Examples of the positive electrode active material 120 include a composite metal oxide containing lithium, a chalcogen compound, and manganese dioxide. The composite metal oxide containing lithium is a metal oxide containing lithium and a transition metal, or a metal oxide in which a part of the transition metal in the metal oxide is replaced with a different element. Here, examples of the different elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B. The number of different elements may be one or two or more. Among these, complex metal oxides containing lithium are preferred. Composite metal oxides containing lithium include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y Mn 1-y O z , Li x Ni Examples include 1-y M y O z and Li x Mn 2 O 4 . Further examples of the composite metal oxide containing lithium include Li x Mn 2-y MyO 4 , LiMPO 4 , and Li 2 MPO 4 F. M in the formula is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B. x, y, z in the formula are 0<x≦1.2, 0<y<0.9, 2.0≦z≦2.3. Further examples of the composite metal oxide containing lithium include LiMeO 2 (Me in the formula: Me=MxMyMz: Me and M are transition metals, x+y+z=1). Specific examples of composite metal oxides containing lithium include LiCoO 2 (LCO: lithium cobalt oxide) and LiNi 0.5 Mn 1.5 O 4 (LNMO: lithium nickel manganate). Further, specific examples of the composite metal oxide containing lithium include LiFePO 4 (LFP: lithium iron phosphate) and Li 3 V 2 (PO 4 ) 3 (LVP: lithium vanadium phosphate). Moreover, the above-mentioned positive electrode material may contain a conductive additive. Examples of the conductive aid include graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black, and fluorinated carbon powder. In addition, conductive aids include conductive fibers such as carbon fibers, carbon nanotubes, and metal fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide, and conductive metal oxides such as titanium oxide. Examples include organic conductive materials such as phenylene dielectrics.

固体電解質140は、例えば、酸化物系固体電解質、硫化物系固体電解質、錯体水素化物系固体電解質等が挙げられる。酸化物系固体電解質は、アルミニウム置換リン酸ゲルマニウムリチウムLi1.5Al0.5Ge1.5(POやLi1.3Al0.3Ti1.7(POなどのナシコン型化合物が挙げられる。酸化物系固体電解質は、Li6.25LaZrAl0.2512などのガーネット型化合物、または、Li0.33Li0.55TiOなどのペロブスカイト型化合物、が挙げられる。また、酸化物系固体電解質は、Li14Zn(GeOなどのリシコン型化合物、LiPOやLiSiO、LiBOなどの酸化合物が挙げられる。硫化物系固体電解質の具体例としては、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P等が挙げられる。また、固体電解質は、Li6.75LaZr1.75Nb0.2512(以下LLZ)をも採用される。また、固体電解質は、結晶質であっても非晶質であってもよく、ガラスセラミックスであっても構わない。なお、LiS-P等の記載は、LiSおよびPを含む原料を用いて成る硫化物系固体電解質を意味する。固体電解質は正極活物質より低いヤング率を有することが、正極活物質の体積変化を吸収するため、好ましい。固体電解質は正極活物質より低い弾性率を有することが、正極活物質の体積変化を吸収するため、好ましいと換言される。 Examples of the solid electrolyte 140 include oxide-based solid electrolytes, sulfide-based solid electrolytes, and complex hydride-based solid electrolytes. Oxide-based solid electrolytes include aluminum-substituted lithium germanium phosphate Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 . Examples include Nasicon type compounds. Examples of the oxide-based solid electrolyte include garnet-type compounds such as Li 6.25 La 3 Zr 2 Al 0.25 O 12 or perovskite-type compounds such as Li 0.33 Li 0.55 TiO 3 . Examples of the oxide-based solid electrolyte include lysicone-type compounds such as Li 14 Zn(GeO 4 ) 4 and acid compounds such as Li 3 PO 4 , Li 4 SiO 4 , and Li 3 BO 3 . Specific examples of sulfide-based solid electrolytes include Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI -Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 and the like. Moreover, Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (hereinafter referred to as LLZ) is also used as the solid electrolyte. Moreover, the solid electrolyte may be crystalline or amorphous, and may be glass ceramics. Note that descriptions such as Li 2 SP 2 S 5 mean a sulfide-based solid electrolyte made using a raw material containing Li 2 S and P 2 S 5 . It is preferable that the solid electrolyte has a lower Young's modulus than the positive electrode active material in order to absorb volume changes of the positive electrode active material. In other words, it is preferable for the solid electrolyte to have a lower elastic modulus than the positive electrode active material in order to absorb changes in the volume of the positive electrode active material.

