JP7382006B2 - power supply system - Google Patents

power supply system Download PDF

Info

Publication number
JP7382006B2
JP7382006B2 JP2020004784A JP2020004784A JP7382006B2 JP 7382006 B2 JP7382006 B2 JP 7382006B2 JP 2020004784 A JP2020004784 A JP 2020004784A JP 2020004784 A JP2020004784 A JP 2020004784A JP 7382006 B2 JP7382006 B2 JP 7382006B2
Authority
JP
Japan
Prior art keywords
power
charging
charger
value
management device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004784A
Other languages
Japanese (ja)
Other versions
JP2021112099A (en
Inventor
洋 長野
直樹 實政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2020004784A priority Critical patent/JP7382006B2/en
Publication of JP2021112099A publication Critical patent/JP2021112099A/en
Application granted granted Critical
Publication of JP7382006B2 publication Critical patent/JP7382006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Fuel Cell (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本開示は、給電システムに関する。 The present disclosure relates to a power supply system.

特許文献1は、電気自動車用の急速充電器を開示している。この急速充電器は、コンビニエンスストアなどの電力消費施設に設けられる。急速充電器及び電力消費施設はそれぞれ、電力系統から電力が供給される。急速充電器は、設備用蓄電池が内蔵されている。 Patent Document 1 discloses a quick charger for electric vehicles. This quick charger is installed at power-consuming facilities such as convenience stores. The quick charger and the power consumption facility are each supplied with power from the power grid. A quick charger has a built-in storage battery for equipment.

特開2012-151938号公報Japanese Patent Application Publication No. 2012-151938

特許文献1では、電力系統からの受電電力は、電力系統から電力消費施設へ供給される供給電力、即ち電力消費施設の消費電力と、電力系統から充電器へ供給される供給電力との和である。充電器の充電電力は、電力系統から充電器へ供給される供給電力と、設備用蓄電池の放電電力との合計値である。即ち、電力系統からの受電電力は、「電力消費施設の消費電力+充電器の充電電力-設備用蓄電池の放電電力」である。 In Patent Document 1, the received power from the power grid is the power supplied from the power grid to the power consuming facility, that is, the sum of the power consumed by the power consuming facility and the power supplied from the power grid to the charger. be. The charging power of the charger is the total value of the power supplied to the charger from the power system and the discharge power of the equipment storage battery. That is, the power received from the power system is "power consumption of the power consuming facility + charging power of the charger - discharge power of the equipment storage battery".

充電対象への充電時間を短くするために、充電器の充電電力を大きくしすぎると、受電電力が契約電力などの設定電力を超えるおそれがある。受電電力が上記契約電力を超えるほど充電器の充電電力を大きくすれば、配電網に対して許容できない急激な負荷変動が生じて配電系統を不安定にさせるおそれがある。また、受電電力が上記契約電力を超える時間が長くなれば、電気の基本料金が高くなる。一方、蓄電池の放電電力を大きくしすぎれば、受電電力が0未満となるおそれがある。受電電力が0未満となれば、蓄電池の放電電力が電力系統に流れる逆潮流が生じる。即ち、受電電力が契約電力を超えることなく、かつ受電電力が0未満となることなく、契約電力を超える電力を充電対象に充電することができない。よって、充電対象への充電時間が短くならない。 If the charging power of the charger is increased too much in order to shorten the charging time for the charging target, there is a risk that the received power will exceed the set power such as contract power. If the charging power of the charger is increased so that the received power exceeds the above-mentioned contract power, there is a risk that an unacceptable rapid load change will occur in the power distribution network, making the power distribution system unstable. Furthermore, the longer the time that the received power exceeds the contract power, the higher the basic electricity charge will be. On the other hand, if the discharge power of the storage battery is increased too much, the received power may become less than zero. If the received power becomes less than 0, a reverse power flow occurs in which the discharged power of the storage battery flows to the power grid. That is, the charging target cannot be charged with power exceeding the contracted power without the received power exceeding the contracted power and without the received power becoming less than 0. Therefore, the charging time for the charging target is not shortened.

そこで、本開示は、電力供給部からの受電電力が設定電力を超えることなく、かつ受電電力が0未満となることなく、設定電力を超える電力を充電対象に充電できる給電システムを提供することを目的の一つとする。 Therefore, an object of the present disclosure is to provide a power supply system that can charge a charging target with power that exceeds the set power without the received power from the power supply unit exceeding the set power and without the received power becoming less than 0. Make it one of the objectives.

本開示に係る給電システムは、
電力供給部につながる電力バスと、
前記電力バスにつながる負荷と、
前記電力バスにつながる蓄電池と、
前記電力バスにつながる充電器と、
前記負荷、前記蓄電池、及び前記充電器を含む電気機器の電力を制御する電力管理装置とを備え、
前記電力管理装置は、前記充電器の充電電力及び前記蓄電池の放電電力を段階的に上昇させ、
前記充電電力及び前記放電電力の各々の段階的な上昇は、第二電力値以上第一電力値以下の上昇幅で交互に行い、
前記第一電力値は、前記電力供給部からの受電電力に対して定められた設定電力未満の値であり、
前記第二電力値は、前記第一電力値よりも小さい正の値である。
The power supply system according to the present disclosure is
a power bus connected to the power supply;
a load connected to the power bus;
a storage battery connected to the electric power bus;
a charger connected to the power bus;
a power management device that controls power of electrical equipment including the load, the storage battery, and the charger;
The power management device increases charging power of the charger and discharging power of the storage battery in stages,
The stepwise increase in each of the charging power and the discharging power is performed alternately with an increase range of a second power value or more and a first power value or less,
The first power value is a value less than a set power determined for the received power from the power supply unit,
The second power value is a smaller positive value than the first power value.

本開示に係る給電システムは、電力供給部からの受電電力が設定電力を超えることなく、かつ受電電力が0未満となることなく、設定電力を超える電力を充電対象に充電できる。 The power supply system according to the present disclosure can charge a charging target with power exceeding the set power without the received power from the power supply unit exceeding the set power and without the received power becoming less than 0.

図1は、実施形態に係る給電システムの概略を示す構成図である。FIG. 1 is a configuration diagram schematically showing a power feeding system according to an embodiment. 図2は、実施形態に係る給電システムに備わる電力管理装置の制御手順を示すグラフである。FIG. 2 is a graph showing a control procedure of the power management device included in the power supply system according to the embodiment. 図3は、実施形態に係る給電システムに備わる電力管理装置の制御手順を示す図である。FIG. 3 is a diagram illustrating a control procedure of the power management device included in the power supply system according to the embodiment.

《本開示の実施形態の説明》
最初に本開示の実施態様を列記して説明する。
<<Description of embodiments of the present disclosure>>
First, embodiments of the present disclosure will be listed and described.

(1)本開示の一態様に係る給電システムは、
電力供給部につながる電力バスと、
前記電力バスにつながる負荷と、
前記電力バスにつながる蓄電池と、
前記電力バスにつながる充電器と、
前記負荷、前記蓄電池、及び前記充電器を含む電気機器の電力を制御する電力管理装置とを備え、
前記電力管理装置は、前記充電器の充電電力及び前記蓄電池の放電電力を段階的に上昇させ、
前記充電電力及び前記放電電力の各々の段階的な上昇は、第二電力値以上第一電力値以下の上昇幅で交互に行い、
前記第一電力値は、前記電力供給部からの受電電力に対して定められた設定電力未満の値であり、
前記第二電力値は、前記第一電力値よりも小さい正の値である。
(1) A power supply system according to one aspect of the present disclosure includes:
a power bus connected to the power supply;
a load connected to the power bus;
a storage battery connected to the electric power bus;
a charger connected to the power bus;
a power management device that controls power of electrical equipment including the load, the storage battery, and the charger;
The power management device increases charging power of the charger and discharging power of the storage battery in stages,
The stepwise increase in each of the charging power and the discharging power is performed alternately with an increase range of a second power value or more and a first power value or less,
The first power value is a value less than a set power determined for the received power from the power supply unit,
The second power value is a smaller positive value than the first power value.

上記給電システムは、電力系統などの電力供給部からの受電電力が契約電力などの設定電力を超えることなく、かつ受電電力が0未満となることなく、設定電力を超える電力を充電対象に充電できる。受電電力は、「負荷の消費電力+充電器の充電電力-蓄電池の放電電力」である。電力管理装置は、充電器の充電電力及び蓄電池の放電電力を特定の上昇幅で交互に段階的に上昇させる。そのため、充電器の充電電力が設定電力を超えても、蓄電池の放電電力が設定電力を超えても、受電電力を第一電力値と第二電力値との範囲内で上下動を繰り返させることができる。即ち、上記給電システムは、配電網に対して許容できない急激な負荷変動が生じることを防止でき、配電系統を不安定にさせることがない。その上、上記給電システムは、電気の基本料金が高くなることがなく、電力バスを介して電力供給部に電力が流れる逆潮流が生じることがない。そうであるにも関わらず、上記給電システムは、設定電力を超える電力量を充電対象に充電できる。よって、上記給電システムは、充電対象の充電時間を短くできる。 The power supply system described above can charge a charging target with power that exceeds the set power without the received power from the power supply unit such as the power grid exceeding the set power such as contract power, and without the received power becoming less than 0. . The received power is "power consumption of the load + charging power of the charger - discharge power of the storage battery". The power management device alternately increases the charging power of the charger and the discharging power of the storage battery in a stepwise manner with a specific increase width. Therefore, even if the charging power of the charger exceeds the set power or the discharging power of the storage battery exceeds the set power, the received power can repeatedly fluctuate up and down within the range of the first power value and the second power value. Can be done. That is, the above-mentioned power supply system can prevent an unacceptable rapid load change from occurring in the power distribution network, and will not destabilize the power distribution system. Moreover, in the above-mentioned power supply system, the basic charge for electricity does not increase, and a reverse flow of power flowing to the power supply unit via the power bus does not occur. Despite this, the power supply system described above can charge the charging target with an amount of power exceeding the set power. Therefore, the power supply system described above can shorten the charging time of the charging target.

