JP7379935B2 - RFeB sintered magnet - Google Patents

RFeB sintered magnet Download PDF

Info

Publication number
JP7379935B2
JP7379935B2 JP2019154463A JP2019154463A JP7379935B2 JP 7379935 B2 JP7379935 B2 JP 7379935B2 JP 2019154463 A JP2019154463 A JP 2019154463A JP 2019154463 A JP2019154463 A JP 2019154463A JP 7379935 B2 JP7379935 B2 JP 7379935B2
Authority
JP
Japan
Prior art keywords
rfeb
based sintered
sintered magnet
mass
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019154463A
Other languages
Japanese (ja)
Other versions
JP2020077843A (en
Inventor
通秀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to US16/673,288 priority Critical patent/US11232890B2/en
Priority to DE102019129812.1A priority patent/DE102019129812A1/en
Priority to CN201911075229.0A priority patent/CN111145972B/en
Publication of JP2020077843A publication Critical patent/JP2020077843A/en
Application granted granted Critical
Publication of JP7379935B2 publication Critical patent/JP7379935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、希土類元素(以下、「R」とする)、鉄(Fe)及び硼素(B)を主な構成元素とするRFeB系焼結磁石に関する。 The present invention relates to an RFeB-based sintered magnet whose main constituent elements are rare earth elements (hereinafter referred to as "R"), iron (Fe), and boron (B).

RFeB系焼結磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系焼結磁石は、ハイブリッド自動車や電気自動車等の自動車用モータや産業機械用モータ等の各種モータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。 RFeB-based sintered magnets were discovered in 1982 by Masato Sagawa et al., and have many magnetic properties such as residual magnetic flux density that are much higher than those of conventional permanent magnets. Therefore, RFeB sintered magnets are used in a variety of products, including motors for automobiles such as hybrid cars and electric cars, motors for industrial machinery, speakers, headphones, and permanent magnet magnetic resonance diagnostic equipment. .

初期のRFeB系焼結磁石は種々の磁気特性のうち保磁力iHcが比較的低いという欠点を有していたが、その後、RFeB系焼結磁石の内部にDyやTb等の重希土類元素RHを存在させることにより、保磁力が向上することが明らかになった。保磁力は磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力であるが、重希土類元素RHはこの磁化反転を妨げることにより、保磁力を増大させる効果を持つと考えられている。しかし、重希土類元素RHは高価且つ希少であるうえに、残留磁束密度を低下させる原因となるため、重希土類元素RHの含有量を増加させることは望ましくない。 Early RFeB-based sintered magnets had the drawback of relatively low coercive force iHc among various magnetic properties, but later, heavy rare earth elements R H such as Dy and Tb were added to the inside of RFeB-based sintered magnets. It has been revealed that the coercive force is improved by the presence of . Coercive force is the force that withstands the reversal of magnetization when a magnetic field in the opposite direction to the direction of magnetization is applied to a magnet, but the heavy rare earth element R H increases the coercive force by preventing this magnetization reversal. It is believed that it has the effect of However, it is not desirable to increase the content of heavy rare earth elements R H because the heavy rare earth elements R H are expensive and rare, and cause a decrease in residual magnetic flux density.

特許文献1には、重希土類元素RHを添加することなくRFeB系焼結磁石の保磁力を向上させるためにGa(ガリウム)を添加することが記載されている。一般に、RFeB系焼結磁石では、結晶粒界に飽和磁化が大きい強磁性体が存在すると、隣接する結晶粒間で磁気的な相互作用が生じ、逆磁界(磁化と反対方向の磁界)が印加された際に、ある結晶粒で磁化が反転すると、当該相互作用によって、隣接する結晶粒の磁化も反転してしまうため、保磁力が小さくなる。そのような飽和磁化が大きい強磁性体として、典型的には結晶粒に含有されなかったR及びFeから成るものが挙げられる。それに対して、RFeB系焼結磁石にGa(ガリウム)を添加すると、R6Fe13Gaで表される、飽和磁化が比較的小さい強磁性体が結晶粒界に生成され、より飽和磁化が大きい強磁性体が生成されることが抑制される。これにより、逆磁界が印加された際に、ある結晶粒で磁化が反転しても、隣接する結晶粒の磁化を反転させる磁気的な相互作用が弱くなるため、保磁力が向上する。 Patent Document 1 describes adding Ga (gallium) to improve the coercive force of an RFeB-based sintered magnet without adding the heavy rare earth element R H. In general, in RFeB sintered magnets, when a ferromagnetic material with high saturation magnetization exists in the grain boundaries, magnetic interaction occurs between adjacent crystal grains, and a reverse magnetic field (a magnetic field in the opposite direction to the magnetization) is applied. When magnetization is reversed in a certain crystal grain, the magnetization of adjacent crystal grains is also reversed due to the interaction, resulting in a decrease in coercive force. A typical example of a ferromagnetic material having a large saturation magnetization is one consisting of R and Fe that are not contained in crystal grains. On the other hand, when Ga (gallium) is added to RFeB-based sintered magnets, a ferromagnetic substance with relatively low saturation magnetization, represented by R 6 Fe 13 Ga, is generated at the grain boundaries, and the saturation magnetization is larger. Generation of ferromagnetic material is suppressed. As a result, even if the magnetization of a certain crystal grain is reversed when a reverse magnetic field is applied, the magnetic interaction that reverses the magnetization of adjacent crystal grains is weakened, so that the coercive force is improved.

特開2014-132628号公報Japanese Patent Application Publication No. 2014-132628 国際公開WO2014/017249号International publication WO2014/017249

しかし、Gaもまた高価であるため、特許文献1に記載のようにRFeB系焼結磁石にGaを添加すると製造コストが高くなるという問題が生じる。 However, since Ga is also expensive, adding Ga to an RFeB-based sintered magnet as described in Patent Document 1 poses a problem in that the manufacturing cost increases.

本発明が解決しようとする課題は、高価な添加元素である重希土類元素RHやGaをできる限り用いることなく、保磁力が高いRFeB系焼結磁石を提供することである。 The problem to be solved by the present invention is to provide an RFeB-based sintered magnet with a high coercive force without using the heavy rare earth elements R H and Ga, which are expensive additive elements, as much as possible.

上記課題を解決するために成された本発明に係るRFeB系焼結磁石は、
希土類元素Rを28~33質量%、Co(コバルト)を0~2.5質量%(従って、Coを含有しない場合もある)、Al(アルミニウム)を0.3~0.7質量%、Bを0.9~1.2質量%、O(酸素)を1500ppm未満含有し、残部がFeであり、
結晶粒界に、R6Fe14-xAlx型構造を有するRFeAl相が存在し、
保磁力が16kOe以上である
ことを特徴とする。
The RFeB-based sintered magnet according to the present invention was made to solve the above problems,
28-33% by mass of rare earth element R, 0-2.5% by mass of Co (cobalt) (therefore, it may not contain Co), 0.3-0.7% by mass of Al (aluminum), 0.9-1.2% by mass of B. , contains less than 1500 ppm of O (oxygen), the balance being Fe,
An RFeAl phase with an R 6 Fe 14-x Al x type structure exists at the grain boundaries,
It is characterized by a coercive force of 16 kOe or more.

R6Fe14-xAlx型構造を有するRFeAl相は正方晶の結晶構造を有し、ここでxの値は0.5~3.5の範囲内の値を取り得る。また、RFeAl相のうちFeの一部はCoに置換され得ると共に、後述のように本発明に係るRFeB系焼結磁石がCuを含有する場合にはRFeAl相のうちAlの一部はCuに置換され得る。さらに、格子欠陥が生じることにより、Rの個数とFe(Co)とAl(Cu)を合わせた原子の個数の比は6:14から多少ずれ得る。 RFeAl phases with R 6 Fe 14-x Al x type structure have a tetragonal crystal structure, where the value of x can take values in the range 0.5 to 3.5. In addition, part of Fe in the RFeAl phase can be replaced by Co, and if the RFeB sintered magnet according to the present invention contains Cu as described later, part of the Al in the RFeAl phase can be replaced by Co. May be replaced. Furthermore, due to the occurrence of lattice defects, the ratio of the number of R atoms to the total number of atoms of Fe(Co) and Al(Cu) may deviate somewhat from 6:14.

