JP7387670B2 - Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder - Google Patents

Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder Download PDF

Info

Publication number
JP7387670B2
JP7387670B2 JP2021053336A JP2021053336A JP7387670B2 JP 7387670 B2 JP7387670 B2 JP 7387670B2 JP 2021053336 A JP2021053336 A JP 2021053336A JP 2021053336 A JP2021053336 A JP 2021053336A JP 7387670 B2 JP7387670 B2 JP 7387670B2
Authority
JP
Japan
Prior art keywords
type ordered
ordered phase
powder
soft magnetic
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021053336A
Other languages
Japanese (ja)
Other versions
JP2022150646A (en
Inventor
邦夫 明渡
理恵 田口
孝則 村崎
崇央 岡崎
尊拡 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2021053336A priority Critical patent/JP7387670B2/en
Priority to PCT/JP2022/005735 priority patent/WO2022201964A1/en
Publication of JP2022150646A publication Critical patent/JP2022150646A/en
Application granted granted Critical
Publication of JP7387670B2 publication Critical patent/JP7387670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Description

本発明は、軟磁性粉末、それを含有する圧粉磁心、及び軟磁性粉末の製造方法に関し、より詳しくは、Fe-Si-Al合金からなる軟磁性粉末、それを含有する圧粉磁心、及び軟磁性粉末の製造方法に関する。 The present invention relates to a soft magnetic powder, a powder magnetic core containing the same, and a method for producing the soft magnetic powder, and more specifically, a soft magnetic powder made of an Fe-Si-Al alloy, a powder magnetic core containing the same, and a method for producing the soft magnetic powder. This invention relates to a method for producing soft magnetic powder.

圧粉磁心は、表面が絶縁被膜で覆われた磁性粒子を圧縮成形することによって得られるものであり、変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等の電磁気を利用した様々な製品に用いられている。このような圧粉磁心においては、周波数に応じて生じる高周波損失(鉄損)が少ないことが求められている。この鉄損は、ヒステリシス損と渦電流損とから決まるものであり、ヒステリシス損は、圧粉磁心に含まれる軟磁性粉末の保磁力が低いほど少なくなり、渦電流損は軟磁性粉末の粒子径が小さいほど少なくなる。 Powder magnetic cores are obtained by compression molding magnetic particles whose surfaces are covered with an insulating film, and are used in transformers, electric motors, generators, speakers, induction heaters, various actuators, etc. It is used in various products that utilize electromagnetism. Such powder magnetic cores are required to have little high frequency loss (iron loss) that occurs depending on frequency. This iron loss is determined by hysteresis loss and eddy current loss. Hysteresis loss decreases as the coercive force of the soft magnetic powder contained in the dust core decreases, and eddy current loss depends on the particle size of the soft magnetic powder. The smaller the number, the less.

保磁力が低い軟磁性材料としては、Fe-Si-Al合金であるセンダストが知られている。このFe-Si-Al合金であるセンダストは、組成:Fe-9.6%Si-5.4%Alの近傍において、磁歪定数及び磁気異方性定数がともにほぼ0となり、高い透磁率と低い保磁力が得られることも知られている。しかしながら、このような高い透磁率と低い保磁力を有するセンダストは、DO型規則相が最大限に含まれているバルク磁性体であり、このようなバルク磁性体を粉末化したセンダスト粉末は、保磁力がバルク磁性体よりも高くなるため、圧粉磁心に配合しても、鉄損を低下させることは困難であった。 Sendust, which is an Fe-Si-Al alloy, is known as a soft magnetic material with a low coercive force. Sendust, which is an Fe-Si-Al alloy, has a composition of Fe-9.6%Si-5.4%Al, where both the magnetostriction constant and magnetic anisotropy constant are almost 0, and it has high magnetic permeability and low It is also known that coercive force can be obtained. However, Sendust, which has such high magnetic permeability and low coercive force, is a bulk magnetic material that contains a maximum amount of DO 3 type ordered phase, and Sendust powder, which is made by pulverizing such a bulk magnetic material, is Since the coercive force is higher than that of a bulk magnetic material, it has been difficult to reduce iron loss even when incorporated into a powder magnetic core.

一方、特開平7-320933号公報(特許文献1)には、Fe-Si-Al合金軟磁性膜においては、DO相の割合を50%以上とすることによって、透磁率が高くなることが記載されており、Fe-Si-Al合金軟磁性膜を成膜した後、550~800℃で所定の時間熱処理することによって、DO相の割合が50%以上となることが記載されている。また、特開2005-281783号公報(特許文献2)には、Fe-Si-Al合金のDO構造という結晶構造がFe-Si-Al合金を含む軟磁性合金粉末の透磁率特性を向上させることが記載されており、このDO構造は500~900℃で熱処理することによって生成しやすくなることが記載されている。しかしながら、特許文献1~2に記載の温度でFe-Si-Al合金粉末に熱処理を施しても、透磁率が高い軟磁性粉末は得られるものの、保磁力が低い軟磁性粉末は得られなかった。 On the other hand, JP-A-7-320933 (Patent Document 1) states that in a Fe-Si-Al alloy soft magnetic film, the magnetic permeability can be increased by increasing the proportion of DO 3 phase to 50% or more. It is stated that after forming a Fe-Si-Al alloy soft magnetic film, by heat-treating it at 550 to 800°C for a predetermined time, the proportion of DO 3 phase can be increased to 50% or more. . Furthermore, in JP-A No. 2005-281783 (Patent Document 2), it is stated that the crystal structure called DO 3 structure of Fe-Si-Al alloy improves the magnetic permeability characteristics of soft magnetic alloy powder containing Fe-Si-Al alloy. It is described that this DO 3 structure is easily generated by heat treatment at 500 to 900°C. However, even if Fe-Si-Al alloy powder is heat-treated at the temperatures described in Patent Documents 1 and 2, soft magnetic powder with high magnetic permeability can be obtained, but soft magnetic powder with low coercive force cannot be obtained. .

特開平7-320933号公報Japanese Patent Application Publication No. 7-320933 特開2005-281783号公報Japanese Patent Application Publication No. 2005-281783

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、Fe-Si-Al合金からなり、保磁力が低い軟磁性粉末、それを含有する低鉄損化された圧粉磁心、及び前記軟磁性粉末の製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art described above, and provides a soft magnetic powder made of an Fe-Si-Al alloy and having a low coercive force, a powder magnetic core containing the same and having a low iron loss, The present invention also aims to provide a method for producing the soft magnetic powder.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、DO型規則相及びB2型規則相が少ないFe-Si-Al合金粉末を、不活性雰囲気中又は還元性雰囲気中、所定の温度で熱処理した後、所定の条件で徐冷することによって、DO型規則相及びB2型規則相の割合が所定の範囲内にあるFe-Si-Al合金からなり、保磁力が低い軟磁性粉末が得られること、さらに、この低保磁力の軟磁性粉末を用いることによって、鉄損が少ない圧粉磁心が得られることを見出し、本発明を完成するに至った。 As a result of extensive research to achieve the above object, the present inventors have discovered that Fe-Si-Al alloy powder containing less DO 3 type ordered phase and B2 type ordered phase is prepared in an inert atmosphere or a reducing atmosphere. After heat treatment at a predetermined temperature, by slow cooling under predetermined conditions, a Fe-Si-Al alloy with a proportion of DO 3 type ordered phase and B2 type ordered phase within a predetermined range, and a low coercive force is obtained. The present invention was completed based on the discovery that a soft magnetic powder can be obtained and that a powder magnetic core with low iron loss can be obtained by using this soft magnetic powder with a low coercive force.

すなわち、本発明の軟磁性粉末は、Fe-Si-Al合金からなり、平均粒径が1~50μmの範囲内にあり、X線回折測定における(111)、(200)及び(220)ピークの強度比から下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
〔式中、I111は(111)ピーク強度を表し、I200は(200)ピーク強度を表し、I220は(220)ピーク強度を表す。〕
により求められるDO型規則相の割合が0.2~0.85の範囲内にあり、B2型規則相の割合が0.05~0.8の範囲内にあ
前記DO 型規則相の割合と前記B2型規則相の割合と不規則相の割合の合計が1である、
ことを特徴とするものである。
That is, the soft magnetic powder of the present invention is made of a Fe-Si-Al alloy, has an average particle size within the range of 1 to 50 μm, and has the (111), (200) and (220) peaks in X-ray diffraction measurements. From the intensity ratio, the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
[In the formula, I 111 represents the (111) peak intensity, I 200 represents the (200) peak intensity, and I 220 represents the (220) peak intensity. ]
The proportion of the DO 3 type ordered phase determined by is within the range of 0.2 to 0.85, the proportion of the B2 type ordered phase is within the range of 0.05 to 0.8,
The sum of the proportion of the DO 3 type ordered phase, the proportion of the B2 type ordered phase, and the proportion of the disordered phase is 1,
It is characterized by this.

本発明の軟磁性粉末においては、X線回折測定における(220)ピークの半値幅が0.1度以下であることが好ましい。また、前記B2型規則相の割合が0.05~0.5の範囲内にあることが好ましい。 In the soft magnetic powder of the present invention, it is preferable that the half width of the (220) peak in X-ray diffraction measurement is 0.1 degree or less. Further, it is preferable that the proportion of the B2 type ordered phase is within the range of 0.05 to 0.5.