(第2の実施形態)
本実施形態は、第1の実施形態の正極30を用いて固体電池100を構成した実施形態である。第1の実施形態の正極30は、固体電池100の正極に適用されると換言される。固体電池100は、正極活物質層20の集電体層10の側とは反対側の面において、固体電解質層40を備えている。固体電池100は、固体電解質層40が正極活物質層20と接している側とは反対側において、負極70を備えている。負極70は、固体電解質層40の正極活物質層20と接している側とは反対側において負極活物質層50を備えている。負極70は、負極活物質層50が固体電解質層40と接している側とは反対側において、負極用の集電体層60を備えている。
(Second embodiment)
This embodiment is an embodiment in which a solid battery 100 is constructed using the positive electrode 30 of the first embodiment. In other words, the positive electrode 30 of the first embodiment is applied to the positive electrode of the solid battery 100. The solid battery 100 includes a solid electrolyte layer 40 on the surface of the positive electrode active material layer 20 opposite to the current collector layer 10 side. The solid battery 100 includes a negative electrode 70 on the side opposite to the side where the solid electrolyte layer 40 is in contact with the positive electrode active material layer 20. The negative electrode 70 includes a negative electrode active material layer 50 on the side opposite to the side of the solid electrolyte layer 40 that is in contact with the positive electrode active material layer 20 . The negative electrode 70 includes a negative electrode current collector layer 60 on the side opposite to the side where the negative electrode active material layer 50 is in contact with the solid electrolyte layer 40 .

固体電解質層40は、前述の正極活物質層20に含まれる固体電解質140と、同様にして、無機物質の電解質材料として、酸化物系の固体電解質、硫化物系の固体電解質、錯体水素化物系固体電解質等が採用される。固体電解質層40が備える固体電解質は、正極活物質層20に含まれる固体電解質140と同じ組成であっても、異なる組成であっても良い。 The solid electrolyte layer 40 is made of an oxide-based solid electrolyte, a sulfide-based solid electrolyte, or a complex hydride-based solid electrolyte as an inorganic electrolyte material, similarly to the solid electrolyte 140 included in the above-described positive electrode active material layer 20. Solid electrolytes are used. The solid electrolyte included in the solid electrolyte layer 40 may have the same composition as the solid electrolyte 140 included in the positive electrode active material layer 20, or may have a different composition.

正極活物質層20に含まれる固体電解質140と異なる組成とする場合、正極活物質層20には可橈性が高い硫化物系の固体電解質を採用し、固体電解質層40には、熱的安定性に優れる酸化物系の固体電解質を採用することができる。 When the composition is different from the solid electrolyte 140 contained in the positive electrode active material layer 20, a highly flexible sulfide solid electrolyte is used for the positive electrode active material layer 20, and a thermally stable solid electrolyte is used for the solid electrolyte layer 40. An oxide-based solid electrolyte with excellent properties can be used.

負極活物質層50は、例えば、黒鉛、In等を負極活物質として含有することができる。また、負極用の集電体層60は、正極用の集電体層10と同様に、金属箔、金属膜で構成することが可能である。 The negative electrode active material layer 50 can contain, for example, graphite, In, or the like as a negative electrode active material. Further, the current collector layer 60 for the negative electrode can be made of metal foil or metal film, similarly to the current collector layer 10 for the positive electrode.

