JP7384645B2 - How to calculate the strength at the joint between a column and a flat beam - Google Patents

How to calculate the strength at the joint between a column and a flat beam Download PDF

Info

Publication number
JP7384645B2
JP7384645B2 JP2019213526A JP2019213526A JP7384645B2 JP 7384645 B2 JP7384645 B2 JP 7384645B2 JP 2019213526 A JP2019213526 A JP 2019213526A JP 2019213526 A JP2019213526 A JP 2019213526A JP 7384645 B2 JP7384645 B2 JP 7384645B2
Authority
JP
Japan
Prior art keywords
column
flat
flat beam
width
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019213526A
Other languages
Japanese (ja)
Other versions
JP2021085190A (en
Inventor
創 山際
剛 岸本
慶生 浜口
晃三 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2019213526A priority Critical patent/JP7384645B2/en
Publication of JP2021085190A publication Critical patent/JP2021085190A/en
Application granted granted Critical
Publication of JP7384645B2 publication Critical patent/JP7384645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

特許法第30条第2項適用 ▲1▼発行日:令和1年7月20日 刊行物:2019年度大会(北陸)学術講演梗概集 建築デザイン発表梗概集、第115~116頁、一般財団法人日本建築学会 ▲2▼発行日:令和1年7月20日 刊行物:2019年度大会(北陸)学術講演梗概集 建築デザイン発表梗概集、第117~118頁、一般財団法人日本建築学会 ▲3▼発行日:令和1年9月1日 刊行物:奥村組技術年報No.45、第77~84頁、株式会社奥村組技術研究所Application of Article 30, Paragraph 2 of the Patent Act ▲1▼ Publication date: July 20, 2020 Publication: 2019 Conference (Hokuriku) Academic Lecture Abstracts Architectural Design Presentation Abstracts, pp. 115-116, General Foundation Architectural Institute of Japan ▲2▼ Publication date: July 20, 2020 Publication: 2019 Annual Conference (Hokuriku) Academic Lecture Abstracts Architectural Design Presentation Abstracts, pp. 117-118, Architectural Institute of Japan ▲ 3▼Publication date: September 1, 2020 Publication: Okumura Gumi Technical Annual Report No. 45, pp. 77-84, Okumura Gumi Technical Research Institute Co., Ltd.

本発明は、柱と扁平梁との接合部における耐力を算出する方法に関する。 The present invention relates to a method for calculating proof strength at a joint between a column and a flat beam.

鉄筋コンクリート造ラーメン架構の建物において、柱幅より広い幅を有する扁平梁を用いる扁平梁工法が提案されている。この扁平梁工法は、梁せいを小さく抑えて、梁下に開放的な空間を構築することができるので、建物の全体高さを低くしつつ十分な室内高さを確保することが可能となる。しかし、扁平梁工法においては、梁せいが小さいため、柱と扁平梁との接合部において支持可能な曲げモーメントが小さくなる。特に梁端部において柱幅から跳ね出す部分は、柱と接合されないため剛性が低く、曲げ変形が生じやすいので、結果として梁全体で支持可能な曲げモーメントも通常の断面計算に基いた結果よりも小さくなる。 A flat beam construction method using flat beams having a width wider than the column width has been proposed for buildings with reinforced concrete rigid-frame frames. This flat beam construction method can keep the beam height small and create an open space under the beam, making it possible to lower the overall height of the building while ensuring sufficient interior height. . However, in the flat beam construction method, since the beam height is small, the bending moment that can be supported at the joint between the column and the flat beam is small. Particularly at the end of the beam, the part that protrudes from the column width has low rigidity because it is not connected to the column and is prone to bending deformation.As a result, the bending moment that can be supported by the entire beam is also lower than the result based on normal cross-sectional calculations. becomes smaller.

そこで、例えば、特許文献1には、梁幅と柱幅との差に基づき扁平梁の曲げ終局強度を算出することが記載されている。また、特許文献2には、扁平梁の柱幅の外側に配置された引張主筋(梁主筋)の材料強度又は主筋量を低減して、柱幅の外側に位置する扁平梁の曲げ耐力を柱幅内の部位よりも低下させて扁平梁の設計を行うことが記載されている。 Therefore, for example, Patent Document 1 describes calculating the ultimate bending strength of a flat beam based on the difference between the beam width and the column width. In addition, Patent Document 2 discloses that the material strength or the amount of main reinforcement of tension main reinforcements (beam main reinforcements) placed outside the column width of a flat beam is reduced to reduce the bending strength of the flat beam located outside the column width. It is described that the flat beam is designed to be lower than the area within the width.

特許6243238号公報Patent No. 6243238 特許6267905号公報Patent No. 6267905

しかしながら、上記特許文献1に開示された技術においては、柱の外側に張り出した跳ね出し部を十分に柱と扁平梁との接合部に一体化しておらず、そのため、跳ね出し部の強度が劣るものとしているが、柱幅と梁幅の差を元に曲げ耐力を低減しており、柱が梁の中央にある場合と幅方向の一方に寄っている場合の違いを考慮していない。 However, in the technique disclosed in Patent Document 1, the protruding portion protruding to the outside of the column is not sufficiently integrated into the joint between the column and the flat beam, and as a result, the strength of the protruding portion is poor. However, the bending strength is reduced based on the difference between the column width and the beam width, and does not take into account the difference between when the column is in the center of the beam and when it is closer to one side in the width direction.

また、上記特許文献2に開示された技術においては、意図的に跳ね出し部(扁平梁の柱幅の外側に位置する部分)に配置される梁主筋の材料強度又は主筋量が低減されており、意図的に跳ね出し部の強度を劣らせているが、跳ね出し部の曲げ終局強度のみを考慮するものであり、せん断耐力等については考慮されていない。 Furthermore, in the technique disclosed in Patent Document 2, the material strength or the amount of main reinforcement of the beam main reinforcing bars placed in the protruding portion (the part located outside the column width of the flat beam) is intentionally reduced. Although the strength of the protruding portion is intentionally lowered, only the ultimate bending strength of the protruding portion is considered, and shear strength and the like are not taken into account.

このような方法で跳ね出し部の強度を劣らせることは、計算方法が現実の条件と合致しておらず、十分な評価ができていないものと考えられる。 It is considered that the calculation method used to reduce the strength of the projecting portion in this way does not match the actual conditions, and that sufficient evaluation has not been possible.

本発明は、以上の点に鑑み、扁平梁に対する柱の位置関係を考慮して、柱と扁平梁との接合部における耐力の算出方法を提供することを目的とする。 In view of the above points, an object of the present invention is to provide a method for calculating the proof stress at a joint between a column and a flat beam, taking into consideration the positional relationship of the column with respect to the flat beam.

本発明は、柱と前記柱の柱幅より広い梁幅を有する扁平梁との接合部構造における耐力を算出する方法であって、前記柱の柱幅外に配置された前記扁平梁内に配置されている梁主筋が負担する応力が前記柱の柱幅内に配置された前記扁平梁内に配置されている梁主筋が負担する応力より小さくなる影響を考慮し、前記扁平梁の長期許容曲げモーメント又は短期許容曲げモーメント (N・mm)を、次式(1)によって算出することを特徴とする。
=ξ・a ・gf ・j ・・・ (1)
ただし、a は前記扁平梁の引張鉄筋断面積(mm )、 は前記扁平梁の梁主筋の長期又は短期の許容応力度(N/mm )、jは前記扁平梁の応力中心距離(mm)、低減係数ξは、柱・梁幅比αに応じた低減係数であって、1以上2未満である場合は1-0.15(α-1)、柱・梁幅比αが2以上3以下である場合は0.85-0.1(α-2)である。
The present invention provides a method for calculating the yield strength in a joint structure between a column and a flat beam having a beam width wider than the column width of the column, the method comprising: Considering the effect that the stress borne by the beam main reinforcement placed in the column is smaller than the stress borne by the beam main reinforcement placed in the flat beam placed within the column width of the column,Long-term allowable bending moment or short-term allowable bending moment of the flat beam g M a (N・mm) by the following formula (1)It is characterized by calculating.
g M a =ξ・a t ・gf t ・j... (1)
However, a t is the cross-sectional area of the tensile reinforcement of the flat beam (mm 2 ), g f t is the long-term or short-term allowable stress of the main beam reinforcement of the flat beam (N/mm 2 ), j is the stress center distance (mm) of the flat beam, and the reduction coefficient ξ is a reduction coefficient according to the column-to-beam width ratio α, and when it is 1 or more and less than 2, it is 1-0.15 (α -1), and 0.85-0.1 (α-2) when the column/beam width ratio α is 2 or more and 3 or less.