希土類元素RにはNdやPr等の軽希土類元素を好適に用いることができる。また、希土類元素Rとして重希土類元素RHを用いる必要はない。但し、本発明において、希土類元素Rの一部として重希土類元素RHを含むことは排除されない。 As the rare earth element R, light rare earth elements such as Nd and Pr can be suitably used. Furthermore, it is not necessary to use a heavy rare earth element R H as the rare earth element R. However, in the present invention, it is not excluded that the heavy rare earth element R H is included as a part of the rare earth element R.

本実施形態のRFeB系焼結磁石は上記の各元素の他に、(添加元素としてではなく)不可避的不純物としてGaを0.2質量%以下含有していてもよい。また、その他の不可避的不純物として、Cr(クロム)を0.1質量%以下、Mn(マンガン)を0.1質量%以下、Ni(ニッケル)を0.1質量%以下、N(窒素)を2000ppm以下、C(炭素)を2000ppm以下、それぞれ含有していてもよい。Nの含有率は1000ppm以下、Cの含有率は1000ppm以下であることが望ましい。 In addition to the above-mentioned elements, the RFeB-based sintered magnet of this embodiment may contain 0.2% by mass or less of Ga as an unavoidable impurity (not as an additive element). In addition, other unavoidable impurities include Cr (chromium) of 0.1% by mass or less, Mn (manganese) of 0.1% by mass or less, Ni (nickel) of 0.1% by mass or less, N (nitrogen) of 2000ppm or less, C (carbon ) may each contain up to 2000 ppm. It is desirable that the N content is 1000 ppm or less, and the C content is 1000 ppm or less.

本発明に係るRFeB系焼結磁石は、
希土類元素Rを28~33質量%、Coを0~2.5質量%(従って、Coを含有しない場合もある)、Alを0.3~0.7質量%、Bを0.9~1.2質量%を含有し、残部がFeであるRFeB系磁石粉末を磁界中で配向させた後に焼結することによりRFeB系焼結体から成る基材を作製する基材作製工程と、
前記基材を700~900℃の範囲内の温度である第1時効温度に加熱する第1時効処理工程と、
前記第1時効処理工程を行った後の前記基材を530~580℃の範囲内の温度である第2時効温度に加熱する第2時効処理工程と
の各工程を、真空又は不活性ガス雰囲気中で行うことで、Oの含有率が1500ppm未満となるようにすることにより、製造することができる。
The RFeB-based sintered magnet according to the present invention is
Contains 28 to 33 mass% of the rare earth element R, 0 to 2.5 mass% of Co (therefore, it may not contain Co), 0.3 to 0.7 mass% of Al, 0.9 to 1.2 mass% of B, and the balance is A base material production step of producing a base material made of an RFeB-based sintered body by orienting RFeB-based magnet powder, which is Fe, in a magnetic field and then sintering it;
a first aging treatment step of heating the base material to a first aging temperature within a range of 700 to 900°C;
After performing the first aging treatment step, each step including the second aging treatment step of heating the base material to a second aging temperature within the range of 530 to 580°C is performed in a vacuum or an inert gas atmosphere. It can be manufactured by carrying out the process in such a way that the content of O is less than 1500 ppm.

前記第2時効温度は530~560℃の範囲内の温度であることが好ましい。 The second aging temperature is preferably within the range of 530 to 560°C.

本発明に係るRFeB系焼結磁石では、Alを0.3~0.7質量%含有するRFeB系磁石粉末を用いてRFeB系焼結体から成る基材を作製したうえで、第1時効処理工程で基材を700~900℃の範囲内の温度に加熱し、さらに第2時効処理工程で530~580℃の範囲内、好ましくは530~560℃の範囲内の温度に加熱することで、結晶粒界にRFeAl相が生成される。なお、第1時効処理工程が終了した時点では、結晶粒界にはRFeAl相が生成されていない。RFeAl相は、Fe原子の一部がAl原子に置換されていることにより、Fe原子同士の磁気的相互作用が弱められるため、飽和磁化が小さい。 In the RFeB-based sintered magnet according to the present invention, a base material made of an RFeB-based sintered body is prepared using RFeB-based magnet powder containing 0.3 to 0.7% by mass of Al, and then the base material is subjected to a first aging treatment step. By heating to a temperature in the range of 700 to 900°C, and further heating to a temperature in the range of 530 to 580°C, preferably 530 to 560°C in the second aging treatment step, grain boundaries are heated. RFeAl phase is generated. Note that, at the time when the first aging treatment step is completed, no RFeAl phase is generated at the grain boundaries. The RFeAl phase has a small saturation magnetization because some of the Fe atoms are replaced with Al atoms, which weakens the magnetic interaction between the Fe atoms.

但し、基材作製工程において、RFeB系磁石粉末の周囲に酸素が多く存在すると、RFeB系磁石粉末内に希土類酸化物が多く形成され、焼結工程において希土類酸化物が溶解する際、その希土類酸化物にAlが多く取り込まれてしまう。このように希土類酸化物にAlが多く取り込まれてしまうと、結晶粒界にRFeAl相が生成されない。そのため、本発明では、最終的に得られるRFeB系焼結磁石における、不純物としてのOの含有率が1500ppm未満となるようにする。Oの含有率は、1000ppm未満であることが望ましい。 However, if a large amount of oxygen exists around the RFeB magnet powder during the base material manufacturing process, a large amount of rare earth oxides will be formed within the RFeB magnet powder, and when the rare earth oxides are dissolved in the sintering process, the rare earth oxides will be removed. A large amount of Al is incorporated into objects. If a large amount of Al is incorporated into the rare earth oxide in this way, no RFeAl phase is generated at the grain boundaries. Therefore, in the present invention, the content of O as an impurity in the finally obtained RFeB-based sintered magnet is set to be less than 1500 ppm. The content of O is desirably less than 1000 ppm.

本発明に係るRFeB系焼結磁石において、結晶粒界にはRFeAl相以外のRリッチ相が存在し得る。Rリッチ相は、RFeB系焼結磁石の結晶粒を構成するR2Fe14Bよりも希土類元素の含有率が高いものをいう。Rリッチ相には例えば、希土類酸化物(R2O3)に、Fe、Co、Al、Gaのうちの1種又は2種以上が固溶したものが挙げられる。Rリッチ相に固溶したFeは強磁性を有するが、本発明に係るRFeB系焼結磁石では、結晶粒界にRFeAl相が形成されることによって結晶粒界中のFeがRFeAl相に取り込まれるため、Rリッチ相に固溶するFeの濃度を低くすることができ、それによりRリッチ相(に固溶したFe)の飽和磁化を小さくすることができる。このようにFeの濃度が低いRリッチ相は、第2時効処理工程で基材を530~580℃で加熱することにより、結晶粒界の全体に亘って拡散する。特に、2個の結晶粒の間で隙間の小さいところにもRリッチ相を行き亘らせることができる。 In the RFeB-based sintered magnet according to the present invention, an R-rich phase other than the RFeAl phase may exist at the grain boundaries. The R-rich phase refers to a phase in which the content of rare earth elements is higher than that of R 2 Fe 14 B that constitutes the crystal grains of the RFeB-based sintered magnet. Examples of the R-rich phase include rare earth oxides (R 2 O 3 ) in which one or more of Fe, Co, Al, and Ga are dissolved in solid solution. Fe dissolved in the R-rich phase has ferromagnetism, but in the RFeB sintered magnet according to the present invention, Fe in the grain boundaries is incorporated into the RFeAl phase by forming an RFeAl phase at the grain boundaries. Therefore, the concentration of Fe dissolved in the R-rich phase can be lowered, thereby making it possible to reduce the saturation magnetization of the R-rich phase (Fe dissolved in the R-rich phase). The R-rich phase with such a low Fe concentration diffuses throughout the grain boundaries by heating the base material at 530 to 580°C in the second aging treatment step. In particular, the R-rich phase can be spread even where there is a small gap between two crystal grains.