本実施形態の固体電池100は、正極30に含まれる正極活物質層20おいて、集電体層10の側の正極活物質120の体積変化によるクラックを軽減し、長寿命化された信頼性が高いものとなっている。 The solid state battery 100 of the present embodiment reduces cracks due to volume changes of the positive electrode active material 120 on the current collector layer 10 side in the positive electrode active material layer 20 included in the positive electrode 30, and has a long life reliability. is high.

(第3の実施形態)
本実施形態の正極30は、正極活物質層20に含まれる正極活物質120と固体電解質140の積層方向200の体積分率の分布が、図3(a)のようになっており、実施形態1の正極30と異なっている。本実施形態の正極活物質層20は、集電体層10に最も近い正極活物質層20aにおいても、正極活物質120(LCO)の体積分率が、固体電解質140(LBO)より低い点以外は、実施形態1の正極30と同じである。 本実施形態の正極30を用いた固体電池でも、実施形態1と同様に、正極活物質120の体積変化によるクラック等の影響を軽減することが可能となっている。
(Third embodiment)
In the positive electrode 30 of this embodiment, the volume fraction distribution in the stacking direction 200 of the positive electrode active material 120 and the solid electrolyte 140 contained in the positive electrode active material layer 20 is as shown in FIG. This is different from the positive electrode 30 of No. 1. The positive electrode active material layer 20 of this embodiment has the following points except that even in the positive electrode active material layer 20a closest to the current collector layer 10, the volume fraction of the positive electrode active material 120 (LCO) is lower than that of the solid electrolyte 140 (LBO). is the same as the positive electrode 30 of the first embodiment. In the solid battery using the positive electrode 30 of this embodiment, as in the first embodiment, it is possible to reduce the effects of cracks and the like due to changes in the volume of the positive electrode active material 120.

(第4の実施形態)
本実施形態の正極30は、正極活物質層20に含まれる正極活物質120と固体電解質140の積層方向200の体積分率の分布が、図3(b)のようになっており、実施形態1の正極30と異なっている。本実施形態の正極活物質層20は、集電体層10から遠い側の2層の正極活物質層20b、20cの正極活物質120(LCO)の体積分率が同じであり、固体電解質140(LBO)の体積分率も同じである点以外は、実施形態1の正極30と同じである。
(Fourth embodiment)
In the positive electrode 30 of this embodiment, the volume fraction distribution in the stacking direction 200 of the positive electrode active material 120 and the solid electrolyte 140 contained in the positive electrode active material layer 20 is as shown in FIG. This is different from the positive electrode 30 of No. 1. In the positive electrode active material layer 20 of this embodiment, the volume fraction of the positive electrode active material 120 (LCO) in the two positive electrode active material layers 20b and 20c on the side far from the current collector layer 10 is the same, and the solid electrolyte 140 This is the same as the positive electrode 30 of Embodiment 1, except that the volume fraction of (LBO) is also the same.

本実施形態の正極30を用いた固体電池でも、実施形態1と同様に、正極活物質120の体積変化によるクラック等の影響を軽減することが可能となっている。 In the solid battery using the positive electrode 30 of this embodiment, as in the first embodiment, it is possible to reduce the effects of cracks and the like due to changes in the volume of the positive electrode active material 120.

(第5の実施形態)
本実施形態の正極30は、正極活物質層20に含まれる正極活物質120と固体電解質140の積層方向200の体積分率の分布が、図3(c)のようになっており、実施形態1の正極30と異なっている。本実施形態の正極活物質層20は、各層20a~20cにおいて、導電助剤として黒鉛(カーボンブラック)を含有し、集電体層10の側に近づくほど黒鉛の体積分率が低下している。すなわち、本実施形態の正極活物質層20は、層厚方向200において、集電体層10の側に近付くにつれ導電助剤が減少する濃度勾配を呈する領域を有している点が以外は、実施形態1の正極30と同じである。
(Fifth embodiment)
In the positive electrode 30 of this embodiment, the volume fraction distribution in the stacking direction 200 of the positive electrode active material 120 and the solid electrolyte 140 contained in the positive electrode active material layer 20 is as shown in FIG. This is different from the positive electrode 30 of No. 1. The positive electrode active material layer 20 of this embodiment contains graphite (carbon black) as a conductive additive in each layer 20a to 20c, and the volume fraction of graphite decreases as it approaches the current collector layer 10 side. . That is, the positive electrode active material layer 20 of this embodiment has, in the layer thickness direction 200, a region exhibiting a concentration gradient in which the conductive additive decreases as it approaches the current collector layer 10 side. This is the same as the positive electrode 30 of the first embodiment.