本発明によれば、発明者が実験した結果から、接合部と跳ね出し部とを十分に一体化した状態における柱と扁平梁との接合部における耐力を安全側に適切に算出することが可能となる。 According to the present invention, based on the results of experiments conducted by the inventor, it is possible to appropriately calculate on the safe side the proof stress at the joint between a column and a flat beam in a state where the joint and the protruding part are sufficiently integrated. becomes.

本発明において、前記柱と前記扁平梁との接合部を含む前記柱の柱せいの内側において、前記扁平梁内に、前記扁平梁内に配置されている複数の梁主筋を取り囲むように複数の第1の補強筋が設けられており、各前記第1の補強筋は2個に分割されてそれぞれコの字状からなり、前記柱の柱幅の内側において、前記コの字の両端部が前記柱幅の方向に重複して前記梁主筋に固定されていることが好ましい。 In the present invention, on the inner side of the column of the column including the joint between the column and the flat beam, a plurality of beam main reinforcements are provided in the flat beam so as to surround a plurality of beam main reinforcements arranged in the flat beam. A first reinforcing bar is provided, and each of the first reinforcing bars is divided into two and each has a U-shape, and both ends of the U-shape are located inside the column width of the column. It is preferable that the beam reinforcement be fixed to the beam main reinforcement so as to overlap in the width direction of the column.

この場合、第1の補強筋によって接合部及び扁平梁の柱の柱せいの内側部分である跳ね出し部内における梁主筋が拘束されているので、これらの部分におけるせん断力とねじれによる変形を抑制することが可能となる。これにより、特にねじれによる変形を抑制することが可能となる共に、効果的にせん断力による変形を抑制することが可能となる。 In this case, since the first reinforcing bars restrain the main beam reinforcements in the joints and the protruding parts, which are the inner parts of the columns of the flat beams, deformation due to shear force and torsion in these parts is suppressed. becomes possible. This makes it possible to particularly suppress deformation due to torsion, and also effectively suppress deformation due to shear force.

また、本発明において、前記柱せいより外側において、前記扁平梁内に複数の第2の補強筋が配置されており、前記第2の補強筋は、前記扁平梁内に配置されている複数の梁主筋の外周を囲繞する囲繞筋と、前記囲繞筋の途中において前記柱の延在する方向に連結する複数の連結筋とから構成されていることが好ましい。 Further, in the present invention, a plurality of second reinforcing bars are arranged inside the flat beam on the outside of the column, and the second reinforcing bars are arranged in the plurality of reinforcing bars arranged inside the flat beam. It is preferable that the beam main reinforcement is composed of a surrounding reinforcement that surrounds the outer periphery of the main beam reinforcement, and a plurality of connecting reinforcements that are connected in the direction in which the column extends in the middle of the surrounding reinforcement.

この場合、第2の補強筋は中子筋によって途中が連結されているので、扁平梁の第2の補強筋を内設した部分におけるせん断力による変形を効果的に抑制することが可能となる。 In this case, since the second reinforcing bars are connected in the middle by the core reinforcing bars, it is possible to effectively suppress deformation due to shear force in the part of the flat beam where the second reinforcing bars are installed. .

第1の柱梁接合部構造のXY平面における模式断面図。FIG. 3 is a schematic cross-sectional view in the XY plane of the first column-beam joint structure. 図1、図5及び図9のIIーII線における模式断面図。FIG. 9 is a schematic cross-sectional view taken along line II-II in FIGS. 1, 5, and 9. 図1、図5及び図9のIIIーIII線における模式断面図。FIG. 9 is a schematic cross-sectional view taken along line III-III in FIGS. 1, 5, and 9. 図1及び図9のIVーIV線における模式断面図。FIG. 9 is a schematic cross-sectional view taken along the IV-IV line in FIGS. 1 and 9. FIG. 第2の柱梁接合部構造のXY平面における模式断面図。FIG. 4 is a schematic cross-sectional view in the XY plane of the second column-beam joint structure. 図5のVIーVI線における模式断面図。A schematic cross-sectional view taken along the VI-VI line in FIG. 5. 図5のVIIーVII線における模式断面図。A schematic cross-sectional view taken along line VII-VII in FIG. 5. 図5のVIIIーVIII線における模式断面図。A schematic cross-sectional view taken along line VIII-VIII in FIG. 5. 第3の柱梁接合部構造のXY平面における模式断面図。FIG. 6 is a schematic cross-sectional view in the XY plane of the third beam-column joint structure. 図9のXーX線における模式断面図。A schematic cross-sectional view along the X-X line in FIG. 9. 図9のXIーXI線における模式断面図。A schematic cross-sectional view taken along the line XI-XI in FIG. 9. 本発明の実施形態に係る柱と扁平梁との接合部における耐力の算出方法における第1の算出方法にて用いる低減係数を示すグラフ。7 is a graph showing a reduction coefficient used in a first calculation method in a method for calculating proof strength at a joint between a column and a flat beam according to an embodiment of the present invention. 耐力の算出方法における第2の算出方法にて用いる低減係数を示すグラフ。The graph which shows the reduction coefficient used in the 2nd calculation method in the calculation method of yield strength. 耐力の算出方法における第2の算出方法にて用いる低減係数を示すグラフ。The graph which shows the reduction coefficient used in the 2nd calculation method in the calculation method of yield strength.

まず、本発明の実施形態に係る耐力算出方法が適用される第1の柱梁接合部構造100について図1から図4を参照して説明する。 First, a first column-beam joint structure 100 to which a proof stress calculation method according to an embodiment of the present invention is applied will be described with reference to FIGS. 1 to 4.

柱梁接合部構造100は、一体構築された鉄筋コンクリート造(RC)の柱10と扁平梁20とが十字状に交差して接合されてなる接合部40を含む構造である。例えば、柱10は建物の内部に位置する中柱である。 The column-beam joint structure 100 includes a joint 40 in which a reinforced concrete (RC) pillar 10 and a flat beam 20 are joined together in a criss-cross pattern. For example, pillar 10 is a central pillar located inside a building.

扁平梁20は、梁せいDg(不図示)に対して梁幅Bgが幅広な扁平梁であり、梁幅Bgは柱幅Bcより幅広となっている。柱幅Bcに対する梁幅Bgの比率(柱・梁幅比)は、3以下であることが好ましい。接合部40から扁平梁20の梁幅方向に柱10の側面から外側に張り出した扁平梁20の部分が跳ね出し部41となっている。跳ね出し部41の柱10の側面から張り出した部分の寸法は、柱幅Bc及び柱せいDc以下、かつ扁平梁20の梁せいDgの2倍以下であることが好ましい。 The flat beam 20 is a flat beam whose beam width Bg is wider than the beam width Dg (not shown), and the beam width Bg is wider than the column width Bc. The ratio of the beam width Bg to the column width Bc (column/beam width ratio) is preferably 3 or less. A portion of the flat beam 20 that extends outward from the side surface of the column 10 in the beam width direction of the flat beam 20 from the joint portion 40 serves as a protruding portion 41 . The dimensions of the portion of the protruding portion 41 that protrudes from the side surface of the column 10 are preferably equal to or less than the column width Bc and column height Dc, and twice or less than the beam depth Dg of the flat beam 20.