(2)上記給電システムの一形態として、
前記充電器の前記充電電力が前記設定電力超、前記充電器の定格電力以下の切替電力に達した後、
前記電力管理装置は、前記放電電力を段階的に上昇させる制御から、前記放電電力を前記充電電力に近づけるように調整するフィードバック制御に切り替えることが挙げられる。
(2) As one form of the above power supply system,
After the charging power of the charger reaches a switching power that exceeds the set power and is less than or equal to the rated power of the charger,
The power management device may switch from control in which the discharge power is increased in stages to feedback control in which the discharge power is adjusted to be closer to the charge power.

切替電力に達した時点で放電電力が充電電力を超える場合や、充電電力の経時的な低下によって充電電力が放電電力未満となる場合がある。いずれの場合であっても、上記の構成は、電力管理装置がフィードバック制御に切り替えることで、放電電力が充電電力に対して過度に多くなることを抑制できる。 The discharge power may exceed the charging power when the switching power is reached, or the charging power may become less than the discharge power due to a decrease in the charging power over time. In either case, the above configuration can prevent discharge power from becoming excessively large relative to charging power by switching the power management device to feedback control.

(3)上記給電システムの一形態として、
複数の前記充電器を有し、
前記電力管理装置は、複数の前記充電器の各々における充電電力の上昇幅の合計が前記第二電力値以上前記第一電力値以下となるように、複数の前記充電器の各々における充電電力の上昇幅を調整することが挙げられる。
(3) As one form of the above power supply system,
having a plurality of said chargers;
The power management device controls the charging power in each of the plurality of chargers so that the total amount of increase in the charging power in each of the plurality of chargers is greater than or equal to the second power value and less than or equal to the first power value. One example is to adjust the amount of increase.

上記の構成は、複数の充電器で複数の充電対象を同時に充電したり、1つの充電器で1つの充電対象を充電している間、他の充電器を待機させて他の充電対象の充電を待機させたりすることができる。 The above configuration allows multiple chargers to charge multiple charge targets at the same time, or while one charger is charging one charge target, another charger is placed on standby to charge other charge targets. can be put on standby.

(4)上記給電システムの一形態として、
前記充電器は、
充電対象に対する接続の有無を検知する検知部と、
前記検知部の検知結果を前記電力管理装置に送信する送信部とを有することが挙げられる。
(4) As one form of the above power supply system,
The charger includes:
a detection unit that detects whether there is a connection to the charging target;
It is possible to include a transmitter that transmits the detection result of the detector to the power management device.

上記の構成は、電力管理装置が充電器の充電対象への接続の有無を把握できる。 With the above configuration, the power management device can determine whether the charger is connected to the charging target.

(5)上記給電システムの一形態として、
前記受電電力を検出する第一センサを有することが挙げられる。
(5) As one form of the above power supply system,
It is possible to include a first sensor that detects the received power.

上記の構成は、電力管理装置が電力供給部からの受電電力をモニタすることができる。 The above configuration allows the power management device to monitor received power from the power supply unit.

(6)上記給電システムの一形態として、
前記負荷の消費電力を検出する第二センサを有することが挙げられる。
(6) As one form of the above power supply system,
It is possible to include a second sensor that detects power consumption of the load.

上記の構成は、電力管理装置が負荷の消費電力をモニタすることができる。 The above configuration allows the power management device to monitor the power consumption of the load.

(7)上記給電システムの一形態として、
前記充電電力を検出する第三センサを有することが挙げられる。
(7) As one form of the above power supply system,
It is possible to include a third sensor that detects the charging power.

上記の構成は、電力管理措置が充電器の充電電力をモニタすることができる。 The above configuration allows power management measures to monitor the charging power of the charger.

(8)上記給電システムの一形態として、
前記充電器は、電動車両を充電する急速充電器を有することが挙げられる。
(8) As one form of the above power supply system,
The charger may include a quick charger that charges an electric vehicle.

上記の構成は、電動車両の電池容量が多くても、比較的短時間で電動車両を充電できる。 With the above configuration, even if the battery capacity of the electric vehicle is large, the electric vehicle can be charged in a relatively short time.

(9)上記給電システムの一形態として、
前記蓄電池は、レドックスフロー電池を有することが挙げられる。
(9) As one form of the above power supply system,
The storage battery may include a redox flow battery.

レドックスフロー電池は、充電状態をモニタし易い。また、レドックスフロー電池は、大容量化が可能である上に、経年劣化が少なくて長寿命である。加えて、レドックスフロー電池は、安全性が高い。 Redox flow batteries are easy to monitor the state of charge. In addition, redox flow batteries can have a large capacity and have a long life with little deterioration over time. In addition, redox flow batteries are highly safe.

《本開示の実施形態の詳細》
本開示の実施形態の詳細を、以下に説明する。
<<Details of embodiments of the present disclosure>>
Details of embodiments of the present disclosure are described below.

《実施形態》
〔給電システム〕
図1から図3を参照して、実施形態に係る給電システム1を説明する。給電システム1は、図1に示すように、電力バス2と負荷3と蓄電池4bと充電器5と電力管理装置6とを備える。電力バス2は、電力供給部10につながる。負荷3と蓄電池4bと充電器5とはそれぞれ、電力バス2につながる。本形態では、蓄電池4bは、PCS(Power Conditoning System)4aを介して電力バス2につながる。電力管理装置6は、蓄電池4b及び充電器5を含む電気機器の電力を制御する。本形態に係る給電システム1の特徴の一つは、電力管理装置6が蓄電池4bと充電器5とに対して特定の制御を行う点にある。以下、詳細に説明する。本形態の給電システム1は、コンビニエンスストアに蓄電池4bと充電器5とを併設した施設を備える。
《Embodiment》
[Power supply system]
A power supply system 1 according to an embodiment will be described with reference to FIGS. 1 to 3. The power supply system 1 includes a power bus 2, a load 3, a storage battery 4b, a charger 5, and a power management device 6, as shown in FIG. Power bus 2 is connected to power supply section 10 . The load 3, storage battery 4b, and charger 5 are each connected to the power bus 2. In this embodiment, the storage battery 4b is connected to the power bus 2 via a PCS (Power Conditoning System) 4a. Power management device 6 controls power of electrical equipment including storage battery 4b and charger 5. One of the features of the power supply system 1 according to this embodiment is that the power management device 6 performs specific control over the storage battery 4b and the charger 5. This will be explained in detail below. The power supply system 1 of this embodiment includes a facility in which a storage battery 4b and a charger 5 are installed in a convenience store.

[電力バス]
電力バス2は、電力供給部10につながり、電力供給部10から電力が供給される。電力供給部10は、電力バス2に対する供給電力量に制約がある電力系統及び電源が含まれる。供給電力量の制約としては、電力系統に対する契約電力、電力バス2により規定される所定の区域に電力を供給する発電機における定格出力などが挙げられる。電力供給部10は、本形態では電力系統である。その他の電力供給部10としては、例えば、発電機などが挙げられる。電力バス2には、電力バス2の上流側から下流側に向かって順に受電盤71及び分電盤72が介在されている。受電盤71は、電力供給部10から送られる電力を変圧し、分電盤72へ分配する。分電盤72は、受電盤71から送られる電力を負荷3と蓄電池4bと充電器5とに分配する。
[Electricity bus]
The power bus 2 is connected to a power supply section 10 and is supplied with power from the power supply section 10 . The power supply unit 10 includes a power system and a power source that have restrictions on the amount of power supplied to the power bus 2. Constraints on the amount of power supplied include contracted power to the power grid, rated output of a generator that supplies power to a predetermined area defined by the power bus 2, and the like. The power supply unit 10 is a power system in this embodiment. Other power supply units 10 include, for example, a generator. A power receiving board 71 and a power distribution board 72 are interposed in the power bus 2 in order from the upstream side to the downstream side of the power bus 2. The power receiving board 71 transforms the power sent from the power supply section 10 and distributes it to the power distribution board 72. The power distribution board 72 distributes the power sent from the power receiving board 71 to the load 3, the storage battery 4b, and the charger 5.

[負荷]
負荷3は、電力バス2につながり、電力バス2を介して電力供給部10から電力が供給される。負荷3の種類は、特に限定されない。負荷3としては、例えば、一般家庭、コンビニエンスストアなどの小型の小売店を含む商業施設、駐車場、プラント、工場、一般企業などが挙げられる。ここでいう負荷3は、後述する蓄電池4b及び充電器5を除く。負荷3の数は、特に限定されず、単数でも複数でもよい。本形態では、コンビニエンスストアにおける照明、空調、冷蔵庫・冷凍庫、及び調理機器など定常的に電力を消費する定常負荷が負荷3に相当する。
[load]
The load 3 is connected to the power bus 2 and is supplied with power from the power supply unit 10 via the power bus 2 . The type of load 3 is not particularly limited. Examples of the load 3 include general households, commercial facilities including small retail stores such as convenience stores, parking lots, plants, factories, and general companies. The load 3 here excludes a storage battery 4b and a charger 5, which will be described later. The number of loads 3 is not particularly limited, and may be singular or plural. In this embodiment, the load 3 corresponds to a steady load that constantly consumes power, such as lighting, air conditioning, refrigerator/freezer, and cooking equipment in a convenience store.