本実施形態の正極30を用いた固体電池でも、実施形態1と同様に、正極活物質120の体積変化によるクラック等の影響を軽減することが可能となっている。 In the solid battery using the positive electrode 30 of this embodiment, as in the first embodiment, it is possible to reduce the effects of cracks and the like due to changes in the volume of the positive electrode active material 120.

10 集電体層
20 正極活物質層(電極活物質層)
30 正極(電極)
120 正極活物質(活物質)
140 固体電解質
200 層厚方向
10 Current collector layer 20 Positive electrode active material layer (electrode active material layer)
30 Positive electrode (electrode)
120 Positive electrode active material (active material)
140 Solid electrolyte 200 Layer thickness direction

Claims (16)

集電体層と、前記集電体層と一部が接する活物質と固体電解質とを含有する活物質層と、が積層された固体電池に適用される電極であって、
前記活物質層は、前記集電体層と接する側に向う層厚方向において、前記活物質が減少する濃度勾配を呈する領域を有し、前記層厚方向における前記領域において前記固体電解質は増加する濃度勾配を呈するとともに、前記活物質層は、前記層厚方向における前記領域において減少する濃度勾配を呈する導電助剤をさらに含有することを特徴とする電極。
An electrode applied to a solid state battery in which a current collector layer and an active material layer containing an active material and a solid electrolyte that are partially in contact with the current collector layer are stacked,
The active material layer has a region exhibiting a concentration gradient in which the active material decreases in the layer thickness direction toward the side in contact with the current collector layer, and the solid electrolyte increases in the region in the layer thickness direction. An electrode characterized in that the active material layer further contains a conductive additive that exhibits a concentration gradient and that exhibits a concentration gradient that decreases in the region in the layer thickness direction .
集電体層と、前記集電体層と一部が接する活物質とリチウムを含有する固体電解質とを含有する活物質層と、が積層された固体電池に適用される電極であって、An electrode applied to a solid-state battery in which a current collector layer and an active material layer containing an active material and a solid electrolyte containing lithium, which are partially in contact with the current collector layer, are stacked,
前記活物質層は、前記集電体層と接する側に向う層厚方向において、前記活物質が減少する濃度勾配を呈する領域を有し、前記層厚方向における前記領域において前記固体電解質は増加する濃度勾配を呈し、The active material layer has a region exhibiting a concentration gradient in which the active material decreases in the layer thickness direction toward the side in contact with the current collector layer, and the solid electrolyte increases in the region in the layer thickness direction. exhibits a concentration gradient,
前記固体電解質は、ホウ酸リチウム、アルミニウム置換リン酸ゲルマニウムリチウム、およびLLZの少なくともいずれかを含むことを特徴とする電極。An electrode characterized in that the solid electrolyte contains at least one of lithium borate, aluminum-substituted lithium germanium phosphate, and LLZ.
前記固体電解質は前記活物質より低いヤング率を有する請求項1または2に記載の電極。 The electrode according to claim 1 or 2, wherein the solid electrolyte has a lower Young's modulus than the active material. 前記活物質層は、導電助剤をさらに含有し、前記層厚方向における前記領域において、前記導電助剤は減少する濃度勾配を呈する請求項2に記載の電極。 The electrode according to claim 2 , wherein the active material layer further contains a conductive additive, and the conductive additive exhibits a decreasing concentration gradient in the region in the layer thickness direction. 前記固体電解質は、酸化物または硫化物を含有する無機物である請求項1乃至のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 4 , wherein the solid electrolyte is an inorganic substance containing an oxide or a sulfide. 前記固体電解質は、リチウムを含有する請求項1に記載の電極。 The electrode according to claim 1 , wherein the solid electrolyte contains lithium. 前記固体電解質は、ホウ酸リチウム、アルミニウム置換リン酸ゲルマニウムリチウム、およびLLZの少なくともいずれかを含む請求項に記載の電極。 The electrode according to claim 6 , wherein the solid electrolyte includes at least one of lithium borate, aluminum-substituted lithium germanium phosphate, and LLZ. 前記活物質は、リチウムを含有する正極活物質、または、リチウムを含有する負極活物質である請求項1乃至のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 7, wherein the active material is a positive electrode active material containing lithium or a negative electrode active material containing lithium. 前記正極活物質は、コバルト酸リチウムを含む請求項に記載の電極。 The electrode according to claim 8 , wherein the positive electrode active material contains lithium cobalt oxide. 記導電助剤は、カーボンブラック、炭素繊維、カーボンナノチューブ、フッ化カーボン粉末、金属粉末、金属繊維を含む請求項1または4に記載の電極。 The electrode according to claim 1 or 4, wherein the conductive additive includes carbon black, carbon fiber, carbon nanotube, fluorinated carbon powder, metal powder, and metal fiber. 請求項1乃至10のいずれか1項に記載の電極と、