ここでは、柱10の軸心Ocと扁平梁20の軸心Ogが交差する場合、すなわち扁平梁20に対して柱10が偏心しないで接合されている場合について説明するが、偏心があっても、すなわち扁平梁20に対して柱10が片寄せされて接合されていてもよい。この場合、上記比率(柱・梁幅比)を計算する際の梁幅Bgは、跳ね出し部41の幅のうち大きい方の幅の2倍と柱10の幅の和として算定する。 Here, we will explain the case where the axis Oc of the column 10 and the axis Og of the flat beam 20 intersect, that is, the case where the column 10 is joined to the flat beam 20 without eccentricity, but even if there is eccentricity, That is, the column 10 may be joined to the flat beam 20 in a manner that is offset to one side. In this case, the beam width Bg when calculating the ratio (column/beam width ratio) is calculated as the sum of twice the larger width of the protruding portion 41 and the width of the column 10.

以下、扁平梁20の軸心Ogが延在する方向をX軸方向とし、柱10の軸心Ocが延在する方向をZ軸方向とし、X軸及びZ軸と直交する方向をY軸方向として説明する。 Hereinafter, the direction in which the axis Og of the flat beam 20 extends is referred to as the X-axis direction, the direction in which the axis Oc of the column 10 extends is referred to as the Z-axis direction, and the direction perpendicular to the X-axis and the Z-axis is referred to as the Y-axis direction. It will be explained as follows.

柱10には、Z軸方向に延在する複数の柱主筋11、及びこれら柱主筋11の外周を囲繞し、Z軸方向に間隔を隔てて配置された複数のフープ筋12が内設されている。 The column 10 is internally provided with a plurality of column main reinforcements 11 extending in the Z-axis direction and a plurality of hoop reinforcements 12 surrounding the outer periphery of these column main reinforcements 11 and arranged at intervals in the Z-axis direction. There is.

扁平梁20には、X軸方向に延在する複数の梁主筋21が配置されている。梁主筋21は、Y軸方向に等間隔に配置されていてもよいが、柱せい外と比較して柱せい内において間隔が狭くなるように配置されていることが好ましい。 A plurality of beam main reinforcements 21 extending in the X-axis direction are arranged on the flat beam 20. The main beam reinforcements 21 may be arranged at equal intervals in the Y-axis direction, but it is preferable that the main beam reinforcements 21 are arranged so that the intervals are narrower inside the pillar than outside the pillar.

さらに、扁平梁20のうち柱せい内の部分、すなわち、柱10と扁平梁20との接合部40及び跳ね出し部41からなる部分において、複数の梁主筋21を取り囲むように、複数のねじり補強筋22がX軸方向に間隔を隔てて配置されている。ねじり補強筋22は、本発明の第1の補強筋に相当する。 Further, in a portion of the flat beam 20 inside the column, that is, a portion consisting of the joint 40 and the protruding portion 41 between the column 10 and the flat beam 20, a plurality of torsion reinforcements are provided so as to surround the plurality of beam main reinforcements 21. The stripes 22 are arranged at intervals in the X-axis direction. The torsion reinforcing bars 22 correspond to the first reinforcing bars of the present invention.

各ねじり補強筋22は、2個に分割されてそれぞれコの字状からなり、具体的には、基部22aと基部22aの両端からそれぞれ延びる2本の足部22bとから構成されている。そして、基部22aが跳ね出し部41の端部内に配置されている梁主筋21の端面側の外側に接触して位置し、各足部22bがY軸方向に間隔を隔てて配置されている梁主筋21の上端筋の上側と下端筋の下側に接触して位置している。そして、各足部22bの基部22aと接続されていない側の端部が、柱幅内にて重複した部分を有するように梁主筋21に直接的又は間接的に固定されている。 Each torsion reinforcing bar 22 is divided into two parts each having a U-shape, and specifically, each torsion reinforcing bar 22 is comprised of a base part 22a and two legs 22b extending from both ends of the base part 22a. The base portion 22a is located in contact with the outer side of the end surface of the beam main reinforcement 21 disposed within the end portion of the projecting portion 41, and each foot portion 22b is disposed at intervals in the Y-axis direction. It is located in contact with the upper side of the upper end reinforcement and the lower side of the lower end reinforcement of the main reinforcement 21. The end portion of each leg portion 22b on the side not connected to the base portion 22a is directly or indirectly fixed to the beam main reinforcement 21 so as to have an overlapping portion within the column width.

このように構成された各ねじり補強筋22によって、接合部40及び跳ね出し部41内における梁主筋21が拘束されており、接合部40及び跳ね出し部41におけるせん断力とねじれによる変形を抑制することが可能となる。 Each of the torsion reinforcing bars 22 configured in this manner restrains the beam main reinforcements 21 in the joint portion 40 and the projecting portion 41, thereby suppressing deformation due to shear force and torsion in the joint portion 40 and the projecting portion 41. becomes possible.

これにより、特にねじれによる変形を抑制することが可能となる共に、効果的にせん断力による変形を抑制することが可能となる。さらに、跳ね出し部41に生じる曲げモーメントは、ねじり補強筋23によってねじり抵抗力として柱10に伝達される。なお、ねじり補強筋22は、柱10と扁平梁20との接合部40におけるせん断力とねじれによる変形を所望量以下に抑制することが可能となる量を配筋すればよい。 This makes it possible to particularly suppress deformation due to torsion, and also effectively suppress deformation due to shear force. Furthermore, the bending moment generated in the protruding portion 41 is transmitted to the column 10 as a torsion resistance force by the torsion reinforcing bars 23. Note that the torsion reinforcing bars 22 may be arranged in an amount that makes it possible to suppress deformation due to shear force and torsion at the joint 40 between the column 10 and the flat beam 20 to a desired amount or less.

さらに、扁平梁20のうち柱せいの外側である範囲、すなわち柱10の前後面よりX軸方向の外側の両部分には、X軸方向に間隔を隔てて複数のせん断補強筋23が配筋されている。せん断補強筋23は、本発明の第2の補強筋に相当する。なお、せん断補強筋23は、扁平梁20の柱せいの外側のX軸正負両方向全体に亘って配置されている。 Furthermore, a plurality of shear reinforcing bars 23 are arranged at intervals in the X-axis direction in a range outside the column of the flat beam 20, that is, in both parts outside the front and rear surfaces of the column 10 in the X-axis direction. has been done. The shear reinforcing bars 23 correspond to the second reinforcing bars of the present invention. Note that the shear reinforcing bars 23 are arranged over the entire outer side of the column of the flat beam 20 in both the positive and negative directions of the X-axis.

せん断補強筋23は、複数の梁主筋21の外周を囲繞するあばら筋24と、1本のあばら筋24の途中において柱10の延在する方向、すなわちZ軸方向に連結する複数の中子筋25とから構成されている。あばら筋24は本発明の囲繞筋に相当し、中子筋25は本発明の連結筋に相当する。 The shear reinforcing bars 23 include stirrups 24 surrounding the outer periphery of the plurality of main beam reinforcements 21 and a plurality of core reinforcing bars connected in the direction in which the column 10 extends, that is, the Z-axis direction, in the middle of one stirrup 24. It consists of 25. The stirrup muscles 24 correspond to the surrounding muscles of the present invention, and the core muscles 25 correspond to the connecting muscles of the present invention.

中子筋25は、Y方向に間隔を開けて複数本配置されている。中子筋25は、Y方向に等間隔に配置されていてもよいが、柱幅外と比較して柱幅内において間隔が狭くなるように配置されていることが好ましい。 A plurality of core bars 25 are arranged at intervals in the Y direction. Although the core reinforcements 25 may be arranged at equal intervals in the Y direction, it is preferable that the core reinforcements 25 are arranged so that the intervals are narrower within the column width than outside the column width.