[蓄電池]
蓄電池4bは、上述したように本形態ではPCS4aを介して電力バス2につながる。PCS4aは、電力管理装置6からの指令を受けて蓄電池4bへの充電や蓄電池4bからの放電などを行う。また、PCS4aは、直流電力と交流電力とを双方向に変換する。
[Storage battery]
As described above, in this embodiment, the storage battery 4b is connected to the power bus 2 via the PCS 4a. The PCS 4a receives commands from the power management device 6 to charge the storage battery 4b and discharge from the storage battery 4b. Further, the PCS 4a bidirectionally converts DC power and AC power.

蓄電池4bの種類は、後述する充電器5の定格電力をまかなえる容量を有する既存の二次電池であれば特に限定されない。蓄電池4bは、本形態のようにレドックスフロー電池であることが好ましい。レドックスフロー電池は、充電状態をモニタし易い。また、レドックスフロー電池は、大容量化が可能である上に、経年劣化が少なくて長寿命である。加えて、レドックスフロー電池は、安全性が高い。その他の蓄電池4bとしては、例えば、リチウムイオン電池、ニッケルカドミウム電池などが挙げられる。 The type of storage battery 4b is not particularly limited as long as it is an existing secondary battery that has a capacity that can cover the rated power of the charger 5, which will be described later. The storage battery 4b is preferably a redox flow battery as in this embodiment. Redox flow batteries are easy to monitor the state of charge. In addition, redox flow batteries can have a large capacity and have a long life with little deterioration over time. In addition, redox flow batteries are highly safe. Other storage batteries 4b include, for example, lithium ion batteries, nickel cadmium batteries, and the like.

蓄電池4bの数は、特に限定されず、単数でも複数でもよい。蓄電池4bの数が単数の場合、蓄電池4bは、後述する充電器5の定格電力をまかなえる容量を有するものを用いる。蓄電池4bの数が複数の場合、複数の蓄電池4bの合計容量が、充電器5の定格電力をまかなえる容量を超えていればよい。勿論、各蓄電池4bの容量が、充電器5の定格電力をまかなえる容量を超えていてもよい。 The number of storage batteries 4b is not particularly limited, and may be singular or plural. When the number of storage batteries 4b is single, the storage battery 4b used has a capacity that can cover the rated power of the charger 5, which will be described later. When the number of storage batteries 4b is plural, it is sufficient that the total capacity of the plurality of storage batteries 4b exceeds the capacity that can cover the rated power of the charger 5. Of course, the capacity of each storage battery 4b may exceed the capacity that can cover the rated power of the charger 5.

[充電器]
充電器5は、電力バス2につながる。充電器5は、充電対象100を充電する。充電対象100は、例えば、電動車両が挙げられる。電動車両としては、電気自動車が挙げられる。本形態の充電対象100は、電気自動車である。
[Charger]
Charger 5 is connected to power bus 2 . Charger 5 charges object 100 to be charged. The charging target 100 may be, for example, an electric vehicle. Examples of electric vehicles include electric cars. The charging target 100 of this embodiment is an electric vehicle.

充電器5の種類は、充電対象100の種類にもよるものの、本形態のように充電対象100が電動車両の場合、急速充電器であることが好ましい。そうすれば、電動車両の電池容量が多くても、電動車両の充電が比較的短時間で完了する。充電器5の数は、特に限定されず、単数でもよいし複数でもよい。 Although the type of charger 5 depends on the type of charging target 100, when charging target 100 is an electric vehicle as in this embodiment, it is preferably a quick charger. In this way, even if the battery capacity of the electric vehicle is large, charging of the electric vehicle will be completed in a relatively short time. The number of chargers 5 is not particularly limited, and may be singular or plural.

充電器5の定格電力は、少なくとも電力供給部10からの受電電力に対して定められた設定電力超の値であることが挙げられる。充電器5の数が複数の場合、各充電器5の定格電力が少なくとも上記設定電力超であることが挙げられる。上記設定電力は、例えば、本形態のように電力供給部10が電力系統の場合、契約電力が挙げられる。即ち、上記契約電力が50kWであれば、充電器5の定格電力は、50kW超が挙げられる。充電器5の定格電力は、更に100kW以上、特に150kW以上が挙げられる。充電器5の定格電力は、例えば、500kW以下、更に400kW以下、特に350kW以下が挙げられる。即ち、充電器5の定格電力は、50kW超500kW以下、更に100kW以上400kW以下、特に150kW以上350kW以下が挙げられる。 The rated power of the charger 5 may be a value that exceeds a set power determined for at least the received power from the power supply unit 10. When there is a plurality of chargers 5, the rated power of each charger 5 may exceed at least the above-mentioned set power. For example, when the power supply unit 10 is a power grid as in the present embodiment, the set power may be contract power. That is, if the contract power is 50 kW, the rated power of the charger 5 may be more than 50 kW. The rated power of the charger 5 is further 100 kW or more, particularly 150 kW or more. The rated power of the charger 5 is, for example, 500 kW or less, further 400 kW or less, particularly 350 kW or less. That is, the rated power of the charger 5 may be more than 50 kW and less than 500 kW, more preferably more than 100 kW and less than 400 kW, particularly more than 150 kW and less than 350 kW.

充電器5は、検知部51と送信部52とを有する。検知部51は、充電器5の充電対象100への接続の有無を検知する。検知部51としては、充電器5と充電対象100に搭載される電池との電気的接続を検知するものが利用できる。送信部52は、検知部51の検知結果を電力管理装置6に送信する。送信部52としては、有線又は無線にて検知信号を伝送できる公知の送信手段が利用できる。充電器5が検知部51及び送信部52を有することで、電力管理装置6は充電器5の充電対象100への接続の有無を把握できる。検知部51は、更に、充電対象100からの要求電力や充電完了の信号を検知することもできる。送信部52は、更に、充電対象100からの要求電力や充電完了の信号を電力管理装置6に送信することもできる。 Charger 5 includes a detection section 51 and a transmission section 52. The detection unit 51 detects whether the charger 5 is connected to the charging target 100. As the detection unit 51, one that detects the electrical connection between the charger 5 and the battery mounted on the charging target 100 can be used. The transmitter 52 transmits the detection result of the detector 51 to the power management device 6. As the transmitter 52, a known transmitter capable of transmitting the detection signal by wire or wirelessly can be used. Since the charger 5 includes the detection unit 51 and the transmission unit 52, the power management device 6 can determine whether the charger 5 is connected to the charging target 100. The detection unit 51 can also detect the requested power from the charging target 100 and a signal indicating the completion of charging. The transmitting unit 52 can also transmit the requested power from the charging target 100 and a charging completion signal to the power management device 6.

[電力管理装置]
電力管理装置6は、蓄電池4b及び充電器5を含む電気機器の電力を制御する。電力管理装置6は、詳しい制御手順は後述するものの、充電器5に充電電力の上昇幅を指令し、PCS4aに蓄電池4bの充放電電力の上昇幅を指令する。電力管理装置6は、電力供給部10からの受電電力と負荷3の消費電力と充電器5の充電電力とをモニタする。これらのモニタは、本形態では、後述する第一センサ81、第二センサ82、及び第三センサ83により行える。電力管理装置6としては、EMS(Energy Manegement System)が挙げられる。
[Power management device]
Power management device 6 controls power of electrical equipment including storage battery 4b and charger 5. Although the detailed control procedure will be described later, the power management device 6 instructs the charger 5 to increase the charging power, and instructs the PCS 4a to increase the charging and discharging power of the storage battery 4b. The power management device 6 monitors the received power from the power supply unit 10, the power consumption of the load 3, and the charging power of the charger 5. In this embodiment, these monitors can be performed by a first sensor 81, a second sensor 82, and a third sensor 83, which will be described later. An example of the power management device 6 is an EMS (Energy Management System).

電力管理装置6は、充電器5の充電対象100への接続が完了した後、充電器5の充電電力及び蓄電池4bの放電電力を段階的に上昇させる。充電電力及び放電電力の各々の段階的な上昇は、所定の上昇幅で交互に行う。即ち、電力管理装置6は、充電器5に充電電力の所定の上昇幅を指令し、PCS4aに蓄電池4bの放電電力の所定の上昇幅を指令する。充電電力及び放電電力の各々の上昇幅は、後述する第二電力値以上第一電力値以下である。充電電力及び放電電力の各々の上昇幅は、第二電力値以上第一電力値以下の範囲内で、充電対象100への充電時間が極力短くなるように設定するとよい。第一電力値と第二電力値との差が大きいほど、上昇幅の上限値を大きくできるため、充電対象100への充電時間を短くでき、特に、充電器5の充電電力が後述する切替電力に達するまでの時間を短縮できる。 After the connection of the charger 5 to the charging target 100 is completed, the power management device 6 increases the charging power of the charger 5 and the discharging power of the storage battery 4b in stages. The stepwise increases in charging power and discharging power are performed alternately with a predetermined increase width. That is, the power management device 6 instructs the charger 5 to increase the charging power by a predetermined amount, and instructs the PCS 4a to increase the discharge power of the storage battery 4b by a predetermined amount. The amount of increase in each of charging power and discharging power is greater than or equal to a second power value and less than or equal to a first power value, which will be described later. The amount of increase in each of the charging power and the discharging power is preferably set within a range of not less than the second power value and not more than the first power value, so that the charging time for the charging target 100 is as short as possible. The larger the difference between the first power value and the second power value, the larger the upper limit value of the increase width, so the charging time for the charging target 100 can be shortened, and in particular, the charging power of the charger 5 can be changed to the switching power described below. The time it takes to reach the goal can be shortened.