また、本発明の圧粉磁心は、前記本発明の軟磁性粉末を含有することを特徴とするものである。 Moreover, the powder magnetic core of the present invention is characterized by containing the soft magnetic powder of the present invention.

さらに、本発明の軟磁性粉末の製造方法は、平均粒径が1~50μmの範囲内にあり、
X線回折測定における(111)、(200)及び(220)ピークの強度比から下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
〔式中、I111は(111)ピーク強度を表し、I200は(200)ピーク強度を表し、I220は(220)ピーク強度を表す。〕
により求められるDO型規則相の割合が0.2以下であり、B2型規則相の割合が0.05以下であり、前記DO 型規則相の割合と前記B2型規則相の割合と不規則相の割合の合計が1であり、FeとSiとAlとの合計量に対して、Siの含有量が5~15質量%であり、Alの含有量が2~10質量%である、原料Fe-Si-Al合金粉末を、不活性雰囲気中又は還元性雰囲気中、800℃以上の温度で熱処理した後、少なくとも800℃~600℃の範囲内においては10℃/時間~200℃/時間の範囲内の降温速度で徐冷することを特徴とする方法である。
Furthermore, in the method for producing soft magnetic powder of the present invention, the average particle size is within the range of 1 to 50 μm,
From the intensity ratio of (111), (200) and (220) peaks in X-ray diffraction measurement, the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
[In the formula, I 111 represents the (111) peak intensity, I 200 represents the (200) peak intensity, and I 220 represents the (220) peak intensity. ]
The ratio of the DO 3 type ordered phase determined by The total proportion of disordered phases is 1, the Si content is 5 to 15% by mass, and the Al content is 2 to 10% by mass with respect to the total amount of Fe, Si, and Al. , after heat treating the raw material Fe-Si-Al alloy powder at a temperature of 800°C or higher in an inert atmosphere or a reducing atmosphere, at least 10°C/hour to 200°C/hour within the range of 800°C to 600°C. This method is characterized by slow cooling at a temperature decreasing rate within a certain time range.

なお、本発明の軟磁性粉末の保磁力が低くなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、Fe-Si-Al合金において、DO型規則相は、良好な磁気特性を得るためには、その割合が多いことが好ましいが、低保磁力化のみに着目すると、DO型規則相は、不規則相に比べて、磁化容易軸と磁化困難軸とのエネルギー差がわずかに大きい、すなわち、結晶磁気異方性定数が大きいため、DO型規則相の割合が多くなると、保磁力が高くなると推察される。Fe-Si-Al合金のバルク磁性体においては、DO型規則相を磁化容易軸に配向させることによって、磁化容易軸と磁束の方向とを一致させることにより、保磁力を低くすることが可能であるが、圧粉磁心においては、Fe-Si-Al合金粉末のDO型規則相がランダムに配向しているため、磁化容易軸と磁束の方向とを一致させることができず、保磁力を低くすることは困難であると推察される。 Although the reason why the coercive force of the soft magnetic powder of the present invention decreases is not necessarily clear, the present inventors speculate as follows. That is, in the Fe-Si-Al alloy, in order to obtain good magnetic properties, it is preferable that the proportion of the DO 3 - type ordered phase is high. The energy difference between the easy axis and the hard axis of magnetization is slightly larger than that of the disordered phase, that is, the magnetocrystalline anisotropy constant is large, so when the proportion of the DO 3 type ordered phase increases, the coercive force increases. It is inferred that this will increase. In the bulk magnetic material of Fe-Si-Al alloy, it is possible to lower the coercive force by aligning the easy axis of magnetization with the direction of magnetic flux by aligning the DO 3 type ordered phase with the axis of easy magnetization. However, in powder magnetic cores, the DO 3 type ordered phase of Fe-Si-Al alloy powder is randomly oriented, so the axis of easy magnetization cannot match the direction of magnetic flux, and the coercive force It is inferred that it is difficult to lower the value.

そこで、本発明においては、Fe-Si-Al合金粉末におけるDO型規則相の割合を所定の上限以下に調整して不規則相や不規則相とDO型規則相との中間のB2型規則相を導入することによって、DO型規則相の良好な磁気特性を保持しつつ、結晶磁気異方性定数を小さくすることができ、保磁力を低くすることが可能になったと推察される。また、DO型規則相の割合を所定の下限以上に調整することによって、DO型規則相の良好な磁気特性を保持しつつ、局所的なSi-Si結合やAl-Al結合による磁気ピニングサイトの形成を抑制し、保磁力の増大を防止することが可能になったと推察される。 Therefore, in the present invention, the proportion of the DO 3 type ordered phase in the Fe-Si-Al alloy powder is adjusted to below a predetermined upper limit, and the B2 type which is an intermediate between the disordered phase and the DO 3 type ordered phase is used. It is surmised that by introducing the ordered phase, it was possible to reduce the magnetocrystalline anisotropy constant and lower the coercive force while maintaining the good magnetic properties of the DO 3 type ordered phase. . In addition, by adjusting the proportion of the DO 3 type ordered phase to a predetermined lower limit or higher, magnetic pinning due to local Si-Si bonds and Al-Al bonds can be achieved while maintaining the good magnetic properties of the DO 3 type ordered phase. It is presumed that this makes it possible to suppress the formation of sites and prevent an increase in coercive force.

本発明によれば、Fe-Si-Al合金からなり、保磁力が低い軟磁性粉末、及びそれを含有する低鉄損化された圧粉磁心を得ることが可能となる。 According to the present invention, it is possible to obtain a soft magnetic powder made of a Fe-Si-Al alloy and having a low coercive force, and a powder magnetic core containing the soft magnetic powder with a low iron loss.

Fe-Si-Al合金粉末の保磁力とDO型規則相の割合との関係を示すグラフである。3 is a graph showing the relationship between the coercive force of Fe-Si-Al alloy powder and the proportion of DO 3 type ordered phase. Fe-Si-Al合金粉末の保磁力とB2型規則相の割合との関係を示すグラフである。2 is a graph showing the relationship between the coercive force of Fe-Si-Al alloy powder and the proportion of B2 type ordered phase.

以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be explained in detail based on its preferred embodiments.

〔軟磁性粉末〕
先ず、本発明の軟磁性粉末について説明する。本発明の軟磁性粉末は、Fe-Si-Al合金からなり、平均粒径が1~50μmの範囲内にあり、X線回折測定における(111)、(200)及び(220)ピークの強度比から下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
〔式中、I111は(111)ピーク強度を表し、I200は(200)ピーク強度を表し、I220は(220)ピーク強度を表す。〕
により求められるDO型規則相の割合が0.2~0.85の範囲内にあり、B2型規則相の割合が0.05~0.8の範囲内にある、ものである。このような軟磁性粉末は、保磁力が低く、圧粉磁心の低鉄損化を可能にする。
[Soft magnetic powder]
First, the soft magnetic powder of the present invention will be explained. The soft magnetic powder of the present invention is made of a Fe-Si-Al alloy, has an average particle size in the range of 1 to 50 μm, and has an intensity ratio of (111), (200), and (220) peaks in X-ray diffraction measurements. From the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
[In the formula, I 111 represents the (111) peak intensity, I 200 represents the (200) peak intensity, and I 220 represents the (220) peak intensity. ]
The proportion of the DO 3 type ordered phase determined by the formula is within the range of 0.2 to 0.85, and the proportion of the B2 type ordered phase is within the range of 0.05 to 0.8. Such soft magnetic powder has a low coercive force and enables a powder magnetic core to have a low core loss.

本発明の軟磁性粉末は、Fe-Si-Al合金からなる粉末であり、Siの含有量としては、FeとSiとAlとの合計量に対して、5~15質量%が好ましく、7~12質量%がより好ましく、9~10質量%が特に好ましい。Siの含有量が前記下限未満になると、結晶磁気異方性定数が大きくなり、保磁力が大きくなる傾向にあり、他方、前記上限を超えると、徐冷してもB2型規則相が得られにくくなり、保磁力が大きくなる傾向にある。 The soft magnetic powder of the present invention is a powder made of a Fe-Si-Al alloy, and the Si content is preferably 5 to 15% by mass, and 7 to 15% by mass, based on the total amount of Fe, Si, and Al. 12% by weight is more preferable, and 9 to 10% by weight is particularly preferable. When the Si content is less than the lower limit, the magnetocrystalline anisotropy constant tends to increase, and the coercive force tends to increase. On the other hand, when it exceeds the upper limit, a B2 type ordered phase cannot be obtained even when slowly cooled. There is a tendency for the coercive force to increase.

また、本発明の軟磁性粉末において、Alの含有量としては、FeとSiとAlとの合計量に対して、2~10質量%が好ましく、3~7質量%がより好ましく、5~6質量%が特に好ましい。Alの含有量が前記下限未満になると、徐冷してもB2型規則相が得られにくくなり、保磁力が大きくなる傾向にあり、他方、前記上限を超えると、結晶磁気異方性定数が大きくなり、保磁力が大きくなる傾向にある。 Further, in the soft magnetic powder of the present invention, the Al content is preferably 2 to 10% by mass, more preferably 3 to 7% by mass, and 5 to 6% by mass, based on the total amount of Fe, Si, and Al. % by weight is particularly preferred. When the Al content is less than the lower limit, it becomes difficult to obtain a B2-type ordered phase even when slowly cooled, and the coercive force tends to increase.On the other hand, when the Al content exceeds the upper limit, the magnetocrystalline anisotropy constant decreases. It tends to become larger and the coercive force becomes larger.