このように構成されたせん断補強筋23は、複数の梁主筋21の柱幅外における部分を拘束している。せん断補強筋23は中子筋25によって途中が連結されているので、扁平梁20のせん断補強筋23を内設した部分におけるせん断力による変形を効果的に抑制することが可能となる。 The shear reinforcing bars 23 configured in this manner restrain the portions of the plurality of beam main reinforcing bars 21 outside the column width. Since the shear reinforcing bars 23 are connected in the middle by the core reinforcing bars 25, it is possible to effectively suppress deformation due to shear force in the portion of the flat beam 20 in which the shear reinforcing bars 23 are installed.

なお、扁平梁20におけるせん断補強筋23の配筋量は、通常の梁のせん断補強筋と同程度であってよく、扁平梁20の断面積に対する最低配筋量以上、かつ、所望の許容せん断応力から求めた最小補強筋量以上とすればよい。 The amount of shear reinforcing bars 23 in the flat beam 20 may be the same as the shear reinforcing bars of a normal beam, and may be equal to or greater than the minimum amount of reinforcement for the cross-sectional area of the flat beam 20 and have a desired allowable shear. The amount of reinforcement may be greater than the minimum amount of reinforcement determined from the stress.

次に、本発明の実施形態に係る耐力算出方法が適用される第2の柱梁接合部構造200について図5から図8、図2及び図3を参照して説明する。ただし、前述した第1の柱梁接合部構造100と同じ構成に関しては説明を省略する。 Next, a second column-beam joint structure 200 to which the yield strength calculation method according to the embodiment of the present invention is applied will be described with reference to FIGS. 5 to 8, FIGS. 2 and 3. However, the description of the same configuration as the first beam-column joint structure 100 described above will be omitted.

柱梁接合部構造200は、一体構築された鉄筋コンクリート造(RC)の柱10と扁平梁20とがトの字状に接合されてなる接合部40を含む構造である。例えば、柱10は建物の側周部に位置する側柱である。 The beam-column joint structure 200 includes a joint 40 in which a reinforced concrete (RC) column 10 and a flat beam 20 are joined in a T-shape. For example, the pillar 10 is a side pillar located on the side of a building.

扁平梁20内に配置されている梁主筋21は、扁平梁20の柱10の外側面と面一となる外側面側の端部、すなわち扁平梁20の背面の端部に定着部21aを備えている。 The main beam reinforcement 21 arranged in the flat beam 20 has a fixing portion 21a at an end on the outside surface side that is flush with the outside surface of the column 10 of the flat beam 20, that is, at an end on the back surface of the flat beam 20. ing.

そして、扁平梁20のうち柱せい内の部分、すなわち、柱10と扁平梁20との接合部40及び跳ね出し部41からなる部分において、複数の梁主筋21を取り囲むように、2個に分割されてそれぞれコの字状からなる複数のねじり補強筋22がX軸方向に間隔を隔てて配置されている。 Then, the flat beam 20 is divided into two parts so as to surround the plurality of beam main reinforcements 21 in the part inside the column, that is, in the part consisting of the joint 40 and the protruding part 41 between the pillar 10 and the flat beam 20. A plurality of torsion reinforcing bars 22 each having a U-shape are arranged at intervals in the X-axis direction.

このように構成された各ねじり補強筋22によって、接合部40及び跳ね出し部41内における梁主筋21が拘束されており、接合部40及び跳ね出し部41におけるせん断力とねじれによる変形を抑制することが可能となる。 Each of the torsion reinforcing bars 22 configured in this manner restrains the beam main reinforcements 21 in the joint portion 40 and the projecting portion 41, thereby suppressing deformation due to shear force and torsion in the joint portion 40 and the projecting portion 41. becomes possible.

さらに、扁平梁20のうち柱せいの外側である範囲、すなわち柱10の前後面よりX軸方向外側の部分には、X軸方向に間隔を隔てて複数のせん断補強筋23が配筋されている。 Furthermore, a plurality of shear reinforcing bars 23 are arranged at intervals in the X-axis direction in a range of the flat beam 20 that is outside the column, that is, a portion outside the front and rear surfaces of the column 10 in the X-axis direction. There is.

また、扁平梁20の跳ね出し部41には、コの字状の背面補強筋(小口部ひび割れ補強筋)26が梁幅方向(Y軸方向)に間隔を開けて、梁主筋21の間に配置されている。背面補強筋26は、柱幅より外側の扁平梁20の端面である背面部に配置されている。このような背面補強筋26の存在によって、扁平梁20の背面部におけるひび割れの発生を抑制することが可能となる。 In addition, in the protruding portion 41 of the flat beam 20, U-shaped back reinforcement bars (edge crack reinforcement bars) 26 are spaced apart in the beam width direction (Y-axis direction) and between the beam main reinforcements 21. It is located. The back surface reinforcing bars 26 are arranged on the back surface of the flat beam 20 on the outside of the column width. The presence of such back reinforcement bars 26 makes it possible to suppress the occurrence of cracks on the back surface of the flat beam 20.

背面補強筋26は、コの字状であり、具体的には、基部26aと基部26aの両端からそれぞれ延びる2本の足部26bとから構成されている。そして、基部26aが跳ね出し部41の最も背面に近く部分に配置されている梁主筋21の端面側の外側に接触して位置し、各足部26bがX軸方向に間隔を隔てて配置されているねじり補強筋22と交差する部分においてねじり補強筋22の上下の足部の内側にそれぞれ接触して固定されている。上側の足部26bは梁主筋21の上端筋の上面位置と、下側の足部26bは梁主筋21の下端筋の下面とそれぞれ略同一の高さに配置されている。そして、各足部26bの基部26aと接続されていない側の端部は、特に他の鉄筋と固定されていない。 The back reinforcement 26 has a U-shape, and specifically includes a base 26a and two legs 26b extending from both ends of the base 26a. The base portion 26a is located in contact with the outer side of the end surface of the beam main reinforcement 21 which is disposed at the portion closest to the rear surface of the protruding portion 41, and the respective foot portions 26b are arranged at intervals in the X-axis direction. The reinforcing bars 22 are fixed in contact with the inner sides of the upper and lower legs of the torsion reinforcing bars 22 at portions that intersect with the torsion reinforcing bars 22. The upper leg portion 26b is disposed at approximately the same height as the upper surface of the upper end reinforcement of the beam main reinforcement 21, and the lower foot portion 26b is located at approximately the same height as the lower surface of the lower end reinforcement of the beam main reinforcement 21. The end portion of each foot portion 26b on the side not connected to the base portion 26a is not particularly fixed to other reinforcing bars.

背面補強筋26は、扁平梁20の背面から内部に向って挿入されて配筋され、扁平梁20の内部に定着される。背面補強筋26は、鉄筋としてのかぶり厚さを確保し、かつ、なるべく背面側に配置されることが望ましい。 The back surface reinforcing bars 26 are inserted from the back surface of the flat beam 20 toward the inside, are arranged, and are fixed inside the flat beam 20 . It is desirable that the back reinforcing bars 26 ensure a cover thickness as a reinforcing bar and are arranged as close to the back side as possible.

ただし、背面補強筋26は、せん断力とねじりに抵抗するために必要な鉄筋量を配置することが好ましいが、接合部40の耐力算出には考慮に入れない。 However, although it is preferable to arrange the amount of reinforcing bars necessary for resisting shear force and torsion, the back reinforcing bars 26 are not taken into account when calculating the proof strength of the joint 40.

次に、本発明の実施形態に係る耐力算出方法が適用される第3の柱梁接合部構造300について図9から図11及び図2から図4を参照して説明する。ただし、前述した第1及び第2の柱梁接合部構造100,200と同じ構成に関しては説明を省略する。 Next, a third column-beam joint structure 300 to which the yield strength calculation method according to the embodiment of the present invention is applied will be described with reference to FIGS. 9 to 11 and FIGS. 2 to 4. However, the description of the same configuration as the first and second beam-column joint structures 100 and 200 described above will be omitted.