給電システム1が複数の充電器5を有する場合、電力管理装置6は、複数の充電器5の各々における充電電力の上昇幅を調整する。この調整は、複数の充電器5の各々における充電電力の上昇幅の合計が第二電力値以上第一電力値以下の範囲内となるように行う。上記合計が上記範囲内であれば、複数の充電器5の各々における充電電力の上昇幅は互いに同一であってもよいし少なくとも一つが異なっていてもよい。複数の充電器5の各々における充電電力の上昇幅がいずれも第二電力値以上第一電力値以下の範囲内となるようにしてもよい。また、いずれか一つの充電器5を除く他の充電器5における充電電力の上昇幅を0kWとしてもよい。充電器5の充電電力の上昇幅を0kWとするとは、充電器5の充電を待機状態とすることである。更に、少なくとも一つの充電器5における充電電力の上場幅を第二電力値未満としてもよい。複数の充電器5を有することで、複数の充電器5で複数の充電対象100を同時に充電したり、1つの充電器5で1つの充電対象100を充電している間、他の充電器5を待機させて他の充電対象100の充電を待機させたりすることができる。 When the power supply system 1 has a plurality of chargers 5, the power management device 6 adjusts the amount of increase in charging power in each of the plurality of chargers 5. This adjustment is performed so that the total amount of increase in charging power in each of the plurality of chargers 5 is within the range of the second power value or more and the first power value or less. As long as the above-mentioned total is within the above-mentioned range, the amount of increase in charging power in each of the plurality of chargers 5 may be the same or at least one may be different. The amount of increase in the charging power in each of the plurality of chargers 5 may be within the range of the second power value or more and the first power value or less. Furthermore, the range of increase in the charging power in the chargers 5 other than any one charger 5 may be set to 0 kW. Setting the increase width of the charging power of the charger 5 to 0 kW means to set the charging of the charger 5 to a standby state. Furthermore, the range of charging power in at least one charger 5 may be less than the second power value. By having multiple chargers 5, multiple chargers 5 can charge multiple charging targets 100 at the same time, or while one charger 5 is charging one charging target 100, other chargers 5 can be put on standby for charging of other charging targets 100.

第一電力値は、電力供給部10からの受電電力に対して定められた設定電力未満の値である。設定電力とは、本形態のように電力供給部10が電力系統の場合には契約電力が挙げられる。例えば、契約電力が50kWのとき、設定電力は50kWであり、第一電力値は50kW未満である。 The first power value is a value less than the set power determined for the received power from the power supply unit 10. The set power includes contract power when the power supply unit 10 is a power grid as in this embodiment. For example, when the contract power is 50 kW, the set power is 50 kW, and the first power value is less than 50 kW.

第一電力値は、設定電力に対して余裕度を持った値とすることが好ましい。余裕度を持った値とすることで、何らかの理由で受電電力が一時的に上記契約電力を超えることが抑制され易い。余裕度は適宜選択できる。第一電力値が余裕度を持った値とする場合、第一電力値は、例えば、設定電力の95%以下が挙げられ、更には設定電力の90%以下としてもよい。即ち、設定電力が50kWのとき、第一電力値は、例えば、45kW以下が挙げられ、更に40kW以下としてもよい。 It is preferable that the first power value has a margin with respect to the set power. By setting the value with a margin, it is easy to prevent the received power from temporarily exceeding the contracted power for some reason. The degree of margin can be selected as appropriate. When the first power value has a margin, the first power value may be, for example, 95% or less of the set power, and further may be 90% or less of the set power. That is, when the set power is 50 kW, the first power value may be, for example, 45 kW or less, and may further be 40 kW or less.

一方、第二電力値は、第一電力値よりも小さい正の値である。即ち、第二電力値は、0kW超第一電力値未満である。第二電力値は、0kWに対して余裕度を持った値とすることが好ましい。余裕度を持った値とすることで、何らかの理由で受電電力が0kW未満となることが抑制され易く、蓄電池4bの放電電力が電力バス2を介して電力供給部10に流れる逆潮流が抑制される。余裕度は適宜選択できる。第二電力値が余裕度を持った値とする場合、第二電力値は、例えば、設定電力の10%以上が挙げられ、更には設定電力の15%以上としてもよい。即ち、設定電力が50kWのとき、第二電力値は、例えば、5kW以上が挙げられ、更には7.5kW以上としてもよい。 On the other hand, the second power value is a smaller positive value than the first power value. That is, the second power value is more than 0 kW and less than the first power value. It is preferable that the second power value has a margin with respect to 0 kW. By setting the value with a margin, it is easy to prevent the received power from becoming less than 0 kW for some reason, and the reverse flow of the discharged power of the storage battery 4b to the power supply unit 10 via the power bus 2 is suppressed. Ru. The degree of margin can be selected as appropriate. When the second power value has a margin, the second power value may be, for example, 10% or more of the set power, and further may be 15% or more of the set power. That is, when the set power is 50 kW, the second power value may be, for example, 5 kW or more, and further may be 7.5 kW or more.

電力管理装置6は、所定の切替電力に達したら、充電電力と放電電力の段階的な上昇を繰り返す制御から、放電電力を充電電力に近づけるように調整するフィードバック制御に切り替える。切替電力は、充電器5の充電電力が設定電力超、充電器5の定格電力以下である。具体的な切替電力とは、例えば、以下の(1)から(3)のいずれか一つの電力が挙げられる。
(1)充電器5の定格電力
(2)電力管理装置6が充電器5に充電電力の上昇幅を指令しても、一定期間、充電電力の上昇が見られなかったときの充電電力
(3)充電対象100からの要求電力
When a predetermined switching power is reached, the power management device 6 switches from control in which charging power and discharging power are repeatedly increased stepwise to feedback control in which discharging power is adjusted to approach charging power. The switching power is such that the charging power of the charger 5 exceeds the set power and is less than or equal to the rated power of the charger 5. The specific switching power includes, for example, any one of the following powers (1) to (3).
(1) Rated power of the charger 5 (2) Charging power when no increase in charging power is observed for a certain period of time even if the power management device 6 instructs the charger 5 to increase the amount of charging power (3 )Required power from charging target 100

切替電力に達した時点で放電電力が充電電力を超える場合や、充電対象100の充電の進行などに伴う充電電力の経時的な低下によって充電電力が放電電力未満となる場合がある。いずれの場合であっても、電力管理装置6は、放電電力が充電電力に対応するように、PCS4aに蓄電池4bの放電電力の変動幅を指令する。その変動幅は、放電電力と充電電力との差分に相当する大きさである。このフィードバック制御によって、放電電力が充電電力に対して過度に多くなることを抑制できる。 The discharge power may exceed the charging power when the switching power is reached, or the charging power may become less than the discharge power due to a decrease in the charging power over time as charging of the charging target 100 progresses. In either case, the power management device 6 instructs the PCS 4a to vary the range of variation in the discharged power of the storage battery 4b so that the discharged power corresponds to the charged power. The fluctuation range is equivalent to the difference between discharge power and charging power. This feedback control can prevent discharge power from becoming excessively large relative to charging power.

電力管理装置6は、充電器5が使用されていない時間帯で、PCS4aに蓄電池4bの充電を指令する。蓄電池4bの充電電力の上昇幅は、蓄電池4bの放電電力の上昇幅と同様、上述したように、第二電力値以上第一電力値以下が挙げられる。 The power management device 6 instructs the PCS 4a to charge the storage battery 4b during a time period when the charger 5 is not in use. Similar to the increase in the discharge power of the storage battery 4b, the range of increase in the charging power of the storage battery 4b is, as described above, in the range from the second power value to the first power value.

[センサ]
給電システム1は、本形態では、第一センサ81、第二センサ82、及び第三センサ83を備える。第一センサ81は、電力供給部10から電力バス2への受電電力を検出する。第一センサ81は、受電盤71の上流に設けられている。第一センサ81で検出される受電電力は、負荷3の消費電力と充電器5の充電電力と蓄電池4bの放電電力の合計値である。即ち、受電電力は、「消費電力+充電電力-放電電力」である。第二センサ82は、電力供給部10から負荷3への供給電力、即ち負荷3の消費電力を検出する。第二センサ82は、分電盤72と負荷3との間に設けられている。第三センサ83は、充電器5の充電電力を検出する。第三センサ83は、分電盤72と充電器5との間に設けられている。これらの検出結果は、電力管理装置6に送られる。第一センサ81により、電力管理装置6が電力供給部10からの受電電力をモニタすることができる。第二センサ82により、電力管理装置6が負荷3の消費電力をモニタすることができる。第三センサ83により、電力管理装置6が充電器5の充電電力をモニタすることができる。
[Sensor]
In this embodiment, the power supply system 1 includes a first sensor 81, a second sensor 82, and a third sensor 83. The first sensor 81 detects received power from the power supply unit 10 to the power bus 2 . The first sensor 81 is provided upstream of the power receiving board 71. The received power detected by the first sensor 81 is the sum of the power consumption of the load 3, the charging power of the charger 5, and the discharge power of the storage battery 4b. That is, the received power is "power consumption + charging power - discharging power". The second sensor 82 detects the power supplied from the power supply unit 10 to the load 3, that is, the power consumption of the load 3. The second sensor 82 is provided between the electricity distribution board 72 and the load 3. The third sensor 83 detects the charging power of the charger 5. The third sensor 83 is provided between the electricity distribution board 72 and the charger 5. These detection results are sent to the power management device 6. The first sensor 81 allows the power management device 6 to monitor the received power from the power supply unit 10 . The second sensor 82 allows the power management device 6 to monitor the power consumption of the load 3 . The third sensor 83 allows the power management device 6 to monitor the charging power of the charger 5.