本発明の軟磁性粉末の平均粒径は1~50μmの範囲内にあることが必要であり、3~30μmの範囲内にあることが好ましく、5~15μmの範囲内にあることがより好ましい。軟磁性粉末の平均粒径が前記下限未満になると、酸化の影響が大きくなり、良好な磁気特性が得られない傾向にあり、他方、前記上限を超えると、軟磁性粉末を用いて成形体を作製した場合に、粒子の充填率が低くなるため、高い透磁率を有する成形体が得られない傾向にある。 The average particle size of the soft magnetic powder of the present invention needs to be within the range of 1 to 50 μm, preferably within the range of 3 to 30 μm, and more preferably within the range of 5 to 15 μm. If the average particle size of the soft magnetic powder is less than the above lower limit, the influence of oxidation becomes large and good magnetic properties tend not to be obtained. When produced, the filling rate of the particles is low, so a molded body with high magnetic permeability tends not to be obtained.

本発明の軟磁性粉末において、Fe-Si-Al合金粉末の磁気特性を示す結晶相としては、DO型規則相(例えば、PDF#00-045-1206)、B2型規則相(例えば、PDF#04-018-0311)及び不規則相(例えば、PDF#04-016-6265)を含有するものである。B2型規則相は、DO型規則相と不規則相との中間の状態であり、体心立方格子のコーナー部のFeと中心部(Fe、Si、Al)との間には規則性があるが、中心部のFeとSiとAlの並びには規則性がないため、結晶磁気異方性定数は、体心立方格子のコーナー部のFeと中心部(Fe、Si、Al)との間及びに中心部のFeとSiとAlの並びに規則性があるDO型規則相に比べて、低くなり、不規則相の場合と同様に、低保磁力化を可能にする。 In the soft magnetic powder of the present invention, crystalline phases exhibiting magnetic properties of Fe-Si-Al alloy powder include DO 3 type ordered phase (e.g. PDF #00-045-1206), B2 type ordered phase (e.g. PDF #04-018-0311) and disordered phases (eg, PDF #04-016-6265). The B2 type ordered phase is an intermediate state between the DO 3 type ordered phase and the disordered phase, and there is no regularity between the corner Fe and the center (Fe, Si, Al) of the body-centered cubic lattice. However, since there is no regularity in the alignment of Fe, Si, and Al in the center, the magnetocrystalline anisotropy constant is The coercive force is lower than that of the DO 3 type ordered phase, which has a regular arrangement of Fe, Si, and Al in the center, and enables a low coercive force as in the case of the disordered phase.

本発明の軟磁性粉末は、DO型規則相の割合が0.2~0.85の範囲内にあることが必要であり、0.4~0.8の範囲内にあることが好ましく、0.5~0.7の範囲内にあることがより好ましい。DO型規則相の割合が前記下限未満になると、磁気特性が低下し、また、局所的にSi-Si結合やAl-Al結合が生成して磁気ピニングサイトが形成され、保磁力が高くなる傾向にあり、他方、前記上限を超えると、保磁力が高くなり、圧粉磁心の低鉄損化が困難となる傾向にある。 In the soft magnetic powder of the present invention, the proportion of the DO 3 type ordered phase must be within the range of 0.2 to 0.85, preferably within the range of 0.4 to 0.8, It is more preferably within the range of 0.5 to 0.7. When the proportion of the DO 3 type ordered phase is less than the lower limit, the magnetic properties deteriorate, and Si-Si bonds and Al-Al bonds are locally generated to form magnetic pinning sites, increasing the coercive force. On the other hand, if the above upper limit is exceeded, the coercive force becomes high and it tends to become difficult to reduce the core loss of the powder magnetic core.

また、本発明の軟磁性粉末は、B2型規則相の割合が0.05~0.8の範囲内にあることが必要であり、0.05~0.6の範囲内にあることが好ましく、0.05~0.5の範囲内にあることがより好ましい。B2型規則相はDO型規則相と不規則相との中間の状態であり、B2型規則相の割合が前記下限未満になると、DO型規則相と不規則相との共存状態が不安定となる傾向にあり、他方、前記上限を超えると、熱的に不安定となり、耐熱性が低下する傾向にある。 Further, in the soft magnetic powder of the present invention, the proportion of the B2 type ordered phase must be within the range of 0.05 to 0.8, and preferably within the range of 0.05 to 0.6. , more preferably within the range of 0.05 to 0.5. The B2 type ordered phase is an intermediate state between the DO 3 type ordered phase and the disordered phase, and when the proportion of the B2 type ordered phase is less than the above lower limit, the coexistence state of the DO 3 type ordered phase and the disordered phase becomes unstable. On the other hand, if it exceeds the upper limit, it tends to become thermally unstable and the heat resistance tends to decrease.

なお、DO型規則相及びB2型規則相の割合は以下のようにして求められる値である。すなわち、軟磁性粉末(Fe-Si-Al合金粉末)について、光源としてCuKαを用いてX線回折測定を行い、X線回折パターンを得る。各結晶相において、PDFに示された(111)ピーク強度I111と(200)ピーク強度I200と(220)ピーク強度I220との比は、DO型規則相でI111:I200:I220=7:3:100であり、B2型規則相でI111:I200:I220=0:17.5:100であり、不規則相でI111:I200:I220=0:0:100であることから、得られたX線回折パターンにおける(111)、(200)及び(220)ピークの強度比I111:I200:I220を、PDFに示された各結晶相の前記ピーク強度比でフィッティングして求め、下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
により、DO型規則相及びB2型規則相の各割合を求める。ここで得られるDO型規則相及びB2型規則相の各割合は、DO型規則相とB2型規則相と不規則相の各割合の合計を1とした場合の値である。
Note that the ratio of the DO 3 type ordered phase and the B2 type ordered phase is a value determined as follows. That is, X-ray diffraction measurement is performed on soft magnetic powder (Fe-Si-Al alloy powder) using CuKα as a light source to obtain an X-ray diffraction pattern. In each crystal phase, the ratio of the (111) peak intensity I 111 , (200) peak intensity I 200 and (220) peak intensity I 220 shown in the PDF is I 111 :I 200 : in the DO 3 type ordered phase. I 220 =7:3:100, I 111 :I 200 :I 220 =0:17.5:100 in the B2 type regular phase, and I 111 :I 200 :I 220 =0 in the irregular phase. Since the ratio is 0:100, the intensity ratio of the (111), (200) and (220) peaks in the obtained X-ray diffraction pattern, I 111 :I 200 :I 220 , is calculated as follows for each crystal phase shown in the PDF. It is determined by fitting with the above peak intensity ratio, and the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
The respective proportions of the DO 3 type ordered phase and the B2 type ordered phase are determined. The respective proportions of the DO 3 type ordered phase and the B2 type ordered phase obtained here are values when the sum of the respective proportions of the DO 3 type ordered phase, the B2 type ordered phase, and the disordered phase is 1.

本発明の軟磁性粉末においては、前記X線回折パターンにおける(220)ピークの半値幅が0.1度以下であることが好ましく、0.08度以下であることがより好ましく、0.07度以下であることが特に好ましい。(220)ピークの半値幅が前記上限を超えると、結晶性が低下し、透磁率が低下する傾向にある。 In the soft magnetic powder of the present invention, the half width of the (220) peak in the X-ray diffraction pattern is preferably 0.1 degrees or less, more preferably 0.08 degrees or less, and 0.07 degrees. The following is particularly preferable. (220) When the half-width of the peak exceeds the upper limit, crystallinity tends to decrease and magnetic permeability tends to decrease.

また、本発明の軟磁性粉末においては、その表面が絶縁被膜で覆われていることが好ましい。これにより、圧粉磁心に配合した場合、軟磁性粒子間を絶縁することができ、渦電流損を低減させることができる。このような絶縁被膜としては特に制限はないが、例えば、金属酸化物膜や樹脂膜等が挙げられ、中でも、シリカ膜、アルミナ膜、NiZnフェライト膜、MnZnフェライト膜、シリコーン樹脂膜が好ましい。 Further, in the soft magnetic powder of the present invention, the surface thereof is preferably covered with an insulating coating. Thereby, when blended into a powder magnetic core, it is possible to insulate between soft magnetic particles and reduce eddy current loss. Such an insulating film is not particularly limited, but examples thereof include metal oxide films, resin films, etc. Among them, silica films, alumina films, NiZn ferrite films, MnZn ferrite films, and silicone resin films are preferred.

