JP7376599B2 - 電極用成形体の製造方法 - Google Patents

電極用成形体の製造方法 Download PDF

Info

Publication number
JP7376599B2
JP7376599B2 JP2021540689A JP2021540689A JP7376599B2 JP 7376599 B2 JP7376599 B2 JP 7376599B2 JP 2021540689 A JP2021540689 A JP 2021540689A JP 2021540689 A JP2021540689 A JP 2021540689A JP 7376599 B2 JP7376599 B2 JP 7376599B2
Authority
JP
Japan
Prior art keywords
belt
electrode material
electrode
support member
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021540689A
Other languages
English (en)
Other versions
JPWO2021033492A1 (ja
Inventor
英二郎 岩瀬
昭人 福永
浩二 殿原
武彦 中山
康裕 関沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2021033492A1 publication Critical patent/JPWO2021033492A1/ja
Application granted granted Critical
Publication of JP7376599B2 publication Critical patent/JP7376599B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、電極用成形体の製造方法に関する。
従来から、リチウムイオン電池等の電池に含まれる電解質として、電解液が用いられてきた。近年では、安全性(例えば、液漏れの防止)の観点から、電解液を固体電解質に置き換えた全固体電池の開発が検討されている。
また、上記のような電池に適用される電極の製造においては、一般に活物質等の電極材料及び溶剤を含む塗布液が用いられている(例えば、特許文献1~2参照)。
リチウムイオン二次電池及び電気二重層キャパシタなどの電気化学素子に用いられる電極用シートの製造方法として、電極材料を略水平に配置された一対のプレス用ロール又はベルトに供給し、プレス用ロール又はベルトで電極材料をシート状成形体に成形する方法が開示されている(例えば、特許文献3参照)。
一対のプレス用ロールがそれぞれのプレス部における接線が水平方向になるように配置され、プレス用ロールに当接又は近接して配置された気流制御板により、空気の同伴を抑制しつつ電極活物質を含む粉体を基材上に圧密し、リチウムイオン電池用電極を製造するリチウムイオン電池用電極の製造方法が開示されている(例えば、特許文献4参照)。
特許文献1:国際公開第2017/104405号
特許文献2:特許第3743706号公報
特許文献3:特開2007-5747号公報
特許文献4:特許第6211429号公報
塗布液を用いて電極を形成する方法(例えば、特許文献1~2)においては、通常、塗布液を乾燥することが必要である。乾燥が十分でない場合、電極に溶剤が残留することによって電池性能(例えば、放電容量、及び出力特性)が低下する可能性がある。特に、全固体電池においては、電極に残留する溶剤は少ないことが好ましい。
一方、塗布液を用いずに電極を成形する方法としては、例えば特許文献3~4に記載の方法が提案されているが、得られる電極の密度分布(すなわち、質量分布)が不均一となる傾向にある。そのため、成形性に改善の余地がある。不均一な密度分布を有する電極は、電池性能の低下を招く可能性がある。
上記特許文献3では、粉体が密度分布の極めて均一な状態で供給されない場合、供給された粉体に脈動が生じ、結果、粉体の密度分布が不均一となる。供給される粉体の密度分布の不均一さは、成形膜に反映され、膜の面内均一性の悪化を招来する。
また、上記特許文献4では、気流制御板によって長手方向への空気を減らすことができる反面、ロールの幅手方向に気流が生じる。気流は、ロールの幅手方向において不均一な密度分布が生じる一因となる。
上記した課題は、乾燥した電極材料を用いる場合に限られず、湿った電極材料を用いる場合においても発生し得る。また、電極の成形性は、電極を形成するための成分が多くなるほど低下する傾向にある。
本開示は、上記に鑑みてなされたものである。
本開示の実施形態が解決しようとする課題は、質量分布の面内均一性を保ち、かつ、生産性に優れた電極用成形体の製造方法を提供することにある。
課題を解決するための具体的手段には、以下の態様が含まれる。
<1> 電極活物質を含む電極材料を一対の搬送ベルトの間隙に落下させて、一対の搬送ベルトの搬送面の間に上記電極材料を導入する第1工程と、導入された上記電極材料を、上記一対の搬送ベルトによって、ベルト搬送し、かつ、加圧する第2工程と、上記ベルト搬送及び上記加圧を行った後の上記電極材料を成膜ベルトの上に移送する第3工程と、を有し、上記成膜ベルトの上記電極材料を搬送する搬送路における搬送方向と、上記一対の搬送ベルトの上記電極材料を搬送する搬送路における搬送方向と、が交差する、電極用成形体の製造方法である。
<2> 上記電極材料が、粉体を含む<1>に記載の電極用成形体の製造方法である。
<3> 上記第2工程は、上記電極材料をベルト搬送する搬送路のベルト搬送方向下流に向かって上記電極材料に加える圧力を漸増する工程である<1>又は<2>に記載の電極用成形体の製造方法である。
<4> 上記一対の搬送ベルトは、側面視で上記電極材料を搬送する搬送路における搬送面の移動方向が反重力方向に対して左右方向の一方に傾斜角度θ1を0°<θ1≦60°として傾く第1ベルトと、側面視で上記電極材料を搬送する搬送路における搬送面の移動方向が反重力方向に対して左右方向の他方に傾斜角度θ2を0°<θ2≦60°として傾く第2ベルトと、を備える<1>~<3>のいずれか1つに記載の電極用成形体の製造方法である。
<5> 上記成膜ベルトの上記電極材料の搬送方向に並んで上記第2ベルトと上記第1ベルトとがこの順に配置されており、上記傾斜角度θ1と上記傾斜角度θ2とはθ2≦θ1の関係にある、<4>に記載の電極用成形体の製造方法である。
<6> 上記成膜ベルトの上記電極材料の搬送方向に並んで上記第2ベルトと上記第1ベルトとがこの順に配置されており、上記第1ベルト及び上記第2ベルトは、それぞれ、少なくとも2つのロールに巻き掛けられた無端ベルトであり、上記一対の搬送ベルトにおける電極材料の搬送路の最下流に位置する、上記第1ベルトのロールと上記第2ベルトのロールとが、下記の式1を満たす、<4>又は<5>に記載の電極用成形体の製造方法である。
第1ベルトのロールの直径r1≦第2ベルトのロールの直径r2 式1
<7> 上記成膜ベルトの上記電極材料の搬送方向に並んで上記第2ベルトと上記第1ベルトとがこの順に配置されており、上記第1ベルトのベルト搬送速度は、上記第2ベルトのベルト搬送速度より大きい、<4>~<6>のいずれか1つに記載の電極用成形体の製造方法である。
<8> 上記第2ベルトの上記電極材料を搬送する搬送面、及び上記成膜ベルトの上記電極材料を成膜する成膜面に、長尺の第1支持部材を連続供給する工程を更に有し、
上記第2工程は、導入された上記電極材料を、上記第2ベルト上の上記第1支持部材と上記第1ベルトとによりベルト搬送し、かつ、加圧し、
上記第3工程は、上記電極材料を、上記成膜ベルト上の上記第1支持部材の表面に移送する、<4>~<7>のいずれか1つに記載の電極用成形体の製造方法である。
<9> 上記第1ベルトの上記電極材料を搬送する搬送面、及び上記成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給する工程を更に有し、
上記第2工程は、導入された上記電極材料を、上記第2ベルト上の上記第1支持部材と上記第1ベルト上の上記第2支持部材とを介してベルト搬送し、かつ、加圧し、
上記第3工程は、上記電極材料を、上記成膜ベルト上の上記第1支持部材の表面に上記第2支持部材と接触した状態で移送する、<8>に記載の電極用成形体の製造方法である。
<10> 上記成膜ベルトの上に長尺の第3支持部材を連続供給する工程を更に有し、
上記第3工程は、上記電極材料を、成膜ベルト上の上記第3支持部材の表面に移送する、<4>~<7>のいずれか1つに記載の電極用成形体の製造方法である。
<11> 上記第1ベルトの上記電極材料を搬送する搬送面、及び上記成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給する工程を更に有し、
上記第2工程は、導入された上記電極材料を、上記第2ベルトと上記第1ベルト上の上記第2支持部材とによりベルト搬送し、かつ、加圧し、
上記第3工程は、上記電極材料を、上記成膜ベルト上の上記第3支持部材の表面に上記第2支持部材と接触した状態で移送する、<10>に記載の電極用成形体の製造方法である。
<12> 上記第1支持部材、上記第2支持部材、及び上記第3支持部材の少なくとも1つは、集電体又は離型材である、<8>~<11>のいずれか1つに記載の電極用成形体の製造方法である。
<13> 上記成膜ベルトの上記電極材料の搬送方向に並んで上記第2ベルトと上記第1ベルトとがこの順に配置され、成膜ベルトのベルト搬送速度が、上記一対の搬送ベルトの第1ベルトのベルト搬送速度より大きい、<4>~<12>のいずれか1つに記載の電極用成形体の製造方法である。
<14> 上記第1工程は、上記電極材料を供給用ベルトで搬送し、搬送された上記電極材料を上記供給用ベルトの搬送方向下流で落下させる<1>~<13>のいずれか1つに記載の電極用成形体の製造方法である。
<15> 上記第1工程は、上記電極材料を、均一化部材を上記電極材料に接触させて上記供給用ベルトにより搬送する<14>に記載の電極用成形体の製造方法である。
<16> 上記第3工程は、上記電極材料を、均し部材を上記電極材料に接触させて上記成膜ベルトで移送する<1>~<15>のいずれか1つに記載の電極用成形体の製造方法である。
本発明の一実施形態によれば、質量分布の面内均一性を保ち、かつ、生産性に優れた電極用成形体の製造方法が提供される。
図1は、本開示の電極用成形体の製造方法の第1実施形態を示す概略図である。 図2は、本開示の電極用成形体の製造方法の第2実施形態を示す概略図である。 図3は、本開示の電極用成形体の製造方法の第3実施形態を示す概略図である。 図4は、本開示の電極用成形体の製造方法の第4実施形態を示す概略図である。 図5は、本開示の電極用成形体の製造方法の第5実施形態を示す概略図である。 図6は、本開示における一対の搬送ベルトの一例を示す概略構成図である。 図7は、本開示における一対の搬送ベルトの他の例を示す概略構成図である。 図8は、一対の搬送ベルトの第1ベルトと成膜ベルトとの距離Dを説明するための概略側面図である。
以下、本開示の電極用成形体の製造方法について詳細に説明する。
なお、本開示は、以下において図面を参照して説明する実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。各図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。各実施形態において重複する構成要素及び符号については、説明を省略することがある。
図面における寸法は、必ずしも実際の寸法及び比率を表すものではない。
本開示において、「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
また、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、「(メタ)アクリル」とは、アクリル、メタクリル、又はアクリル及びメタクリルの双方を意味する。
本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
本開示において、2以上の好ましい態様の組み合わせはより好ましい態様である。
本開示において、「固形分」とは、1gの試料に対して、窒素雰囲気下、200℃で6時間乾燥処理を行った際に、揮発又は蒸発によって消失しない成分を意味する。
本開示の電極用成形体の製造方法は、電極活物質を含む電極材料を一対の搬送ベルトの間隙に落下させて、一対の搬送ベルトの搬送面の間に電極材料を導入する第1工程と、導入された電極材料を、一対の搬送ベルトによって、ベルト搬送し、かつ、加圧する第2工程と、ベルト搬送及び加圧を行った後の電極材料を成膜ベルトの上に移送する第3工程と、を有し、成膜ベルトの電極材料を搬送する搬送路における搬送方向と、一対の搬送ベルトの電極材料を搬送する搬送路における搬送方向と、は交差する関係にある。
本開示の電極用成形体の製造方法は、第1工程~第3工程に加え、電極材料を準備する工程、電極材料を均す工程等の他の構成を更に有していてもよい。
従来から、例えば特許文献3のように、略水平に配置された一対のプレス用ロール又はベルトにより電極材料に圧力を与えて電極材料を加圧成形する方法が知られている。また、例えば特許文献4のように、一対のプレス用ロールの間に粉体を供給し、重力方向に進行する基材の両面に粉体層を圧密する方法が知られている。電極材料等の粉体をロール又はベルトのプレス部に供給して圧密する場合、プレス成形性の均一性を高めるには、プレス部への粉体の供給は均一に行われることが重要である。
しかしながら、従来から知られている上記方法では、一対のプレス用ロール等の間隙に供給される粉体の量に脈動が生じやすい。プレス部に供給される粉体における多少又は脈動は、プレス成形された成形体の形状に直接影響を与える。結果、成形体には、不均一な質量分布が発生することになる。
本開示の電極用成形体の製造方法では、一対の搬送ベルトの間隙に電極材料を落下させて導入し、導入された電極材料を一対の搬送ベルトにより、ベルト搬送し、かつ、加圧した後、別の成膜ベルト上に移送する。つまり、以下の製造プロセスを採用する。電極材料の供給先を一対の搬送ベルトの間隙とし、間隙として所望の間隔を有する搬送ベルトが、2つのベルト面で電極材料を扱いてあらかじめ定めた量にて搬送する搬送機能と、電極材料を加圧して密度を高める圧密機能とを担う。その後、電極材料を成膜ベルトに移送する。これにより、電極材料がベルト搬送されるベルト搬送方向及びベルト搬送方向に直交するベルト幅方向を含む面内における、電極材料の質量分布の均一性が保たれ、かつ、電極用成形体の生産性に優れたものとなる。
本開示における電極材料は、粒子状の材料を含むものであることが好ましく、複数の粒子の集合体である粉体を含むことがより好ましい。電極材料は、例えば、粉体と液体成分(例:電解液)とを含むものでもよい。
以下において説明する具体的な実施形態(第1実施形態~第5実施形態)では、粉体を用いた場合を中心に示す。
本開示において、「ベルト搬送方向」とは、ベルトを用いて電極材料をベルト搬送する場合において、電極材料をベルト搬送する搬送路において電極材料が搬送される方向を意味する。例えば、少なくとも2つのロールに巻き掛けられた無端ベルトを用いた場合、走行する無端ベルトの面のうち、電極材料が接触する部分における無端ベルトの面(即ち、搬送面)が移動する方向のことである。
ベルト幅方向とは、ベルトが走行(「搬送」ともいう)する方向(即ち、上記のベルト搬送方向)と直交する方向を意味する。
-第1工程-
本開示の電極用成形体の製造方法における第1工程では、電極活物質を含む電極材料を一対の搬送ベルトの間隙に落下させて、一対の搬送ベルトの搬送面の間に電極材料を導入する。電極材料を重力方向に落下させて搬送ベルトの間隙に導入するので、搬送ベルトの間隙におけるベルト幅方向(ベルト搬送方向と直交する方向)に均一性の高い導入操作を行いやすい。