このように、本発明に係るRFeB系焼結磁石では、飽和磁化が小さいRFeAl相(及びRリッチ相)が結晶粒界に存在することにより、当該RFeB系焼結磁石に逆磁界が印加された際にある結晶粒で磁化が反転しても、結晶粒界を介して隣接する結晶粒の磁化を反転させる作用が弱くなるため、16kOe以上という高い保磁力を得ることができる。しかも、重希土類元素RHやGaをできる限り用いることなく、それらよりも安価なAlを用いればよいため、コストを抑えることができる。 As described above, in the RFeB-based sintered magnet according to the present invention, a reverse magnetic field is applied to the RFeB-based sintered magnet due to the presence of the RFeAl phase (and R-rich phase) with low saturation magnetization at the grain boundaries. Even if the magnetization of one crystal grain is reversed at the same time, the effect of reversing the magnetization of adjacent crystal grains via the grain boundary becomes weaker, so a high coercive force of 16 kOe or more can be obtained. Moreover, since it is sufficient to use Al, which is cheaper than the heavy rare earth elements R H and Ga, as much as possible, the cost can be kept down.

RFeAl相のR6Fe14-xAlxにおけるxの値が0.5を下回ると、RFeAl相内のFeによる飽和磁化が大きくなるため、隣接する結晶粒の磁化を反転させる磁気的な相互作用が強くなってしまう。一方、xの値が3.5を上回ると、RFeAl相が取り込むFeの量が少なくなり、それに伴って結晶粒界中のRリッチ相に固溶するFeの量が多くなって該Rリッチ相の飽和磁化が大きくなるため、隣接する結晶粒の磁化を反転させる磁気的な相互作用が強くなってしまう。そのため、本発明に係るRFeB系焼結磁石では、RFeAl相のR6Fe14-xAlxにおけるxの値を0.5~3.5の範囲内とすることが望ましい。 When the value of x in R 6 Fe 14-x Al x of the RFeAl phase is less than 0.5, the saturation magnetization due to Fe in the RFeAl phase increases, so the magnetic interaction that reverses the magnetization of adjacent crystal grains becomes strong. turn into. On the other hand, when the value of x exceeds 3.5, the amount of Fe taken in by the RFeAl phase decreases, and the amount of Fe dissolved in the R-rich phase in the grain boundaries increases, saturating the R-rich phase. As the magnetization increases, the magnetic interaction that reverses the magnetization of adjacent crystal grains becomes stronger. Therefore, in the RFeB-based sintered magnet according to the present invention, it is desirable that the value of x in R 6 Fe 14-x Al x of the RFeAl phase is within the range of 0.5 to 3.5.

本発明に係るRFeB系焼結磁石においてさらにCu(銅)を0.1~0.5質量%含有し、CuとAlの含有率の合計が0.5質量%を超えており、Alの含有率がCuの含有率よりも大きいことが好ましい。これにより、粒界相の濡れ性が向上(最適化)し、第2時効処理工程において粒界相を均一に分散させることができるため、保磁力がより向上する。 The RFeB sintered magnet according to the present invention further contains 0.1 to 0.5% by mass of Cu (copper), and the total content of Cu and Al exceeds 0.5% by mass, and the content of Al is the content of Cu. It is preferable that it is larger than . As a result, the wettability of the grain boundary phase is improved (optimized), and the grain boundary phase can be uniformly dispersed in the second aging treatment step, so that the coercive force is further improved.

また、本発明に係るRFeB系焼結磁石は、さらにZrを0.05~0.35質量%含有していることが好ましい。これにより、角型比を高くすることができる。ここで角型比は、磁化曲線の第2象限(減磁曲線)において、磁化が残留磁束密度Brの90%となるときの逆磁界Hk90と保磁力(磁化が0となるときの逆磁界)iHcの比Hk90/iHcで表される。角型比が高いほど、磁界の変動に伴う磁化の変動が小さく、変動磁界中で安定した特性を有することを意味する。 Further, it is preferable that the RFeB-based sintered magnet according to the present invention further contains 0.05 to 0.35% by mass of Zr. Thereby, the squareness ratio can be increased. Here, the squareness ratio is the reverse magnetic field Hk90 when the magnetization becomes 90% of the residual magnetic flux density B r and the coercive force (the reverse magnetic field when the magnetization becomes 0) in the second quadrant (demagnetization curve) of the magnetization curve. ) is expressed as the ratio of iHc, Hk90/iHc. The higher the squareness ratio, the smaller the fluctuation in magnetization due to fluctuations in the magnetic field, meaning that the material has stable characteristics in a fluctuating magnetic field.

本発明によれば、高価な添加元素である重希土類元素RHやGaをできる限り用いることなく、保磁力が高いRFeB系焼結磁石を得ることができる。 According to the present invention, an RFeB-based sintered magnet with a high coercive force can be obtained without using the heavy rare earth elements R H and Ga, which are expensive additive elements, as much as possible.

本発明に係るRFeB系焼結磁石を製造する方法の一例を示す概略図。FIG. 2 is a schematic diagram showing an example of a method for manufacturing an RFeB-based sintered magnet according to the present invention. 実施例1、2、及び比較例の試料に対する放射光X線回折測定の結果を示すグラフ(a)、並びにその部分拡大図(b)。Graph (a) showing the results of synchrotron radiation X-ray diffraction measurements on samples of Examples 1 and 2 and Comparative Example, and its partially enlarged view (b). 合金3を用いて作製した本実施形態のRFeB系焼結磁石であって、第1時効温度(a)、第1時効処理工程における加熱時間(b)、第2時効温度(c)、及び第2時効処理工程における加熱時間(d)が異なる複数の試料について保磁力を測定した結果を示すグラフ。The RFeB-based sintered magnet of this embodiment manufactured using Alloy 3 has a first aging temperature (a), a heating time in the first aging treatment step (b), a second aging temperature (c), and a second aging temperature (c). 2 is a graph showing the results of coercive force measurements of multiple samples with different heating times (d) in the aging process. 合金3を用いて作製した本実施形態のRFeB系焼結磁石であって、第2時効処理工程後の冷却速度が異なる複数の試料について保磁力を測定した結果を示すグラフ。3 is a graph showing the results of measuring coercive force of a plurality of samples of the RFeB sintered magnet of the present embodiment manufactured using Alloy 3 and having different cooling rates after the second aging treatment step.

図1~図4を用いて、本発明に係るRFeB系焼結磁石の実施形態を説明する。 Embodiments of the RFeB-based sintered magnet according to the present invention will be described with reference to FIGS. 1 to 4.