このような本発明の軟磁性粉末は、例えば、以下の方法により製造することができる。すなわち、本発明の軟磁性粉末の製造方法は、平均粒径が1~50μmの範囲内にあり、X線回折測定における(111)、(200)及び(220)ピークの強度比から下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
〔式中、I111は(111)ピーク強度を表し、I200は(200)ピーク強度を表し、I220は(220)ピーク強度を表す。〕
により求められるDO型規則相の割合が0.2以下であり、B2型規則相の割合が0.05以下である原料Fe-Si-Al合金粉末を、不活性雰囲気中又は還元性雰囲気中、800℃以上の温度で熱処理した後、少なくとも800℃~600℃の範囲内においては10℃/時間~200℃/時間の範囲内の降温速度で徐冷する方法である。この方法によって、前記本発明の軟磁性粉末を製造することができる。
Such a soft magnetic powder of the present invention can be produced, for example, by the following method. That is, in the method for producing soft magnetic powder of the present invention, the average particle size is within the range of 1 to 50 μm, and the intensity ratio of (111), (200), and (220) peaks in X-ray diffraction measurement is determined by the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
[In the formula, I 111 represents the (111) peak intensity, I 200 represents the (200) peak intensity, and I 220 represents the (220) peak intensity. ]
The raw material Fe-Si-Al alloy powder, which has a proportion of DO 3 type ordered phase of 0.2 or less and a B2 type ordered phase of 0.05 or less, is heated in an inert atmosphere or a reducing atmosphere. , after heat treatment at a temperature of 800°C or higher, at least within the range of 800°C to 600°C, the temperature is slowly cooled at a temperature decreasing rate within the range of 10°C/hour to 200°C/hour. By this method, the soft magnetic powder of the present invention can be manufactured.

原料Fe-Si-Al合金粉末において、Siの含有量としては、FeとSiとAlとの合計量に対して、5~15質量%が好ましく、7~12質量%がより好ましく、9~10質量%が特に好ましい。Siの含有量が前記下限未満になると、結晶磁気異方性定数が大きくなり、保磁力が大きくなる傾向にあり、他方、前記上限を超えると、徐冷してもB2型規則相が得られにくくなり、保磁力が大きくなる傾向にある。 In the raw material Fe-Si-Al alloy powder, the Si content is preferably 5 to 15% by mass, more preferably 7 to 12% by mass, and 9 to 10% by mass based on the total amount of Fe, Si, and Al. % by weight is particularly preferred. When the Si content is less than the lower limit, the magnetocrystalline anisotropy constant tends to increase, and the coercive force tends to increase. On the other hand, when it exceeds the upper limit, a B2 type ordered phase cannot be obtained even when slowly cooled. There is a tendency for the coercive force to increase.

また、原料Fe-Si-Al合金粉末において、Alの含有量としては、FeとSiとAlとの合計量に対して、2~10質量%が好ましく、3~7質量%がより好ましく、5~6質量%が特に好ましい。Alの含有量が前記下限未満になると、徐冷してもB2型規則相が得られにくくなり、保磁力が大きくなる傾向にあり、他方、前記上限を超えると、結晶磁気異方性定数が大きくなり、保磁力が大きくなる傾向にある。 In addition, in the raw material Fe-Si-Al alloy powder, the Al content is preferably 2 to 10% by mass, more preferably 3 to 7% by mass, based on the total amount of Fe, Si, and Al. ~6% by weight is particularly preferred. When the Al content is less than the lower limit, it becomes difficult to obtain a B2-type ordered phase even when slowly cooled, and the coercive force tends to increase.On the other hand, when the Al content exceeds the upper limit, the magnetocrystalline anisotropy constant decreases. It tends to become larger and the coercive force becomes larger.

また、原料Fe-Si-Al合金粉末の平均粒径は1~50μmの範囲内にあることが必要であり、3~30μmの範囲内にあることが好ましく、5~15μmの範囲内にあることがより好ましい。原料Fe-Si-Al合金粉末の平均粒径が前記下限未満になると、得られる軟磁性粉末が酸化の影響を受けやすく、良好な磁気特性が得られない傾向にあり、他方、前記上限を超えると、得られる軟磁性粉末を用いて成形体を作製した場合に、粒子の充填率が低くなるため、高い透磁率を有する成形体が得られない傾向にある。 In addition, the average particle size of the raw material Fe-Si-Al alloy powder must be within the range of 1 to 50 μm, preferably within the range of 3 to 30 μm, and preferably within the range of 5 to 15 μm. is more preferable. If the average particle size of the raw material Fe-Si-Al alloy powder is less than the lower limit, the resulting soft magnetic powder will be susceptible to oxidation, and good magnetic properties will not be obtained. When a molded body is produced using the resulting soft magnetic powder, the filling rate of the particles becomes low, so that a molded body with high magnetic permeability tends not to be obtained.

原料Fe-Si-Al合金粉末は、DO型規則相の割合が0.2以下若しくはB2型規則相の割合が0.05以下であることが必要であり、DO型規則相の割合が0.1以下若しくはB2型規則相の割合が0.03以下であることが好ましい。原料Fe-Si-Al合金粉末のDO型規則相及びB2型規則相の割合が前記上限を超えると、DO型規則相及びB2型規則相の割合が所定の範囲内にあるFe-Si-Al合金を形成することによる保磁力低減効果が得られにくくなる傾向にある。 The raw material Fe-Si-Al alloy powder must have a DO 3 type ordered phase ratio of 0.2 or less or a B2 type ordered phase ratio of 0.05 or less; It is preferable that the ratio of the B2 type ordered phase is 0.1 or less, or 0.03 or less. If the proportion of DO 3 type ordered phase and B2 type ordered phase in the raw material Fe-Si-Al alloy powder exceeds the above upper limit, Fe-Si in which the proportion of DO 3 type ordered phase and B2 type ordered phase is within a predetermined range. - It tends to be difficult to obtain the effect of reducing coercive force by forming an Al alloy.

なお、原料Fe-Si-Al合金粉末のDO型規則相及びB2型規則相の割合は、上述した軟磁性粉末のDO型規則相及びB2型規則相の割合と同様にして求めることができる。 Note that the proportions of the DO 3 type ordered phase and B2 type ordered phase of the raw material Fe-Si-Al alloy powder can be determined in the same manner as the proportions of the DO 3 type ordered phase and B2 type ordered phase of the soft magnetic powder described above. can.

このような原料Fe-Si-Al合金粉末の調製方法としては特に制限はないが、ガスアトマイズ法、水アトマイズ法、インゴッド粉砕法、溶液中合成法等が挙げられる。これらの方法により調製したFe-Si-Al合金は、必要に応じて粉砕処理を施した後、篩分け等により、所定の平均粒径に整粒して用いる。 There are no particular restrictions on the method for preparing such raw material Fe--Si--Al alloy powder, but examples include gas atomization, water atomization, ingot pulverization, and in-solution synthesis. The Fe-Si-Al alloy prepared by these methods is subjected to pulverization treatment if necessary, and then sized to a predetermined average particle size by sieving or the like before use.

本発明の軟磁性粉末の製造方法においては、このような原料Fe-Si-Al合金粉末を、不活性雰囲気中又は還元性雰囲気中、所定の温度で熱処理した後、所定の条件で徐冷する。 In the method for producing soft magnetic powder of the present invention, such raw material Fe-Si-Al alloy powder is heat treated at a predetermined temperature in an inert atmosphere or a reducing atmosphere, and then slowly cooled under predetermined conditions. .

不活性雰囲気としては特に制限はなく、例えば、アルゴン雰囲気、窒素雰囲気、ヘリウム雰囲気等が挙げられる。還元性雰囲気としては、水素とアルゴンとの混合ガス雰囲気、水素と窒素との混合ガス雰囲気、水素とヘリウムとの混合ガス雰囲気等が挙げられる。 The inert atmosphere is not particularly limited and includes, for example, an argon atmosphere, a nitrogen atmosphere, a helium atmosphere, and the like. Examples of the reducing atmosphere include a mixed gas atmosphere of hydrogen and argon, a mixed gas atmosphere of hydrogen and nitrogen, and a mixed gas atmosphere of hydrogen and helium.

熱処理温度としては、800℃以上であることが必要であり、850℃以上であることが好ましく、900℃以上であることがより好ましい。熱処理温度が前記下限未満になると、DO型規則相及びB2型規則相の割合が所定の範囲内の軟磁性粉末を得ることが困難である。また、熱処理温度の上限としては特に制限はないが、1300℃以下が好ましい。熱処理温度が前記上限を超えると、熱処理温度がFe-Si-Al合金の融点を超えるため、所望の形状の軟磁性粉末を得ることが困難となる。 The heat treatment temperature needs to be 800°C or higher, preferably 850°C or higher, and more preferably 900°C or higher. When the heat treatment temperature is below the lower limit, it is difficult to obtain a soft magnetic powder in which the proportion of the DO 3 type ordered phase and the B2 type ordered phase is within a predetermined range. Further, there is no particular restriction on the upper limit of the heat treatment temperature, but it is preferably 1300°C or lower. If the heat treatment temperature exceeds the upper limit, the heat treatment temperature will exceed the melting point of the Fe-Si-Al alloy, making it difficult to obtain soft magnetic powder in the desired shape.