柱梁接合部構造300は、一体構築された鉄筋コンクリート造(RC)の柱10と扁平梁20とが接合され、さらに柱10及び扁平梁20と直交する直交梁30とが接合されてなる接合部40を含む構造である。例えば、柱10は建物の側周部に位置する側柱である。柱10、扁平梁20及び直交梁30のそれぞれの一の外側面が面一となるように接続されている。跳ね出し部41の柱10側の柱10の柱幅の外側は、扁平梁20と直交梁30との梁の接合部42となっている。 The column-beam joint structure 300 is a joint formed by joining an integrally constructed reinforced concrete (RC) column 10 and a flat beam 20, and further joining an orthogonal beam 30 orthogonal to the column 10 and the flat beam 20. The structure includes 40. For example, the pillar 10 is a side pillar located on the side of a building. The pillars 10, the flat beams 20, and the orthogonal beams 30 are connected so that one outer surface of each is flush with the other. The outside of the column width of the column 10 on the column 10 side of the protruding portion 41 is a beam joint 42 between the flat beam 20 and the orthogonal beam 30.

扁平梁20内に配置されている梁主筋21は、扁平梁20の柱10の外側面と面一となる外側面側の端部、すなわち扁平梁20の背面の端部に定着部21aを備えている。梁の接合部42の外側面側の端部、すなわち梁の接合部42の背面側の端部に定着部21aが位置している。 The main beam reinforcement 21 arranged in the flat beam 20 has a fixing portion 21a at an end on the outside surface side that is flush with the outside surface of the column 10 of the flat beam 20, that is, at an end on the back surface of the flat beam 20. ing. The fixing part 21a is located at the end of the beam joint 42 on the outer surface side, that is, at the end of the beam joint 42 on the back side.

そして、直交梁30には、接合部40及び梁の接合部42を貫通してY軸方向に延在する複数の梁主筋31、及び接合部40内以外においてこれら梁主筋31の外周を囲繞し、Y軸方向に間隔を隔てて配置された複数のフープ筋32が内設されている。 The orthogonal beam 30 has a plurality of main beam reinforcements 31 extending in the Y-axis direction through the joint 40 and the joint 42 of the beam, and a plurality of main beam reinforcements 31 surrounding the outer periphery of these main beam reinforcements 31 outside the joint 40. , a plurality of hoop muscles 32 are arranged at intervals in the Y-axis direction.

例えば扁平梁20と直交梁30の上端面が一致する場合、接合部40及び梁の接合部42において、扁平梁20の上端の梁主筋21か直交梁30の上端の梁主筋31の何れかが上方に配置されることになる。扁平梁20は梁せいDgが低いため、上下の梁主筋21の距離である有効梁せいを大きく確保するために上端の梁主筋21を直交梁30の上端の梁主筋31よりも上方に配置することが好ましい。 For example, when the upper end surfaces of the flat beam 20 and the orthogonal beam 30 match, either the beam main reinforcement 21 at the upper end of the flat beam 20 or the beam main reinforcement 31 at the upper end of the orthogonal beam 30 at the joint 40 and the beam joint 42 It will be placed above. Since the flat beam 20 has a low beam depth Dg, the beam main reinforcement 21 at the upper end is placed above the beam main reinforcement 31 at the upper end of the orthogonal beam 30 in order to ensure a large effective beam height, which is the distance between the upper and lower beam main reinforcements 21. It is preferable.

この場合、扁平梁20の上端の梁主筋21が鉄筋によって拘束されないと、梁の接合部42におけるせん断力やねじれに対する耐力が低下する。そこで、梁の接合部42内には、コの字状のかんざし筋33が直交梁30の梁幅方向(X軸方向)に間隔を開けて、梁主筋31の間に配置されている。かんざし筋33は、梁の接続部42の上面側から梁主筋21と直交する方向(Z軸方向)に下方に向って延びるように配置されている。 In this case, if the main beam reinforcement 21 at the upper end of the flat beam 20 is not restrained by the reinforcing bars, the strength against shear force and twisting at the joint 42 of the beam will decrease. Therefore, in the joint portion 42 of the beam, U-shaped hairpins 33 are arranged between the beam main reinforcements 31 at intervals in the beam width direction (X-axis direction) of the orthogonal beam 30. The hairpin reinforcements 33 are arranged to extend downward from the upper surface side of the beam connection portion 42 in a direction perpendicular to the beam main reinforcements 21 (Z-axis direction).

かんざし筋33は、梁の接続部42内の扁平梁20の梁主筋21の定着部21aの直前まで配置されている。例えば、定着部21aが機械式の場合、かんざし筋33は定着板のスリーブ部の直前まで延びている。また、定着部21aが定着板を鉄筋の先端に直接接合する構成の場合、かんざし筋33は定着板の直前まで延びている。 The hairpin bars 33 are arranged up to just before the fixing part 21a of the main beam reinforcement 21 of the flat beam 20 within the beam connection part 42. For example, when the fixing section 21a is mechanical, the hairpins 33 extend to just before the sleeve section of the fixing plate. Further, in the case where the fixing section 21a is configured to directly join the fixing plate to the tip of the reinforcing bar, the hairpins 33 extend to just before the fixing plate.

かんざし筋33は、コの字状であり、具体的には、基部33aと基部33aの両端からそれぞれ延びる2本の足部33bとから構成されている。そして、基部33aが梁の接合部42内における上端の梁主筋21の上面に接触して位置し、各足部33bが上下方向(Z軸方向)に間隔を隔てて配置されている梁主筋31の外側に接触して位置している。これにより、かんざし筋33は、梁の接合部42内における梁主筋21をコの字状に取り囲んでいる。なお、各足部33bの基部33aと接続されていない側の端部は、特に他の鉄筋と固定されていないともよい。 The hairpins 33 have a U-shape, and specifically include a base 33a and two legs 33b extending from both ends of the base 33a. The base portion 33a is located in contact with the upper surface of the upper end main beam reinforcement 21 in the joint portion 42 of the beam, and each foot portion 33b is arranged at intervals in the vertical direction (Z-axis direction). located in contact with the outside of the As a result, the hairpin reinforcements 33 surround the beam main reinforcements 21 in the joint portion 42 of the beam in a U-shape. Note that the end of each leg 33b that is not connected to the base 33a may not be fixed to any other reinforcing steel.

かんざし筋33は、梁の接合部42の上面側から内部に向って挿入されて配筋され、直交梁30の内部に定着される。かんざし筋33は、せん断力とねじりに抵抗するために必要な鉄筋量を配置することが好ましいが、扁平梁20の耐力算出には考慮しないことが好ましい。 The hairpins 33 are inserted from the upper surface side of the joint portion 42 of the beams toward the inside, are arranged, and are fixed inside the orthogonal beams 30 . Although it is preferable to arrange the amount of reinforcing bars necessary for resisting shear force and torsion, it is preferable that the barbell reinforcements 33 are not taken into account when calculating the proof strength of the flat beam 20.

このように構成されたかんざし筋33によって、梁の接合部42内における扁平梁20の梁主筋21を拘束することが可能となるので、この部分におけるせん断力によるねじれや梁の接合部42の上面にひび割れが発生することを抑制することができる。 The hairline reinforcement 33 configured in this manner makes it possible to restrain the main beam reinforcement 21 of the flat beam 20 within the joint 42 of the beam, so that twisting due to shear force in this part and the upper surface of the joint 42 of the beam can be prevented. It is possible to suppress the occurrence of cracks.

なお、梁の接合部42内の背面側の端部には直交梁30内のフープ筋32が存在しているので、これにより、背面補強筋26を用いることなく、梁の接合部42の背面にひび割れが生じることが抑制される。 In addition, since the hoop reinforcement 32 in the orthogonal beam 30 is present at the end on the back side of the beam joint 42, this allows the rear surface of the beam joint 42 to be straightened without using the back reinforcement 26. The occurrence of cracks is suppressed.

なお、上述した柱梁接続部構造100,200,300又はこれらを含む構造体は、現場打ちコンクリートからなるものであっても、ハーフプレキャストコンクリートからなるものであってもよい。 Note that the above-described column-beam connection structures 100, 200, and 300 or a structure including them may be made of cast-in-place concrete or half precast concrete.