(1) 組成
本実施形態のRFeB系焼結磁石は、全体の組成として、希土類元素Rを28~33質量%、Coを0~2.5質量%、Alを0.3~0.7質量%、Bを0.9~1.2質量%、Oを1500ppm未満含有し、残部としてFeを含有する。Coは含有していなくてもよい。希土類元素RにはNdやPr等の軽希土類元素を好適に用いることができる。また、希土類元素Rとして重希土類元素RHを用いる必要はない。但し、本実施形態のRFeB系焼結磁石は、希土類元素Rの一部として重希土類元素RHを含んでいてもよい。また、本実施形態のRFeB系焼結磁石は、これら各元素の他に、Cuを0.1~0.5質量%、及び/又はZrを0.05~0.35質量%含有していてもよい。Cuを含有する場合には、CuとAlの含有率の合計が0.5質量%を超え、且つAlの含有率がCuの含有率よりも大きいことが好ましい。また、これらの各元素の他に、本実施形態のRFeB系焼結磁石は上述の不可避的不純物も含有し得る。
(1) Composition The RFeB sintered magnet of this embodiment has a total composition of 28 to 33 mass% of rare earth element R, 0 to 2.5 mass% of Co, 0.3 to 0.7 mass% of Al, and 0.9 to 0.9 mass% of B. Contains 1.2% by mass, less than 1500ppm of O, and the balance contains Fe. Co may not be contained. As the rare earth element R, light rare earth elements such as Nd and Pr can be suitably used. Furthermore, it is not necessary to use a heavy rare earth element R H as the rare earth element R. However, the RFeB-based sintered magnet of this embodiment may include a heavy rare earth element R H as a part of the rare earth element R. In addition to these elements, the RFeB-based sintered magnet of the present embodiment may contain 0.1 to 0.5 mass % of Cu and/or 0.05 to 0.35 mass % of Zr. When containing Cu, it is preferable that the total content of Cu and Al exceeds 0.5% by mass, and the content of Al is higher than the content of Cu. In addition to these elements, the RFeB-based sintered magnet of this embodiment may also contain the above-mentioned inevitable impurities.

本実施形態のRFeB系焼結磁石の結晶粒界は、RFeAl相を有し、さらにRリッチ相が存在し得る。RFeAl相の組成はR6Fe14-xAlx(0.5≦x≦3.5)で表される。Rリッチ相は、R2O3に、Fe、Co、Al、Gaのうちの1種又は2種以上が固溶したものが典型例として挙げられる。ここでRリッチ相に固溶するFeの濃度は、FeがRFeAl相に取り込まれることにより、従来のRFeB系焼結磁石の結晶粒界中のRリッチ相に固溶するFeの濃度よりも低くなる。 The grain boundaries of the RFeB-based sintered magnet of this embodiment have an RFeAl phase, and may further include an R-rich phase. The composition of the RFeAl phase is expressed as R 6 Fe 14-x Al x (0.5≦x≦3.5). A typical example of the R-rich phase is one in which one or more of Fe, Co, Al, and Ga are dissolved in R 2 O 3 as a solid solution. Here, the concentration of Fe dissolved in the R-rich phase is lower than the concentration of Fe dissolved in the R-rich phase in the grain boundaries of conventional RFeB-based sintered magnets because Fe is incorporated into the RFeAl phase. Become.

(2) 製造方法
本実施形態のRFeB系焼結磁石は、以下に述べる方法で製造することができる。以下に述べる各工程は、真空中又は不活性ガス雰囲気中で行う。
(2) Manufacturing method The RFeB-based sintered magnet of this embodiment can be manufactured by the method described below. Each step described below is performed in vacuum or in an inert gas atmosphere.

まず、製造しようとするRFeB系焼結磁石と同じ含有率で希土類元素R、Co(含有していなくてもよい)、Al、B及びFe、並びに必要であればCu及び/又はZrを含有するRFeB系合金塊11を、例えばストリップキャスト法により作製する。次に、このRFeB系合金塊11を水素ガスに晒して水素分子を吸蔵させる(図1(a))。これにより、RFeB系合金塊11が脆化する。このように脆化したRFeB系合金塊11を機械的に粉砕する粗粉砕を行うことにより、RFeB系粗粉12を作製する(図1(b))。さらに、RFeB系粗粉12をジェットミルによって粒径の中央値D50が3μm以下の粒度分布となるように微粉砕することにより、RFeB系磁石粉末13を作製する(図1(c))。作製されたRFeB系磁石粉末13の粒子中には、RFeB系合金塊11に吸蔵させた水素分子の一部が残存している。 First, contain rare earth elements R, Co (does not need to be contained), Al, B, and Fe, and Cu and/or Zr if necessary, at the same content rate as the RFeB sintered magnet to be manufactured. The RFeB alloy ingot 11 is produced by, for example, a strip casting method. Next, this RFeB alloy ingot 11 is exposed to hydrogen gas to occlude hydrogen molecules (FIG. 1(a)). This causes the RFeB alloy ingot 11 to become brittle. The RFeB-based alloy ingot 11 thus embrittled is mechanically pulverized to produce RFeB-based coarse powder 12 (FIG. 1(b)). Furthermore, RFeB-based magnet powder 13 is produced by pulverizing the RFeB-based coarse powder 12 using a jet mill so that the particle size distribution has a median particle size D50 of 3 μm or less (FIG. 1(c)). A part of the hydrogen molecules occluded in the RFeB alloy lump 11 remain in the particles of the produced RFeB magnet powder 13.

次に、製造しようとするRFeB系焼結磁石に対応した形状を有する容器19にRFeB系磁石粉末13を収容し、容器19内のRFeB系磁石粉末13に磁界を印加することにより、該RFeB系磁石粉末13を配向させる(図1(d))。続いて、配向させたRFeB系磁石粉末13を容器19内に収容したままの状態で所定の焼結温度(900~1050℃の範囲内の温度が好ましい)に加熱する(図1(e))ことにより、RFeB系磁石粉末13を焼結させる。これにより、RFeB系焼結体から成る基材14が得られる(図1(f))。ここまでの操作が上記基材作製工程に該当する。 Next, the RFeB-based magnet powder 13 is placed in a container 19 having a shape corresponding to the RFeB-based sintered magnet to be manufactured, and a magnetic field is applied to the RFeB-based magnet powder 13 in the container 19. The magnet powder 13 is oriented (FIG. 1(d)). Subsequently, the oriented RFeB-based magnet powder 13 is heated to a predetermined sintering temperature (preferably within the range of 900 to 1050°C) while still housed in the container 19 (FIG. 1(e)). As a result, the RFeB magnet powder 13 is sintered. As a result, a base material 14 made of an RFeB-based sintered body is obtained (FIG. 1(f)). The operations up to this point correspond to the above-mentioned base material production process.

ここでRFeB系磁石粉末13の粒子中に含まれる水素分子は、焼結のための加熱によって外部に放出される。その際、RFeB系磁石粉末13中に不純物として存在する炭素と水素分子が反応してガス化する。これにより、RFeB系磁石粉末13から炭素を除去することができる。その際、水素分子と炭素が反応する前に水素分子がRFeB系磁石粉末13の粒子から脱離し難くするように、室温から焼結温度まで昇温する間の所定の温度(例えば450℃)までは不活性ガス雰囲気とし、その後、真空雰囲気中で焼結温度まで昇温することが好ましい。ここで真空雰囲気にすることは、水素分子と炭素が反応することで生成されるガスを除去することを目的としている。容器19には、上記焼結温度における耐熱性を有する材料から成るものを用いる。 Here, hydrogen molecules contained in the particles of the RFeB magnet powder 13 are released to the outside by heating for sintering. At this time, carbon present as an impurity in the RFeB magnet powder 13 reacts with hydrogen molecules to gasify. Thereby, carbon can be removed from the RFeB magnet powder 13. At that time, in order to make it difficult for the hydrogen molecules to detach from the particles of the RFeB magnet powder 13 before the hydrogen molecules and carbon react, the temperature is increased to a predetermined temperature (for example, 450°C) between room temperature and the sintering temperature. It is preferable to use an inert gas atmosphere and then raise the temperature to the sintering temperature in a vacuum atmosphere. The purpose of creating a vacuum atmosphere here is to remove gas generated by the reaction between hydrogen molecules and carbon. The container 19 is made of a material that is heat resistant at the above sintering temperature.