[制御手順]
図2、図3を参照して、電力管理装置6における蓄電池4bの放電電力及び充電器5の充電電力を制御する手順の一例を説明する。図2の横軸は時間を示し、縦軸は電力(kW)を示す。図2は、受電電力の推移を実線、負荷3の消費電力の推移を破線、充電電力の推移を点線、放電電力の推移を一点鎖線、設定電力を二点鎖線で示す。図3は、消費電力、充電電力、放電電力、受電電力、充電電力の上昇幅、放電電力の上昇幅、及びフィードバック制御の値の推移を示す表である。太線矢印や細線矢印の先の数字は、その矢印の根元の数値同士の合計を意味する。破線矢印の先の数字は、破線矢印の根元の数値を意味する。図2、図3において、負荷3は、説明の便宜上、一定としているが、実際はコンビニエンスストアの電気機器の使用状況に応じて変動する。
[Control procedure]
An example of a procedure for controlling the discharge power of the storage battery 4b and the charging power of the charger 5 in the power management device 6 will be described with reference to FIGS. 2 and 3. The horizontal axis in FIG. 2 shows time, and the vertical axis shows power (kW). FIG. 2 shows changes in received power as a solid line, changes in power consumption of the load 3 as a broken line, changes in charging power as a dotted line, changes in discharged power as a dashed-dotted line, and set power as a dashed-double line. FIG. 3 is a table showing changes in power consumption, charging power, discharging power, received power, increasing amount of charging power, increasing amount of discharging power, and feedback control values. The number at the end of a thick arrow or thin arrow means the sum of the numbers at the base of the arrow. The number at the end of the broken line arrow means the number at the base of the broken line arrow. In FIGS. 2 and 3, the load 3 is assumed to be constant for convenience of explanation, but actually varies depending on the usage status of the electrical equipment at the convenience store.

本例では、電力管理装置6は、充電電力と放電電力の段階的な上昇を繰り返す。そして、電力管理装置6は、充電器5の充電電力が切替電力に達したら、充電電力と放電電力の段階的な上昇を繰り返す段階的制御から、放電電力を充電電力に近づけるように調整するフィードバック制御に切り替える。以下の説明は、一台の充電器5を備える給電システム1、複数台の充電器5を備える給電システム1、の順に行う。 In this example, the power management device 6 repeats a stepwise increase in charging power and discharging power. Then, when the charging power of the charger 5 reaches the switching power, the power management device 6 provides feedback that adjusts the discharging power closer to the charging power from stepwise control that repeats a stepwise increase in charging power and discharging power. Switch to control. The following description will be given in the order of the power supply system 1 including one charger 5 and the power supply system 1 including a plurality of chargers 5.

以下の例では、充電対象100を電気自動車のバッテリーとし、設定電力、即ち契約電力を50kW、第一電力値を45kW、第二電力値を5kW、各充電器5の定格電力を150kW、負荷3の消費電力を15kWとする。即ち、本例の充電電力及び放電電力の各々の上昇幅は、5kW以上45kW以下の値とする。切替電力は、充電器5の定格電力とする。第一センサ81が検出する受電電力は、負荷3の消費電力と充電器5の充電電力と蓄電池4bの放電電力の合計、即ち、「消費電力+充電電力-放電電力」である。電力の数値は、例示であり、本例に限定されない。 In the following example, the charging target 100 is the battery of an electric vehicle, the set power, that is, the contract power is 50 kW, the first power value is 45 kW, the second power value is 5 kW, the rated power of each charger 5 is 150 kW, and the load 3 Assume that the power consumption of is 15kW. That is, the rise width of each of charging power and discharging power in this example is set to a value of 5 kW or more and 45 kW or less. The switching power is the rated power of the charger 5. The received power detected by the first sensor 81 is the sum of the power consumption of the load 3, the charging power of the charger 5, and the discharge power of the storage battery 4b, ie, "power consumption + charging power - discharge power". The power value is an example and is not limited to this example.

充電器5の検知部51が充電器5の充電対象100への接続を検知したら、充電器5の送信部52がその検知結果を電力管理装置6に送信する。このとき、充電対象100の要求電力が電力管理装置6に送信されてもよい。 When the detection unit 51 of the charger 5 detects the connection of the charger 5 to the charging target 100, the transmission unit 52 of the charger 5 transmits the detection result to the power management device 6. At this time, the requested power of the charging target 100 may be transmitted to the power management device 6.

(充電器の数が一台の場合)
電力管理装置6は、充電器5に充電電力の一回目の上昇幅を指令する。このとき、蓄電池4bは放電しておらず、放電電力は0kWである。充電電力の一回目の上昇幅は、「第一電力値-負荷3の消費電力」以下が挙げられる。即ち、充電電力の一回目の上昇幅は、30kW以下が挙げられる。充電電力の一回目の上昇幅が30kW超であれば、負荷3の消費電力が15kWであるため、受電電力が45kW超となり第一電力値を超えてしまうからである。本形態において、充電電力の一回目の上昇幅は、「第一電力値-負荷3の消費電力」、即ち30kWとする。
(If the number of chargers is one)
The power management device 6 instructs the charger 5 to increase the charging power for the first time. At this time, the storage battery 4b is not discharging, and the discharge power is 0 kW. The first increase in charging power may be equal to or less than "first power value - power consumption of load 3". That is, the first increase in charging power may be 30 kW or less. This is because if the first increase in charging power exceeds 30 kW, the received power will exceed 45 kW and exceed the first power value since the power consumption of the load 3 is 15 kW. In this embodiment, the first increase in charging power is "first power value - power consumption of load 3", that is, 30 kW.

一回目の充電により、充電器5の充電電力は、30kWとなる。一回目の充電後の受電電力は、負荷3の消費電力の15kWと充電電力の30kWとの合計である45kWとなる。即ち、受電電力が上記契約電力未満である。 By the first charging, the charging power of the charger 5 becomes 30 kW. The received power after the first charging is 45 kW, which is the sum of the power consumption of the load 3 of 15 kW and the charging power of 30 kW. That is, the received power is less than the contracted power.

次に、電力管理装置6は、PCS4aに蓄電池4bの放電電力の一回目の上昇幅を指令する。放電電力の一回目の上昇幅は、「第一電力値-第二電力値」以下が挙げられる。即ち、放電電力の一回目の上昇幅は、40kW以下が挙げられる。放電前の受電電力が45kWであるため、例えば、放電電力の一回目の上昇幅が40kW超であれば、放電後の受電電力が5kW未満となり第二電力値未満となるからである。本形態において、放電電力の一回目の上昇幅は、40kWとする。 Next, the power management device 6 instructs the PCS 4a to increase the first increase in the discharge power of the storage battery 4b. The first increase in discharge power may be equal to or less than "first power value - second power value". That is, the first increase in discharge power is 40 kW or less. Since the received power before discharge is 45 kW, for example, if the first increase in discharge power exceeds 40 kW, the received power after discharge will be less than 5 kW, which will be less than the second power value. In this embodiment, the first increase in discharge power is 40 kW.

一回目の放電により、蓄電池4bの放電電力は、40kWとなる。一回目の放電後の受電電力は、負荷3の消費電力15kWと充電電力の30kWとの合計から放電電力の40kWを引いた5kWとなる。即ち、受電電力が0kW超であり、逆潮流が生じない。 By the first discharge, the discharge power of the storage battery 4b becomes 40 kW. The received power after the first discharge is 5 kW, which is obtained by subtracting the discharge power of 40 kW from the sum of the 15 kW power consumption of the load 3 and the charging power of 30 kW. That is, the received power exceeds 0 kW, and no reverse power flow occurs.

放電電力は、図2に示すように、電力管理装置6の指令に応じて比較的僅かなタイムラグで上昇する。これに対して、充電電力は、他の負荷3の消費電力や放電電力に応じて変化する受電電力の存在を前提としており、その上昇は、図2に示すように、蓄電池4bの放電電力に比較して一定の時間を要し、所定の傾きで上昇する。そのため、充電対象100の充電電力の上昇が比較的急峻な場合であっても、受電電力のピークが立ち難く、受電電力が一時的に上記契約電力を超えることがない。充電電力と放電電力の段階的上昇は、一方が一定の間に行われる。一定区間を設けることで、受電電力のピークがより立ち難いと考えられる。 As shown in FIG. 2, the discharge power increases with a relatively small time lag in response to commands from the power management device 6. On the other hand, charging power assumes the existence of received power that changes depending on the power consumption and discharge power of other loads 3, and as shown in FIG. In comparison, it takes a certain amount of time and rises at a predetermined slope. Therefore, even if the charging power of the charging target 100 rises relatively steeply, the received power is unlikely to reach a peak, and the received power will not temporarily exceed the contracted power. The stepwise increases in charging power and discharging power occur while one is constant. By providing a certain section, it is thought that peaks in received power will be less likely to occur.