また、本発明の耐力算出方法は、上述した柱梁接合部構造100,200,300の構造を有するものに限定的に適用されるものではなく、接合部40と跳ね出し部41とを十分に一体化した状態における柱10と扁平梁30との任意の接合部構造に適用することができる。 Furthermore, the strength calculation method of the present invention is not limited to those having the above-mentioned column-beam joint structures 100, 200, and 300, and the joint portion 40 and the protruding portion 41 are It can be applied to any joint structure between the column 10 and the flat beam 30 in an integrated state.

以下、本発明の実施形態に係る柱と扁平梁との接合部における耐力の算出方法について説明する。この算出方法は、発明者が上述した柱梁接合部構造100,200,300を有する多数の試験体に対して耐力試験などを行うことによって導き出したものである。 Hereinafter, a method of calculating proof strength at a joint between a column and a flat beam according to an embodiment of the present invention will be described. This calculation method was derived by the inventors by conducting strength tests and the like on a large number of test specimens having the above-mentioned beam-column joint structures 100, 200, and 300.

なお、試験体として、柱幅Bcに対する梁幅Bgの比率である柱・梁幅比α(=Bg/Bc)は、1.5,2.0,3.0としたものを用いた。よって、本算出方法は、柱・梁幅比αが3以下のものに適用可能である。 The test specimens used had column-to-beam width ratio α (=Bg/Bc), which is the ratio of beam width Bg to column width Bc, of 1.5, 2.0, and 3.0. Therefore, this calculation method is applicable to those where the column/beam width ratio α is 3 or less.

また、試験体として、跳ね出し部41の柱10の側面から張り出した部分の寸法は、柱幅Bc及び柱せいDc以下、かつ扁平梁20の梁せいDgの2倍以下であるものを用いた。よって、本算出方法は、このような構成のものに適用可能である。なお、本算出方法は、柱10と扁平梁20とが偏心して接合されているものにも適用可能である。そして、建物の最上層を扁平梁20を用いて構築する場合、原則として鉛直スタブを設けるものとする。 In addition, the test specimen used was one in which the dimensions of the portion of the protruding portion 41 protruding from the side surface of the column 10 were equal to or less than the column width Bc and column depth Dc, and were equal to or less than twice the beam depth Dg of the flat beam 20. . Therefore, this calculation method is applicable to such a configuration. Note that this calculation method can also be applied to a structure in which the column 10 and the flat beam 20 are joined eccentrically. When constructing the top layer of a building using the flat beams 20, a vertical stub is, in principle, provided.

第1の算出方法として、柱10外に配置された扁平梁20の梁主筋21が負担する応力が柱10の柱幅内に配置された扁平梁20の梁主筋21が負担する応力より小さくなる影響を考慮し、扁平梁20の許容曲げモーメントを柱・梁幅比αに応じ低減して算出する。具体的には、長期許容曲げモーメント又は短期許容曲げモーメント(N・mm)は、次式(1)によって算出する。
=ξ・a・j ・・・ (1)
As a first calculation method, the stress borne by the main beam reinforcement 21 of the flat beam 20 placed outside the column 10 is smaller than the stress borne by the main beam reinforcement 21 of the flat beam 20 placed within the column width of the column 10. In consideration of the influence, the allowable bending moment g Ma of the flat beam 20 is calculated by reducing it according to the column-to-beam width ratio α. Specifically, the long-term allowable bending moment or the short-term allowable bending moment g M a (N·mm) is calculated using the following equation (1).
g M a = ξ・a tg f t・j ... (1)

ここで、ξは柱・梁幅比αに応じた低減係数、aは扁平梁20の引張鉄筋断面積(mm)、は扁平梁20の梁主筋21の長期又は短期の許容応力度(N/mm)、jは扁平梁20の応力中心距離(mm)である。そして、低減係数ξは、図12に示したグラフのように1.00から0.75へと柱・梁幅比αに応じて低減させる。 Here, ξ is a reduction coefficient according to the column-to-beam width ratio α, a t is the cross-sectional area of the tensile reinforcement of the flat beam 20 (mm 2 ), and g f t is the long-term or short-term tolerance of the main beam reinforcement 21 of the flat beam 20. The degree of stress (N/mm 2 ), j is the stress center distance (mm) of the flat beam 20. Then, the reduction coefficient ξ is reduced from 1.00 to 0.75 in accordance with the column-to-beam width ratio α, as shown in the graph shown in FIG.

なお、低減係数ξは、柱10内における梁主筋21の平均歪みに対する全ての梁主筋21の平均歪みの比について、各試験体の接合部40の扁平梁20を柱10に対して1/100、1/200、1/400の変形角に変形させた際における、柱10内における値の比の平均として算出した。 Note that the reduction coefficient ξ is 1/100 of the flat beam 20 of the joint 40 of each test specimen relative to the column 10, with respect to the ratio of the average strain of all the beam main reinforcements 21 to the average strain of the beam main reinforcements 21 in the column 10. , 1/200, and 1/400 of the deformation angle.

第2の算出方法として、柱10外に配置された扁平梁20の梁主筋21が負担する応力が、柱10の柱幅内に配置された扁平梁20の梁主筋21が負担する応力より小さくなる影響を考慮し、扁平梁20の終局曲げモーメントyを柱・梁幅比αに応じ低減して算出する。具体的には、終局曲げモーメントy(N・mm)は、次式(2)によって算出する。なお、式(2)は、一般財団法人建築行政情報センター及び一般財団法人日本建築防災協会編集の「2015年度 建築物の構造関係技術基準解説書」の651頁から652頁の記載に基いている。
y=β・0.9・aσ・d ・・・ (2)
As a second calculation method, the stress borne by the main beam reinforcement 21 of the flat beam 20 placed outside the column 10 is smaller than the stress borne by the main beam reinforcement 21 of the flat beam 20 placed within the column width of the column 10. The ultimate bending moment g M y of the flat beam 20 is calculated by reducing it in accordance with the column-to-beam width ratio α, taking into account the following influence. Specifically, the ultimate bending moment g M y (N·mm) is calculated by the following equation (2). In addition, formula (2) is based on the description on pages 651 to 652 of the ``2015 Explanation of Structural Technical Standards for Buildings'' edited by the Building Administration Information Center and the Japan Architectural Disaster Prevention Association. .
g M y = β・0.9・a tg σ y・d ... (2)

ここで、βは柱・梁幅比αに応じた低減係数、aは扁平梁20の引張鉄筋断面積(mm)、σは扁平梁20の梁主筋21の降伏強度(N/mm)、dは扁平梁20の有効せい(mm)である。そして、低減係数βは、図13に示したグラフのように1.00から0.85へと柱・梁幅比αに応じて低減させる。 Here, β is the reduction coefficient according to the column-to-beam width ratio α, a t is the cross-sectional area of the tensile reinforcement of the flat beam 20 (mm 2 ), and g σ y is the yield strength of the main beam reinforcement 21 of the flat beam 20 (N/ mm 2 ), d is the effective height (mm) of the flat beam 20. Then, the reduction coefficient β is reduced from 1.00 to 0.85 in accordance with the column-to-beam width ratio α, as shown in the graph shown in FIG.

なお、柱・梁幅比αが2.0の試験体を実験したところ、柱10外に配置された梁主筋21を含め、全ての梁主筋21が耐力に寄与することが確認できたため、柱・梁幅比αが2.0における低減係数βは1.00とした。一方、柱・梁幅比αが3.0の試験体を実験したところ、柱10外に配置された梁主筋21の負担応力が減少することが確認されたため、試験結果が安全側となる値として、低減係数βを0.85とした。 In addition, when we conducted an experiment on a test specimen with a column-to-beam width ratio α of 2.0, it was confirmed that all the beam main reinforcements 21, including the beam main reinforcements 21 placed outside the columns 10, contributed to the strength. - The reduction coefficient β was set to 1.00 when the beam width ratio α was 2.0. On the other hand, when testing a test specimen with a column-to-beam width ratio α of 3.0, it was confirmed that the stress borne by the beam main reinforcement 21 placed outside the column 10 decreased, so the test result was a value on the safe side. Therefore, the reduction coefficient β was set to 0.85.