熱処理時間としては特に制限はないが、1~100時間が好ましく、1~10時間がより好ましく、2~5時間が特に好ましい。熱処理時間が前記下限未満になると、結晶性が十分に向上せず、良好な磁気特性が得られない傾向にあり、他方、前記上限を超えると、粒子の焼結が起こり、所望の形状の軟磁性粉末を得ることが困難となり、また、生産性が低下する傾向にある。 The heat treatment time is not particularly limited, but is preferably 1 to 100 hours, more preferably 1 to 10 hours, and particularly preferably 2 to 5 hours. If the heat treatment time is less than the above lower limit, the crystallinity will not be sufficiently improved and good magnetic properties will not be obtained. On the other hand, if the heat treatment time exceeds the above upper limit, sintering of the particles will occur, resulting in soft particles with the desired shape. It becomes difficult to obtain magnetic powder, and productivity tends to decrease.

本発明の軟磁性粉末の製造方法においては、徐冷時の降温速度が、10℃/時間~200℃/時間の範囲内にあることが必要であり、30℃/時間~150℃/時間の範囲内にあることが好ましく、30℃/時間~100℃/時間の範囲内にあることがより好ましい。降温速度が前記下限未満になると、生産性が低下する。他方、降温速度が前記上限を超えると、DO型規則相の割合が所定の範囲より大きくなるため、得られる軟磁性粉末において、保磁力が増大する。さらに、B2型規則相の割合も所定の範囲より小さくなるため、得られる軟磁性粉末においては、DO型規則相と不規則相との共存状態が不安定となる傾向にある。 In the method for producing soft magnetic powder of the present invention, the temperature decreasing rate during slow cooling must be within the range of 10°C/hour to 200°C/hour, and should be within the range of 30°C/hour to 150°C/hour. It is preferably within the range, and more preferably within the range of 30°C/hour to 100°C/hour. When the temperature decreasing rate is less than the lower limit, productivity decreases. On the other hand, when the temperature decreasing rate exceeds the upper limit, the proportion of the DO 3 type ordered phase becomes larger than the predetermined range, so that the resulting soft magnetic powder has an increased coercive force. Furthermore, since the proportion of the B2 type ordered phase is also smaller than a predetermined range, the coexistence state of the DO3 type ordered phase and the disordered phase tends to become unstable in the obtained soft magnetic powder.

また、本発明の軟磁性粉末の製造方法においては、少なくとも800℃~600℃の範囲内において所定の降温速度で徐冷すればよい。したがって、前記温度範囲よりも広い温度範囲内(例えば、900℃~500℃の範囲内)において所定の降温速度で徐冷してもよい。所定の降温速度で徐冷する温度範囲が前記温度範囲よりも狭くなると(例えば、750~650℃の範囲内になると)、DO型規則相の割合が所定の範囲より大きくなるため、得られる軟磁性粉末において、保磁力が増大する傾向にある。 In addition, in the method for producing soft magnetic powder of the present invention, it is sufficient to slowly cool the powder at a predetermined cooling rate within the range of at least 800°C to 600°C. Therefore, it may be slowly cooled at a predetermined temperature decreasing rate within a temperature range wider than the above-mentioned temperature range (for example, within a range of 900° C. to 500° C.). When the temperature range for slow cooling at a predetermined cooling rate is narrower than the above-mentioned temperature range (for example, within the range of 750 to 650 ° C.), the proportion of the DO 3 type ordered phase becomes larger than the predetermined range. Coercive force tends to increase in soft magnetic powders.

〔圧粉磁心〕
次に、本発明の圧粉磁心について説明する。本発明の圧粉磁心は、前記本発明の軟磁性粉末を含有するものであり、前記軟磁性粉末の表面は絶縁被膜で覆われていることが好ましい。このような本発明の圧粉磁心は、例えば、以下の方法により製造することができる。すなわち、先ず、前記軟磁性粉末(好ましくは、絶縁被膜で覆われている前記軟磁性粉末)と結着剤等の各種添加剤と混合する。結着剤としては、ポリビニルアルコールやポリビニルブチラール等が挙げられる。
[Powder magnetic core]
Next, the powder magnetic core of the present invention will be explained. The powder magnetic core of the present invention contains the soft magnetic powder of the present invention, and the surface of the soft magnetic powder is preferably covered with an insulating coating. Such a powder magnetic core of the present invention can be manufactured, for example, by the following method. That is, first, the soft magnetic powder (preferably the soft magnetic powder covered with an insulating film) is mixed with various additives such as a binder. Examples of the binder include polyvinyl alcohol and polyvinyl butyral.

前記軟磁性粉末と前記添加剤との混合方法としては特に制限はなく、例えば、ボールミルや乳鉢を用いて混合する方法、溶媒に前記軟磁性粉末と前記添加剤とを分散・溶解させた後、乾燥等により溶媒を除去することによって混合する方法等が挙げられる。また、前記軟磁性粉末は再配列性に劣るため、溶媒に前記軟磁性粉末と前記添加剤とを分散・溶解させた後、スプレードライ等により顆粒状の混合物を調製してもよい。これにより、圧縮成形時に顆粒状の混合物が崩れて前記軟磁性粉末が再配列しやすくなるため、圧粉磁心の密度が向上する。 There are no particular limitations on the method of mixing the soft magnetic powder and the additive, for example, mixing using a ball mill or mortar, dispersing and dissolving the soft magnetic powder and the additive in a solvent, Examples include a method of mixing by removing the solvent by drying or the like. Furthermore, since the soft magnetic powder has poor rearrangement properties, a granular mixture may be prepared by spray drying or the like after dispersing and dissolving the soft magnetic powder and the additive in a solvent. As a result, the granular mixture collapses during compression molding, making it easier for the soft magnetic powder to rearrange, thereby improving the density of the dust core.

次に、このようにして得られた前記軟磁性粉末と前記添加剤との混合物を、必要に応じて潤滑剤を塗布した金型に充填する。前記潤滑剤としては特に制限はなく、例えば、ステアリン酸リチウム、ステアリン酸亜鉛等の飽和脂肪酸の金属塩、潤滑グリース(例えば、株式会社ミスミ製「M-HGSSC-H500」)等が挙げられる。 Next, the mixture of the soft magnetic powder and the additive thus obtained is filled into a mold coated with a lubricant if necessary. The lubricant is not particularly limited, and examples thereof include metal salts of saturated fatty acids such as lithium stearate and zinc stearate, lubricating grease (for example, "M-HGSSC-H500" manufactured by Misumi Co., Ltd.), and the like.

次に、金型に充填した前記軟磁性粉末と前記添加剤との混合物を加圧成形することによって、本発明の圧粉磁心を得ることができる。成形温度としては、600℃以下が好ましく、100~400℃がより好ましい。成形温度が前記下限未満になると、得られた成形体が離型しにくくなる傾向にあり、他方、前記上限を超えると、金型の強度が低下し、金型の寿命が短くなる傾向にある。なお、金型は、設定温度(成形温度)に、前記軟磁性粉末と前記添加剤との混合物を充填する前に昇温してもよいし、充填後に昇温してもよい。 Next, the powder magnetic core of the present invention can be obtained by pressure-molding the mixture of the soft magnetic powder and the additive filled in a mold. The molding temperature is preferably 600°C or lower, more preferably 100 to 400°C. When the molding temperature falls below the above-mentioned lower limit, the obtained molded product tends to be difficult to release from the mold, while when it exceeds the above-mentioned upper limit, the strength of the mold tends to decrease and the life of the mold tends to be shortened. . Note that the temperature of the mold may be raised to a set temperature (molding temperature) before filling the mixture of the soft magnetic powder and the additive, or after filling.

成形圧力としては500MPa~3GPaが好ましく、800MPa~2GPaがより好ましい。成形圧力が前記下限未満になると、前記混合物が十分に圧縮されないため、圧粉磁心の密度が小さくなる傾向にあり、他方、前記上限を超えると、スプリングバック現象の影響が大きく、クラックが発生して圧粉磁心の密度が低くなる傾向にある。 The molding pressure is preferably 500 MPa to 3 GPa, more preferably 800 MPa to 2 GPa. When the compacting pressure is less than the lower limit, the mixture is not compressed sufficiently, and the density of the powder magnetic core tends to decrease.On the other hand, when it exceeds the upper limit, the influence of springback phenomenon is large and cracks occur. As a result, the density of the powder magnetic core tends to decrease.

また、このようにして製造した圧粉磁心には、必要に応じて熱処理を施してもよい。これにより、加圧により圧粉磁心に生じた歪みを緩和し、磁気特性を改善することができる。このような熱処理の温度は通常500~800℃である。 Further, the powder magnetic core manufactured in this manner may be subjected to heat treatment as necessary. Thereby, the strain caused in the powder magnetic core due to pressurization can be alleviated, and the magnetic properties can be improved. The temperature of such heat treatment is usually 500 to 800°C.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、粉末の平均粒径、Fe-Si-Al合金のDO型規則相、B2型規則相及び不規則相の各割合、並びに、Fe-Si-Al合金粉末の保磁力は以下の方法により求めた。 EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The average particle size of the powder, the proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of the Fe-Si-Al alloy, and the coercive force of the Fe-Si-Al alloy powder were determined by the following method. I asked for it.

<平均粒径>
Fe-Si-Al合金粉末の体積基準の粒度分布を、レーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製「MT3300EX」)を用いて測定し、得られた粒度分布における50%粒子径をFe-Si-Al合金粉末の平均粒径とした。
<Average particle size>
The volume-based particle size distribution of the Fe-Si-Al alloy powder was measured using a laser diffraction/scattering particle size distribution analyzer (“MT3300EX” manufactured by Microtrac Bell Co., Ltd.), and 50% of the obtained particle size distribution The particle size was taken as the average particle size of the Fe-Si-Al alloy powder.