RFeB系の焼結体を作製する際には、RFeB系磁石粉末を磁界中で配向させる間又は配向後に圧縮成形を行う(プレス法)のが一般的である。それに対して本実施形態では、RFeB系磁石粉末13を配向させる間及び配向後に圧縮成形を行うことなく、RFeB系磁石粉末13を焼結させる(PLP(press-less process)法)。PLP法では圧縮成形を行うためのプレス機を使用する必要がないため、作業空間を小さくすることができる。そのため、作業空間内を不活性ガス雰囲気や真空雰囲気にすることが容易である。そうすると、RFeB系磁石粉末13の粒径を小さく(粒子の表面積を大きく)しても、RFeB系磁石粉末13が酸化し難くなる。これにより、作製される基材の酸素含有量を少なくすることができるため、基材内に希土類酸化物が形成され難くなる。それによってAlが希土類酸化物に取り込まれ難くなるため、結晶粒界にRFeAl相を生成することができる。また、RFeB系磁石粉末13の粒径を小さくことによって、RFeB系磁石粉末13の平均粒径が、得られるRFeB系焼結磁石中の結晶粒の平均粒径に近くなると、RFeB系磁石粉末13の平均粒径を小さくするほどRFeB系焼結磁石中の結晶粒の平均粒径も小さくなり、それによってRFeB系焼結磁石の保磁力を高くすることができる。なお、本発明に係るRFeB系焼結磁石は、プレス法を用いて作製することも可能であるが、ここまでに述べたように基材の酸素含有量を少なくするためにPLP法を用いる方が望ましい。 When producing an RFeB-based sintered body, it is common to perform compression molding (pressing method) while or after orienting the RFeB-based magnet powder in a magnetic field. In contrast, in this embodiment, the RFeB magnet powder 13 is sintered without compression molding during or after the orientation of the RFeB magnet powder 13 (PLP (press-less process) method). Since the PLP method does not require the use of a press machine for compression molding, the work space can be reduced. Therefore, it is easy to create an inert gas atmosphere or a vacuum atmosphere in the work space. Then, even if the particle size of the RFeB-based magnet powder 13 is made smaller (the surface area of the particles is increased), the RFeB-based magnet powder 13 becomes difficult to oxidize. As a result, the oxygen content of the base material to be produced can be reduced, making it difficult for rare earth oxides to be formed within the base material. This makes it difficult for Al to be incorporated into the rare earth oxide, allowing RFeAl phase to be generated at grain boundaries. Furthermore, by reducing the particle size of the RFeB-based magnet powder 13, the average particle size of the RFeB-based magnet powder 13 approaches the average grain size of the crystal grains in the obtained RFeB-based sintered magnet. The smaller the average grain size of the RFeB-based sintered magnet, the smaller the average grain size of the crystal grains in the RFeB-based sintered magnet, thereby increasing the coercive force of the RFeB-based sintered magnet. Note that the RFeB sintered magnet according to the present invention can be manufactured using a pressing method, but as described above, it is also possible to manufacture the RFeB-based sintered magnet using the PLP method in order to reduce the oxygen content of the base material. is desirable.

上述のように基材14を作製し、一旦室温にした後、該基材14を700~900℃の範囲内の温度である第1時効温度に加熱する(図1(g)、第1時効処理工程)。ここで第1時効温度に維持する時間は特に問わない。本発明者の実験によれば、第2時効温度に維持する時間が0分、すなわち第1時効温度に到達した瞬間に温度を下降させた場合であっても、次の第2時効処理工程を経て得られるRFeB系焼結磁石では保磁力が16kOeを上回る。 The base material 14 is produced as described above, and after once brought to room temperature, the base material 14 is heated to a first aging temperature within the range of 700 to 900°C (FIG. 1(g), first aging temperature). processing process). Here, the time period for maintaining the first aging temperature is not particularly limited. According to the inventor's experiments, even if the time to maintain the second aging temperature is 0 minutes, that is, the temperature is lowered at the moment the first aging temperature is reached, the next second aging treatment step is not performed. The RFeB sintered magnet obtained through this process has a coercive force of over 16kOe.

次に、第1時効処理工程を行った基材14を530~580℃の範囲内、好ましくは530~560℃の範囲内の温度である第2時効温度に加熱する(図1(h)、第2時効処理工程)。ここで第2時効温度に維持する時間は特に問わない。本発明者の実験によれば、第2時効温度に維持する時間が0分(第2時効温度に到達した瞬間に温度を下降させた場合)であっても、得られるRFeB系焼結磁石では保磁力が16kOeを上回る。その後、基材14を室温まで冷却する。 Next, the base material 14 that has been subjected to the first aging treatment step is heated to a second aging temperature that is within the range of 530 to 580°C, preferably within the range of 530 to 560°C (Fig. 1 (h), 2nd aging treatment step). Here, the time period for maintaining the second aging temperature is not particularly limited. According to the inventor's experiments, even if the time to maintain the second aging temperature is 0 minutes (when the temperature is lowered the moment the second aging temperature is reached), the resulting RFeB-based sintered magnet Coercive force exceeds 16kOe. Thereafter, the base material 14 is cooled to room temperature.

以上の操作により、本実施形態のRFeB系焼結磁石15が得られる(図1(i))。 Through the above operations, the RFeB-based sintered magnet 15 of this embodiment is obtained (FIG. 1(i)).

(3) 本実施形態のRFeB系焼結磁石の実施例
以下、本実施形態のRFeB系焼結磁石を製造した実施例を示す。
(3) Examples of RFeB-based sintered magnets of the present embodiment Below, examples will be shown in which the RFeB-based sintered magnets of the present embodiment were manufactured.

表1に記載した組成(実測値)を有する6種のRFeB系合金塊(以下、合金1~7とする)をそれぞれ、ストリップキャスト法で作製した。なお、表1中の「TRE」は全ての希土類元素の含有率の和(Total Rare-Earth)をいい、ここではNd(ネオジム)、Pr(プラセオジム)、Dy(ジスプロシウム)、Tb(テルビウム)の含有率の和である。なお、これら4種以外の希土類元素は、不可避的不純物として含有されるものを除いて、合金1~7には含有されていない。なお、合金1~7には表1で挙げた元素の他に不可避的不純物が含まれ得る。

Figure 0007379935000001
Six types of RFeB alloy ingots (hereinafter referred to as Alloys 1 to 7) having the compositions (actually measured values) listed in Table 1 were each produced by a strip casting method. In addition, "TRE" in Table 1 refers to the sum of the content rates of all rare earth elements (Total Rare-Earth); It is the sum of the content rates. Note that rare earth elements other than these four types are not contained in Alloys 1 to 7, except for those contained as unavoidable impurities. Note that Alloys 1 to 7 may contain unavoidable impurities in addition to the elements listed in Table 1.
Figure 0007379935000001

これら合金1~7についてそれぞれ、上述の条件で粗粉砕及び微粉砕を行うことによりRFeB系磁石粉末13を作製した。このRFeB系磁石粉末13を充填密度が3.4g/cm3となるようにRFeB系磁石粉末13を容器19に充填したうえで、該RFeB系磁石粉末13を磁界中で配向した。続いて、RFeB系磁石粉末13を容器19に充填したままで室温から、985℃~995℃の間の焼結温度まで加熱したうえで4時間維持した後に室温まで冷却することにより、基材14を作製した。焼結の際、室温から450℃に達するまではアルゴンガス雰囲気とし、その後は真空雰囲気とした。各合金1~7から得られた基材14をそれぞれ、800℃の第1時効温度で30分間加熱した後、540℃又は560℃(合金毎に表1に記載)である第2時効温度まで温度を低下させたうえで90分間維持し、その後急冷することにより、RFeB系焼結磁石15を得た。合金1~7からそれぞれ作製した各RFeB系焼結磁石を、実施例1~7の試料と呼ぶ。 RFeB magnet powder 13 was produced by coarsely pulverizing and finely pulverizing each of these alloys 1 to 7 under the conditions described above. This RFeB-based magnet powder 13 was filled in a container 19 so that the packing density was 3.4 g/cm 3 , and then the RFeB-based magnet powder 13 was oriented in a magnetic field. Next, the RFeB magnet powder 13 is heated from room temperature to a sintering temperature between 985°C and 995°C while being filled in the container 19, maintained for 4 hours, and then cooled to room temperature. was created. During sintering, an argon gas atmosphere was used from room temperature until the temperature reached 450°C, and then a vacuum atmosphere was used. The base material 14 obtained from each alloy 1 to 7 is heated at a first aging temperature of 800°C for 30 minutes, and then heated to a second aging temperature of 540°C or 560°C (listed in Table 1 for each alloy). The RFeB-based sintered magnet 15 was obtained by lowering the temperature, maintaining it for 90 minutes, and then rapidly cooling it. The RFeB-based sintered magnets produced from Alloys 1 to 7 are referred to as samples of Examples 1 to 7.