第3の算出方法として、柱10外に配置された扁平梁20の梁主筋21が負担する応力が、柱10の柱幅内に配置された扁平梁20の梁主筋21が負担する応力より小さくなる影響を考慮し、接合部40のせん断終局強度Vjuを柱・梁幅比αに応じ低減して算出する。具体的には、接合部40のせん断終局強度Vju(N)は、次式(3)によって算出する。なお、式(3)は、靭性保証指針式を元に、式中の柱幅と梁幅を読み替えた式である。
ju=γ・κ・φ・F・b・D ・・・ (3)
As a third calculation method, the stress borne by the main beam reinforcement 21 of the flat beam 20 placed outside the column 10 is smaller than the stress borne by the main beam reinforcement 21 of the flat beam 20 placed within the column width of the column 10. In consideration of the influence of Specifically, the ultimate shear strength V ju (N) of the joint 40 is calculated using the following equation (3). In addition, formula (3) is a formula based on the toughness guarantee guideline formula, with the column width and beam width in the formula replaced.
V ju = γ・κ・φ・F j・b j・D j ... (3)

ここで、γは柱・梁幅比αに応じた低減係数、κは形状係数、φは直交梁30の有無による補正係数、Fは直交梁30の有無による補正係数(N/mm)、扁平梁20の梁主筋21の降伏強度(N/mm)、Dは梁主筋20の定着長さ又は柱せいDc(mm)である。bは、接合部40の有効幅(mm)であり、式(4)、(5)によって算出する。
=B+ba1+ba2 ・・・ (4)
ai=min(b/2,D/4) ・・・ (5)
Here, γ is a reduction coefficient according to the column-to-beam width ratio α, κ is a shape coefficient, φ is a correction coefficient depending on the presence or absence of the orthogonal beam 30, and F j is a correction coefficient depending on the presence or absence of the orthogonal beam 30 (N/mm 2 ) , the yield strength (N/mm 2 ) of the beam main reinforcement 21 of the flat beam 20, and D j is the anchoring length of the beam main reinforcement 20 or the column height Dc (mm). b j is the effective width (mm) of the joint portion 40, and is calculated using equations (4) and (5).
b j =B c +b a1 +b a2 ... (4)
b ai = min (b i /2, D c /4) ... (5)

ここで、bは、柱10の端面から扁平梁30の端面までのY軸方向におけるそれぞれの距離(mm)である。扁平梁30に対して偏心しないで柱10が接続されている場合、b=b=(Bg-Bc)/2となる。Dcは上述した柱せい(mm)である。 Here, b i is each distance (mm) in the Y-axis direction from the end face of the column 10 to the end face of the flat beam 30. When the column 10 is connected without eccentricity with respect to the flat beam 30, b 1 =b 2 =(Bg-Bc)/2. Dc is the column height (mm) mentioned above.

そして、低減係数γは、図14に示したグラフのように1.00から0.90へと柱・梁幅比αに応じて低減させる。 Then, the reduction coefficient γ is reduced from 1.00 to 0.90 in accordance with the column-to-beam width ratio α, as shown in the graph shown in FIG.

形状係数κは、柱梁接合部構造100のように柱10と扁平梁20とが十字状に接合されている場合は1.0であり、柱梁接合部構造200のように柱10と扁平梁20とがト字に接合されている場合は0.7である。補正係数φは、柱梁接合部構造300のように柱10の柱幅両方向外側に直交梁30が接合されている場合は1.0であり、それ以外に場合は0.85である。 The shape factor κ is 1.0 when the column 10 and the flat beam 20 are joined in a cross shape as in the column-beam joint structure 100, and when the column 10 and the flat beam 20 are joined in a cross-shape as in the column-beam joint structure 200, the shape coefficient κ is 1.0. When the beam 20 is joined in a T-shape, it is 0.7. The correction coefficient φ is 1.0 when the orthogonal beam 30 is joined to the outer side of the column 10 in both column width directions as in the column-beam joint structure 300, and is 0.85 in other cases.

そして、Fは以下の式(6)によって求めることができる。
=0.8・F 0.7 ・・・ (6)
Then, F j can be determined by the following equation (6).
F j =0.8・F c 0.7 ... (6)

なお、柱・梁幅比αが2.0又は3.0の試験体を実験し、試験結果が安全側となる値として、低減係数γを0.90とした。柱・梁幅比αが1.0場合は低減する必要がないので、低減係数γを1.00とした。 In addition, experiments were conducted using test specimens with a column-to-beam width ratio α of 2.0 or 3.0, and the reduction coefficient γ was set to 0.90 as a value at which the test result was on the safe side. If the column/beam width ratio α is 1.0, there is no need to reduce it, so the reduction coefficient γ was set to 1.00.

上記の式(1)~(3)を用いて、扁平梁20及び柱10と扁平梁20との接合部40の支持可能な曲げモーメントやせん断耐力を求める。式(1)は、扁平梁10の支持可能な曲げモーメントを求める式であり、許容応力を設計する際に用いる。式(2)、(3)は、終局耐力を算定する式である。式(2)は扁平梁20の終局曲げモーメントを、式(3)は扁平梁20と柱10との接合部40のせん断終局強度をそれぞれ算定する際に用いる。 Using the above equations (1) to (3), the supportable bending moment and shear strength of the flat beam 20 and the joint 40 between the column 10 and the flat beam 20 are determined. Equation (1) is an equation for determining the supportable bending moment of the flat beam 10, and is used when designing the allowable stress. Equations (2) and (3) are equations for calculating ultimate strength. Equation (2) is used to calculate the ultimate bending moment of the flat beam 20, and equation (3) is used to calculate the ultimate shear strength of the joint 40 between the flat beam 20 and the column 10.

実際的な計算方法としては、式(1)によって扁平梁20が長期及び短期の許容曲げモーメントを支持可能であることを確認したうえで、式(2)、(3)によって柱10と扁平梁20との接合部40の耐力を求めて、この耐力が終局時に発生する応力よりも大きいことを確認すればよい。そして、何れかを満たさない場合は、扁平梁20などの断面寸法などを変更すればよい。 As a practical calculation method, after confirming that the flat beam 20 can support long-term and short-term allowable bending moments using formula (1), the column 10 and flat beam What is necessary is to find the proof strength of the joint portion 40 with 20 and confirm that this proof stress is larger than the stress generated at the final stage. If any of these conditions is not satisfied, the cross-sectional dimensions of the flat beam 20, etc. may be changed.

なお、本発明の耐力算出方法は、上述した3つの算出方法に限定されるものではなく、特許請求の範囲に記載した範囲内であれば適宜変更することができる。 Note that the yield strength calculation method of the present invention is not limited to the three calculation methods described above, and can be modified as appropriate within the scope of the claims.

10…柱、 11…柱主筋、 12…フープ筋、 20…扁平梁、 21…梁主筋、 22…ねじり補強筋(第1の補強筋)、 23…せん断補強筋(第2の補強筋)、 24…あばら筋(囲繞筋)、 25…中子筋(連結筋)、 26…背面補強筋(第2の補強筋)、 26a…基部、 26b…足部、 30…直交梁、 31…梁主筋、 32…フープ筋、 33…かんざし筋、 40…接合部、 41…跳ね出し部、 42…梁の接合部、 100,200,300…柱梁接合部構造。
10...Column, 11...Column main reinforcement, 12...Hoop reinforcement, 20...Flat beam, 21...Beam main reinforcement, 22...Torsion reinforcement (first reinforcement), 23...Shear reinforcement (second reinforcement), 24... Stirrups (surrounding bars), 25... Core bars (connecting bars), 26... Back reinforcement bars (second reinforcing bars), 26a... Base, 26b... Foot, 30... Orthogonal beam, 31... Main beam reinforcement , 32... Hoop bar, 33... Hairpin bar, 40... Joint part, 41... Jumping part, 42... Beam joint part, 100, 200, 300... Column beam joint structure.