<X線回折測定>
Fe-Si-Al合金について、光源としてCuKαを用いてX線回折測定を行い、得られたX線回折パターンに基づいて、(111)、(200)及び(220)ピークの強度比I111:I200:I220を求め、下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
不規則相の割合=1-(DO型規則相の割合+B2型規則相の割合)
により、DO型規則相、B2型規則相及び不規則相の各割合を求めた。なお、I111は(111)ピーク強度を表し、I200は(200)ピーク強度を表し、I220は(220)ピーク強度を表す。また、DO型規則相、B2型規則相及び不規則相の各割合は、DO型規則相とB2型規則相と不規則相の各割合の合計を1とした場合の値である。
<X-ray diffraction measurement>
X-ray diffraction measurements were performed on the Fe-Si-Al alloy using CuKα as a light source, and based on the obtained X-ray diffraction pattern, the intensity ratio of the (111), (200) and (220) peaks I 111 : Calculate I 200 :I 220 and use the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
Proportion of irregular phase = 1 - (proportion of DO 3 type ordered phase + proportion of B2 type ordered phase)
Accordingly, the proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase were determined. Note that I 111 represents the (111) peak intensity, I 200 represents the (200) peak intensity, and I 220 represents the (220) peak intensity. Moreover, each ratio of the DO 3 type ordered phase, the B2 type ordered phase, and the irregular phase is a value when the sum of the respective ratios of the DO 3 type ordered phase, the B2 type ordered phase, and the irregular phase is 1.

<保磁力>
振動試料型磁力計(東英工業株式会社製「VSM-3S-15」)を用いて、室温、最大印加磁場20kOeの条件で、Fe-Si-Al合金粉末の保磁力を測定した。
<Coercive force>
Using a vibrating sample magnetometer ("VSM-3S-15" manufactured by Toei Kogyo Co., Ltd.), the coercive force of the Fe--Si--Al alloy powder was measured at room temperature and under the conditions of a maximum applied magnetic field of 20 kOe.

(実施例A1)
先ず、Fe-Si-Al合金ガスアトマイズ粉(大同特殊鋼株式会社製、Si:9.64質量%、Al:5.45質量%)を篩分けして平均粒径21μmの原料粉末を得た。この原料粉末のDO型規則相、B2型規則相及び不規則相の各割合を求めたところ、DO型規則相:B2型規則相:不規則相=0.00:0.00:1.00であった。
(Example A1)
First, Fe-Si-Al alloy gas atomized powder (manufactured by Daido Steel Co., Ltd., Si: 9.64% by mass, Al: 5.45% by mass) was sieved to obtain a raw material powder with an average particle size of 21 μm. When the ratios of the DO 3 type ordered phase, B2 type ordered phase, and irregular phase of this raw material powder were determined, it was found that DO 3 type ordered phase: B2 type ordered phase: irregular phase = 0.00:0.00:1 It was .00.

次に、この原料粉末をH(80%)/Ar(20%)の混合ガス雰囲気中、800℃で3時間熱処理した後、800℃から600℃まで100℃/時間の降温速度で徐冷し、その後、600℃から室温まで自然冷却して、平均粒径21μmのFe-Si-Al合金粉末(Si:9.64質量%、Al:5.45質量%)を得た。 Next, this raw material powder was heat-treated at 800°C for 3 hours in a mixed gas atmosphere of H 2 (80%)/Ar (20%), and then slowly cooled from 800°C to 600°C at a cooling rate of 100°C/hour. Then, it was naturally cooled from 600°C to room temperature to obtain Fe-Si-Al alloy powder (Si: 9.64% by mass, Al: 5.45% by mass) with an average particle size of 21 μm.

このFe-Si-Al合金粉末のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、このFe-Si-Al合金粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。 The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this Fe-Si-Al alloy powder were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this Fe--Si--Al alloy powder was measured according to the method described above. These results are shown in Table 1.

(実施例A2)
熱処理温度を900℃に変更し、900℃から600℃まで100℃/時間の降温速度で徐冷した以外は実施例A1と同様にして、平均粒径21μmのFe-Si-Al合金粉末(Si:9.64質量%、Al:5.45質量%)を得た。
(Example A2)
Fe-Si-Al alloy powder (Si : 9.64% by mass, Al: 5.45% by mass).

このFe-Si-Al合金粉末のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、このFe-Si-Al合金粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。 The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this Fe-Si-Al alloy powder were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this Fe--Si--Al alloy powder was measured according to the method described above. These results are shown in Table 1.

(実施例A3)
降温速度を200℃/時間に変更した以外は実施例A1と同様にして、平均粒径21μmのFe-Si-Al合金粉末(Si:9.64質量%、Al:5.45質量%)を得た。
(Example A3)
Fe-Si-Al alloy powder (Si: 9.64 mass%, Al: 5.45 mass%) with an average particle size of 21 μm was prepared in the same manner as in Example A1 except that the temperature cooling rate was changed to 200 ° C./hour. Obtained.

このFe-Si-Al合金粉末のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、このFe-Si-Al合金粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。 The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this Fe-Si-Al alloy powder were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this Fe--Si--Al alloy powder was measured according to the method described above. These results are shown in Table 1.

(実施例A4)
先ず、アーク溶解法により、Fe-Si-Al合金インゴット(Si:9.40質量%、Al:5.60質量%)を作製し、スタンプミルを用いて粗粉砕した後、さらに、ボールミルを用いて粉砕し、平均粒径26μmの原料粉末を得た。この原料粉末のDO型規則相、B2型規則相及び不規則相の各割合を求めたところ、DO型規則相:B2型規則相:不規則相=0.09:0.04:0.87であった。
(Example A4)
First, a Fe-Si-Al alloy ingot (Si: 9.40% by mass, Al: 5.60% by mass) was produced by an arc melting method, coarsely ground using a stamp mill, and then further ground using a ball mill. The powder was pulverized to obtain a raw material powder with an average particle size of 26 μm. When the ratios of the DO 3 type ordered phase, B2 type ordered phase, and irregular phase of this raw material powder were determined, it was found that DO 3 type ordered phase: B2 type ordered phase: irregular phase = 0.09:0.04:0 It was .87.

次に、この原料粉末を用いた以外は実施例A1と同様にして、熱処理し、徐冷し、自然冷却して、平均粒径26μmのFe-Si-Al合金粉末(Si:9.40質量%、Al:5.60質量%)を得た。 Next, in the same manner as in Example A1 except that this raw material powder was used, heat treatment, slow cooling, and natural cooling were performed to obtain Fe-Si-Al alloy powder (Si: 9.40 mass) with an average particle size of 26 μm. %, Al: 5.60% by mass).

このFe-Si-Al合金粉末のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、このFe-Si-Al合金粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。 The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this Fe-Si-Al alloy powder were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this Fe--Si--Al alloy powder was measured according to the method described above. These results are shown in Table 1.

(実施例A5)
先ず、Fe-Si-Al合金ガスアトマイズ粉(大同特殊鋼株式会社製、Si:9.64質量%、Al:5.45質量%)をボールミルにより粉砕し、平均粒径21μmの原料粉末を得た。この原料粉末のDO型規則相、B2型規則相及び不規則相の各割合を求めたところ、DO型規則相:B2型規則相:不規則相=0.00:0.00:1.00であった。
(Example A5)
First, Fe-Si-Al alloy gas atomized powder (manufactured by Daido Steel Co., Ltd., Si: 9.64% by mass, Al: 5.45% by mass) was ground with a ball mill to obtain a raw material powder with an average particle size of 21 μm. . When the ratios of the DO 3 type ordered phase, B2 type ordered phase, and irregular phase of this raw material powder were determined, it was found that DO 3 type ordered phase: B2 type ordered phase: irregular phase = 0.00:0.00:1 It was .00.

次に、この原料粉末を用いた以外は実施例A1と同様にして、熱処理し、徐冷し、自然冷却して、平均粒径21μmのFe-Si-Al合金粉末(Si:9.64質量%、Al:5.45質量%)を得た。 Next, in the same manner as in Example A1 except that this raw material powder was used, heat treatment, slow cooling, and natural cooling were performed to obtain Fe-Si-Al alloy powder (Si: 9.64 mass) with an average particle size of 21 μm. %, Al: 5.45% by mass).

このFe-Si-Al合金粉末のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、このFe-Si-Al合金粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。 The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this Fe-Si-Al alloy powder were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this Fe--Si--Al alloy powder was measured according to the method described above. These results are shown in Table 1.

(比較例A1)
降温速度を400℃/時間に変更した以外は実施例A1と同様にして、平均粒径21μmのFe-Si-Al合金粉末(Si:9.64質量%、Al:5.45質量%)を得た。
(Comparative example A1)
Fe-Si-Al alloy powder (Si: 9.64 mass%, Al: 5.45 mass%) with an average particle size of 21 μm was prepared in the same manner as in Example A1 except that the temperature cooling rate was changed to 400°C/hour. Obtained.