なお、電極活物質を含む電極材料の詳細については後述する。
電極材料を一対の搬送ベルトの間隙に導入する方法としては、特に制限はなく、ベルト幅方向の電極材料の量的バラツキを考慮しながら手動で電極材料を一対の搬送ベルトの間隙に落下させる方法でもよい。また、均一性により優れた電極材料の導入を実現する観点から、電極材料を一対の搬送ベルトの間隙に導入する方法としては、例えば、電極材料を吐出する吐出口を備えた吐出装置(例えば、ホッパー、フィーダー)、電極材料を搬送する搬送装置(例えば、回転ベルト等の供給用ベルト)などの供給装置を用いて一対の搬送ベルトの間隙に電極材料を落下させる方法でもよい。
電極材料をより均一化して一対の搬送ベルトの間隙に導入する観点から、電極材料を一対の搬送ベルトの間隙に導入する方法としては、供給装置を用いることが好ましい。
吐出口を備えた吐出装置は、電極材料の飛散による汚染を防止する観点から、吐出口が電極材料の供給を制御する開閉機構を有することが好ましい。ここで、「開閉機構」とは、電極材料の流路を開閉できる可動機構を意味する。開閉機構に用いられる弁体としては、例えば、板状の弁体、及び球状の弁体が挙げられる。
開閉機構は、吐出装置から吐出口までの流路に配置されることも好ましい。
回転ベルト等の供給用ベルトとしては、少なくとも2つのロールに巻き掛けられて環状の軌道を連続走行する無端ベルトでもよい。回転ベルトは、均一性により優れた電極材料の導入を行い得る点で好ましい。具体的には、図1等に示すように、回転ベルト上に電極材料を供給し、供給された電極材料を回転する回転ベルトの上流から下流に向けて移送する過程で、電極材料を落下前にあらかじめベルト上で均一化することができる。電極材料があらかじめ均一化されることで、落下により導入された電極材料の、一対の搬送ベルトの間隙における均一性が高められる。
供給装置としては、例えば、複数のフィーダーを用いてもよい。複数のフィーダーを、一対の搬送ベルトのベルト幅方向に配置して電極材料を吐出することにより電極材料を落下させてもよい。複数のフィーダーは、一対の搬送ベルトのベルト幅方向に等間隔に配置されていることが好ましい。
フィーダーの例としては、スクリューフィーダー、ディスクフィーダー、ロータリーフィーダー、及びベルトフィーダーが挙げられる。
上記のうち、第1工程は、電極材料を供給用ベルトで搬送し、搬送された電極材料を供給用ベルトの搬送方向下流で落下させることにより電極材料を一対の搬送ベルトの間隙に導入することが好ましい。供給用ベルトとしては、少なくとも2つのロールに巻き掛けられて環状の軌道を連続走行する無端ベルトとしてもよい。また、複数の吐出装置(例えばフィーダー)と供給用ベルトとを組み合わせた供給装置を用いることが好ましい。例えば図2に示す場合のように、無端の回転ベルトと回転ベルトのベルト幅方向に配置した複数のフィーダーとにより電極材料を一対の搬送ベルトの間隙に導入することが好ましい。
なお、供給用ベルトを用いる場合、供給用ベルトのベルト搬送速度は、特に制限されず、好ましくは0.1m/分~300m/分の範囲で適宜選択することができる。
-均一化工程-
第1工程において供給用ベルトなどの搬送装置を用いる場合、均一化部材を電極材料に接触させて均一化する工程(以下、均一化工程ともいう。)を有することが好ましい。
第1工程は、均一化部材を電極材料に接触させて電極材料を供給用ベルトにより搬送することが好ましい。搬送装置の電極材料が搬送される搬送路に、付与された電極材料を均一化するための均一化部材を配置し、後述する第2工程の前に電極材料の偏りをあらかじめより均一化しておくことが好ましい。
均一化部材による電極材料の偏りの均一化は、均一化部材を電極材料と接触させて電極材料を周囲方向に移動させる方法、均一化部材により供給された電極材料を掘り返す方法等により行うことができる。
均一化部材としては、例えば、ロール、板状の部材が挙げられる。
均一化部材がロールである場合、ロール(以下、均一化ロールともいう。)の例としては、ロール面に複数の突状構造を有するロール、ロール面に凹凸状に傾斜面を有する凹凸ロール、ロール表面に軸方向中心から両端に左右対称の溝が加工形成されたヘリカルロール、回転軸の外周に螺旋構造を有するスパイラルロール、等が挙げられる。また、均一化部材として、後述する均し部材として挙げる部材も用いることができる。
均一化部材がロールである場合、ロール径及びロール面の性状等については、供給用ベルト上への電極材料の供給方法及びその条件、又は電極材料の存在状態等に合わせて適宜選択すればよい。
均一化工程において、電極材料と均一化部材とを相対的に移動させてもよい。例えば、電極材料と均一化部材とを相対的に移動させながら、供給用ベルト上の電極材料を均一化することができる。本開示において、「電極材料と均一化部材とを相対的に移動させる」とは、電極材料に対して均一化部材を移動させること、均一化部材に対して電極材料を移動させること、及び電極材料と均一化部材とを相互に移動させることを含む。電極材料と均一化部材とを相互に移動させる場合、同一の方向軸に沿って互いに離間する方向に、電極材料と均一化部材とをそれぞれ移動させることが好ましい。
-第2工程-
本開示の電極用成形体の製造方法における第2工程は、第1工程で導入された電極材料を、一対の搬送ベルトによってベルト搬送し、かつ、加圧する。
第2工程から第3工程へ移送される電極材料の量は、第1工程で導入される電極材料の量に依存し、第2工程においては、一対の搬送ベルトの間隙を調節することで第3工程へ移送される電極材料の厚みを制御することができる。
一対の搬送ベルトは、2つの搬送ベルトを、電極材料を挟んで搬送し得る位置に対向配置されたものである。
2つの搬送ベルトの配置関係は、電極材料を搬送する搬送路における搬送面の移動方向が互いに平行とされていてもよく、電極材料を搬送する搬送路における搬送面の移動方向が互いに交差する向き、又は電極材料を搬送する搬送路における搬送面の移動方向の延長線において互いに交差する向きとされていてもよい。
第2工程では、一対の搬送ベルトを用いることにより、第1工程で一対の搬送ベルトの間隙に導入された電極材料を、ベルト搬送し、かつ、電極材料のベルト搬送方向の少なくとも下流側において加圧することが好ましい。更には、一対の搬送ベルトは、第1工程で導入された電極材料を2つの搬送ベルトで挟んで搬送し、かつ、圧力を漸増させて加圧を行う観点から、電極材料を搬送する搬送路における搬送面の移動方向が互いに交差する向き、又は電極材料を搬送する搬送路における搬送面の移動方向の延長線において互いに交差する向きに配置(以下、「V字形配置」ともいう。)された2つの搬送ベルトを備えたものが好ましい。
V字形配置とは、2つの搬送ベルトの、電極材料を搬送する搬送路における搬送面(以下、「材料搬送面」ともいう。)同士が互いに向き合う状態にある場合において、2つの搬送ベルトが、互いに向き合う各々の材料搬送面が互いに交差するか、又は各々の材料搬送面を電極材料の搬送方向に延長した平面が互いに交差して、側面視でV字の形状と捉えることができる配置関係にあることを指す。
V字形配置の具体例を図6に示す。
一対の搬送ベルト11では、一対の搬送ベルト11を構成している一方の第1ベルトの一例である搬送ベルト11aは、側面視で反重力方向の中心軸Cに対して左右方向の一方(即ち、左右方向の右)に傾斜角度θ1で傾斜させて配置されている。他方の第2ベルトの一例である搬送ベルト11bは、側面視で反重力方向の中心軸Cに対して左右方向の他方(即ち、左右方向の左)に傾斜角度θ2で傾斜させて配置されている。これにより、搬送ベルト11を構成している第1ベルト及び第2ベルトはV字形配置となっている。
一対の搬送ベルトをなす2つの搬送ベルトがV字形配置とされている場合、一対の搬送ベルトは、側面視で電極材料を搬送する搬送路における搬送面の移動方向が反重力方向に対して左右方向の一方に傾斜角度θ1を0°<θ1≦60°として傾く第1ベルトと、側面視で電極材料を搬送する搬送路における搬送面の移動方向が反重力方向に対して左右方向の他方に傾斜角度θ2を0°<θ2≦60°として傾く第2ベルトと、を備えるものであることが好ましい。
第1ベルトの傾斜角度θ1の範囲としては、電極材料の導入の容易さの点で、1°≦θ1≦60°がより好ましく、5°≦θ1≦50°が更に好ましく、10°≦θ1≦45°が特に好ましく、15°≦θ1≦40°が最も好ましい。
第2ベルトの傾斜角度θ2の範囲としては、電極材料の導入の容易さの点で、0°≦θ2≦60°がより好ましく、5°≦θ2<50°が更に好ましく、10°≦θ2<45°が特に好ましい。
傾斜角度θ1及び傾斜角度θ2は、一対の搬送ベルト11における第2ベルト及び第1ベルトが、成膜ベルト21において電極材料を搬送する搬送路の搬送方向(例えば、図1の矢印方向B)に並んでこの順に配置された位置関係では、θ2≦θ1の関係にあることが好ましい。
θ2=θ1とは、一対の搬送ベルトの側面視で反重力方向に対して左右方向に同じ傾斜角度で搬送ベルトの材料搬送面が傾斜していることを意味する。
θ2<θ1とは、一対の搬送ベルトの側面視で反重力方向に対して左右方向に傾斜する搬送ベルトの材料搬送面の傾斜角度が異なることを意味する。それに加えて、θ2<θ1とは、一対の搬送ベルトを側面視した場合に反重力方向に対して左右方向の一方(即ち、側面視で左右方向の左)に傾斜角度θ2で傾斜する搬送ベルトの材料搬送面の傾斜角が、側面視した場合に反重力方向に対して左右方向の他方(即ち、側面視で左右方向の右)に傾斜角度θ1で傾斜する搬送ベルトの材料搬送面の傾斜角より小さいことを意味する。この場合、例えば図1及び図6に示すように、成膜ベルトの電極材料を成膜する成膜面を含む平面において、傾斜角度θ2の搬送ベルト11b側から、成膜ベルトの電極材料を成膜する成膜面の移動方向である傾斜角θ1の搬送ベルト11a側へ、電極材料を送り出しやすくなる。
傾斜角度θ1と傾斜角度θ2との関係を図6を参照して説明する。
傾斜角度θ1と傾斜角度θ2とは、図6に示すように、反重力方向である中心軸Cに対して同一(即ち、θ1=θ2)の関係にあってもよい。傾斜角度θ1と傾斜角度θ2との関係は、θ1=θ2に限られず、傾斜角度θ1と傾斜角度θ2とが大小異なっていてもよい。中でも、例えば図1に示す場合のように、成膜ベルトに移送された電極材料(粉体)15を成膜ベルトのベルト搬送方向である矢印方向Bに送りやすくし、膜厚の均一化を図る観点から、傾斜角度θ1と傾斜角度θ2との関係は、側面視でθ2<θ1であってもよい。傾斜角度θ1と傾斜角度θ2とがθ2<θ1の関係にある場合、0°<θ2<15°、かつ、15°<θ1≦40°であることが好ましい。
一対の搬送ベルトをなす上記の第1ベルト及び第2ベルトは、それぞれ、少なくとも2つのロールに巻き掛けられた無端ベルトであることが好ましい。2つのロールの回転により回転走行する2つの無端ベルトの材料搬送面の間に電極材料を挟むことで、電極材料は2つの材料搬送面で扱かれて所望量に調整され、電極材料をベルト搬送方向下流へ移送することができる。
また、一対の搬送ベルトは、電極材料をベルト搬送方向下流へ移送する機能を担うだけでなく、移送しながら電極材料を加圧する機能をも担っている。
一対の搬送ベルトが電極材料を加圧する際、一対の搬送ベルトにおいて電極材料をベルト搬送するベルト搬送方向の下流に向かって電極材料に加える圧力を漸増しながら加圧することが好ましい。本開示における一対の搬送ベルトが、2つの搬送ベルトをV字形に配置したものである場合、電極材料を、電極材料のベルト搬送方向において下流側へ移送するに従って電極材料に加えられる圧力を漸増する。この際、一対の搬送ベルトの下流端(例えば図1に示す場合では、一対の搬送ベルト11の下流に位置するロール17及びロール19間)において、電極材料への加圧が所望圧に達していることが好ましい。
一対の搬送ベルト11の下流端における電極材料に加える圧力は、電極材料又は厚み等に応じて適宜選択すればよいが、例えば、1MPa~1000MPaの範囲としてもよく、5MPa~500MPaの範囲としてもよい。
圧力は、圧力測定用の感圧記録材料を用いた測定により得られる値であり、例えば、圧力・面圧測定フィルム(商品名:プレスケール(登録商標)、富士フイルム株式会社製)を用いて測定することができる。
一対の搬送ベルトを構成している第2ベルトと第1ベルトとは、成膜ベルトにおいて電極材料を搬送する搬送路の搬送方向に並んでこの順に配置されていることが好ましい。また、一対の搬送ベルトにおける電極材料の搬送路の最下流(即ち、電極材料の移送側)に位置する、第1ベルトのロールと第2ベルトのロールとが、下記の式1を満たしていることが好ましい。
第1ベルトのロールの直径r1≦第2ベルトのロールの直径r2 :式1
例えば図1に示す場合(後述する第1実施形態)のように、一対の搬送ベルト11における、第2ベルトの一例である搬送ベルト11bと、第1ベルトの一例である搬送ベルト11aとが、成膜ベルト21のベルト走行方向である矢印方向Bに並んでこの順に配置されている。そして、図7に示すように、一対の搬送ベルト11における電極材料(例えば、粉体)15の搬送路(図1の矢印方向Aに電極材料を搬送する搬送路)の最下流に位置する、搬送ベルト11aのロール17と搬送ベルト11bのロール19とが、上記の式1を満たしていることが好ましい。
第1ベルト(例えば、図1中の搬送ベルト11a)及び第2ベルト(例えば、図1中の搬送ベルト11b)が式1を満たす関係にある場合、第1ベルトの材料搬送面と成膜ベルトの成膜面との間の距離を、第2ベルトの材料搬送面と成膜ベルトの成膜面との間の距離に対して大きくとることができる。これにより、例えば図1に示す場合のように、成膜ベルトに移送される電極材料15を、成膜ベルトの搬送方向である矢印方向Bに送りやすくなる。
式1の中でも、下記の式2を満たすことがより好ましく、下記の式3を満たすことが更に好ましい。直径r1及びr2の単位は、「mm」である。
0≦(ロールの直径r2-ロールの直径r1)≦100 :式2
1≦(ロールの直径r2-ロールの直径r1)≦30 :式3
第1ベルトのロールの直径r1、及び第2ベルトのロールの直径r2は、特に制限されず、目的又は場合に応じて適宜選択すればよい。
第1ベルト及び第2ベルトが、それぞれ無端ベルトを少なくとも2つのロールに巻き掛けてなるものである場合、第1ベルトと第2ベルトと間の距離(搬送面間距離)は、以下の範囲とすることができる。搬送面間距離は、第1ベルトの最表面と第2ベルトの最表面の最短距離である。
一対の搬送ベルトにおける電極材料の搬送路の、最上流(即ち、電極材料の導入側)に位置する第1ベルトの搬送面と第2ベルトの搬送面との間の距離(導入側の搬送面間距離)は、0.1mm~50mmの範囲で適宜選択することができる。導入側の搬送面間距離は、例えば図6に示すように、側面視で搬送ベルト11aにおけるロール16の軸心を通る線と搬送ベルト11aの材料搬送面(電極材料を搬送する搬送面)とが垂直に交わる点Pと、側面視で搬送ベルト11bにおけるロール18の軸心を通る線と搬送ベルト11bの材料搬送面とが垂直に交わる点Qと、の最短距離である。
また、一対の搬送ベルトにおける電極材料の搬送路の、最下流(即ち、電極材料の移送側)に位置する第1ベルトの搬送面と第2ベルトの搬送面との間の距離(移送側の搬送面間距離)は、0.1mm~50mmの範囲で適宜選択することができる。移送側の搬送面間距離は、例えば図6に示すように、側面視で搬送ベルト11aにおけるロール17の軸心を通る線と搬送ベルト11aの材料搬送面とが垂直に交わる点Rと、側面視で搬送ベルト11bにおけるロール19の軸心を通る線と搬送ベルト11bの材料搬送面とが垂直に交わる点Sと、の最短距離である。