併せて、比較例として、表1に記載した組成を有する合金1(比較例1)及び合金A(比較例2、3)を用いて、上記と同じ方法でRFeB系焼結磁石を作製した。第2時効温度は540℃(合金1を用いた試料)又は520℃(合金Aを用いた試料)とした。合金Aは、Alの含有率が0.16質量%であって、本発明のRFeB系焼結磁石の組成の範囲に含まれない。比較例1及び3では、実施例1~7及び比較例2よりも、Oの含有率が多くなるようにした。ここでOの含有率は、RFeB系合金塊11の粉砕からRFeB系磁石粉末13の容器19への充填までの工程において製造環境を制御することによって調整することができる。 In addition, as a comparative example, RFeB-based sintered magnets were produced in the same manner as above using Alloy 1 (Comparative Example 1) and Alloy A (Comparative Examples 2 and 3) having the compositions listed in Table 1. The second aging temperature was 540°C (sample using Alloy 1) or 520°C (sample using Alloy A). Alloy A has an Al content of 0.16% by mass, and is not included in the composition range of the RFeB-based sintered magnet of the present invention. In Comparative Examples 1 and 3, the O content was made higher than in Examples 1 to 7 and Comparative Example 2. Here, the content of O can be adjusted by controlling the manufacturing environment in the process from pulverizing the RFeB-based alloy ingot 11 to filling the container 19 with the RFeB-based magnet powder 13.

作製した実施例1~7及び比較例1~3の試料の組成を測定した結果を表2に示す。また、これら各試料の保磁力iHc及び角型比SQ、並びに角型比SQを求めるために測定したHk90の値を表3に示す。ここでHk90は磁化曲線の第2象限(減磁曲線)において、磁化が残留磁束密度Brの90%となるときの逆磁界の値である。角型比SQはHk90/iHcで求められる。

Figure 0007379935000002

Figure 0007379935000003
Table 2 shows the results of measuring the compositions of the prepared samples of Examples 1 to 7 and Comparative Examples 1 to 3. Furthermore, Table 3 shows the coercive force iHc and squareness ratio SQ of each of these samples, as well as the Hk90 values measured to determine the squareness ratio SQ. Here, Hk90 is the value of the reverse magnetic field when the magnetization becomes 90% of the residual magnetic flux density B r in the second quadrant (demagnetization curve) of the magnetization curve. The squareness ratio SQ is determined by Hk90/iHc.
Figure 0007379935000002

Figure 0007379935000003

実施例1~7の試料はいずれも、表2に挙げた各元素の組成が本発明のRFeB系焼結磁石における組成の条件を満たしている。それに対して比較例1及び3の試料は、Oの含有率が本発明の要件(1500ppm未満)を満たしていない。また、比較例2及び3の試料は、Alの含有率が本発明の要件(0.3~0.7質量%)を満たしていない。一方、比較例2及び3の試料は、Al及びO以外の元素の含有率が実施例2の試料のそれら元素の含有率とほぼ同じ値になっている。 In all of the samples of Examples 1 to 7, the composition of each element listed in Table 2 satisfies the composition conditions for the RFeB-based sintered magnet of the present invention. On the other hand, in the samples of Comparative Examples 1 and 3, the O content did not meet the requirements of the present invention (less than 1500 ppm). In addition, the samples of Comparative Examples 2 and 3 do not have Al content that satisfies the requirements of the present invention (0.3 to 0.7% by mass). On the other hand, in the samples of Comparative Examples 2 and 3, the content of elements other than Al and O is approximately the same as the content of these elements in the sample of Example 2.

これら各実施例のうちDyを含有しない実施例1~6の試料と比較例の試料の保磁力iHcを対比すると、実施例1~6の試料ではいずれも16.0kOeを上回る16.8~18.2kOeであるのに対して、比較例1~3の試料ではいずれも16.0kOeを下回る14.5~15.7kOeとなっている。特に、前述のようにAl及びO以外の元素の含有率が比較例2及び3とほぼ同じ値である実施例2の試料は、保磁力iHcが18.2kOeという、比較例2及び3よりも顕著に高い値を有している。 Comparing the coercive force iHc of the samples of Examples 1 to 6, which do not contain Dy, and the sample of the comparative example, the samples of Examples 1 to 6 all have a value of 16.8 to 18.2 kOe, which exceeds 16.0 kOe. In contrast, the samples of Comparative Examples 1 to 3 all had values of 14.5 to 15.7 kOe, which are lower than 16.0 kOe. In particular, as mentioned above, the sample of Example 2, in which the content of elements other than Al and O is approximately the same as Comparative Examples 2 and 3, has a coercive force iHc of 18.2 kOe, which is more remarkable than that of Comparative Examples 2 and 3. has a high value.

また、実施例3~5の試料は、Zrを0.08~0.11質量%含有しており、角型比SQの値が他の試料(実施例1及び2、並びに比較例1~3)よりも高く(94.6~95.4%)なっている。実施例7の試料は、Dyを2.50質量%含有しており、保磁力iHcの値が他の試料よりも高くなっている。 In addition, the samples of Examples 3 to 5 contain 0.08 to 0.11% by mass of Zr, and have higher squareness ratio SQ values than other samples (Examples 1 and 2 and Comparative Examples 1 to 3). (94.6-95.4%). The sample of Example 7 contains 2.50% by mass of Dy and has a higher coercive force iHc value than the other samples.

次に、実施例1及び2、並びに比較例の試料につき、X線回折測定を行った結果を図2に示す。この測定では、あいちシンクロトン光センター(公益財団法人科学技術交流センター)の放射光X線回折測定を用い、波長0.09nmの放射光で測定を行った。図2(a)には、各試料の測定結果を2θが10~70°の範囲で試料毎に示し、図2(b)には横軸(2θ)及び縦軸(強度)を部分的に拡大し、3つの試料のデータを重ねて示している。図2(b)に矢印で示した箇所には、実施例1及び2には現れており、比較例には現れていないピークが3つ存在する。これら3つのピークは、国際回折データセンター(International Centre for Diffraction Data:ICDD)が運営する粉末回折データベース「PDF」(Powder Diffraction File)に収録されているNd6Fe11Al3(R6Fe14-xAlxにおいてR=Nd, x=3)のX線回折パターン(PDF#01-078-9291)とよく一致している。このデータは、実施例1及び2の試料には、R6Fe14-xAlxと同じ結晶構造を有する相、すなわちRFeAl相が含まれていることを意味している。 Next, FIG. 2 shows the results of X-ray diffraction measurements performed on the samples of Examples 1 and 2 and Comparative Example. In this measurement, we used synchrotron radiation X-ray diffraction measurement at the Aichi Synchroton Light Center (Science and Technology Exchange Center, a public interest incorporated foundation), and measured using synchrotron radiation with a wavelength of 0.09 nm. Figure 2(a) shows the measurement results for each sample in the 2θ range of 10 to 70°, and Figure 2(b) shows the horizontal axis (2θ) and vertical axis (intensity) partially. It is enlarged and the data of three samples are shown superimposed. At the locations indicated by arrows in FIG. 2(b), there are three peaks that appear in Examples 1 and 2 but do not appear in the comparative example. These three peaks are Nd 6 Fe 11 Al 3 (R 6 Fe 14- It matches well with the X-ray diffraction pattern (PDF#01-078-9291) of R =Nd, x=3 at x Al This data means that the samples of Examples 1 and 2 contain a phase having the same crystal structure as R 6 Fe 14-x Al x , ie, RFeAl phase.