前記集電体層と接する側の反対側において、前記活物質層に接する固体電解質層と、を備えることを特徴とする固体電池。
The electrode according to any one of claims 1 to 10 ,
A solid-state battery comprising: a solid electrolyte layer in contact with the active material layer on a side opposite to the side in contact with the current collector layer.
前記固体電解質層が含有する固体電解質と、前記活物質層が含有する前記固体電解質とは組成が異なる請求項11に記載の固体電池。 The solid battery according to claim 11 , wherein the solid electrolyte contained in the solid electrolyte layer and the solid electrolyte contained in the active material layer have different compositions. 集電体層と、活物質層と、が積層された電極と、固体電解質層と、を備える固体電池であって、A solid battery comprising an electrode in which a current collector layer and an active material layer are laminated, and a solid electrolyte layer,
前記活物質層は、前記集電体層と一部が接する活物質と固体電解質とを含有するとともに、前記集電体層と接する側に向う層厚方向において、前記活物質が減少する濃度勾配を呈する領域を有し、前記層厚方向における前記領域において前記固体電解質は増加する濃度勾配を呈し、The active material layer contains an active material and a solid electrolyte that are partially in contact with the current collector layer, and has a concentration gradient in which the active material decreases in the layer thickness direction toward the side in contact with the current collector layer. the solid electrolyte exhibits an increasing concentration gradient in the region in the layer thickness direction;
前記固体電解質層は、前記集電体層と接する側の反対側において、前記活物質層に接し、The solid electrolyte layer is in contact with the active material layer on a side opposite to the side in contact with the current collector layer,
前記固体電解質層が含有する固体電解質と、前記活物質層が含有する前記固体電解質とは組成が異なることを特徴とする固体電池。A solid battery, wherein the solid electrolyte contained in the solid electrolyte layer and the solid electrolyte contained in the active material layer have different compositions.
前記固体電解質層は、正極活物質を含有しない請求項11乃至13のいずれか1項に記載の固体電池。 The solid battery according to any one of claims 11 to 13 , wherein the solid electrolyte layer does not contain a positive electrode active material. 前記活物質層は正極活物質を含む正極活物質層であり、
前記正極活物質層とは反対側において、前記固体電解質層に接する負極活物質層、を備える請求項11乃至14のいずれか1項に記載の固体電池。
The active material layer is a positive electrode active material layer containing a positive electrode active material,
The solid state battery according to any one of claims 11 to 14 , further comprising a negative electrode active material layer in contact with the solid electrolyte layer on a side opposite to the positive electrode active material layer.
前記固体電解質層と接する側とは反対側において、前記負極活物質層と接する負極用の集電体層をさらに備える請求項15に記載の固体電池。 The solid battery according to claim 15 , further comprising a negative electrode current collector layer in contact with the negative electrode active material layer on a side opposite to a side in contact with the solid electrolyte layer.
JP2019158974A 2019-08-30 2019-08-30 Electrodes and solid-state batteries applied to solid-state batteries Active JP7395289B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019158974A JP7395289B2 (en) 2019-08-30 2019-08-30 Electrodes and solid-state batteries applied to solid-state batteries
CN202080060946.0A CN114342109A (en) 2019-08-30 2020-08-25 Electrode applied to solid battery and solid battery
PCT/JP2020/031985 WO2021039770A1 (en) 2019-08-30 2020-08-25 Electrode for use in solid-state battery and solid-state battery
US17/680,082 US20220181706A1 (en) 2019-08-30 2022-02-24 Electrode applied to solid-state battery and solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019158974A JP7395289B2 (en) 2019-08-30 2019-08-30 Electrodes and solid-state batteries applied to solid-state batteries