Claims (3)

柱と前記柱の柱幅より広い梁幅を有する扁平梁との接合部構造における耐力を算出する方法であって、
前記柱の柱幅外に配置された前記扁平梁内に配置されている梁主筋が負担する応力が前記柱の柱幅内に配置された前記扁平梁内に配置されている梁主筋が負担する応力より小さくなる影響を考慮し、前記扁平梁の長期許容曲げモーメント又は短期許容曲げモーメント (N・mm)を、次式(1)によって算出することを特徴とする耐力算出方法。
=ξ・a ・gf ・j ・・・ (1)
ただし、a は前記扁平梁の引張鉄筋断面積(mm )、 は前記扁平梁の梁主筋の長期又は短期の許容応力度(N/mm )、jは前記扁平梁の応力中心距離(mm)、低減係数ξは、柱・梁幅比αに応じた低減係数であって、1以上2未満である場合は1-0.15(α-1)、柱・梁幅比αが2以上3以下である場合は0.85-0.1(α-2)である。
A method for calculating proof strength in a joint structure between a column and a flat beam having a beam width wider than the column width of the column, the method comprising:
The stress borne by the beam main reinforcement placed in the flat beam placed outside the column width of the column is borne by the beam main reinforcement placed in the flat beam placed within the column width of the column. Considering the effect that is smaller than the stress,Long-term allowable bending moment or short-term allowable bending moment of the flat beam g M a (N・mm) by the following formula (1)A yield strength calculation method characterized by calculating.
g M a =ξ・a t ・gf t ・j... (1)
However, a t is the cross-sectional area of the tensile reinforcement of the flat beam (mm 2 ), g f t is the long-term or short-term allowable stress of the main beam reinforcement of the flat beam (N/mm 2 ), j is the stress center distance (mm) of the flat beam, and the reduction coefficient ξ is a reduction coefficient according to the column-to-beam width ratio α, and when it is 1 or more and less than 2, it is 1-0.15 (α -1), and 0.85-0.1 (α-2) when the column/beam width ratio α is 2 or more and 3 or less.
前記柱と前記扁平梁との接合部を含む前記柱の柱せいの内側において、前記扁平梁内に、前記扁平梁内に配置されている複数の梁主筋を取り囲むように複数の第1の補強筋が設けられており、各前記第1の補強筋は2個に分割されてそれぞれコの字状からなり、前記柱の柱幅の内側において、前記コの字の両端部が前記柱幅の方向に重複して前記梁主筋に固定されていることを特徴とする請求項1に記載の耐力算出方法。 A plurality of first reinforcements are provided in the flat beam so as to surround a plurality of beam main reinforcements arranged in the flat beam, on the inside of the column wall of the column including the joint between the column and the flat beam. Each of the first reinforcing bars is divided into two parts each having a U-shape, and on the inside of the width of the column, both ends of the U-shape meet the width of the column. The yield strength calculation method according to claim 1, wherein the strength calculation method is fixed to the beam main reinforcement so as to overlap in a direction. 前記柱せいより外側において、前記扁平梁内に複数の第2の補強筋が配置されており、
前記第2の補強筋は、前記扁平梁内に配置されている複数の梁主筋の外周を囲繞する囲繞筋と、前記囲繞筋の途中において前記柱の延在する方向に連結する複数の連結筋とから構成されていることを特徴とする請求項2に記載の耐力算出方法。
A plurality of second reinforcing bars are arranged inside the flat beam outside the column,
The second reinforcing bars include surrounding bars that surround the outer periphery of a plurality of beam main bars arranged in the flat beam, and a plurality of connecting bars that connect in the direction in which the column extends in the middle of the surrounding bars. 3. The yield strength calculation method according to claim 2, comprising:
JP2019213526A 2019-11-26 2019-11-26 How to calculate the strength at the joint between a column and a flat beam Active JP7384645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019213526A JP7384645B2 (en) 2019-11-26 2019-11-26 How to calculate the strength at the joint between a column and a flat beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213526A JP7384645B2 (en) 2019-11-26 2019-11-26 How to calculate the strength at the joint between a column and a flat beam

Publications (2)

Publication Number Publication Date
JP2021085190A JP2021085190A (en) 2021-06-03
JP7384645B2 true JP7384645B2 (en) 2023-11-21

Family

ID=76088775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213526A Active JP7384645B2 (en) 2019-11-26 2019-11-26 How to calculate the strength at the joint between a column and a flat beam

Country Status (1)

Country Link
JP (1) JP7384645B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021254A (en) 2013-07-17 2015-02-02 株式会社竹中工務店 Column-beam structure
JP2015061961A (en) 2013-09-21 2015-04-02 株式会社安藤・間 Method for calculating flexural strength of flat beam, and bar arrangement structure for flat beam
JP2015140635A (en) 2014-01-30 2015-08-03 株式会社長谷工コーポレーション Rigid frame having wide flat beam, and building using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021254A (en) 2013-07-17 2015-02-02 株式会社竹中工務店 Column-beam structure
JP2015061961A (en) 2013-09-21 2015-04-02 株式会社安藤・間 Method for calculating flexural strength of flat beam, and bar arrangement structure for flat beam
JP2015140635A (en) 2014-01-30 2015-08-03 株式会社長谷工コーポレーション Rigid frame having wide flat beam, and building using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
平田延明、太田雄介、中岡章郎,幅広扁平梁柱接合部の張出部補強筋による構造性能への影響に関する実験的研究,日本建築学会大会学術講演梗概集(九州),405,406,日本建築学会,2016年07月20日
足立将人、平田延明、中岡章郎、室重行、入江貴弘,幅広扁平梁架構の構造性能に関する実験的研究,日本建築学会大会学術講演梗概集(近畿),399,400,日本建築学会,2014年07月20日

Also Published As

Publication number Publication date
JP2021085190A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
Moehle et al. Seismic design of reinforced concrete special moment frames: a guide for practicing engineers
Cheng et al. Seismic behavior of steel beams and CFT column moment-resisting connections with floor slabs
Sabelli et al. Seismic design of steel special concentrically braced frame systems
KR102571298B1 (en) Method of introducing prestress to beam-column joint in triaxial compression
TWI759947B (en) Method of introducing prestress to beam-column joint of pc structure in triaxial compression
JP2018131882A (en) Foundation structure
JP2018131883A (en) Floor structure
Das et al. Characterization of moment resisting I-beam to circular hollow section column connections resorting to passing-through plates
US20140230360A1 (en) Ductile chord connectors for use in concrete rods in structures
JP7384645B2 (en) How to calculate the strength at the joint between a column and a flat beam
JP7381307B2 (en) Column beam joint structure
JP6796335B2 (en) Reinforcing support member for reinforcing bar cage, reinforcing bar cage using this, and structure of reinforcing bar cage
Plumier et al. Seismic behaviour and design of composite steel concrete structures
JP7381306B2 (en) Column beam joint structure
JP7297649B2 (en) Column-beam joint structure
JP6573111B2 (en) Beam-column joint structure
JP7393619B2 (en) Column-beam joint structure and design method for column-beam joints
Chen et al. Beam-to-Column moment-resisting connections
MacRae et al. Panel zone strength in moment frames with slabs
Goel et al. Design of welded steel moment connections using truss analogy
JP2024027801A (en) Shear strength calculation method of pile cap
JP2017203378A (en) Reinforcement structure for reinforced-concrete wall pillar and reinforcement structure for reinforced-concrete beam member
Goel et al. Steel moment frames with ductile girder web opening
JP2002021095A (en) Building structure and design method therefor
JPH0329937B2 (en)

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231109

R150 Certificate of patent or registration of utility model

Ref document number: 7384645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150