次に、実施例2の試料につき、波長分散型X線分光法(WDX)を用いて、結晶粒界中で任意に選択し、R, Fe及びAlの3種の元素を全て含む測定点において、それら3種並びにCo及びCuの組成比を求めた。その結果を表4に示す。

Figure 0007379935000004
Next, using the wavelength dispersive X-ray spectroscopy (WDX) for the sample of Example 2, arbitrarily selected measurement points within the grain boundaries containing all three elements of R, Fe, and Al were measured. The composition ratios of these three species and Co and Cu were determined. The results are shown in Table 4.
Figure 0007379935000004

これら6個の測定点では、R原子の組成比と、Fe, Co, Al及びCuの4種の原子の組成比の和との比が6:14に近い値となっており、RFeAl相が形成されていると考えられる。 At these six measurement points, the ratio of the composition ratio of R atoms to the sum of the composition ratios of four types of atoms, Fe, Co, Al, and Cu, is close to 6:14, indicating that the RFeAl phase is It is thought that it is formed.

このように結晶粒界にRFeAl相が形成されることにより、Rリッチ相に固溶するFeの量が少なくなる。そして、RFeAl相の飽和磁化が小さいこと、及びRリッチ相に固溶するFeの量が少ないことにより、結晶粒同士の磁気的相互作用が小さくなるため、本実施形態のRFeB系焼結磁石は保磁力が高くなる。 By forming the RFeAl phase at the grain boundaries in this way, the amount of Fe dissolved in the R-rich phase decreases. The RFeB-based sintered magnet of this embodiment is Coercive force increases.

次に、合金3から得られたRFeB系磁石粉末を用いて作製された基材14に対して、第1時効処理工程及び第2時効処理工程における温度及び加熱時間が異なる複数の条件で試料を作製し、保磁力を測定した。以下、その結果を述べる。 Next, samples were subjected to a plurality of conditions with different temperatures and heating times in the first aging treatment step and the second aging treatment step for the base material 14 made using the RFeB magnet powder obtained from Alloy 3. It was manufactured and its coercive force was measured. The results are described below.

図3(a)に、第1時効温度が700℃、800℃、900℃という異なる3つの条件で作製した試料の、第1時効処理工程の後(第2時効処理工程の前)の保磁力と、得られたRFeB系焼結磁石(第2時効処理工程の後)の保磁力を示す。これら3つの試料では、第1時効処理工程での加熱時間は30分間、第2時効温度は560℃、第2時効処理工程での加熱時間は30分間に統一した。この実験の結果、得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第1時効温度が上記範囲内ではその値に関わらずほぼ同じであった。 Figure 3(a) shows the coercive force after the first aging treatment process (before the second aging treatment process) of the samples prepared under three conditions with different first aging temperatures of 700°C, 800°C, and 900°C. and the coercive force of the obtained RFeB-based sintered magnet (after the second aging treatment step). For these three samples, the heating time in the first aging treatment step was 30 minutes, the second aging temperature was 560°C, and the heating time in the second aging treatment step was 30 minutes. As a result of this experiment, the coercive force of the obtained RFeB-based sintered magnets was all above 16 kOe, and the coercive force was almost the same regardless of the first aging temperature within the above range.

図3(b)に、第1時効処理工程での加熱時間が0~540分の範囲内で異なる6つの条件で作製した試料の、第1時効処理工程の後の保磁力と、得られたRFeB系焼結磁石の保磁力を示す。これら6つの試料では、第1時効温度は800℃、第2時効温度は560℃、第2時効処理工程での加熱時間は30分間に統一した。得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第1時効処理工程での加熱時間が上記範囲内ではその値に関わらずほぼ同じであった。 Figure 3(b) shows the coercive force after the first aging process and the obtained The coercive force of RFeB sintered magnets is shown. For these six samples, the first aging temperature was 800°C, the second aging temperature was 560°C, and the heating time in the second aging process was 30 minutes. The coercive forces of the obtained RFeB-based sintered magnets were all over 16 kOe, and were almost the same regardless of the heating time in the first aging treatment step within the above range.

図3(c)に、第2時効温度が530~580℃の範囲内で異なる6つの条件で作製した試料の、第1時効処理工程の後の保磁力と、得られたRFeB系焼結磁石の保磁力を示す。これら6つの試料では、第1時効温度は800℃、第1時効処理工程での加熱時間は30分間、第2時効処理工程での加熱時間は30分間に統一した。この実験の結果、得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第2時効温度が上記範囲内では当該温度が高いほど保磁力が大きくなった。 Figure 3(c) shows the coercive force after the first aging treatment process of samples prepared under six conditions with different second aging temperatures in the range of 530 to 580°C, and the obtained RFeB-based sintered magnets. shows the coercive force of For these six samples, the first aging temperature was 800°C, the heating time in the first aging process was 30 minutes, and the heating time in the second aging process was 30 minutes. As a result of this experiment, the coercive force of the obtained RFeB-based sintered magnets all exceeded 16 kOe, and when the second aging temperature was within the above range, the higher the temperature, the greater the coercive force.

図3(d)に、第2時効処理工程での加熱時間が0~540分の範囲内で異なる6つの条件で作製した試料の、第1時効処理工程の後の保磁力と、得られたRFeB系焼結磁石の保磁力を示す。これら6つの試料では、第1時効温度は800℃、第1時効処理工程での加熱時間は30分間、第2時効温度は560℃に統一した。得られたRFeB系焼結磁石の保磁力はいずれも16kOeを上回り、第2時効処理工程での加熱時間が上記範囲内ではその値に関わらずほぼ同じであった。 Figure 3(d) shows the coercive force after the first aging treatment process and the obtained The coercive force of RFeB sintered magnets is shown. For these six samples, the first aging temperature was 800°C, the heating time in the first aging treatment step was 30 minutes, and the second aging temperature was 560°C. The coercive force of the obtained RFeB-based sintered magnets was all over 16 kOe, and the coercive force was almost the same regardless of the value as long as the heating time in the second aging treatment step was within the above range.

以上、図3に示した実験結果より、本実施形態のRFeB系焼結磁石における保磁力の大きさには作製時の第1時効処理工程及び第2時効処理工程における加熱時間、並びに第1時効温度はほとんど影響を与えないこと、及び第2時効温度を調整することによって保磁力をより向上させることができることがわかる。 As mentioned above, from the experimental results shown in FIG. 3, the magnitude of the coercive force in the RFeB sintered magnet of this embodiment depends on the heating time in the first aging treatment step and the second aging treatment step during manufacturing, and the heating time in the first aging treatment step and the first aging treatment step. It can be seen that temperature has almost no effect, and that coercive force can be further improved by adjusting the second aging temperature.