このFe-Si-Al合金粉末のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、このFe-Si-Al合金粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。 The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this Fe-Si-Al alloy powder were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this Fe--Si--Al alloy powder was measured according to the method described above. These results are shown in Table 1.

(比較例A2)
降温速度を400℃/時間に変更した以外は実施例A4と同様にして、平均粒径26μmのFe-Si-Al合金粉末(Si:9.40質量%、Al:5.60質量%)を得た。
(Comparative example A2)
Fe-Si-Al alloy powder (Si: 9.40 mass %, Al: 5.60 mass %) with an average particle size of 26 μm was prepared in the same manner as in Example A4 except that the temperature cooling rate was changed to 400 ° C / hour. Obtained.

このFe-Si-Al合金粉末のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、このFe-Si-Al合金粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。 The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this Fe-Si-Al alloy powder were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this Fe--Si--Al alloy powder was measured according to the method described above. These results are shown in Table 1.

(比較例A3)
実施例A1と同様にして、平均粒径21μmの原料粉末を得た。この原料粉末(熱処理していないFe-Si-Al合金粉末)のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、この原料粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。
(Comparative example A3)
A raw material powder with an average particle size of 21 μm was obtained in the same manner as in Example A1. The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this raw material powder (Fe-Si-Al alloy powder not heat treated) were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this raw material powder was measured according to the method described above. These results are shown in Table 1.

(比較例A4)
実施例A4と同様にして、平均粒径26μmの原料粉末を得た。この原料粉末(熱処理していないFe-Si-Al合金粉末)のDO型規則相、B2型規則相及び不規則相の各割合を前記方法に従って求めた。また、このとき得られたX線回折パターンに基づいて、(220)ピークの半値幅を求めた。さらに、この原料粉末の保磁力を前記方法に従って測定した。これらの結果を表1に示す。
(Comparative example A4)
A raw material powder having an average particle size of 26 μm was obtained in the same manner as in Example A4. The proportions of the DO 3 type ordered phase, B2 type ordered phase, and disordered phase of this raw material powder (Fe-Si-Al alloy powder not heat treated) were determined according to the method described above. Further, based on the X-ray diffraction pattern obtained at this time, the half-value width of the (220) peak was determined. Furthermore, the coercive force of this raw material powder was measured according to the method described above. These results are shown in Table 1.

表1に示した結果に基づいて、Fe-Si-Al合金粉末の保磁力をDO型規則相の割合又はB2型規則相の割合に対してプロットした。その結果を図1及び図2に示す。 Based on the results shown in Table 1, the coercive force of the Fe-Si-Al alloy powder was plotted against the proportion of the DO 3 type ordered phase or the proportion of the B2 type ordered phase. The results are shown in FIGS. 1 and 2.

表1、図1及び図2に示したように、原料のFe-Si-Al合金粉末を所定の温度で熱処理した後、所定の降温速度で徐冷した場合(実施例A1~A5)には、DO型規則相及びB2型規則相の割合が所定の範囲内にあるFe-Si-Al合金粉末が得られた。また、このFe-Si-Al合金粉末は、保磁力が1Oe以下と低いものであった。 As shown in Table 1, Figures 1 and 2, when the raw material Fe-Si-Al alloy powder was heat treated at a predetermined temperature and then slowly cooled at a predetermined cooling rate (Examples A1 to A5), , a Fe--Si--Al alloy powder was obtained in which the proportions of the DO 3 type ordered phase and the B2 type ordered phase were within a predetermined range. Further, this Fe--Si--Al alloy powder had a low coercive force of 1 Oe or less.

一方、所定の降温速度よりも速い降温速度で徐冷した場合(比較例1~2)には、DO型規則相が所定の割合よりも多く、B2型規則相が所定の割合よりも少ないFe-Si-Al合金粉末が得られた。また、このFe-Si-Al合金粉末は、保磁力が高く、1Oeを超えるものであった。 On the other hand, in the case of slow cooling at a faster cooling rate than the predetermined cooling rate (Comparative Examples 1 and 2), the DO 3 type ordered phase is more than the predetermined ratio, and the B2 type ordered phase is less than the predetermined ratio. Fe-Si-Al alloy powder was obtained. Further, this Fe-Si-Al alloy powder had a high coercive force, exceeding 1 Oe.

また、熱処理していない原料のFe-Si-Al合金粉末(比較例3~4)は、DO型規則相及びB2型規則相がともに所定の割合よりも少なく、不規則相の割合が多いものであった。また、このFe-Si-Al合金粉末は、保磁力が非常に高く、2Oeを超えるものであった。 In addition, in the raw material Fe-Si-Al alloy powder (Comparative Examples 3 to 4) that has not been heat treated, both the DO 3 type ordered phase and the B2 type ordered phase are lower than the predetermined proportions, and the proportion of the disordered phase is high. It was something. Furthermore, this Fe--Si--Al alloy powder had a very high coercive force, exceeding 2 Oe.

以上の結果から、DO型規則相及びB2型規則相がともに少なく、不規則相の割合が多いFe-Si-Al合金粉末を所定の温度で熱処理した後、所定の降温速度で徐冷することによって、DO型規則相及びB2型規則相の割合が所定の範囲内となり、保磁力が低くなることがわかった。 From the above results, it can be concluded that Fe-Si-Al alloy powder with a small amount of DO 3 type ordered phase and B2 type ordered phase and a high proportion of disordered phase is heat treated at a predetermined temperature and then slowly cooled at a predetermined cooling rate. It was found that by doing so, the ratio of the DO 3 type ordered phase and the B2 type ordered phase was within a predetermined range, and the coercive force was lowered.

(実施例B1)
実施例A1で得られたFe-Si-Al合金粉末(平均粒径:21μm、Si:9.64質量%、Al:5.45質量%、保磁力:0.44Oe)に、O(2%)/N(98%)の混合ガス雰囲気中、400℃で1時間熱酸化処理を施し、Fe-Si-Al合金粉末の表面に酸化絶縁被膜を形成した。この酸化絶縁被膜を有する粉末100質量部にポリビニルブチラール0.5質量部を混合し、得られた混合物をリング試験片用金型(外径14mmφ、内径10mmφ)に充填し、手動油圧真空加熱プレス(株式会社井元製作所製「IMC-1823型改」)を用いて、大気中、1.4GPaに加圧しながら150℃で1分間加熱した。加圧を停止した後、真空中、700℃で焼鈍した。その後、室温まで冷却して圧粉磁心を得た。
(Example B1)
O 2 (2 %)/N 2 (98%) mixed gas atmosphere at 400° C. for 1 hour to form an oxide insulating film on the surface of the Fe--Si--Al alloy powder. 0.5 parts by mass of polyvinyl butyral was mixed with 100 parts by mass of this powder having an oxide insulating film, and the resulting mixture was filled into a ring test piece mold (outer diameter 14 mmφ, inner diameter 10 mmφ), and a manual hydraulic vacuum heating press was used. (Model IMC-1823, manufactured by Imoto Seisakusho Co., Ltd.) and heated at 150° C. for 1 minute while pressurizing to 1.4 GPa in the air. After stopping the pressurization, annealing was performed at 700° C. in a vacuum. Thereafter, it was cooled to room temperature to obtain a powder magnetic core.

得られた圧粉磁心の鉄損を、B-Hアナライザ(岩崎通信機株式会社製「SY-8218」を用いて、周波数150kHz、印加磁束密度100mTの条件で測定したところ、635kW/mであった。 The iron loss of the obtained powder magnetic core was measured using a BH analyzer (SY-8218 manufactured by Iwasaki Tsushinki Co., Ltd.) at a frequency of 150 kHz and an applied magnetic flux density of 100 mT. there were.

(比較例B1)
実施例A1で得られたFe-Si-Al合金粉末(平均粒径:21μm、Si:9.64質量%、Al:5.45質量%、保磁力:1.79Oe)の代わりに、比較例A1で得られたFe-Si-Al合金粉末(平均粒径:21μm、Si:9.64質量%、Al:5.45質量%、保磁力:0.44Oe)を用いた以外は実施例B1と同様にして圧粉磁心を作製し、その鉄損を測定したところ、2378kW/mであった。
(Comparative example B1)
In place of the Fe-Si-Al alloy powder (average particle size: 21 μm, Si: 9.64% by mass, Al: 5.45% by mass, coercive force: 1.79Oe) obtained in Example A1, Comparative Example Example B1 except that the Fe-Si-Al alloy powder obtained in A1 (average particle size: 21 μm, Si: 9.64% by mass, Al: 5.45% by mass, coercive force: 0.44Oe) was used. A powder magnetic core was prepared in the same manner as above, and its iron loss was measured to be 2378 kW/m 3 .