一対の搬送ベルト11における第2ベルト及び第1ベルトは、成膜ベルト21における電極材料の搬送路の搬送方向である矢印方向Bに並んでこの順に配置された位置関係では、第1ベルト(例えば、図1中の搬送ベルト11a)のベルト搬送速度が、第2ベルト(例えば、図1中の搬送ベルト11b)のベルト搬送速度以上であることが好ましい。これにより、電極材料を搬送方向である矢印方向Bに送りやすくなり、膜状の電極材料の質量分布の均一性がより向上する。
第1ベルトのベルト搬送速度が第2ベルトのベルト搬送速度以上である場合、第1ベルト(例えば、図1中の搬送ベルト11a)のベルト搬送速度が、第2ベルト(例えば、図1中の搬送ベルト11b)のベルト搬送速度に対し、0.1m/min~5m/minの範囲で大きい速度差を有することが好ましい。
なお、一対の搬送ベルトにおいて、第1ベルトのベルト搬送速度、及び第2ベルトのベルト搬送速度は、特に制限されず、好ましくは0.1m/min~300m/minの範囲で適宜選択することができる。
-第3工程-
本開示の電極用成形体の製造方法における第3工程は、第2工程でのベルト搬送及び加圧の後の電極材料を成膜ベルトの上に移送する。この際、成膜ベルトの電極材料を搬送する搬送路における搬送方向と、一対の搬送ベルトの電極材料を搬送する搬送路における搬送方向と、は互いに交差する位置関係となっている。
成膜ベルトの搬送路における搬送方向と一対の搬送ベルトの搬送路における搬送方向とが交差するとは、一対の搬送ベルトによって移送された電極材料が、成膜ベルトによって一対の搬送ベルトによる電極材料の搬送方向とは異なる方向へ電極材料が移送されることを意味する。
上記一対の搬送ベルトの、成膜ベルトの電極材料を搬送する搬送路の搬送方向に並んで配置された2つの搬送ベルトのうち、搬送方向下流側に配置された搬送ベルトと成膜ベルトとの位置関係は、任意に設定することができる。中でも、一対の搬送ベルトの搬送方向下流側に配置された搬送ベルトの材料搬送面と成膜ベルトの成膜面との距離(搬送成膜面間距離)は、電極材料の厚みを安定的に制御する観点から、一対の搬送ベルトにおける上記「移送側の搬送面間距離」と同じ距離に設定されることが好ましい。一対の搬送ベルトの搬送方向下流側に配置された搬送ベルトと成膜ベルトとの間の搬送成膜面間距離は、0.1mm~50mmの範囲で適宜選択すればよい。
一対の搬送ベルトの搬送方向下流側の搬送ベルトと成膜ベルトとの搬送成膜面間距離は、図8に示すように、側面視で成膜ベルト21における電極材料の搬送路の最表面の点Tと、点Tを通る成膜ベルトの法線が搬送ベルト11aの最表面と交わる点Uと、の長さが最短となる距離を指す。
成膜ベルトの電極材料の搬送方向と、一対の搬送ベルトの電極材料の搬送方向と、が交差する交差角としては、重力方向と平行な軸を含む平面において、180°未満の角度であれば制限はなく、目的や場合に応じて適宜選択すればよく、例えば、45°~135°の範囲としてもよく、60°~120°の範囲としてもよい。
一対の搬送ベルトの第2ベルトと第1ベルトとが、成膜ベルトにおける電極材料の搬送路の搬送方向に並んでこの順に配置された位置関係である場合、成膜ベルトのベルト走行速度は、少なくとも一対の搬送ベルトの第1ベルトのベルト搬送速度以上であることが好ましい。第3工程において、一対の搬送ベルトから電極材料を成膜ベルトに移送する際、成膜ベルトのベルト走行方向における第2ベルトの上流へ電極材料が逆流する現象が抑制され、膜状の電極材料の質量分布の均一性をより高めることができる。
この場合、成膜ベルトのベルト走行速度が、第1ベルト(例えば、図1中の搬送ベルト11a)のベルト搬送速度に対し、0.1m/min~5m/minの範囲で大きい速度差を有することが好ましい。
-均し工程-
第3工程では、電極材料を、均し部材を電極材料に接触させて均す工程を有することが好ましい。均し工程を有することで、電極材料を均しながら搬送することができる。
均し部材としては、例えば、ロール、プレス、スクレーパー、及び板状の部材(例えば、スキージ)が挙げられる。上記の中でも、均し部材は、連続性の観点から、ロールであることが好ましい。均し部材は、表面処理が施されていてもよい。表面処理としては、例えば、シリコーンコーティング、及びフッ素コーティングが挙げられる。
均し部材がロールである場合、ロールのロール径及びロール面の性状等については、電極材料の状態等に合わせて適宜選択すればよい。
均し工程において、電極材料と均し部材とを相対的に移動させてもよい。例えば、電極材料と均し部材とを相対的に移動させながら、成膜ベルト上の電極材料を均すことができる。本開示において、「電極材料と均し部材とを相対的に移動させる」とは、電極材料に対して均し部材を移動させること、均し部材に対して電極材料を移動させること、及び電極材料と均し部材とを相互に移動させることを含む。電極材料と均し部材とを相互に移動させる場合、同一の方向軸に沿って互いに離間する方向に、電極材料と均し部材とをそれぞれ移動させることが好ましい。
-第1支持部材供給工程-
本開示の電極用成形体の製造方法は、上記の第1工程~第3工程に加えて、一対の搬送ベルトの第2ベルトの電極材料を搬送する搬送面、及び成膜ベルトの電極材料を成膜する成膜面に、長尺の第1支持部材を連続供給する工程(以下、「第1支持部材供給工程」ともいう。)を更に有していることが好ましい。
第1支持部材供給工程を設ける場合、上記の第2工程では、一対の搬送ベルトに導入された電極材料を、第2ベルト上の第1支持部材と第1ベルトとによりベルト搬送し、かつ、加圧する。この場合、電極材料のベルト搬送方向の少なくとも下流側において電極材料を加圧することが好ましく、電極材料のベルト搬送方向に向かって電極材料に対する圧力を漸増させて加圧することがより好ましい。そして、上記の第3工程では、電極材料を、成膜ベルト上の第1支持部材の表面に移送する。
一対の搬送ベルトの第2ベルトの電極材料を搬送する搬送面及び成膜ベルトの成膜面に長尺の第1支持部材を連続供給することにより、電極材料が接し得る成膜ベルトの成膜面に支持部材を付与することが可能になる。これにより、支持部材上への成膜を行うことができる。また、第1支持部材が配置されることにより、電極材料が接し得る成膜ベルトの成膜面の性状が制御され、性状が制御された成膜面に電極材料を成膜することができる。
第1支持部材は、集電体又は離型材とすることができる。
第1支持部材の形状は、制限されない。第1支持部材の形状は、平板状であることが好ましい。
第1支持部材の厚さは、制限されない。第1支持部材の平均厚さは、自己支持性、搬送性、及び貫通耐性の観点から、1μm~500μmであることが好ましく、3μm~300μmであることがより好ましく、5μm~200μmであることが特に好ましい。第1支持部材の平均厚さは、断面観察によって測定される3か所の厚さの算術平均とする。断面観察においては、公知の顕微鏡(例えば、走査型電子顕微鏡)を用いることができる。
集電体としては、制限されず、公知の集電体を利用できる。第1支持部材が集電体であることで、電極材料を集電体上に容易に配置することができ、さらに、生産性を向上させることもできる。
正極集電体としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、及びチタンが挙げられる。正極集電体は、アルミニウム、又はアルミニウム合金であることが好ましい。正極集電体は、表面にカーボン、ニッケル、チタン、若しくは銀を含む被覆層を有する、アルミニウム、又はステンレス鋼であることも好ましい。
負極集電体としては、例えば、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、及びチタンが挙げられる。負極集電体は、アルミニウム、銅、銅合金、又はステンレス鋼であることが好ましく、銅、又は銅合金であることがより好ましい。負極集電体は、表面にカーボン、ニッケル、チタン、若しくは銀を含む被覆層を有する、アルミニウム、銅、銅合金、又はステンレス鋼であることも好ましい。
集電体としては、アルミニウム箔、又は銅箔であることが好ましい。アルミニウム箔は、通常、正極における集電体として利用される。銅箔は、通常、負極における集電体として利用される。
離型材としては、例えば、離型紙、表面処理が施された金属(例えば、表面処理が施されたアルミニウム)、及びステンレス鋼(一般的に「SUS」と称される。)、被覆層を有するフィルム、及び被覆層を有する紙が挙げられる。被覆層は、例えば、シリコーンコーティング、又はフッ素コーティングによって形成できる。
第1支持部材は、電極材料の離型性の向上という観点から、離型材であることが好ましく、離型紙であることがより好ましい。
-第2支持部材供給工程-
本開示の電極用成形体の製造方法は、上記の第1工程~第3工程及び第1支持部材供給工程に加えて、更に、第1ベルトの電極材料を搬送する搬送面、及び成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給する工程(以下、「第2支持部材供給工程A」ともいう。)を有していることが好ましい。
第2支持部材供給工程Aでは、第1支持部材供給工程も行っている。
第2支持部材供給工程Aを設ける場合、第1支持部材供給工程が行われるので、一対の搬送ベルトの第2ベルトの電極材料を搬送する搬送面及び成膜ベルトの成膜面に長尺の第1支持部材も連続供給されている。したがって、上記の第2工程では、一対の搬送ベルトに導入された電極材料を、第2ベルト上の第1支持部材と第1ベルト上の第2支持部材とを介してベルト搬送し、かつ、加圧する。この場合、電極材料のベルト搬送方向の少なくとも下流側において電極材料を加圧することが好ましく、電極材料のベルト搬送方向に向かって電極材料に対する圧力を漸増させて加圧することがより好ましい。そして、上記の第3工程では、電極材料を、成膜ベルト上の第1支持部材の表面に第2支持部材と接触した状態で移送する。
一対の搬送ベルトの第2ベルトの電極材料を搬送する搬送面及び成膜ベルトの成膜面に長尺の第1支持部材を連続供給する利点は、上記の通りである。そして、一対の搬送ベルトの第1ベルトの電極材料を搬送する搬送面、及び成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給することの利点は、一対の搬送ベルトにおける電極材料の搬送路の第1ベルトと電極材料との接触状態を制御することが可能になることにある。第1ベルトの表面に第2支持部材が配置されることにより、電極材料が接し得る第1ベルトの表面の性状が制御される。結果、第1ベルトの表面への電極材料の付着が低く抑えられる等の効果が奏される。
上記の第1支持部材及び第2支持部材は、集電体又は離型材とすることができる。
集電体及び離型材の詳細及び好ましい態様等の詳細については、上記の第1支持部材供給工程における第1支持部材における場合と同様である。
第2支持部材供給工程Aでは、第1支持部材及び第2支持部材としては、一方が集電体であり、他方が離型材であることが好ましい。
また、本開示の電極用成形体の製造方法は、上記の第1支持部材供給工程を設けず、上記の第1工程~第3工程に加えて、第1ベルトの電極材料を搬送する搬送面、及び成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給する工程(以下、「第2支持部材供給工程B」ともいう。)を更に有していてもよい。
第2支持部材供給工程Bでは、第1支持部材供給工程は行われていない。
第2支持部材供給工程Bを設ける場合、上記の第2工程では、一対の搬送ベルトに導入された電極材料を、第2ベルトと第1ベルト上に位置する第2支持部材とによりベルト搬送し、かつ、加圧する。この場合、電極材料のベルト搬送方向の少なくとも下流側において電極材料を加圧することが好ましく、電極材料のベルト搬送方向に向かって電極材料に対する圧力を漸増させて加圧することがより好ましい。そして、上記の第3工程では、電極材料を、成膜ベルト上に移送する。
一対の搬送ベルトの第1ベルトの電極材料を搬送する搬送面、及び成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給することにより、一対の搬送ベルトにおける電極材料の第1ベルトと電極材料との接触状態を制御することが可能になる。第1ベルトの表面に第2支持部材が配置されることにより、電極材料が接し得る第1ベルトの表面の性状を制御することができる。結果、第1ベルトの表面への電極材料の付着が低く抑えられる等の効果が奏される。
-第3支持部材供給工程-
本開示の電極用成形体の製造方法は、上記の第1工程~第3工程に加えて、更に、成膜ベルトの成膜面に長尺の第3支持部材を連続供給する工程(以下、「第3支持部材供給工程」ともいう。)を有していることも好ましい。
成膜ベルトの成膜面に長尺の第3支持部材を連続供給することにより、電極材料が接し得る成膜ベルトの成膜面に支持部材を付与することが可能になる。これにより、支持部材上への成膜を行うことができる。また、第3支持部材が配置されることにより、電極材料が接し得る成膜ベルトの成膜面の性状が制御され、性状が制御された成膜面に電極材料を成膜することができる。
第3支持部材は、集電体又は離型材とすることができる。
集電体及び離型材の詳細及び好ましい態様等の詳細については、上記の第1支持部材供給工程における第1支持部材における場合と同様である。
また、上記の第2支持部材供給工程Bと第3支持部材供給工程とを行ってもよい。
この場合、第3支持部材供給工程において、第3支持部材が成膜ベルト上に連続的に供給され、かつ、第2支持部材供給工程Bにおいて、第1ベルトの電極材料を搬送する搬送面、及び第3支持部材上に移送された電極材料の上に、長尺の第2支持部材が連続的に供給される。
上記において、第1支持部材、第2支持部材、及び第3支持部材の少なくとも1つは、集電体又は離型材とすることができる。
集電体及び離型材の詳細及び好ましい態様等の詳細については、上記の第1支持部材と同様である。
-準備工程-
本開示に係る電極用成形体の製造方法は、第1工程~第3工程の前に、電極活物質を含む電極材料を準備する工程(準備工程」)を有することが好ましい。
本開示において、「電極材料を準備する」とは、電極材料を使用可能な状態にすることを意味し、特に断りのない限り、電極材料を調製することを含む。すなわち、準備工程においては、予め調製した電極材料又は市販されている電極材料を準備してもよく、電極材料を調製してもよい。
[電極材料]
電極材料は、電極活物質を含む。電極材料は、必要に応じて、電極活物質以外の成分を含んでいてもよい。以下、電極材料の成分について説明する。
(電極活物質)
電極活物質は、周期律表における第1族、又は第2族に属する金属元素のイオンを挿入、及び放出することが可能な物質である。電極活物質としては、例えば、正極活物質、及び負極活物質が挙げられる。
-正極活物質-
正極活物質としては、制限されず、正極に用いられる公知の活物質を利用できる。正極活物質は、可逆的にリチウムイオンを挿入及び放出できる正極活物質であることが好ましい。
正極活物質としては、例えば、遷移金属酸化物、及びリチウムと複合化できる元素(例えば、硫黄)が挙げられる。上記の中でも、正極活物質は、遷移金属酸化物であることが好ましい。
遷移金属酸化物は、Co(コバルト)、Ni(ニッケル)、Fe(鉄)、Mn(マンガン)、Cu(銅)、及びV(バナジウム)からなる群より選択される少なくとも1種の遷移金属元素(以下、「元素Ma」という。)を含む遷移金属酸化物であることが好ましい。
遷移金属酸化物がLi、及び元素Maを含む場合、Maに対するLiのモル比(Li/Ma)は、0.3~2.2であることが好ましい。
また、遷移金属酸化物は、リチウム以外の第1族の元素、第2族の元素、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Ge(ゲルマニウム)、Sn(スズ)、Pb(鉛)、Sb(アンチモン)、Bi(ビスマス)、Si(ケイ素)、P(リン)、及びB(ホウ素)からなる群より選択される少なくとも1種の遷移金属元素(以下、「元素Mb」という。)を含んでいてもよい。元素Mbの含有量は、元素Maの物質量に対して、0mol%~30mol%であることが好ましい。