次に、合金3から得られたRFeB系磁石粉末を用いて作製された基材14に対して、第1時効温度を800℃、第1時効処理工程の加熱時間を30分間、第2時効温度を540℃、第2時効処理工程の加熱時間(540℃に維持した時間)を30分間として時効処理を行い、その後第2時効温度から100℃まで冷却する際の冷却速度が異なる複数の例についてRFeB系焼結磁石の試料を作製した。併せて、比較例として、合金3から得られたRFeB系磁石粉末を用いて作製された基材14に対して、第1時効処理工程を行うことなく、第2時効処理工程を行った場合について、同様に冷却速度が異なる複数のRFeB系焼結磁石の試料を作製した。それらのRFeB系焼結磁石の試料につき、保磁力を測定した結果を図4に示す。その結果、比較例の試料ではいずれも保磁力が16kOeを下回ったのに対して、第1時効処理工程と第2時効処理工程の双方を行った本実施例の試料ではいずれも保磁力が16kOeを上回った。本実施例の試料のうち、第2時効温度から100℃までの冷却速度が最も遅い(3℃/分)試料は、当該冷却速度が5℃/分以上である他の試料よりもやや保磁力が低くなった。すなわち、第2時効温度から100℃までの冷却速度は5℃/分以上とすることが好ましい。 Next, for the base material 14 made using the RFeB magnet powder obtained from Alloy 3, the first aging temperature was set to 800°C, the heating time of the first aging treatment step was 30 minutes, and the second aging temperature was set to 800°C. Regarding multiple examples in which the aging treatment is performed with the temperature at 540°C and the heating time (time maintained at 540°C) in the second aging treatment step for 30 minutes, and then the cooling rate is different when cooling from the second aging temperature to 100°C. A sample of RFeB-based sintered magnet was fabricated. In addition, as a comparative example, the second aging treatment step was performed on the base material 14 made using the RFeB magnet powder obtained from Alloy 3 without performing the first aging treatment step. Similarly, multiple samples of RFeB-based sintered magnets with different cooling rates were fabricated. Figure 4 shows the results of measuring the coercive force of these RFeB sintered magnet samples. As a result, the coercive force of all samples of the comparative example was less than 16 kOe, whereas the coercive force of the samples of this example, which had undergone both the first aging treatment process and the second aging treatment process, was 16 kOe. exceeded. Among the samples in this example, the sample with the slowest cooling rate from the second aging temperature to 100°C (3°C/min) has a slightly higher coercive force than the other samples whose cooling rate is 5°C/min or more. has become lower. That is, the cooling rate from the second aging temperature to 100°C is preferably 5°C/min or more.

11…RFeB系合金塊
12…RFeB系粗粉
13…RFeB系磁石粉末
14…基材
15…RFeB系焼結磁石
19…容器
11... RFeB alloy ingot 12... RFeB coarse powder 13... RFeB magnet powder 14... Base material 15... RFeB sintered magnet 19... Container

Claims (3)

希土類元素Rを28~33質量%、Coを0~2.5質量%、Alを0.3~0.7質量%、Cuを0.1~0.5質量%、Bを0.96~1.2質量%、Oを1500ppm未満含有し、残部がFeであり、
CuとAlの含有率の合計が0.5質量%を超えており、
Alの含有率がCuの含有率よりも大きく、
結晶粒界に、R6Fe14-xAlx型構造を有するRFeAl相が存在し、
保磁力が16kOe以上である
ことを特徴とするRFeB系焼結磁石。
Contains 28 to 33 mass% of rare earth elements R, 0 to 2.5 mass% of Co, 0.3 to 0.7 mass% of Al , 0.1 to 0.5 mass% of Cu , 0.96 to 1.2 mass% of B, less than 1500 ppm of O, and the balance is Fe,
The total content of Cu and Al exceeds 0.5% by mass,
The Al content is higher than the Cu content,
An RFeAl phase with an R 6 Fe 14-x Al x type structure exists at the grain boundaries,
An RFeB-based sintered magnet characterized by a coercive force of 16 kOe or more.
重希土類元素であるDy及びTbをいずれも含有しないことを特徴とする請求項1に記載のRFeB系焼結磁石。 The RFeB-based sintered magnet according to claim 1, characterized in that it contains neither Dy nor Tb, which are heavy rare earth elements. さらにZrを0.05~0.35質量%含有していることを特徴とする請求項1又は2に記載のRFeB系焼結磁石。 The RFeB-based sintered magnet according to claim 1 or 2, further comprising 0.05 to 0.35% by mass of Zr.
JP2019154463A 2018-11-06 2019-08-27 RFeB sintered magnet Active JP7379935B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/673,288 US11232890B2 (en) 2018-11-06 2019-11-04 RFeB sintered magnet and method for producing same
DE102019129812.1A DE102019129812A1 (en) 2018-11-06 2019-11-05 Sintered RFeB MAGNET AND METHOD FOR THE PRODUCTION THEREOF
CN201911075229.0A CN111145972B (en) 2018-11-06 2019-11-06 RFeB sintered magnet and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018208615 2018-11-06
JP2018208615 2018-11-06

Publications (2)

Publication Number Publication Date
JP2020077843A JP2020077843A (en) 2020-05-21
JP7379935B2 true JP7379935B2 (en) 2023-11-15

Family

ID=70724413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154463A Active JP7379935B2 (en) 2018-11-06 2019-08-27 RFeB sintered magnet

Country Status (1)

Country Link
JP (1) JP7379935B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286175A (en) 2004-03-30 2005-10-13 Tdk Corp R-t-b-based sintered magnet and its manufacturing method
WO2009004994A1 (en) 2007-06-29 2009-01-08 Tdk Corporation Rare earth magnet
JP2012199270A (en) 2011-03-18 2012-10-18 Tdk Corp R-t-b rare earth sintered magnet
JP2014027268A (en) 2012-06-22 2014-02-06 Tdk Corp Sintered magnet
WO2014156592A1 (en) 2013-03-25 2014-10-02 インターメタリックス株式会社 Sintered magnet production method
WO2015030231A1 (en) 2013-09-02 2015-03-05 日立金属株式会社 Method of producing r-t-b sintered magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286175A (en) 2004-03-30 2005-10-13 Tdk Corp R-t-b-based sintered magnet and its manufacturing method
WO2009004994A1 (en) 2007-06-29 2009-01-08 Tdk Corporation Rare earth magnet
JP2012199270A (en) 2011-03-18 2012-10-18 Tdk Corp R-t-b rare earth sintered magnet
JP2014027268A (en) 2012-06-22 2014-02-06 Tdk Corp Sintered magnet
WO2014156592A1 (en) 2013-03-25 2014-10-02 インターメタリックス株式会社 Sintered magnet production method
WO2015030231A1 (en) 2013-09-02 2015-03-05 日立金属株式会社 Method of producing r-t-b sintered magnet

Also Published As

Publication number Publication date
JP2020077843A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
TWI673730B (en) R-Fe-B based sintered magnet and manufacturing method thereof
US10410775B2 (en) R—Fe—B sintered magnet and making method
CN107871582B (en) R-Fe-B sintered magnet
CN106710766B (en) R- (Fe, Co) -B sintered magnet and method for producing same
CN109964290B (en) Method for producing R-T-B sintered magnet
JP6614084B2 (en) Method for producing R-Fe-B sintered magnet
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
JP6693392B2 (en) R- (Fe, Co) -B system sintered magnet and its manufacturing method
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6142792B2 (en) Rare earth magnets
WO2018101239A1 (en) R-fe-b sintered magnet and production method therefor
JP7010884B2 (en) Rare earth cobalt permanent magnets, their manufacturing methods, and devices
JP6142793B2 (en) Rare earth magnets
JP2008127648A (en) Method for producing rare earth anisotropic magnet powder
JP2015005550A (en) Rare earth magnet powder
US11232890B2 (en) RFeB sintered magnet and method for producing same
JP7379935B2 (en) RFeB sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP4260087B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP7179799B2 (en) R-Fe-B system sintered magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JP2021182623A (en) Rare earth sintered magnet and manufacturing method for the same
JP2014209547A (en) Rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7379935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150