次に、電力管理装置6は、充電器5に充電電力の二回目の上昇幅を指令する。充電電力の二回目の上昇幅は、「第一電力値-第二電力値」以下が挙げられる。即ち、充電電力の二回目の上昇幅は、40kW以下が挙げられる。充電前の受電電力が5kWであるため、例えば、充電電力の二回目の上昇幅が40kW超であれば、受電電力が45kW超となり第一電力値超となるからである。本形態において、充電電力の二回目の上昇幅は、40kWとする。 Next, the power management device 6 instructs the charger 5 to increase the charging power for the second time. The second increase in charging power may be equal to or less than "first power value - second power value". That is, the second increase in charging power may be 40 kW or less. Since the received power before charging is 5 kW, for example, if the second increase in charging power exceeds 40 kW, the received power will exceed 45 kW, which will exceed the first power value. In this embodiment, the second increase in charging power is 40 kW.

二回目の充電により、充電器5の充電電力は、30kWと40kWの合計である70kWとなる。二回目の充電後の受電電力は、45kWとなる。即ち、充電器5の充電電力が上記契約電力を超えているものの、受電電力が上記契約電力を超えることなく上記契約電力未満となる。 By the second charging, the charging power of the charger 5 becomes 70 kW, which is the sum of 30 kW and 40 kW. The received power after the second charge is 45 kW. That is, although the charging power of the charger 5 exceeds the above-mentioned contract power, the received power does not exceed the above-mentioned contract power and becomes less than the above-mentioned contract power.

次に、電力管理装置6は、PCS4aに蓄電池4bの放電電力の二回目の上昇幅を指令する。放電電力の二回目の上昇幅は、一回目の上昇幅と同様の理由から、40kW以下が挙げられる。本形態において、放電電力の二回目の上昇幅は、40kWとする。 Next, the power management device 6 instructs the PCS 4a to increase the second increase in the discharge power of the storage battery 4b. The second increase in discharge power may be 40 kW or less for the same reason as the first increase. In this embodiment, the second increase in discharge power is 40 kW.

二回目の放電により、蓄電池4bの放電電力は、40kWと40kWの合計である80kWとなる。二回目の放電後の受電電力は、5kWとなる。即ち、蓄電池4bの放電電力が上記契約電力を超えているものの、受電電力が0kW超である。よって、逆潮流が生じない。 By the second discharge, the discharge power of the storage battery 4b becomes 80 kW, which is the sum of 40 kW and 40 kW. The received power after the second discharge is 5 kW. That is, although the discharge power of the storage battery 4b exceeds the contracted power, the received power exceeds 0 kW. Therefore, no reverse power flow occurs.

三回目以降の充電電力及び放電電力の各々の上昇幅を、二回目の充電電力及び放電電力の各々の上昇幅と同じとすると、次の通りとなる。 Assuming that the amount of increase in each of charging power and discharging power after the third time is the same as the amount of increase in each of charging power and discharging power in the second time, the following will be obtained.

三回目の充電により、充電器5の充電電力は、70kWと40kWの合計である110kWとなる。三回目の充電後の受電電力は、45kWとなる。 By the third charging, the charging power of the charger 5 becomes 110 kW, which is the sum of 70 kW and 40 kW. The received power after the third charge is 45 kW.

三回目の放電により、蓄電池4bの放電電力は、80kWと40kWの合計である120kWとなる。三回目の放電後の受電電力は、5kWとなる。 By the third discharge, the discharge power of the storage battery 4b becomes 120 kW, which is the sum of 80 kW and 40 kW. The received power after the third discharge is 5 kW.

四回目の充電により、充電器5の充電電力は、110kWと40kWの合計である150kWとなる。本形態では、この時点で、充電電力が充電器5の定格電力に達する。四回目の充電後の受電電力は、45kWとなる。 By the fourth charge, the charging power of the charger 5 becomes 150 kW, which is the sum of 110 kW and 40 kW. In this embodiment, the charging power reaches the rated power of the charger 5 at this point. The received power after the fourth charge is 45 kW.

四回目の放電により、蓄電池4bの放電電力は、120kWと40kWの合計である160KWとなる。本形態では、この時点で、放電電力が充電器5の定格電力を超える。四回目の放電後の受電電力は、5kWとなる。 By the fourth discharge, the discharge power of the storage battery 4b becomes 160 kW, which is the sum of 120 kW and 40 kW. In this embodiment, the discharge power exceeds the rated power of the charger 5 at this point. The received power after the fourth discharge is 5 kW.

このように、本例では、一回目の充電電力の上昇幅を30kWとし、一回目以降の放電電力の上昇幅と二回目以降の充電電力の上昇幅とを同じ40kWとした。その結果、制御の途中で充電器5の充電電力と蓄電池4bの放電電力がそれぞれ上記契約電力を超えているものの、受電電力は、第二電力値と第一電力値との範囲内で上下動を繰り返し、0kW超上記契約電力未満となる。このような段階的制御によって切替電力に達するまでの合計時間は比較的短時間とすることができる。本例のような段階的制御では、例えば、数十秒程度、長くても数分程度で切替電力まで達することができる。 Thus, in this example, the amount of increase in the charging power for the first time is 30 kW, and the amount of increase in the discharge power for the first and subsequent times is the same as the amount of increase for the charging power for the second and subsequent times, which is 40 kW. As a result, although the charging power of the charger 5 and the discharging power of the storage battery 4b each exceed the contracted power during the control, the received power fluctuates up and down within the range of the second power value and the first power value. Repeatedly, the power exceeds 0kW and becomes less than the above contracted power. Such stepwise control allows the total time to reach the switching power to be relatively short. In stepwise control as in this example, the switching power can be reached in, for example, several tens of seconds, or several minutes at most.

充電器5の充電電力が切替電力である定格電力に達したので、電力管理装置6は、上述した充電電力と放電電力の段階的な上昇を繰り返す制御から、放電電力を充電電力に近づけるように調整するフィードバック制御に切り替える。 Since the charging power of the charger 5 has reached the rated power which is the switching power, the power management device 6 changes the control of repeating the stepwise increase in charging power and discharging power to bring the discharging power closer to the charging power. Switch to feedback control to adjust.

切替電力に達した時点で放電電力が充電電力を超える場合がある。そのため、電力管理装置6は、放電電力が充電電力に対応するように調整する。また、充電対象100の充電状態が上がると、充電対象100側からの要求電力が低下する。電力管理装置6は、適宜なサンプリング間隔で充電対象100の要求電力と充電器5の充電電力とをモニタする。充電対象100の要求電力に対して充電電力が乖離すると、電力管理装置6は、充電電力が要求電力に合致するように充電器5に充電電力の調整を指令する。電力管理装置6は、この充電電力の経時的な変化に対応するように放電電力を調整する。 Discharging power may exceed charging power when switching power is reached. Therefore, the power management device 6 adjusts the discharge power to correspond to the charging power. Further, when the charging state of the charging target 100 increases, the power required from the charging target 100 side decreases. Power management device 6 monitors the required power of charging target 100 and the charging power of charger 5 at appropriate sampling intervals. When the charging power deviates from the required power of the charging target 100, the power management device 6 instructs the charger 5 to adjust the charging power so that the charging power matches the required power. The power management device 6 adjusts the discharge power to correspond to this change in charging power over time.

本例では、放電電力が充電電力を超えている。そのため、電力管理装置6は、放電電力が充電電力に対応するように、PCS4aに蓄電池4bの放電電力の変動幅を指令する。この変動幅は、放電電力と充電電力との差分に相当する大きさである。その後、電力管理装置6は、上述の充電電力の経時的な低下に合わせて、PCS4aに蓄電池4bの放電電力の変動幅を指令する。この変動幅も、放電電力と充電電力との差分に相当する大きさである。 In this example, the discharge power exceeds the charge power. Therefore, the power management device 6 instructs the PCS 4a to vary the discharge power of the storage battery 4b so that the discharge power corresponds to the charging power. This fluctuation range is equivalent to the difference between the discharge power and the charge power. Thereafter, the power management device 6 instructs the PCS 4a to change the range of variation in the discharged power of the storage battery 4b in accordance with the above-described decrease in charging power over time. This fluctuation range is also large enough to correspond to the difference between the discharge power and the charging power.

充電対象100への充電が完了したら、電力管理装置6はこれらの制御を終了する。充電対象100への充電の完了は、例えば、充電対象100から充電完了の信号を受け取ったとき、或いは、充電器5と充電対象100との接続が外れたことを充電器5の検知部51が検知し、その検知結果が送信部52によって電力管理装置6に送信されたときが挙げられる。 When charging of the charging target 100 is completed, the power management device 6 ends these controls. The charging of the charging target 100 is completed, for example, when a charging completion signal is received from the charging target 100, or when the detection unit 51 of the charger 5 detects that the connection between the charger 5 and the charging target 100 is disconnected. An example is when the detection result is transmitted to the power management device 6 by the transmitter 52.