遷移金属酸化物としては、例えば、層状岩塩型構造を有する遷移金属酸化物、スピネル型構造を有する遷移金属酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有遷移金属ハロゲン化リン酸化合物、及びリチウム含有遷移金属ケイ酸化合物が挙げられる。
層状岩塩型構造を有する遷移金属酸化物としては、例えば、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
スピネル型構造を有する遷移金属酸化物としては、例えば、LiCoMnO、LiFeMn、LiCuMn、LiCrMn、及びLiNiMnが挙げられる。
リチウム含有遷移金属リン酸化合物としては、例えば、オリビン型リン酸鉄塩(例えば、LiFePO、及びLiFe(PO)、ピロリン酸鉄塩(例えば、LiFeP)、リン酸コバルト塩(例えば、LiCoPO)、及び単斜晶ナシコン型リン酸バナジウム塩(例えば、Li(PO(リン酸バナジウムリチウム))が挙げられる。
リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、フッ化リン酸鉄塩(例えば、LiFePOF)、フッ化リン酸マンガン塩(例えば、LiMnPOF)、及びフッ化リン酸コバルト塩(例えば、LiCoPOF)が挙げられる。
リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、及びLiCoSiOが挙げられる。
遷移金属酸化物は、層状岩塩型構造を有する遷移金属酸化物であることが好ましく、LiCoO(コバルト酸リチウム[LCO])、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、及びLiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])からなる群より選択される少なくとも1種の化合物であることがより好ましい。
正極活物質は、市販品であってもよく、公知の方法(例えば、焼成法)によって製造されたものであってもよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、又は有機溶剤を用いて洗浄したものを用いてもよい。
正極活物質の組成は、誘導結合プラズマ(ICP)発光分光分析法を用いて測定する。
正極活物質の形状は、制限されないが、取扱性の観点から、粒子状であることが好ましい。
正極活物質の体積平均粒子径は、制限されず、例えば、0.1μm~50μmとすることができる。正極活物質の体積平均粒子径は、0.3μm~40μmであることが好ましく、0.5μm~30μmであることがより好ましい。正極活物質の体積平均粒子径が0.3μm以上であることで、電極材料の集合体を容易に形成することができ、また、取り扱いの際に電極材料が飛散することを抑制できる。正極活物質の体積平均粒子径が40μm以下であることで、電極用成形体の厚さを容易に調節することができ、また、成形過程において空隙の発生を抑制することができる。
正極活物質の体積平均粒子径は、以下の方法により測定する。正極活物質と溶剤(例えば、ヘプタン、オクタン、トルエン、又はキシレン)とを混合することによって、0.1質量%の正極活物質を含む分散液を調製する。1kHzの超音波を10分間照射した分散液を測定試料とする。レーザ回折/散乱式粒度分布測定装置(例えば、株式会社堀場製作所製のLA-920)を用いて、温度25℃の条件下でデータの取り込みを50回行い、体積平均粒子径を求める。測定用のセルには、石英セルを用いる。上記測定を5つの試料を用いて行い、測定値の平均を正極活物質の体積平均粒子径とする。その他の詳細な条件については、必要に応じて、「JIS Z 8828:2013」を参照する。
正極活物質の粒子径を調整する方法としては、例えば、粉砕機、又は分級機を用いる方法が挙げられる。
電極材料は、1種単独の正極活物質を含んでいてもよく、2種以上の正極活物質を含んでいてもよい。
正極活物質の含有量は、電極材料の全固形分質量に対して、10質量%~95質量%であることが好ましく、30質量%~90質量%であることより好ましく、50質量%~85質量であることさらに好ましく、60質量%~80質量%であること特に好ましい。
-負極活物質-
負極活物質としては、制限されず、負極に用いられる公知の活物質を利用できる。負極活物質は、可逆的にリチウムイオンを挿入及び放出できる負極活物質であることが好ましい。
負極活物質としては、例えば、炭素質材料、金属酸化物(例えば、酸化スズ)、酸化ケイ素、金属複合酸化物、リチウム単体、リチウム合金(例えば、リチウムアルミニウム合金)、及びリチウムと合金を形成可能な金属(例えば、Sn、Si、及びIn)が挙げられる。上記の中でも、負極活物質は、信頼性の観点から、炭素質材料、又はリチウム複合酸化物であることが好ましい。
炭素質材料は、実質的に炭素からなる材料である。炭素質材料としては、例えば、石油ピッチ、カーボンブラック(例えば、アセチレンブラック)、黒鉛(例えば、天然黒鉛、及び人造黒鉛(例えば、気相成長黒鉛))、ハードカーボン、及び合成樹脂(例えば、ポリアクリロニトリル(PAN)、及びフルフリルアルコール樹脂)を焼成してなる炭素質材料が挙げられる。炭素質材料としては、例えば、炭素繊維(例えば、ポリアクリロニトリル系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、及び活性炭素繊維)も挙げられる。黒鉛としては、例えば、メソフェーズ微小球体、グラファイトウィスカー、及び平板状の黒鉛も挙げられる。本開示において、「平板状」とは、互いに対向する2つの主平面を有することを意味する。
金属複合酸化物としては、リチウムを吸蔵及び放出可能な金属複合酸化物であることが好ましい。リチウムを吸蔵及び放出可能な金属複合酸化物は、高電流密度充放電特性の観点から、チタン、及びリチウムからなる群より選択される少なくとも1種の元素を含むことが好ましい。
金属酸化物、及び金属複合酸化物は、特に非晶質酸化物であることが好ましい。ここで、「非晶質」とは、CuKα線を用いたX線回折法において、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。非晶質酸化物において、2θ値で40°~70°の領域に観察される結晶性の回折線のうち最も強い強度は、2θ値で20°~40°の領域に観察されるブロードな散乱帯の頂点の回折線強度の100倍以下であることが好ましく、5倍以下であることがより好ましい。非晶質酸化物は、結晶性の回折線を有しないことが特に好ましい。
金属酸化物、及び金属複合酸化物は、カルコゲナイドであることも好ましい。カルコゲナイドは、金属元素と周期律表第16族の元素との反応生成物である。
非晶質酸化物、及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドが好ましく、周期律表における第13族~15族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、及びBiからなる群より選択される少なくとも1種の元素を含む酸化物、並びにカルコゲナイドがより好ましい。
非晶質酸化物、及びカルコゲナイドの好ましい例としては、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、及びSnSiSが挙げられる。また、上記した化合物は、リチウムとの複合酸化物(例えば、LiSnO)であってもよい。
負極活物質は、チタンをさらに含むことも好ましい。リチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、そして、電極の劣化が抑制されることでリチウムイオン二次電池の寿命向上が可能となる観点から、チタンを含む負極活物質は、LiTi12(チタン酸リチウム[LTO])であることが好ましい。
負極活物質は、市販品であってもよく、公知の方法(例えば、焼成法)によって製造されたものであってもよい。焼成法によって得られた負極活物質は、水、酸性水溶液、アルカリ性水溶液、又は有機溶剤を用いて洗浄したものを用いてもよい。
負極活物質は、例えば、CGB20(日本黒鉛工業株式会社)として入手可能である。
負極活物質の組成は、誘導結合プラズマ(ICP)発光分光分析法を用いて測定する。
負極活物質の形状は、制限されないが、取り扱い易く、そして、量産の際に均一性を管理しやすいという観点から、粒子状であることが好ましい。
負極活物質の体積平均粒子径は、0.1μm~60μmであることが好ましく、0.3μm~50μmであることがより好ましく、0.5μm~40μmであることが特に好ましい。負極活物質の体積平均粒子径が0.1μm以上であることで、電極材料の集合体を容易に形成することができ、また、取り扱いの際に電極材料が飛散することを抑制できる。負極活物質の体積平均粒子径が60μm以下であることで、電極用成形体の厚さを容易に調節することができ、また、成形過程において空隙の発生を抑制することができる。負極活物質の体積平均粒子径は、上記正極活物質の体積平均粒子径の測定方法に準ずる方法により測定する。
負極活物質の粒子径を調整する方法としては、例えば、粉砕機、又は分級機を用いる方法が挙げられる。上記方法においては、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル、又は篩が好適に用いられる。負極活物質の粉砕においては、水、又は有機溶剤(例えば、メタノール)を用いる湿式粉砕も必要に応じて行うことができる。所望の粒子径に調整する方法は、分級であることが好ましい。分級においては、例えば、篩、又は風力分級機を用いることができる。分級は、乾式であってもよく、湿式であってもよい。
負極活物質として、Sn、Si、又はGeを含む非晶質酸化物を用いる場合、上記非晶質酸化物と併用することができる好ましい負極活物質としては、例えば、リチウムイオン又はリチウム金属を吸蔵及び放出できる炭素材料、リチウム、リチウム合金、及びリチウムと合金可能な金属が挙げられる。
電極材料は、1種単独の負極活物質を含んでいてもよく、2種以上の負極活物質を含んでいてもよい。
負極活物質の含有量は、電極材料の全固形分質量に対して、10質量%~80質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~80質量%であることがさらに好ましく、40質量%~75質量%であることが特に好ましい。
正極活物質、及び負極活物質の表面は、表面被覆剤で被覆されていてもよい。表面被覆剤としては、例えば、Ti、Nb、Ta、W、Zr、Si、又はLiを含む金属酸化物が挙げられる。上記金属酸化物としては、例えば、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、及びニオブ酸リチウム系化合物が挙げられる。具体的な化合物としては、例えば、LiTi12、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、及びLiBOが挙げられる。
(無機固体電解質)
電極材料は、電池性能(例えば、放電容量、及び出力特性)の向上という観点から、無機固体電解質を含むことが好ましい。ここで、「固体電解質」とは、内部においてイオンを移動させることができる固体状の電解質を意味する。
無機固体電解質は、主たるイオン伝導度材料として有機物を含むものではないことから、有機固体電解質(例えば、ポリエチレンオキシド(PEO)に代表される高分子電解質、及びリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)に代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は、定常状態では固体であるため、カチオン若しくはアニオンに解離又は遊離していない。よって、電解液、ポリマー中でカチオン若しくはアニオンに解離又は遊離している無機電解質塩(例えば、LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、及びLiCl)とも明確に区別される。
無機固体電解質は、周期律表における第1族又は第2族に属する金属元素のイオンの伝導性を有するものであれば制限されず、電子伝導性を有しないことが一般的である。
本開示に係る電極用成形体の製造方法によって得られる電極用成形体がリチウムイオン電池に用いられる場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
無機固体電解質としては、例えば、硫化物系無機固体電解質、及び酸化物系無機固体電解質が挙げられる。上記の中でも、無機固体電解質は、活物質と無機固体電解質との間に良好な界面を形成できるという観点から、硫化物系無機固体電解質であることが好ましい。
-硫化物系無機固体電解質-
硫化物系無機固体電解質は、硫黄原子(S)を含み、周期律表における第1族又は第2族に属する金属元素のイオン伝導性を有し、かつ、電子絶縁性を有することが好ましい。
硫化物系無機固体電解質は、少なくともLi、S、及びPを含有し、リチウムイオン伝導性を有することがより好ましい。硫化物系無機固体電解質は、必要に応じて、Li、S、及びP以外の元素を含んでいてもよい。
硫化物系無機固体電解質としては、例えば、下記式(A)で示される組成を有する無機固体電解質が挙げられる。
a1b1c1d1e1 (A)
式(A)中、Lは、Li、Na、及びKからなる群より選択される少なくとも1種の元素を表し、Liであることが好ましい。
式(A)中、Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al、及びGeからなる群より選択される少なくとも1種の元素を表し、B、Sn、Si、Al、又はGeであることが好ましく、Sn、Al、又はGeであることがより好ましい。
式(A)中、Aは、I、Br、Cl、及びFからなる群より選択される少なくとも1種の元素を表し、I、又はBrであることが好ましく、Iであることがより好ましい。
式(A)中、a1は、1~12を表し、1~9であることが好ましく、1.5~4であることがより好ましい。
式(A)中、b1は、0~1を表し、0~0.5であることがより好ましい。
式(A)中、c1は、1を表す。
式(A)中、d1は、2~12を表し、3~7であることが好ましく、3.25~4.5であることがより好ましい。
式(A)中、e1は、0~5を表し、0~3であることが好ましく、0~1であることがより好ましい。
式(A)中、b1、及びe1が0であることが好ましく、b1、及びe1が0であり、かつ、a1、c1、及びd1の比が、1~9:1:3~7であることがより好ましく、b1、及びe1が0であり、かつ、a1、c1、及びd1の比が、1.5~4:1:3.25~4.5であることが特に好ましい。
各元素の組成比は、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
硫化物系無機固体電解質は、非結晶(ガラス)であってもよく、結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。上記のような硫化物系無機固体電解質としては、例えば、Li、P、及びSを含有するLi-P-S系ガラス、並びにLi、P、及びSを含有するLi-P-S系ガラスセラミックスが挙げられる。上記の中でも、硫化物系無機固体電解質は、Li-P-S系ガラスであることが好ましい。
硫化物系無機固体電解質のリチウムイオン伝導度は、1×10-4S/cm以上であることが好ましく、1×10-3S/cm以上であることがより好ましい。リチウムイオン伝導度の上限は、制限されない。リチウムイオン伝導度は、1×10-1S/cm以下であることが実際的である。