Publications (2)

Publication Number Publication Date
JP2021039848A JP2021039848A (en) 2021-03-11
JP7395289B2 true JP7395289B2 (en) 2023-12-11

Family

ID=74847154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019158974A Active JP7395289B2 (en) 2019-08-30 2019-08-30 Electrodes and solid-state batteries applied to solid-state batteries

Country Status (1)

Country Link
JP (1) JP7395289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022002815T5 (en) * 2021-05-28 2024-03-07 Semiconductor Energy Laboratory Co., Ltd. Battery, electronic device, energy storage system and moving object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050756A (en) 2003-07-31 2005-02-24 Nissan Motor Co Ltd Gel electrolyte battery
JP5333184B2 (en) 2009-03-16 2013-11-06 トヨタ自動車株式会社 All solid state secondary battery
JP2019029339A (en) 2017-07-25 2019-02-21 パナソニックIpマネジメント株式会社 battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050756A (en) 2003-07-31 2005-02-24 Nissan Motor Co Ltd Gel electrolyte battery
JP5333184B2 (en) 2009-03-16 2013-11-06 トヨタ自動車株式会社 All solid state secondary battery
JP2019029339A (en) 2017-07-25 2019-02-21 パナソニックIpマネジメント株式会社 battery

Also Published As

Publication number Publication date
JP2021039848A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
KR102170305B1 (en) Electrode for all solid battery including solid electrolyte
WO2019146295A1 (en) Negative electrode material and battery using same
JP5692184B2 (en) All solid lithium ion secondary battery
CN110783635B (en) All-solid-state battery and method for manufacturing same
CN109690832B (en) Fiber reinforced sintered electrode
JP2016018704A (en) All-solid battery
US20210336269A1 (en) All-SOLID-STATE SECONDARY BATTERY
JP2021177448A (en) All-solid-state secondary battery
JP2019169453A (en) Battery pack
JP7395289B2 (en) Electrodes and solid-state batteries applied to solid-state batteries
JP2015018670A (en) Bipolar battery
KR20200129382A (en) All Solid-State Battery Comprising Composite Electrode
JP7395290B2 (en) Electrodes for solid state batteries and solid state batteries
CN113381017A (en) All-solid-state secondary battery
US20200067134A1 (en) Member for power storage device, and power storage device
WO2021039770A1 (en) Electrode for use in solid-state battery and solid-state battery
KR20200007326A (en) A cathode active material for an all solid type battery and a cathode for an all solid type battery comprising the same
CN114447263A (en) Electrode structure, bipolar all-solid-state secondary battery including the same, and method of manufacturing the same
JP7375832B2 (en) solid state battery
JP2013114796A (en) Bipolar battery
US20230387471A1 (en) Electrode assembly and secondary battery comprising same
US20230361426A1 (en) Battery and method for manufacturing the same
JP7017137B2 (en) Manufacturing method of all-solid-state secondary battery
US20230057582A1 (en) Three-dimensional batteries using constraint adhesive
KR20220133066A (en) Solid secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R151 Written notification of patent or utility model registration

Ref document number: 7395289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213