圧粉磁心の鉄損は、それに含まれる粒子の保磁力に依存するヒステリシス損と粒子の平均粒径に依存する渦電流損とによって決まるものである。実施例A1で得られたFe-Si-Al合金粉末と比較例A1で得られたFe-Si-Al合金粉末においては、平均粒径が同じであることから、渦電流損に差はない。このため、両者の鉄損の差はヒステリシス損の差によるものであることがわかる。そして、保磁力が低い実施例A1で得られたFe-Si-Al合金粉末を含有する圧粉磁心の鉄損が、保磁力が高い比較例A1得られたFe-Si-Al合金粉末を含有する圧粉磁心の鉄損に比べて小さいことから、保磁力が低い軟磁性粉末を用いることによって、圧粉磁心の低鉄損化が可能となると考えられる。 The iron loss of a powder magnetic core is determined by hysteresis loss, which depends on the coercive force of the particles contained therein, and eddy current loss, which depends on the average particle diameter of the particles. Since the Fe-Si-Al alloy powder obtained in Example A1 and the Fe-Si-Al alloy powder obtained in Comparative Example A1 have the same average particle diameter, there is no difference in eddy current loss. Therefore, it can be seen that the difference in iron loss between the two is due to the difference in hysteresis loss. The iron loss of the powder magnetic core containing the Fe-Si-Al alloy powder obtained in Example A1 with a low coercive force is lower than that of the powder magnetic core containing the Fe-Si-Al alloy powder obtained in Comparative Example A1 with a high coercive force. Since the iron loss is smaller than that of the powder magnetic core, it is thought that by using soft magnetic powder with a low coercive force, it is possible to reduce the iron loss of the powder magnetic core.

以上の結果から、低保磁力である本発明の軟磁性粒子は圧粉磁心の低鉄損化に有効であることが確認された。 From the above results, it was confirmed that the soft magnetic particles of the present invention having a low coercive force are effective in reducing the core loss of a powder magnetic core.

以上説明したように、本発明によれば、Fe-Si-Al合金からなり、保磁力が低い軟磁性粉末を得ることが可能となる。したがって、本発明の圧粉磁心は、低保磁力の軟磁性粉末を含有することによって低鉄損化されるため、変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等の電磁気を利用した製品のコア材等として有用である。 As explained above, according to the present invention, it is possible to obtain a soft magnetic powder made of a Fe-Si-Al alloy and having a low coercive force. Therefore, the powder magnetic core of the present invention has low iron loss by containing soft magnetic powder with low coercive force, so it can be used in transformers, electric motors, generators, speakers, induction heaters, etc. It is useful as a core material for products that use electromagnetism, such as various actuators.

Claims (5)

Fe-Si-Al合金からなり、
平均粒径が1~50μmの範囲内にあり、
X線回折測定における(111)、(200)及び(220)ピークの強度比から下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
〔式中、I111は(111)ピーク強度を表し、I200は(200)ピーク強度を表し、I220は(220)ピーク強度を表す。〕
により求められるDO型規則相の割合が0.2~0.85の範囲内にあり、B2型規則相の割合が0.05~0.8の範囲内にあ
前記DO 型規則相の割合と前記B2型規則相の割合と不規則相の割合の合計が1である、
ことを特徴とする軟磁性粉末。
Made of Fe-Si-Al alloy,
The average particle size is within the range of 1 to 50 μm,
From the intensity ratio of (111), (200) and (220) peaks in X-ray diffraction measurement, the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
[In the formula, I 111 represents the (111) peak intensity, I 200 represents the (200) peak intensity, and I 220 represents the (220) peak intensity. ]
The proportion of the DO 3 type ordered phase determined by is within the range of 0.2 to 0.85, the proportion of the B2 type ordered phase is within the range of 0.05 to 0.8,
The sum of the proportion of the DO 3 type ordered phase, the proportion of the B2 type ordered phase, and the proportion of the disordered phase is 1,
A soft magnetic powder characterized by:
X線回折測定における(220)ピークの半値幅が0.1度以下であることを特徴とする請求項1に記載の軟磁性粉末。 The soft magnetic powder according to claim 1, wherein the half width of the (220) peak in X-ray diffraction measurement is 0.1 degree or less. 前記B2型規則相の割合が0.05~0.5の範囲内にあることを特徴とする請求項1又は2に記載の軟磁性粉末。The soft magnetic powder according to claim 1 or 2, wherein the proportion of the B2 type ordered phase is within the range of 0.05 to 0.5. 請求項1~3のうちのいずれか一項に記載の軟磁性粉末を含有することを特徴とする圧粉磁心。 A dust core containing the soft magnetic powder according to any one of claims 1 to 3 . 平均粒径が1~50μmの範囲内にあり、X線回折測定における(111)、(200)及び(220)ピークの強度比から下記式:
DO型規則相の割合=I111/I200×100÷7
B2型規則相の割合=(I200/I220×100-I111/I220×300÷7)÷17.5
〔式中、I111は(111)ピーク強度を表し、I200は(200)ピーク強度を表し、I220は(220)ピーク強度を表す。〕
により求められるDO型規則相の割合が0.2以下であり、B2型規則相の割合が0.05以下であり、前記DO 型規則相の割合と前記B2型規則相の割合と不規則相の割合の合計が1であり、FeとSiとAlとの合計量に対して、Siの含有量が5~15質量%であり、Alの含有量が2~10質量%である、原料Fe-Si-Al合金粉末を、不活性雰囲気中又は還元性雰囲気中、800℃以上の温度で熱処理した後、少なくとも800℃~600℃の範囲内においては10℃/時間~200℃/時間の範囲内の降温速度で徐冷することを特徴とする軟磁性粉末の製造方法。
The average particle size is within the range of 1 to 50 μm, and from the intensity ratio of (111), (200) and (220) peaks in X-ray diffraction measurement, the following formula:
Proportion of DO 3 type ordered phase=I 111 /I 200 ×100÷7
Ratio of B2 type ordered phase = (I 200 /I 220 ×100-I 111 /I 220 ×300÷7)÷17.5
[In the formula, I 111 represents the (111) peak intensity, I 200 represents the (200) peak intensity, and I 220 represents the (220) peak intensity. ]
The ratio of the DO 3 type ordered phase determined by The total proportion of disordered phases is 1, the Si content is 5 to 15% by mass, and the Al content is 2 to 10% by mass with respect to the total amount of Fe, Si, and Al. , after heat treating the raw material Fe-Si-Al alloy powder at a temperature of 800°C or higher in an inert atmosphere or a reducing atmosphere, at least 10°C/hour to 200°C/hour within the range of 800°C to 600°C. A method for producing soft magnetic powder, characterized by slow cooling at a cooling rate within a time range.
JP2021053336A 2021-03-26 2021-03-26 Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder Active JP7387670B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021053336A JP7387670B2 (en) 2021-03-26 2021-03-26 Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder
PCT/JP2022/005735 WO2022201964A1 (en) 2021-03-26 2022-02-14 Soft magnetic powder, dust core containing same, and method for producing soft magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021053336A JP7387670B2 (en) 2021-03-26 2021-03-26 Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder

Publications (2)

Publication Number Publication Date
JP2022150646A JP2022150646A (en) 2022-10-07
JP7387670B2 true JP7387670B2 (en) 2023-11-28

Family

ID=83395464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021053336A Active JP7387670B2 (en) 2021-03-26 2021-03-26 Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder

Country Status (2)

Country Link
JP (1) JP7387670B2 (en)
WO (1) WO2022201964A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147252A (en) 2007-12-18 2009-07-02 Panasonic Corp Compound magnetic material and method of manufacturing thereof
JP2021025083A (en) 2019-08-02 2021-02-22 株式会社タムラ製作所 Soft magnetic powder, dust core constituted thereof, method for manufacturing soft magnetic powder and method for manufacturing dust core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119753A (en) * 1980-02-28 1981-09-19 Inoue Japax Res Inc Manufacture of si-a -fe alloy material having high permeability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147252A (en) 2007-12-18 2009-07-02 Panasonic Corp Compound magnetic material and method of manufacturing thereof
JP2021025083A (en) 2019-08-02 2021-02-22 株式会社タムラ製作所 Soft magnetic powder, dust core constituted thereof, method for manufacturing soft magnetic powder and method for manufacturing dust core

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田中 寿郎 他,Fe-(4~6 wt%)Si-(2~5 wt%)Al系合金単結晶の磁気異方性と磁歪,日本応用磁気学会誌,第12巻、第2号,1988年04月30日,p.269-272,DOI https://doi.org/10.3379/jmsjmag.12.269

Also Published As

Publication number Publication date
WO2022201964A1 (en) 2022-09-29
JP2022150646A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
JP6662436B2 (en) Manufacturing method of dust core
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
KR100531253B1 (en) Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same
EP0302355B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
JP7132231B2 (en) Powder magnetic core manufacturing method, powder magnetic core and inductor
KR101385756B1 (en) Manufacturing methods of fe-based amorphous metallic powders and soft magnetic cores
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
US20050254989A1 (en) High-frequency core and inductance component using the same
JP2008294411A (en) Soft magnetism powder, manufacturing method for dust core, dust core, and magnetic component
JP2001196216A (en) Dust core
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
JP2003059710A (en) Dust core
US20190013129A1 (en) Dust core
JPWO2010038441A1 (en) Composite magnetic material and manufacturing method thereof
CN108431277B (en) Iron-based soft magnetic alloy, method for producing same, and magnetic component using same
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
WO2020196608A1 (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JP2012222062A (en) Composite magnetic material
JP7387670B2 (en) Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder
JPS63117406A (en) Amorphous alloy dust core
JP6168382B2 (en) Manufacturing method of dust core
JP2005347641A (en) Dust core, its manufacturing method, and winding component
KR102290167B1 (en) Fe based soft magnetic alloy, method for manufacturing thereof and magnetic comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7387670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150