硫化物系無機固体電解質は、例えば、(1)硫化リチウム(LiS)と硫化リン(例えば、五硫化二燐(P))との反応、(2)硫化リチウムと単体燐及び単体硫黄の少なくとも一方との反応、又は(3)硫化リチウムと硫化リン(例えば、五硫化二燐(P))と単体燐及び単体硫黄の少なくとも一方との反応により製造できる。
Li-P-S系ガラス、及びLi-P-S系ガラスセラミックスの製造における、LiSとPとのモル比(LiS:P)は、65:35~85:15であることが好ましくは、68:32~77:23であることがより好ましい。LiSとPとのモル比を上記範囲にすることにより、リチウムイオン伝導度をより高めることができる。
硫化物系無機固体電解質としては、例えば、LiSと、第13族~第15族の元素の硫化物とを含む原料組成物を用いてなる化合物が挙げられる。原料組成物としては、例えば、LiS-P、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、及びLi10GeP12が挙げられる。上記の中でも、原料組成物は、高いリチウムイオン伝導度の観点から、LiS-P、LiS-GeS-Ga、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO、LiS-LiI-LiO-P、LiS-LiO-P、LiS-LiPO-P、LiS-GeS-P、又はLi10GeP12であることが好ましく、LiS-P、Li10GeP12、又はLiS-P-SiSであることがより好ましい。
上記した原料組成物を用いて硫化物系無機固体電解質材料を製造する方法としては、例えば、非晶質化法が挙げられる。非晶質化法としては、例えば、メカニカルミリング法、及び溶融急冷法が挙げられる。上記の中でも、常温での処理が可能となり、また、製造工程の簡略化を図ることができる観点から、メカニカルミリング法が好ましい。
-酸化物系無機固体電解質-
酸化物系無機固体電解質は、酸素原子(O)を含み、周期律表における第1族又は第2族に属する金属元素のイオン伝導性を有し、かつ、電子絶縁性を有することが好ましい。
酸化物系無機固体電解質のイオン伝導度は、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。イオン伝導度の上限は、制限されない。イオン伝導度は、1×10-1S/cm以下であることが実際的である。
酸化物系無機固体電解質としては、例えば、以下の化合物が挙げられる。ただし、酸化物系無機固体電解質は、以下の化合物に制限されない。
(1)LixaLayaTiO(以下、「LLT」という。xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。)
(2)LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、及びSnからなる群より選択される少なくとも1種の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)
(3)Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、及びSnからなる群より選択される少なくとも1種の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)
(4)Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。)
(5)Li(3-2xe)ee xeeeO(xeは0≦xe≦0.1を満たし、Meeは2価の金属原子を表し、Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)
(6)LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。)
(7)Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。)
(8)LiBO
(9)LiBO-LiSO
(10)LiO-B-P
(11)LiO-SiO
(12)LiBaLaTa12
(13)LiPO(4-3/2w)(wはw<1を満たす。)
(14)LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO
(15)ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO
(16)NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12
(17)Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。)
(18)ガーネット型結晶構造を有するLiLaZr12(以下、「LLZ」という。)
酸化物系無機固体電解質としては、Li、P、及びOを含むリン化合物も好ましい。Li、P、及びOを含むリン化合物としては、例えば、リン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、及びLiPOD1(D1は、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、及びAuからなる群より選択される少なくとも1種の元素である。)が挙げられる。
酸化物系無機固体電解質としては、LiAON(Aは、Si、B、Ge、Al、C、及びGaからなる群より選択される少なくとも1種の元素である。)も好ましい。
上記の中でも、酸化物系無機固体電解質は、LLT、LixbLaybZrzbbb mbnb(Mbb、xb、yb、zb、mb、及びnbは、上記のとおりである。)、LLZ、LiBO、LiBO-LiSO、又はLixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xd、yd、zd、ad、md、及びndは、上記のとおりである。)であることが好ましく、LLT、LLZ、LAGP(Li1.5Al0.5Ge1.5(PO)、又はLATP([Li1.4TiSi0.42.612]-AlPO)であることがより好ましく、LLZであることが特に好ましい。
無機固体電解質は、粒子状であることが好ましい。
無機固体電解質の体積平均粒子径は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。無機固体電解質の体積平均粒子径は、100μm以下であることが好ましく、50μm以下であることがより好ましい。
無機固体電解質の体積平均粒子径の測定は、以下の方法により測定する。無機固体電解質と水(水に不安定な物質の場合はヘプタン)とを混合することによって、1質量%の無機固体電解質を含む分散液を調製する。1kHzの超音波を10分間照射した分散液を測定試料とする。レーザ回折/散乱式粒度分布測定装置(例えば、株式会社堀場製作所製のLA-920)を用いて、温度25℃の条件下でデータの取り込みを50回行い、体積平均粒子径を求める。測定用のセルには、石英セルを用いる。上記測定を5つの試料を用いて行い、測定値の平均を無機固体電解質の体積平均粒子径とする。その他の詳細な条件については、必要に応じて、「JIS Z 8828:2013」を参照する。
電極材料は、1種単独の無機固体電解質を含んでいてもよく、2種以上の無機固体電解質を含んでいてもよい。
電極材料が無機固体電解質を含む場合、無機固体電解質の含有量は、界面抵抗の低減、及び電池特性維持効果(サイクル特性の向上)の観点から、電極材料の全固形分質量に対して、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが特に好ましい。同様の観点から、無機固体電解質の含有量は、電極材料の全固形分質量に対して、90質量%以下であることが好ましく、70質量%以下であることがより好ましく、50質量%以下であることが特に好ましい。
(バインダー)
電極材料は、電極材料同士の密着性の向上という観点から、バインダーを含むことが好ましい。バインダーとしては、有機ポリマーであれば制限されず、電池材料の正極又は負極において結着剤として用いられる公知のバインダーを利用できる。バインダーとしては、例えば、含フッ素樹脂、炭化水素系熱可塑性樹脂、アクリル樹脂、及びウレタン樹脂が挙げられる。
含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、及びポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合物(PVdF-HFP)が挙げられる。
炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、及びポリイソプレンが挙げられる。
アクリル樹脂としては、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸イソプロピル、ポリ(メタ)アクリル酸イソブチル、ポリ(メタ)アクリル酸ブチル、ポリ(メタ)アクリル酸ヘキシル、ポリ(メタ)アクリル酸オクチル、ポリ(メタ)アクリル酸ドデシル、ポリ(メタ)アクリル酸ステアリル、ポリ(メタ)アクリル酸2-ヒドロキシエチル、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ベンジル、ポリ(メタ)アクリル酸グリシジル、ポリ(メタ)アクリル酸ジメチルアミノプロピル、及び上記樹脂を形成するモノマーの共重合体が挙げられる。
バインダーとしては、ビニル系モノマーの共重合体も挙げられる。ビニル系モノマーの共重合体としては、例えば、(メタ)アクリル酸メチル-スチレン共重合体、(メタ)アクリル酸メチル-アクリロニトリル共重合体、及び(メタ)アクリル酸ブチル-アクリロニトリル-スチレン共重合体が挙げられる。
バインダーの重量平均分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、50,000以上であることが特に好ましい。バインダーの重量平均分子量は、1,000,000以下であることが好ましく、200,000以下であることがより好ましく、100,000以下であることが特に好ましい。
バインダーにおける水分濃度は、質量基準で、100ppm以下であることが好ましい。
バインダーにおける金属濃度は、質量基準で、100ppm以下であることが好ましい。
電極材料は、1種単独のバインダーを含んでいてもよく、2種以上のバインダーを含んでいてもよい。
電極材料がバインダーを含む場合、バインダーの含有量は、界面抵抗の低減性、及びその維持性の観点から、電極材料の全固形分質量に対して、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることが特に好ましい。バインダーの含有量は、電池性能の観点から、電極材料の全固形分質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが特に好ましい。
電極材料が、電極活物質、無機固体電解質、及びバインダーを含む場合、バインダーの質量に対する活物質及び無機固体電解質の合計質量の比([活物質の質量+無機固体電解質の質量]/[バインダーの質量])は、1,000~1であることが好ましく、500~2であることがより好ましく、100~10であることが特に好ましい。
(導電助剤)
電極材料は、活物質の電子導電性の向上という観点から、導電助剤を含むことが好ましい。導電助剤としては、制限されず、公知の導電助剤を利用できる。特に、電極材料が正極活物質を含む場合、電極材料は、導電助剤を含むことが好ましい。
導電助剤としては、例えば、黒鉛(例えば、天然黒鉛、及び人造黒鉛)、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック、及びファーネスブラック)、無定形炭素(例えば、ニードルコークス)、炭素繊維(例えば、気相成長炭素繊維、及びカーボンナノチューブ)、他の炭素質材料(例えば、グラフェン、及びフラーレン)、金属粉(例えば、銅粉、及びニッケル粉)、金属繊維(例えば、銅繊維、及びニッケル繊維)、及び導電性高分子(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、及びポリフェニレン誘導体)が挙げられる。
上記の中でも、導電助剤は、炭素繊維、及び金属繊維からなる群より選択される少なくとも1種の導電助剤であることが好ましい。
導電助剤の形状としては、例えば、繊維状、針状、筒状、ダンベル状、円盤状、及び楕円球状が挙げられる。上記の中でも、導電助剤の形状は、活物質の電子導電性の向上という観点から、繊維状であることが好ましい。
導電助剤のアスペクト比は、1.5以上であることが好ましく、5以上であることがより好ましい。導電助剤のアスペクト比が1.5以上であることで、電極活物質の電子伝導性を向上させることができるため、電池の出力特性を向上させることができる。
導電助剤のアスペクト比は、10,000以下であることが好ましく、5,000以下であることがより好ましく、1,000以下であることが特に好ましい。さらに、導電助剤のアスペクト比は、500以下であることが好ましく、300以下であることがより好ましく、100以下であることが特に好ましい。導電助剤のアスペクト比が10,000以下であることで、導電助剤の分散性を向上させることができ、導電助剤が電極用成形体を突き抜けることによる短絡を効率的に防止できる。
導電助剤のアスペクト比は、以下の方法により測定する。走査型電子顕微鏡(SEM)(例えば、PHILIPS社製XL30)を用いて1000倍~3000倍の観察倍率で撮影した任意の3視野のSEM像を、BMP(ビットマップ)ファイルに変換する。画像解析ソフト(例えば、旭エンジニアリング株式会社製のIP-1000PCの統合アプリケーションである「A像くん」)を用いて50個の導電助剤の画像を取り込む。各導電助剤が重なることなく観察される状態で、各導電助剤の長さの最大値と最小値とを読み取る。「導電助剤の長さの最大値」とは、導電助剤の外周のある点から他の点までの距離のうち、最大のものを意味する。「導電助剤の長さの最小値」とは、導電助剤の外周のある点から他の点までの線分であって、上記最大値を示す線分と直交するもののうち、距離が最小のものを意味する。50個の各導電助剤の長さの最大値(長軸長)のうち、上下5点を除く40点の平均値(A)を求める。次に、50個の各導電助剤の長さの最小値(短軸長)のうち、上下5点を除く40点の平均値(B)を求める。平均値(A)を平均値(B)で除することによって、導電助剤のアスペクト比を算出する。
導電助剤の短軸長は、10μm以下であることが好ましく、8μm以下であることがより好ましく、5μm以下であることが特に好ましい。
導電助剤の短軸長は、1nm以上であることが好ましく、3nm以上であることがより好ましく、5nm以上であることが特に好ましい。
導電助剤の短軸長は、導電助剤のアスペクト比の測定方法において算出される50個の各導電助剤の長さの最小値である。
導電助剤の短軸長の平均値は、8μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが特に好ましい。
導電助剤の短軸長の平均値は、1nm以上であることが好ましく、2nm以上であることがより好ましく、3nm以上であることが特に好ましい。
導電助剤の短軸長の平均値は、導電助剤のアスペクト比の測定方法において算出される50個の各導電助剤の長さの最小値(短軸長)のうち、上下1割を除いた各導電助剤の短軸長の平均値である。
電極材料は、1種単独の導電助剤を含んでいてもよく、2種以上の導電助剤を含んでいてもよい。
電極材料が導電助剤を含む場合、導電助剤の含有量は、活物質の電子導電性の向上という観点から、電極材料の全固形分質量に対して、0質量%を超え10質量%以下であることが好ましく、0.5質量%~8質量%であることがより好ましく、1質量%~7質量%であることが特に好ましい。
(リチウム塩)