(充電器の数が複数台の場合)
電力管理装置6は、複数の充電器5の各々における充電電力の上昇幅を調整する。この調整は、複数の充電器5の上昇幅の合計が第一電力値以下、本例では40kW以下となるように行う。電力管理装置6は、1台目の充電器5による充電対象100への充電が完了するまで、2台目以降の充電器5を待機させてもよいし、1台目の充電器5による充電対象100への充電が完了する前に、2台目以降の充電器5を動作させてもよい。待機とは、電力管理装置6が2台目以降の充電器5に上昇幅を指令しない、或いは上昇幅を0kWと指令することを言う。2台目以降の充電器5を動作させるとは、2台目以降の充電器5に0kW超の所定の上昇幅を指令する。
(If there are multiple chargers)
The power management device 6 adjusts the amount of increase in charging power in each of the plurality of chargers 5. This adjustment is performed so that the total amount of increase of the plurality of chargers 5 is equal to or less than the first power value, in this example, equal to or less than 40 kW. The power management device 6 may cause the second and subsequent chargers 5 to stand by until the first charger 5 completes charging the charging target 100, or the power management device 6 may cause the second and subsequent chargers 5 to wait until the first charger 5 completes charging the charging target 100, or The second and subsequent chargers 5 may be operated before charging of the target 100 is completed. Standby means that the power management device 6 does not instruct the second and subsequent chargers 5 to increase the amount of increase, or instructs the amount of increase to 0 kW. To operate the second and subsequent chargers 5 means to command the second and subsequent chargers 5 to increase the power by a predetermined amount exceeding 0 kW.

充電器5を待機させる場合、1台目の充電器5による充電対象100への充電が完了したら、電力管理装置6は、2台目の充電器5に充電電力の上昇幅を指令し、3台目以降の充電器5を待機させる。 When the charger 5 is put on standby, when the first charger 5 completes charging the charging target 100, the power management device 6 instructs the second charger 5 to increase the charging power, and The chargers 5 after the first one are put on standby.

2台目以降の充電器5を動作させる場合、電力管理装置6は、複数の充電器5の各々に同じ充電電力の上昇幅を指令してもよいし、異なる充電電力の上昇幅を指令してもよい。異なる充電電力の上昇幅を指令する場合、電力管理装置6は、例えば、次のように指令してもよい。 When operating the second and subsequent chargers 5, the power management device 6 may instruct each of the plurality of chargers 5 to increase the charging power by the same amount, or may instruct each of the plurality of chargers 5 to increase the charging power by different amounts. You can. When instructing different increase widths of charging power, the power management device 6 may issue an instruction as follows, for example.

1台目の充電器5の充電対象100への接続後、2台目の充電器5が充電対象100に接続される前、電力管理装置6は、1台目の充電器5に充電電力の上昇幅を40kWと指令し、PCS4aに蓄電池4bの放電電力の上昇幅を40kWと指令したとする。電力管理装置6は、2台目の充電器5が充電対象100に接続された際、1台目の充電器5に充電電力の上昇幅を24kWと指令し、2台目の充電器5に充電電力の上昇幅を16kWと指令する。即ち、1台目の充電器5における充電電力の上昇幅は40kWから24kWに減少する。これらの指令は、同時に行ってもよいし、順番に行っても良い。PCS4aに指令する蓄電池4bの放電電力の上昇幅は、40kWのままである。 After the first charger 5 is connected to the charging target 100 and before the second charger 5 is connected to the charging target 100, the power management device 6 supplies charging power to the first charger 5. Assume that the increase width is commanded to be 40 kW, and the PCS 4a is commanded to be the increase width of the discharge power of the storage battery 4b to 40 kW. When the second charger 5 is connected to the charging target 100, the power management device 6 instructs the first charger 5 to increase the charging power to 24 kW, and the second charger 5 The range of increase in charging power is commanded to be 16 kW. That is, the amount of increase in charging power in the first charger 5 decreases from 40 kW to 24 kW. These commands may be issued simultaneously or sequentially. The increase in the discharge power of the storage battery 4b that is commanded to the PCS 4a remains at 40 kW.

3台目の充電器5が充電対象100へ接続される前に1台目の充電器5による充電対象100への充電が完了すれば、完了した時点で電力管理装置6は、2台目の充電器5に充電電力の上昇幅を40kWと指令するとよい。即ち、2台目の充電器5における充電電力の上昇幅は、16kWから40kWに増加する。PCS4aに指令する蓄電池4bの放電電力の上昇幅は、40kWのままである。 If the charging of the charging target 100 by the first charger 5 is completed before the third charger 5 is connected to the charging target 100, the power management device 6 connects the charging target 100 to the charging target 100. It is preferable to instruct the charger 5 to increase the charging power to 40 kW. That is, the amount of increase in charging power in the second charger 5 increases from 16 kW to 40 kW. The increase in the discharge power of the storage battery 4b that is commanded to the PCS 4a remains at 40 kW.

1台目の充電器5による充電対象100への充電が完了する前に、3台目の充電器5が充電対象100へ接続された場合は、次の通りとしてもよい。 If the third charger 5 is connected to the charge target 100 before the first charger 5 completes charging the charge target 100, the following may be performed.

電力管理装置6は、1台目の充電器5に充電電力の上昇幅を20kW、2台目の充電器5に充電電力の上昇幅を12kW、3台目の充電器5に充電電力の上昇幅を8kWと指令する。即ち、1台目の充電器5における充電電力の上昇幅は40kW、24kW、20kWの順に減少する。2台目の充電器5における充電電力の上昇幅は16kW、12kWの順に減少する。PCS4aに指令する蓄電池4bの放電電力の上昇幅は、40kWのままである。 The power management device 6 increases the charging power to the first charger 5 by 20 kW, the second charger 5 by 12 kW, and the third charger 5 to increase the charging power. Command the width to be 8kW. That is, the amount of increase in charging power in the first charger 5 decreases in the order of 40 kW, 24 kW, and 20 kW. The amount of increase in charging power in the second charger 5 decreases in the order of 16 kW and 12 kW. The increase in the discharge power of the storage battery 4b that is commanded to the PCS 4a remains at 40 kW.

1台目の充電器5による充電対象100への充電が完了すれば、完了した時点で電力管理装置6は、2台目の充電器5に充電電力の上昇幅を24kWと指令し、3台目の充電器5に充電電力の上昇幅を16kWと指令する。即ち、2台目の充電器5における充電電力の上昇幅は、12kWから24kWに増加し、3台目の充電器5における充電電力の上昇幅は、8kWから16kWに増加する。PCS4aに指令する蓄電池4bの放電電力の上昇幅は、40kWのままである。 When charging of the charging target 100 by the first charger 5 is completed, the power management device 6 instructs the second charger 5 to increase the charging power by 24 kW, and the three The second charger 5 is instructed to increase the charging power to 16 kW. That is, the amount of increase in the charging power at the second charger 5 increases from 12 kW to 24 kW, and the amount of increase in the charging power at the third charger 5 increases from 8 kW to 16 kW. The increase in the discharge power of the storage battery 4b that is commanded to the PCS 4a remains at 40 kW.

そして、2台目の充電器5による充電対象100への充電が完了すれば、完了した時点で電力管理装置6は、3台目の充電器5に充電電力の上昇幅を40kWと指令する。即ち、3台目の充電器5における充電電力の上昇幅は、8kW、16kW、40kWの順に増加する。PCS4aに指令する蓄電池4bの放電電力の上昇幅は、40kWのままである。 Then, when charging of the charging target 100 by the second charger 5 is completed, the power management device 6 instructs the third charger 5 to increase the charging power by 40 kW. That is, the amount of increase in charging power in the third charger 5 increases in the order of 8 kW, 16 kW, and 40 kW. The increase in the discharge power of the storage battery 4b that is commanded to the PCS 4a remains at 40 kW.

なお、充電器5の数が4台以上である場合も同様に、全数の充電器5の充電電力の上昇幅の合計が第一電力値以下、本例では40kW以下となるように全数の充電器5の各々における充電電力の上昇幅を調整するとよい。 Similarly, when the number of chargers 5 is four or more, charging of all the chargers 5 is performed so that the total increase in the charging power of all the chargers 5 is equal to or less than the first power value, in this example, 40 kW or less. It is preferable to adjust the amount of increase in charging power in each of the devices 5.

(蓄電池の充電)
電力管理装置6は、充電器5の未使用時の時間帯で、PCS4aに蓄電池4bの充電を指令する。蓄電池4bの充電電力の上昇幅は、第二電力値以上第一電力値以下が挙げられる。蓄電池4bの充電電力の上昇幅は、「第一電力値-負荷3の消費電力」以下が挙げられる。即ち、蓄電池4bの充電電力の上昇幅は、30kW以下が挙げられる。
(Charging of storage battery)
The power management device 6 instructs the PCS 4a to charge the storage battery 4b during a time period when the charger 5 is not in use. The amount of increase in the charging power of the storage battery 4b may be greater than or equal to the second power value and less than or equal to the first power value. The range of increase in the charging power of the storage battery 4b may be less than or equal to "first power value - power consumption of load 3". That is, the range of increase in the charging power of the storage battery 4b is 30 kW or less.