電極材料は、電池性能の向上の観点から、リチウム塩を含むことが好ましい。リチウム塩としては、制限されず、公知のリチウム塩を利用できる。
リチウム塩としては、特開2015-088486号公報の段落0082~0085に記載のリチウム塩が好ましい。
電極材料は、1種単独のリチウム塩を含んでいてもよく、2種以上のリチウム塩を含んでいてもよい。
電極材料がリチウム塩を含む場合、リチウム塩の含有量は、電極材料の全固形分質量に対して、0.1質量%~15質量%であることが好ましい。
(分散剤)
電極材料は、分散剤を含むことが好ましい。電極材料が分散剤を含むことで、電極活物質、及び無機固体電解質のいずれか一方の濃度が高い場合における、電極活物質、及び無機固体電解質のいずれか一方の凝集を抑制できる。
分散剤としては、制限されず、公知の分散剤を利用できる。分散剤としては、分子量が200以上3000未満の低分子又はオリゴマーからなり、下記官能基群(I)で示される官能基と、炭素数8以上のアルキル基又は炭素数10以上のアリール基と、を同一分子内に有する化合物が好ましい。
官能基群(I)は、酸性基、塩基性窒素原子を有する基、(メタ)アクリロイル基、(メタ)アクリルアミド基、アルコキシシリル基、エポキシ基、オキセタニル基、イソシアネート基、シアノ基、スルファニル基、及びヒドロキシ基からなる群より選択される少なくとも1種の官能基であり、酸性基、塩基性窒素原子を有する基、アルコキシシリル基、シアノ基、スルファニル基、及びヒドロキシ基からなる群より選択される少なくとも1種の官能基であることが好ましく、カルボキシ基、スルホン酸基、シアノ基、アミノ基、及びヒドロキシ基からなる群より選択される少なくとも1種の官能基であることがより好ましい。
電極材料は、1種単独の分散剤を含んでいてもよく、2種以上の分散剤を含んでいてもよい。
電極材料が分散剤を含む場合、分散剤の含有量は、凝集防止と電池性能との両立の観点から、電極材料の全固形分質量に対して、0.2質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。
(液体成分)
電極材料は、液体成分を含んでいてもよい。液体成分としては、例えば、電解液が挙げられる。
電解液としては、制限されず、公知の電解液を利用できる。電解液としては、例えば、電解質と、溶剤と、を含む電解液が挙げられる。具体的な電解液としては、例えば、電解質としてリチウム塩化合物と、溶剤としてカーボネート化合物と、を含む電解液が挙げられる。
リチウム塩化合物としては、例えば、ヘキサフルオロリン酸リチウムが挙げられる。電解液は、1種単独のリチウム塩化合物を含んでいてもよく、2種以上のリチウム塩化合物を含んでいてもよい。
カーボネート化合物としては、例えば、炭酸エチルメチル、炭酸エチレン、及び炭酸プロピレンが挙げられる。電解液は、1種単独のカーボネート化合物を含んでいてもよく、2種以上のカーボネート化合物を含んでいてもよい。
電解液に含まれる電解質としては、例えば、上記「無機固体電解質」の項において説明した材料も挙げられる。
電解液の成分として、例えば、イオン液体を用いてもよい。イオン液体は、電解質として用いても溶剤として用いてもよい。
電極材料における電解液の含有量は、電極材料の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。電極材料における電解液の含有量が30質量%以下であることで、電極材料を成形した際に電解液が滲み出ることを抑制することができる。
電極材料における電解液の含有量は、電池性能の向上の観点から、電極材料の全質量に対して、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。
電極材料は、液体成分として、電解液の成分として含まれる溶剤以外の溶剤(以下、単に「溶剤」ともいう。)を含んでいてもよい。溶剤としては、例えば、アルコール化合物溶剤、エーテル化合物溶剤、アミド化合物溶剤、アミノ化合物溶剤、ケトン化合物溶剤、芳香族化合物溶剤、脂肪族化合物溶剤、及びニトリル化合物溶剤が挙げられる。
アルコール化合物溶剤としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、及び1,4-ブタンジオールが挙げられる。
エーテル化合物溶剤としては、例えば、アルキレングリコールアルキルエーテル(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、及びジエチレングリコールモノブチルエーテル)、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、及びジオキサンが挙げられる。
アミド化合物溶剤としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、及びヘキサメチルホスホリックトリアミドが挙げられる。
アミノ化合物溶剤としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、及びトリブチルアミンが挙げられる。
ケトン化合物溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンが挙げられる。
芳香族化合物溶剤としては、例えば、ベンゼン、トルエン、及びキシレンなどが挙げられる。
脂肪族化合物溶剤としては、例えば、ヘキサン、ヘプタン、オクタン、及びデカンが挙げられる。
ニトリル化合物溶剤としては、例えば、アセトニトリル、プロピロニトリル、及びイソブチロニトリルが挙げられる。
溶剤は、ニトリル化合物溶剤、芳香族化合物溶剤、及び脂肪族化合物溶剤からなる群より選択される少なくとも1種の溶剤であることが好ましく、イソブチロニトリル、トルエン、及びヘプタンからなる群より選択される少なくとも1種の溶剤であることがより好ましく、トルエン、及びヘプタンからなる群より選択される少なくとも1種の溶剤であることが特に好ましい。
溶剤の沸点は、常圧(1気圧)において、50℃以上であることが好ましく、70℃以上であることがより好ましい。溶剤の沸点は、常圧(1気圧)において、250℃以下であることが好ましく、220℃以下であることがより好ましい。
電極材料は、1種単独の溶剤を含んでいてもよく、2種以上の溶剤を含んでいてもよい。
電極材料における溶剤(電解液の成分として含まれる溶剤を含む。以下、本段落において同じ。)の含有量は、電極材料の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。電極材料における溶剤の含有量が30質量%以下であることで、電池性能の劣化を抑制することができ、また、電極材料を成形した際に溶剤が滲み出ることを抑制することができる。電極材料における溶剤の含有量の下限は、制限されない。電極材料における溶剤の含有量は、0質量%以上であってもよく、0質量%を超えてもよい。
電極材料における液体成分の含有量は、電極材料の全質量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが特に好ましい。電極材料における液体成分の含有量が30質量%以下であることで、電極材料を成形した際に液体成分が滲み出ることを抑制することができる。また、液体成分が溶剤を含む場合には、電池性能の劣化を抑制することができる。電極材料における液体成分の含有量の下限は、制限されない。電極材料における液体成分の含有量は、0質量%以上であってもよく、0質量%を超えてもよい。
上記の他、電極材料としては、例えば、以下の材料を用いることもできる。
(1)特開2017-104784号公報の段落0029~段落0037に記載の造粒体。
(2)特開2016-059870号公報の段落0054に記載の正極合剤塗料。
(3)特開2016-027573号公報の段落0017~段落0070に記載の複合粒子。
(4)特許第6402200号公報の段落0020~段落0033に記載の複合粒子。
(5)特開2019-046765号公報の段落0040~段落0065に記載の電極組成物。
(6)特開2017-054703号公報の段落0080~段落0114に記載の材料(例えば、活物質、正極スラリー、及び負極スラリー)。
(7)特開2014-198293号公報に記載の粉体。
(8)特開2016-062654号公報の段落0024~段落0025、段落0028、及び段落0030~段落0032に記載の活物質、バインダー、及び複合粒子。
(電極材料の調製方法)
電極材料は、例えば、電極活物質と、必要に応じて、電極活物質以外の上記成分と、を混合することによって調製できる。混合方法としては、例えば、ボールミル、ビーズミル、プラネタリミキサー、ブレードミキサー、ロールミル、ニーダー、又はディスクミルを用いる方法が挙げられる。
次に、本開示の電極用成形体の製造方法の実施形態(第1実施形態~第5実施形態)について、図面を参照しながら具体的に説明する。
(第1実施形態)
本開示の第1実施形態に係る電極用成形体の製造方法を図1を参照して説明する。
図1は、電極用成形体の製造に用いる粉体成形装置100の概略構成を示す概略構成図である。
図1に示す粉体成形装置100は、一対の搬送ベルト11と、一対の搬送ベルト11から電極材料15が移送される成膜ベルト21と、一対の搬送ベルト11の間隙に電極材料15を導入する供給用ベルト31と、供給用ベルト31に電極材料を供給する供給フィーダー41と、を備えている。
一対の搬送ベルト11は、反重力方向と平行な中心軸Cを中心として相互に鏡像の関係となる位置に配置された2つの搬送ベルト11a及び搬送ベルト11bを備えている。即ち、図6において、傾斜角度θ1=傾斜角度θ2である。本実施態様は、電極材料が、図1に示すように中心軸C上を落下する態様である。
搬送ベルト11aは、2つのロール16、17に巻き掛けられ、矢印方向に回転するロールに伴って走行可能になっている。
搬送ベルト11bは、2つのロール18、19に巻き掛けられ、矢印方向に回転するロールに伴って走行可能になっている。
搬送ベルト11a及び搬送ベルト11bを備えることで、導入される電極材料を搬送ベルト11aと搬送ベルト11bとの間で受け、搬送ベルト11aと搬送ベルト11bとで挟んだ状態とすることができる。電極材料は、搬送ベルト11aと搬送ベルト11bとの間に挟まれた状態でベルト搬送される。そして、ベルト搬送時、電極材料は搬送ベルト11aと搬送ベルト11bとで加圧され、電極材料はベルト搬送方向下流に向かって移送されるにつれ、電極材料に加えられる圧力は漸増するようになっている。
成膜ベルト21は、V字形の搬送ベルト11の電極材料搬送方向の下流に配置されている。成膜ベルト21は、2つの主ロールに巻き掛けられており、2つの主ロール間にはベルトをあらかじめ定めた位置に支持するための支持ロールが3つ配置されている。
成膜ベルト21は、一対の搬送ベルト11と一定の距離を隔てて配置されており、搬送ベルト11aのロール17と成膜ベルト21とによって、成膜される電極材料の膜の厚みが規制されるようになっている。
従来、互いに平行に配置された2つの搬送ベルトを用い、2つの搬送ベルトの間に導入された粉体を単に加圧してシート化する技術が知られている。本開示における一対の搬送ベルト11においては、2つの搬送ベルト11a、11bは、側面視で反重力方向に平行な中心軸Cを中心にしてV字形を形作る位置に配置されている。即ち、一対の搬送ベルト11をなす搬送ベルト11aと搬送ベルト11bとは、側面視で中心軸Cを中心にして相互に鏡像に近い関係にあり、その鏡像はV字形をなしている。2つの搬送ベルトがV字形に配置されるので、本開示における第2工程において、落下された電極材料をV字形に開口した間隙に受け止めやすい。また、本開示における第2工程において、ロール配置等の変更により2つの搬送ベルトの間隙を調節することにより、一対の搬送ベルト間に一時的に受け止めた電極材料がベルト搬送される搬送量を所望量に絞り、かつ、ベルト搬送方向に均一化することができる。
また、電極材料は、ベルト搬送方向に向かって徐々に狭まるV字形の間隙をベルト搬送方向に送られる。これにより、電極材料に加えられる圧力は搬送方向に搬送されるに従い漸増し、下流に搬送される電極材料の質量分布を小さく抑えることができる。結果、成膜ベルトに移送される前の電極材料の質量分布に起因した脈動は生じ難い。
以上のように、本開示では、成膜ベルト21に移送される電極材料の、搬送方向に直交するベルト幅方向における、加圧後の電極材料の質量分布の均一性が高められる。
一対の搬送ベルト11をなす2つの搬送ベルト11aと搬送ベルト11bとは、例えば、図1及び図6に示すように、側面視で電極材料15を搬送する搬送路における搬送面の移動方向が反重力方向(中心軸C)に対して左右方向の一方(図1及び図6の右の方向)に傾斜角度θ1を0°<θ1≦60°として傾く第1ベルト11aと、側面視で電極材料15を搬送する搬送路における搬送面の移動方向が反重力方向(中心軸C)に対して左右方向の他方(図1及び図6の左の方向)に傾斜角度θ2を0°<θ1≦60°として傾く第2ベルト11bと、であってもよい。
供給用ベルト31は、V字形の搬送ベルト11の電極材料の搬送方向上流に配置されている。搬送ベルト11の間隙に電極材料を導入するにあたり、あらかじめ供給用ベルト31に供給された電極材料を供給用ベルト31から落下させて搬送ベルト11のV字形に開いた間隙に導入することができる。
供給フィーダー41は、供給用ベルト31上に電極材料を供給する供給装置である。供給フィーダー41は、供給用ベルト31上に電極材料を定量で付与してもよく、特に供給用ベルトのベルト走行方向と直交するベルト幅方向における電極材料の質量分布を軽減する観点からは、ベルト幅方向に定量の電極材料を付与することが好ましい。
供給フィーダー41に代えて、他の供給装置を配置した態様としてもよい。
成膜ベルト21上には、成膜された電極材料を更に均すための均しロール51が配置されている。成膜ベルト21によって電極材料15を搬送方向(矢印方向B)に搬送しながら、電極材料15と均しロール51とを接触させることによって、電極材料15を均すことができる。
均しロールは、表面処理が施されていてもよい。表面処理としては、例えば、シリコーンコーティング、及びフッ素コーティングが挙げられる。
図1に示す粉体成形装置100を起動すると、供給フィーダー41から供給用ベルト31に粉体である電極材料15(以下、「粉体15」ともいう。)が供給される。供給フィーダー41によって、供給用ベルトのベルト幅方向に粉体15の質量分布が大きく乱れないように、ある程度の均一性をもって粉体15が一旦供給用ベルト31上に付与される。供給用ベルト31上に付与された粉体15は、供給用ベルト31によって下流の端部まで搬送され、供給用ベルト31の下流端で落下し、一対の搬送ベルト11に導入される。導入された粉体15は、第1ベルトである搬送ベルト11aと第2ベルトである搬送ベルト11bとに挟まれて搬送され、搬送されるに従って漸増する圧力を受ける。そして、一対の搬送ベルト11の下流に位置するロール17及びロール19間で所望圧まで加圧される。
このように、一対の搬送ベルト11を経て均一化を施した粉体15に対して所望圧が加えられるので、加圧後に得られる膜状の電極材料の質量分布を小さくすることができる。電極材料に対して所望圧が加えられた後、成膜ベルト21へ移送され、成膜ベルト21によって搬送方向(矢印方向B)へ搬送される。
一対の搬送ベルト11における搬送ベルト11a(第1ベルト)及び搬送ベルト11b(第2ベルト)のベルト搬送速度は、成膜ベルト21のベルト搬送速度より小さいことが好ましい。これにより、電極材料を成膜ベルト21の搬送方向(矢印方向B)に送りやすくなり、膜状の電極材料の質量分布の均一性がより向上する。
(第2実施形態)
次に、本開示の第2実施形態に係る電極用成形体の製造方法について、図2を参照して説明する。
第2実施形態は、第1実施形態において、供給フィーダーを複数個配置し、供給用ベルト31の電極材料の搬送路に新たに均一化部材の一例である均一化ロールを配置したこと以外は、第1実施形態と同様である。