〔作用効果〕
本形態の給電システム1は、電力供給部10からの受電電力が設定電力を超えることなく、かつ受電電力が0未満となることなく、設定電力を超える電力を充電対象100に充電できる。電力管理装置6は、充電器5の充電電力及び蓄電池4bの放電電力を第二電力値以上第一電力値以下の範囲内の上昇幅で交互に段階的に上昇させる。そのため、充電器5の充電電力が設定電力を超えても、蓄電池4bの放電電力が設定電力を超えても、受電電力を第一電力値と第二電力値との範囲内で上下動を繰り返させることができる。即ち、本形態の給電システム1は、配電網に対して許容できない急激な負荷変動が生じることを防止でき、配電系統を不安定にさせることがない。その上、本形態の給電システム1は、電気の基本料金が高くなることがなく、逆潮流が生じることがない。そうであるにも関わらず、本形態の給電システム1は、設定電力を超える電力量を充電対象100に充電できる。よって、本形態の給電システム1は、充電対象100への充電時間を短くできる。特に、本形態の給電システム1は、上昇幅が第二電力値以上第一電力値の範囲内であるため、充電電力の上昇が急峻な充電対象100の充電に好適に利用できる。
[Effect]
The power supply system 1 of the present embodiment can charge the charging target 100 with power exceeding the set power without the received power from the power supply unit 10 exceeding the set power and without the received power becoming less than 0. The power management device 6 alternately increases the charging power of the charger 5 and the discharging power of the storage battery 4b in steps within a range of the second power value or more and the first power value or less. Therefore, even if the charging power of the charger 5 exceeds the set power or the discharging power of the storage battery 4b exceeds the set power, the received power will not be raised or lowered repeatedly within the range between the first power value and the second power value. can be set. That is, the power supply system 1 of the present embodiment can prevent an unacceptable rapid load change from occurring in the power distribution network, and will not destabilize the power distribution system. Moreover, in the power supply system 1 of this embodiment, the basic charge for electricity does not increase, and reverse power flow does not occur. Despite this, the power supply system 1 of this embodiment can charge the charging target 100 with an amount of power exceeding the set power. Therefore, the power supply system 1 of this embodiment can shorten the charging time for the charging target 100. In particular, the power supply system 1 of the present embodiment has an increase range within the range of the second power value or more and the first power value, so it can be suitably used for charging the charging target 100 where the charging power rises steeply.

本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The present invention is not limited to these examples, but is indicated by the claims, and is intended to include all changes within the meaning and scope equivalent to the claims.

1 給電システム
2 電力バス
3 負荷
4a PCS
4b 蓄電池
5 充電器
51 検知部
52 送信部
6 電力管理装置
71 受電盤
72 分電盤
81 第一センサ
82 第二センサ
83 第三センサ
10 電力供給部
100 充電対象
1 Power supply system 2 Power bus 3 Load 4a PCS
4b Storage battery 5 Charger 51 Detection unit 52 Transmission unit 6 Power management device 71 Power receiving board 72 Distribution board 81 First sensor 82 Second sensor 83 Third sensor 10 Power supply unit 100 Charging target

Claims (9)

電力供給部につながる電力バスと、
前記電力バスにつながる負荷と、
前記電力バスにつながる蓄電池と、
前記電力バスにつながる充電器と、
前記負荷、前記蓄電池、及び前記充電器を含む電気機器の電力を制御する電力管理装置とを備え、
前記電力管理装置は、前記充電器の充電電力及び前記蓄電池の放電電力を段階的に上昇させ、
前記充電電力及び前記放電電力の各々の段階的な上昇は、第二電力値以上第一電力値以下の上昇幅で交互に行い、
前記第一電力値は、前記電力供給部からの受電電力に対して定められた設定電力未満の値であり、
前記第二電力値は、前記第一電力値よりも小さい正の値である、
給電システム。
a power bus connected to the power supply;
a load connected to the power bus;
a storage battery connected to the electric power bus;
a charger connected to the power bus;
a power management device that controls power of electrical equipment including the load, the storage battery, and the charger;
The power management device increases charging power of the charger and discharging power of the storage battery in stages,
The stepwise increase in each of the charging power and the discharging power is performed alternately with an increase range of a second power value or more and a first power value or less,
The first power value is a value less than a set power determined for the received power from the power supply unit,
The second power value is a smaller positive value than the first power value,
power supply system.
前記充電器の前記充電電力が前記設定電力超、前記充電器の定格電力以下の切替電力に達した後、
前記電力管理装置は、前記放電電力を段階的に上昇させる制御から、前記放電電力を前記充電電力に近づけるように調整するフィードバック制御に切り替える請求項1に記載の給電システム。
After the charging power of the charger reaches a switching power that exceeds the set power and is less than or equal to the rated power of the charger,
The power supply system according to claim 1, wherein the power management device switches from control in which the discharge power is increased in stages to feedback control in which the discharge power is adjusted to be closer to the charge power.
複数の前記充電器を有し、
前記電力管理装置は、複数の前記充電器の各々における充電電力の上昇幅の合計が前記第二電力値以上前記第一電力値以下となるように、複数の前記充電器の各々における充電電力の上昇幅を調整する請求項1又は請求項2に記載の給電システム。
having a plurality of said chargers;
The power management device controls the charging power in each of the plurality of chargers so that the total amount of increase in the charging power in each of the plurality of chargers is greater than or equal to the second power value and less than or equal to the first power value. The power supply system according to claim 1 or 2, wherein the power supply system adjusts the rise width.
前記充電器は、
充電対象に対する接続の有無を検知する検知部と、
前記検知部の検知結果を前記電力管理装置に送信する送信部とを有する請求項1から請求項3のいずれか1項に記載の給電システム。
The charger includes:
a detection unit that detects whether there is a connection to the charging target;
The power supply system according to any one of claims 1 to 3, further comprising a transmitter that transmits a detection result of the detector to the power management device.
前記受電電力を検出する第一センサを有する請求項1から請求項4のいずれか1項に記載の給電システム。 The power feeding system according to any one of claims 1 to 4, further comprising a first sensor that detects the received power. 前記負荷の消費電力を検出する第二センサを有する請求項1から請求項5のいずれか1項に記載の給電システム。 The power supply system according to any one of claims 1 to 5, further comprising a second sensor that detects power consumption of the load. 前記充電電力を検出する第三センサを有する請求項1から請求項6のいずれか1項に記載の給電システム。 The power supply system according to any one of claims 1 to 6, further comprising a third sensor that detects the charging power. 前記充電器は、電動車両を充電する急速充電器を有する請求項1から請求項7のいずれか1項に記載の給電システム。 The power supply system according to any one of claims 1 to 7, wherein the charger includes a quick charger for charging an electric vehicle. 前記蓄電池は、レドックスフロー電池を有する請求項1から請求項8のいずれか1項に記載の給電システム。 The power supply system according to any one of claims 1 to 8, wherein the storage battery includes a redox flow battery.
JP2020004784A 2020-01-15 2020-01-15 power supply system Active JP7382006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004784A JP7382006B2 (en) 2020-01-15 2020-01-15 power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004784A JP7382006B2 (en) 2020-01-15 2020-01-15 power supply system

Publications (2)

Publication Number Publication Date
JP2021112099A JP2021112099A (en) 2021-08-02
JP7382006B2 true JP7382006B2 (en) 2023-11-16

Family

ID=77060427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004784A Active JP7382006B2 (en) 2020-01-15 2020-01-15 power supply system

Country Status (1)

Country Link
JP (1) JP7382006B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255293A (en) 2010-09-28 2013-12-19 Sanyo Electric Co Ltd Power supply system
US20150069970A1 (en) 2013-09-11 2015-03-12 Proterra Inc. Methods and systems for electric vehicle charging
JP2016185030A (en) 2015-03-26 2016-10-20 Fdk株式会社 Power storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255293A (en) 2010-09-28 2013-12-19 Sanyo Electric Co Ltd Power supply system
US20150069970A1 (en) 2013-09-11 2015-03-12 Proterra Inc. Methods and systems for electric vehicle charging
JP2016185030A (en) 2015-03-26 2016-10-20 Fdk株式会社 Power storage system

Also Published As

Publication number Publication date
JP2021112099A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US10464441B2 (en) Charging facility and energy management method for charging facility
US11431278B2 (en) Systems and methods for energy storage and power distribution
EP2220740B1 (en) Electricity supply apparatus of a telecommunication site
KR101489629B1 (en) Power control device and power control method
EP2571130A2 (en) Electric power control apparatus and grid connection system having same
US9876353B2 (en) Method and apparatus for transmitting electrical power
KR101793579B1 (en) Dc-ac common bus type hybrid power system
JP2011083084A (en) Power supply system and method of controlling the same
US20110001361A1 (en) Method for supplying a load with electrical power
JP2020102916A (en) Power supply system and power supply method
KR101702379B1 (en) Modular active cell balancing apparatus, modular battery block, battery pack, and energy storage system
KR20160110474A (en) Method and system for managing a plurality of energy storage assemblies
JP2002034162A (en) Distributed power supply system and its control method
CN113767545A (en) Power supply device and network thereof
KR20180136177A (en) An energy storage system
JP5817556B2 (en) Charging system
JP7382006B2 (en) power supply system
KR101769468B1 (en) Control system for storing and supplying power having input and output function by switiching
EP3540897B1 (en) Energy storage apparatus
KR102022647B1 (en) Battery Charging System Including Calculating Unit
KR101215396B1 (en) Hybrid smart grid uninterruptible power supply using discharge current control
JP6004683B2 (en) Voltage control system
KR20150030379A (en) Apparatus and method for managing ess(energy storage system
JP2015195696A (en) Power management system, power management method and server
WO2012096564A1 (en) System for charging the battery of at least one electric vehicle, charger and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7382006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150