図2は、電極用成形体の製造に用いる粉体成形装置200の概略構成を示す概略構成図である。なお、第1実施形態と同じ構成については同一符号を付し、その符号の説明を省略する。
図2に示す粉体成形装置200は、一対の搬送ベルト11と、一対の搬送ベルト11から粉体15が移送される成膜ベルト21と、一対の搬送ベルト11の間隙に粉体15を導入する供給用ベルト31と、供給用ベルト31に電極材料を供給する複数の供給フィーダー41と、供給用ベルト31の電極材料の搬送路に配置された均一化ロール53と、を備えている。
複数の供給フィーダー41は、供給用ベルト31のベルト走行方向に直交するベルト幅方向に配置されていてもよい。複数の供給フィーダー41がベルト幅方向に配置されることで、電極材料のベルト幅方向における質量分布を小さく制御しやすくなる。
複数の供給フィーダー41は、ベルト幅方向に等間隔に配置されてもよい。
複数の供給フィーダー41は、吐出口が同一の供給フィーダーを複数用いてもよいし、吐出口が異なる供給フィーダーを組み合わせて用いてもよい。
均一化ロール53は、供給用ベルト31の電極材料が搬送される搬送路に配置されている。
均一化ロール53は、ロール面に複数の突状構造を有するロール等であり、供給用ベルト31上に不均一に存在する電極材料の偏りを均一化し、一対の搬送ベルト11へ導入される前の電極材料の質量分布を均す。
第2実施形態においても、一対の搬送ベルト11における搬送ベルト11a(第1ベルト)及び搬送ベルト11b(第2ベルト)のベルト搬送速度が、成膜ベルト21のベルト搬送速度より小さいことが好ましい。これにより、電極材料を成膜ベルト21の搬送方向(矢印方向B)に送りやすくなり、膜状の電極材料の質量分布の均一性がより向上する。
(第3実施形態)
次に、本開示の第3実施形態に係る電極用成形体の製造方法について、図3を参照して説明する。
第3実施形態は、第1実施形態において、一対の搬送ベルトの第2ベルトの電極材料を搬送する搬送面(材料搬送面)及び成膜ベルトの成膜面に長尺の第1支持部材を連続供給し、第1支持部材上に電極材料を成膜するものとした例であり、この点以外は、第1実施形態と同様である。
図3は、電極用成形体の製造に用いる粉体成形装置300の概略構成を示す概略構成図である。なお、第1実施形態及び第2実施形態と同じ構成については同一符号を付し、その符号の説明を省略する。
図3に示す粉体成形装置300は、一対の搬送ベルト11と、一対の搬送ベルト11から粉体15が移送される成膜ベルト21と、一対の搬送ベルト11の間隙に粉体15を導入する供給用ベルト31と、供給用ベルト31に電極材料を供給する複数の供給フィーダー41と、供給用ベルト31の搬送路に配置された均一化ロール53と、集電体ロール57と、を備えている。
図3に示す粉体成形装置300を起動すると、本開示における第1工程において、複数の供給フィーダー41から粉体15が供給され、供給された粉体15は、次の第2工程において、第2実施形態と同様にして、供給用ベルト31の下流端で落下し、一対の搬送ベルト11に導入される。
一方、第2ベルトである搬送ベルト11bの材料搬送面(即ち、電極材料を搬送する搬送面)には、長尺の第1支持部材の一例である集電体が巻回された集電体ロール57から巻き出された集電体55が連続的に供給される。
この際、一対の搬送ベルト11に導入される粉体15は、第1ベルトである搬送ベルト11aと、第2ベルトである搬送ベルト11b上に送られた集電体55と、の間隙に導入される。
そして、次の第2工程において、導入された粉体15は、搬送ベルト11aと集電体55とに挟まれて搬送され、搬送されるに従って漸増する圧力を受ける。そして、一対の搬送ベルト11の下流に位置するロール17及びロール19間で所望圧まで加圧される。このように、一対の搬送ベルト11を経て均一化を施した粉体15に対して所望圧が加えられるので、加圧後に得られる膜状の電極材料の質量分布を小さくすることができる。電極材料に対して所望圧が加えられた後、本開示における第3工程において、成膜ベルト21へ移送され、成膜ベルト21によって搬送方向(矢印方向B)へ搬送される。
上記では、第1支持部材として集電体を用いた場合を説明したが、集電体に代えて離型材等の他の第1支持部材を用いることもできる。
第3実施形態では、一対の搬送ベルト11における搬送ベルト11a(第1ベルト)及び搬送ベルト11b(第2ベルト)並びに成膜ベルト21の間におけるベルト搬送速度の関係は、搬送ベルト11b(第2ベルト)のベルト搬送速度と成膜ベルト21のベルト搬送速度とが等しく、かつ、搬送ベルト11b(第2ベルト)及び成膜ベルト21のベルト搬送速度に対して、搬送ベルト11a(第1ベルト)のベルト搬送速度が小さいことが好ましい。これにより、電極材料が成膜ベルト21の搬送方向(矢印方向B)に送られやすく、膜状の電極材料の質量分布の均一性がより向上する。
(第4実施形態)
次に、本開示の第4実施形態に係る電極用成形体の製造方法について、図4を参照して説明する。
第4実施形態は、第1実施形態において、一対の搬送ベルトの第2ベルトの電極材料を搬送する搬送面(材料搬送面)及び成膜ベルトの成膜面に長尺の第1支持部材を連続供給し、かつ、一対の搬送ベルトの第1ベルトの電極材料を搬送する搬送面(材料搬送面)及び成膜ベルトの上に移送された電極材料上に長尺の第2支持部材を連続供給することにより、第1支持部材と第2支持部材との間に電極材料を成膜するものとした例であり、この点以外は、第1実施形態と同様である。
図4は、電極用成形体の製造に用いる粉体成形装置400の概略構成を示す概略構成図である。なお、第1実施形態及び第2実施形態と同じ構成については同一符号を付し、その符号の説明を省略する。
図4に示す粉体成形装置400は、一対の搬送ベルト11と、一対の搬送ベルト11から粉体15が移送される成膜ベルト21と、一対の搬送ベルト11の間隙に粉体15を導入する供給用ベルト31と、供給用ベルト31に電極材料を供給する複数の供給フィーダー41と、供給用ベルト31の搬送路に配置された均一化ロール53と、集電体ロール57と、離型材ロール63と、を備えている。
図4に示す粉体成形装置400を起動すると、本開示における第1工程において、複数の供給フィーダー41から粉体15が供給され、供給された粉体15は、次の第2工程において、第2実施形態と同様にして、供給用ベルト31の下流端で落下し、一対の搬送ベルト11に導入される。
一方、第2ベルトである搬送ベルト11bの材料搬送面(即ち、電極材料を搬送する搬送面)には、長尺の第1支持部材である集電体が巻回された集電体ロール57から巻き出された集電体55が連続的に供給される(第1支持部材供給工程)。
他方、第1ベルトである搬送ベルト11aの材料搬送面(即ち、電極材料を搬送する搬送面)には、長尺の第2支持部材の一例である離型材が巻回された離型材ロール63から巻き出された離型材61が連続的に供給される(第2支持部材供給工程A)。
この際、一対の搬送ベルト11に導入される粉体15は、搬送ベルト11a上に送られた離型材61と、搬送ベルト11b上に送られた集電体55と、の間隙に導入される。
そして、次の第2工程において、導入された粉体15は、離型材61と集電体55とに挟まれて搬送され、搬送されるに従って漸増する圧力を受ける。そして、一対の搬送ベルト11の下流に位置するロール17及びロール19間で所望圧まで加圧される。このように、一対の搬送ベルト11を経て均一化を施した粉体15に対して所望圧が加えられるので、加圧後に得られる膜状の電極材料の質量分布を小さくすることができる。電極材料に対して所望圧が加えられた後、本開示における第3工程において、成膜ベルト21へ移送され、成膜ベルト21によって搬送方向(矢印方向B)へ搬送される。
上記では、第1支持部材として集電体を用い、第2支持部材として離型材を用いた場合を説明したが、これに限られるものではない。
第1支持部材については、集電体に代えて離型材等の他の第1支持部材を用いることもでき、第2支持部材については、離型材に代えて集電体等の他の第2支持部材を用いることもできる。また、第1支持部材及び第2支持部材に同じ部材を用いてもよく、例えば、第1支持部材及び第2支持部材の双方に離型材を用いてもよい。
第4実施形態では、一対の搬送ベルト11における搬送ベルト11a(第1ベルト)及び搬送ベルト11b(第2ベルト)並びに成膜ベルト21の間におけるベルト搬送速度の関係は、搬送ベルト11b(第2ベルト)のベルト搬送速度と成膜ベルト21のベルト搬送速度とが等しく、かつ、搬送ベルト11b(第2ベルト)及び成膜ベルト21のベルト搬送速度に対して、搬送ベルト11a(第1ベルト)のベルト搬送速度が小さいことが好ましい。これにより、電極材料が成膜ベルト21の搬送方向(矢印方向B)に送られやすく、膜状の電極材料の質量分布の均一性がより向上する。
(第5実施形態)
次に、本開示の第5実施形態に係る電極用成形体の製造方法について、図5を参照して説明する。
第5実施形態は、第1実施形態において、第2工程で一対の搬送ベルトの第1ベルトの電極材料を搬送する搬送面(材料搬送面)及び成膜ベルトの上に移送された電極材料上に長尺の第2支持部材を連続供給し、かつ、第3工程で成膜ベルトの成膜面に長尺の第3支持部材を連続供給することにより、第2支持部材と第3支持部材との間に電極材料を成膜するものとした例であり、この点以外は、第1実施形態と同様である。
図5は、電極用成形体の製造に用いる粉体成形装置500の概略構成を示す概略構成図である。なお、第1実施形態及び第2実施形態と同じ構成については同一符号を付し、その符号の説明を省略する。
図5に示す粉体成形装置500は、一対の搬送ベルト11と、一対の搬送ベルト11から粉体15が移送される成膜ベルト21と、一対の搬送ベルト11の間隙に粉体15を導入する供給用ベルト31と、供給用ベルト31に電極材料を供給する複数の供給フィーダー41と、供給用ベルト31の搬送路に配置された均一化ロール53と、離型材ロール63と、集電体ロール67と、を備えている。
図5に示す粉体成形装置500を起動すると、本開示における第1工程において、複数の供給フィーダー41から粉体15が供給され、供給された粉体15は、次の第2工程において、第2実施形態と同様にして、供給用ベルト31の下流端で落下し、一対の搬送ベルト11に導入される。
一方、第1ベルトである搬送ベルト11aの材料搬送面(即ち、電極材料を搬送する搬送面)には、長尺の第2支持部材である離型材が巻回された離型材ロール63から巻き出された離型材61が連続的に供給される(第2支持部材供給工程B)。
他方、成膜ベルトの成膜面(即ち、電極材料を成膜する面)には、長尺の第3支持部材の一例である集電体が巻回された集電体ロール67から巻き出された集電体65が連続的に供給される(第3支持部材供給工程)。
そして、次の第2工程において、導入された粉体15は、離型材61と第2ベルトである搬送ベルト11bとに挟まれて搬送され、搬送されるに従って漸増する圧力を受ける。そして、一対の搬送ベルト11の電極材料の搬送方向下流に位置するロール17及びロール19間で所望圧まで加圧される。このように、一対の搬送ベルト11を経て均一化を施した粉体15に対して所望圧が加えられるので、加圧後に得られる膜状の電極材料の質量分布を小さくすることができる。
電極材料に対して所望圧が加えられた後、本開示における第3工程において、所望圧が加えられて膜状に成形された電極材料は、第2支持部材と接した状態のまま、成膜ベルト21上に連続的に供給された集電体65の表面に移送される。そして、成膜ベルト21によって膜状の電極材料及び集電体65は搬送方向(矢印方向B)へ搬送される。
上記では、第2支持部材として離型材を用い、第3支持部材として集電体を用いた場合を説明したが、これに限られるものではない。
第2支持部材については、離型材に代えて集電体等の他の第2支持部材を用いることもでき、第3支持部材については、集電体に代えて離型材等の他の第3支持部材を用いることもできる。また、第2支持部材及び第3支持部材に同じ部材を用いてもよく、例えば、第2支持部材及び第3支持部材の双方に離型材を用いてもよい。
第5実施形態では、一対の搬送ベルト11における搬送ベルト11a(第1ベルト)及び搬送ベルト11b(第2ベルト)並びに成膜ベルト21の間におけるベルト搬送速度の関係は、搬送ベルト11b(第2ベルト)のベルト搬送速度と成膜ベルト21のベルト搬送速度とが等しく、かつ、搬送ベルト11b(第2ベルト)及び成膜ベルト21のベルト搬送速度に対して、搬送ベルト11a(第1ベルト)のベルト搬送速度が小さいことが好ましい。これにより、電極材料が成膜ベルト21の搬送方向(矢印方向B)に送られやすく、膜状の電極材料の質量分布の均一性がより向上する。
以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。
(実施例1)
<正極用電極材料(P-1)の準備>
以下の手順に従って正極用電極材料(P-1)を準備した(準備工程)。
[硫化物系無機固体電解質(Li-P-S系ガラス)の調製]
硫化物系無機固体電解質は、「T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873」を参考にして調製した。
具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.9gをそれぞれ秤量した後、上記硫化リチウム、及び上記五硫化二リンを、メノウ製乳鉢を用いて、5分間混合した。なお、LiSとPとのモル比(LiS:P)は、75:25とした。
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、次いで、上記硫化リチウムと上記五硫化二リンとの混合物の全量を投入した後、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器を取り付け、温度25℃、回転数510rpm(revolutions per minute)で20時間メカニカルミリングを行うことによって、黄色粉体の硫化物固体電解質材料(Li-P-S系ガラス)6.2gを得た。以上の工程を100回繰り返し、620gの固体電解質材料を得た。
[正極用電極材料(P-1)の調製]
ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、次いで、調製した上記Li-P-S系ガラス3.0gを投入した。フリッチュ社製遊星ボールミルP-7に容器を取り付け、温度25℃、回転数300rpm(revolutions per minute)で2時間混合した。次に、活物質としてLCO(LiCoO、日本化学工業株式会社製)6.8g、及び導電助剤として株式会社デンカ製のLi-100(0.2g)を容器に投入し、次いで、遊星ボールミルP-7に容器を取り付け、温度25℃、回転数100rpmで10分間混合を行うことによって、粒子状の正極用電極材料(P-1)を得た。以上の工程を100回繰り返し、必要量の正極用電極材料を得た。
<粉体シートの作製>
図1に示す粉体成形装置100を準備し、供給フィーダー41の一例であるスクリューフィーダーにホッパーを通じて正極用電極材料(P-1)を投入した。
粉体成形装置100を起動し、電極材料(粉体)15の一例である正極用電極材料(P-1)を、スクリューフィーダーの吐出口から供給用ベルト31に吐出した。供給用ベルト31上に吐出された正極用電極材料(P-1)は、供給用ベルト31によってベルト搬送方向下流の端部まで搬送され、供給用ベルト31の下流端から落下させることにより、一対の搬送ベルト(本実施例において「V字形搬送ベルト」という。)11の間隙に導入した(第1工程)。
ここで、V字形搬送ベルトの間隙を以下の設定とした。
<V字形搬送ベルトの設定>
・搬送ベルト11aの傾斜角度θ1:30°
・搬送ベルト11aのベルト搬送速度:5m/min
・搬送ベルト11bの傾斜角度θ2:30°
・搬送ベルト11bのベルト搬送速度:5m/min
・電極材料導入口側の搬送ベルト11aと搬送ベルト11bの搬送面間距離:50mm
・電極材料移送口側の搬送ベルト11aと搬送ベルト11bの搬送面間距離:500μm
・搬送ベルト11aと成膜ベルト21との搬送成膜面間距離:500μm
なお、電極材料導入口側の搬送面間距離は、図6に示すように、側面視で搬送ベルト11aにおけるロール16の軸心を通る線と搬送ベルト11aの材料搬送面(電極材料を搬送する搬送路におけるベルトの最表面)とが垂直に交わる点Pと、側面視で搬送ベルト11bにおけるロール18の軸心を通る線と搬送ベルト11bの材料搬送面(電極材料を搬送する搬送路におけるベルトの最表面)とが垂直に交わる点Qと、の最短距離を指す。
電極材料移送口側の搬送面間距離は、図6に示すように、側面視で搬送ベルト11aにおけるロール17の軸心を通る線と搬送ベルト11aの材料搬送面(電極材料を搬送する搬送路におけるベルトの最表面)とが垂直に交わる点Rと、側面視で搬送ベルト11bにおけるロール19の軸心を通る線と搬送ベルト11bの材料搬送面(電極材料を搬送する搬送路におけるベルトの最表面)とが垂直に交わる点Sと、の最短距離を指す。
また、搬送ベルト11aと成膜ベルト21との搬送成膜面間距離は、図8に示すように、側面視で成膜ベルト21における電極材料を搬送する搬送路の最表面の点Tと、点Tを通る成膜ベルトの法線が搬送ベルト11aの最表面と交わる点Uと、の長さが最短となる距離Dを指す。
正極用電極材料(P-1)は、第1ベルトである搬送ベルト11aと第2ベルトである搬送ベルト11bとの間に挟まれ、互いに走行する搬送ベルト11aと搬送ベルト11bとの各搬送面によって正極用電極材料(P-1)を加圧しながらあらかじめ定めた量を成膜ベルト21に向けて送り出し、成膜ベルト21へ移送した(第2工程~第3工程)。
ここで、あらかじめ定めた正極用電極材料(P-1)の量は、第1工程においてスクリューフィーダーにより調整し、第2工程において搬送ベルト11aと搬送ベルト11bとの間隙を調節して、成膜ベルト21に移送される電極材料の厚みを所望の範囲に制御した。また、第3工程においても、搬送ベルト11aと成膜ベルト21との間隙を調節して、成膜ベルト21に移送される電極材料の厚みを制御した。搬送ベルト11aと搬送ベルト11bとの間隙は、電極材料移送口側の搬送ベルト11aと搬送ベルト11bの搬送面間距離を調節することで決定した。搬送ベルト11aと成膜ベルト21との間隙は、搬送ベルト11aと成膜ベルト21の搬送成膜面間距離を調節することで決定した。
上記において、V字形搬送ベルト11に導入される正極用電極材料(P-1)の導入量を、V字形搬送ベルト11から成膜ベルト21へ移送される正極用電極材料(P-1)の移送量より(一時的に)多くし、V字形搬送ベルト11に導入される正極用電極材料(P-1)がV字形搬送ベルト11において一時的に貯留されるようにした。そして、一時的に貯留されている正極用電極材料(P-1)を、V字形配置された搬送ベルト11aと搬送ベルト11bとによってあらかじめ定めた量を搬送し、かつ、圧力を漸増させて加圧した。この際、V字形搬送ベルト11の正極用電極材料の搬送方向下流に位置するロール17及びロール19間において、正極用電極材料(P-1)を100MPaの線圧で加圧して厚み500μmとした。その後、膜状に加圧された正極用電極材料(P-1)は、ベルト搬送速度5m/minの成膜ベルト21上に移送され、成膜ベルト21によって搬送方向(矢印方向B)へ搬送した。
以上のようにして、幅方向の長さが20mmであり、長手方向の長さが0.5mであり、電極材料の目付量(目標値)が1.5mg/cmである長尺の粉体シートを得た。
(実施例2)
実施例1において、スクリューフィーダーを2つに増やし、2つのスクリューフィーダーをベルト幅方向の両端からそれぞれ等距離の位置に並列に2か所配置し、内部が2つに区画されたホッパーを通じてスクリューフィーダーの1つの吐出口からベルト幅方向に20mmの電極材料を供給したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例3)
実施例1において、スクリューフィーダーを4つに増やし、4つのスクリューフィーダーをベルト幅方向に等間隔で並列に4か所配置し、内部が4つに区画されたホッパーを通じてスクリューフィーダーの1つの吐出口からベルト幅方向に20mmの電極材料を供給したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例4)
実施例1において、粉体成形装置100の供給用ベルト31の搬送路に均一化ロール53を配置した図2に示す粉体成形装置200を準備し、均一化ロールを用いて供給用ベルト上に吐出された正極用電極材料(P-1)を均したこと以外は、実施例1と同様にして、粉体シートを作製した。
ここで、均一化ロールとして、回転軸の外周に螺旋構造を有するφ50mmのスパイラルロールを用いた。均一化ロールを電極材料と接触させることにより、電極材料をその周囲方向に移動させて均した。
(実施例5)
実施例1において、V字形搬送ベルト11の間隙を以下の設定に変更したこと以外は、実施例1と同様にして、粉体シートを作製した。
<V字形搬送ベルトの設定>
・搬送ベルト11aの傾斜角度θ1:45°
・搬送ベルト11bの傾斜角度θ2:45°
・電極材料導入口側の搬送ベルト11aと搬送ベルト11bの搬送面間距離:100mm
ここで、電極材料導入口側の搬送面間距離は実施例1における場合と同様である。
・電極材料移送口側の搬送ベルト11aと搬送ベルト11bの搬送面間距離:500μm
ここで、電極材料移送口側の搬送面間距離は実施例1における場合と同様である。
(実施例6)
実施例1において、粉体成形装置100に代えて図3に示す粉体成形装置300を準備し、V字形搬送ベルト11の第2ベルトである搬送ベルト11bの材料搬送面(電極材料を搬送する搬送面)に、長尺の離型紙(グラシンダイレクトタイプ、リンテック社製、厚さ60μm;第1支持部材)が巻回された離型紙ロールから巻き出された離型紙を連続的に供給したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例7)
実施例1において、粉体成形装置100に代えて図4に示す粉体成形装置400を準備し、V字形搬送ベルト11の、第2ベルトである搬送ベルト11bの材料搬送面(電極材料を搬送する搬送面)に、長尺の離型紙(グラシンダイレクトタイプ、リンテック社製、厚さ60μm;第1支持部材)が巻回された離型紙ロールから巻き出された離型紙を連続的に供給し、かつ、第1ベルトである搬送ベルト11aの材料搬送面(電極材料を搬送する搬送面)に、長尺の離型紙(グラシンダイレクトタイプ、リンテック社製、厚さ60μm;第2支持部材)が巻回された離型紙ロールから巻き出された離型紙を連続的に供給したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例8)
実施例1において、粉体成形装置100に代えて図4に示す粉体成形装置400を準備し、V字形搬送ベルト11の、第2ベルトである搬送ベルト11bの材料搬送面(電極材料を搬送する搬送面)に、長尺の集電体(厚さ20μmのアルミニウム箔;第1支持部材)が巻回された集電体ロールから巻き出された集電体を連続的に供給し、かつ、第1ベルトである搬送ベルト11aの材料搬送面(電極材料を搬送する搬送面)に、長尺の離型紙(グラシンダイレクトタイプ、リンテック社製、厚さ60μm;第2支持部材)が巻回された離型紙ロールから巻き出された離型紙を連続的に供給したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例9)
実施例8において、第2ベルトである搬送ベルト11bの材料搬送面に供給した長尺の集電体を、長尺の離型紙(グラシンダイレクトタイプ、リンテック社製、厚さ60μm;第2支持部材)に代え、かつ、第1ベルトである搬送ベルト11aの材料搬送面に供給した長尺の離型紙を、長尺の集電体(厚さ20μmのアルミニウム箔;第1支持部材)に代えたこと以外は、実施例8と同様にして、粉体シートを作製した。
(実施例10)
実施例1において、粉体成形装置100に代えて図5に示す粉体成形装置500を準備し、V字形搬送ベルト11の第1ベルトである搬送ベルト11aの材料搬送面(電極材料を搬送する搬送面)に、長尺の離型紙(グラシンダイレクトタイプ、リンテック社製、厚さ60μm;第2支持部材)が巻回された離型紙ロールから巻き出された離型紙を連続的に供給し、かつ、成膜ベルト21の成膜面に、長尺の集電体(厚さ20μmのアルミニウム箔;第3支持部材)が巻回された集電体ロールから巻き出された集電体を連続的に供給したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例11)
実施例10において、搬送ベルト11aの材料搬送面に長尺の離型紙を連続的に供給することを行わなかったこと以外は、実施例10と同様にして、粉体シートを作製した。
(実施例12、13、15)
実施例1において、一対の搬送ベルト11における、搬送ベルト11aの傾斜角度θ1、及び搬送ベルト11bの傾斜角度θ2をそれぞれ表1に示すように変更したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例14、16)
実施例1において、一対の搬送ベルト11における、搬送ベルト11aのロール17の直径r1、及び搬送ベルト11bのロール19の直径r2をそれぞれ表1に示すように変更したこと以外は、実施例1と同様にして、粉体シートを作製した。
(実施例17、18)
実施例1において、V字形搬送ベルト11の搬送ベルト11aと成膜ベルト21との搬送成膜面間距離を表1に示すように変更したこと以外は、実施例1と同様にして、粉体シートを作製した。
(比較例1)
実施例1において、V字形搬送ベルト11を用いず、第1工程において、供給用ベルト31を通じて正極用電極材料(P-1)を成膜ベルト21上に直接落下して均しロール51で成膜しながら矢印方向Bへ搬送したこと以外は、実施例1と同様にして、比較用の粉体シートを作製した。
(比較例2)
実施例1において、V字形搬送ベルト11を直径φ50mmの一対の圧着ロール(電極材料が走行する速度5m/min、圧着ロールの表面と成膜ベルトの最表面との間の最短距離:500μm)に代え、供給用ベルト31の下流端から圧着ロールの圧着部へ正極用電極材料(P-1)を落下させて導入し(第1工程)、導入された正極用電極材料(P-1)を、圧着ロール(ロール間ギャップ:500μm)で加圧しながらあらかじめ定めた量を成膜ベルト21に移送した(第2工程~第3工程)こと以外は、実施例1と同様にして、比較用の粉体シートを作製した。
(比較例3)
実施例1において、V字形搬送ベルト11から送り出された正極用電極材料(P-1)を成膜ベルト21へ移送する第3工程を設けず、V字形搬送ベルト11から送り出された正極用電極材料(P-1)を粉体シートとしたこと以外は、実施例1と同様にして、比較用の粉体シートを作製した。
(評価)
-1.粉体シートの質量分布-
粉体シートの幅方向の2か所、及び粉体シートの長手方向の10か所から、それぞれ、1cmの大きさの試験片を切り取った。試験片の切り取りには、1つの枠あたりの枠内面積を1cmに調節した枠状のトムソン刃を用いた。粉体シートの合計20か所から切り取った各試験片の質量を測定し、次いで、各試験片の質量からσ(標準偏差)を求めた。得られたσに基づいて質量分布を評価し、5%未満を合格とした。
-2.生産性-
10枚の粉体シートを作製した場合に、以下の式に従って算出される稼働率に基づいて、以下の基準にしたがって生産性を評価した。通常、1枚の粉体シートを作製するに要する時間は30秒である。正常に稼働することができれば、300秒で10枚の粉体シートを作製することができる。そこで、以下の式において、「目標の作製時間」を300秒とし、0.6以上を合格として評価した。
式: 稼働率=目標の作製時間/実際の作製時間
表1に示すように、実施例1~18は、比較例1~3に比べて、質量分布の均一性、及び生産性に優れるものであった。
2019年8月19日に出願された日本国特許出願第2019-149868号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (13)

  1. 電極活物質を含む電極材料を一対の搬送ベルトの間隙に落下させて、一対の搬送ベルトの搬送面の間に前記電極材料を導入する第1工程と、
    導入された前記電極材料を、前記一対の搬送ベルトによって、ベルト搬送し、かつ、加圧する第2工程と、
    前記ベルト搬送及び前記加圧を行った後の前記電極材料を成膜ベルトの上に移送する第3工程と、
    を有し、
    前記成膜ベルトの前記電極材料を搬送する搬送路における搬送方向と、前記一対の搬送ベルトの前記電極材料を搬送する搬送路における搬送方向と、が交差し、
    前記一対の搬送ベルトは、
    側面視で前記電極材料を搬送する搬送路における搬送面の移動方向が反重力方向に対して左右方向の一方に傾斜角度θ1を0°<θ1≦60°として傾く第1ベルトと、
    側面視で前記電極材料を搬送する搬送路における搬送面の移動方向が反重力方向に対して左右方向の他方に傾斜角度θ2を0°<θ2≦60°として傾く第2ベルトと、
    を備え、
    前記成膜ベルトの前記電極材料の搬送方向に並んで前記第2ベルトと前記第1ベルトとがこの順に配置されており、
    前記第1ベルトのベルト搬送速度は、前記第2ベルトのベルト搬送速度より大きい、
    電極用成形体の製造方法。
  2. 前記電極材料が、粉体を含む請求項1に記載の電極用成形体の製造方法。
  3. 前記第2工程は、前記電極材料をベルト搬送する搬送路のベルト搬送方向下流に向かって前記電極材料に加える圧力を漸増する工程である請求項1又は請求項2に記載の電極用成形体の製造方法。
  4. 前記成膜ベルトの前記電極材料の搬送方向に並んで前記第2ベルトと前記第1ベルトとがこの順に配置されており、
    前記傾斜角度θ1と前記傾斜角度θ2とはθ2≦θ1の関係にある、
    請求項1~請求項3のいずれか1項に記載の電極用成形体の製造方法。
  5. 前記成膜ベルトの前記電極材料の搬送方向に並んで前記第2ベルトと前記第1ベルトと
    がこの順に配置されており、
    前記第1ベルト及び前記第2ベルトは、それぞれ、少なくとも2つのロールに巻き掛けられた無端ベルトであり、
    前記一対の搬送ベルトにおける電極材料の搬送路の最下流に位置する、前記第1ベルトのロールと前記第2ベルトのロールとが、下記の式1を満たす、
    請求項1~請求項4のいずれか1項に記載の電極用成形体の製造方法。
    第1ベルトのロールの直径r1≦第2ベルトのロールの直径r2 式1
  6. 前記第2ベルトの前記電極材料を搬送する搬送面、及び前記成膜ベルトの前記電極材料を成膜する成膜面に、長尺の第1支持部材を連続供給する工程を更に有し、
    前記第2工程は、導入された前記電極材料を、前記第2ベルト上の前記第1支持部材と前記第1ベルトとによりベルト搬送し、かつ、加圧し、
    前記第3工程は、前記電極材料を、前記成膜ベルト上の前記第1支持部材の表面に移送する、
    請求項1~請求項5のいずれか1項に記載の電極用成形体の製造方法。
  7. 前記第1ベルトの前記電極材料を搬送する搬送面、及び前記成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給する工程を更に有し、
    前記第2工程は、導入された前記電極材料を、前記第2ベルト上の前記第1支持部材と前記第1ベルト上の前記第2支持部材とを介してベルト搬送し、かつ、加圧し、
    前記第3工程は、前記電極材料を、前記成膜ベルト上の前記第1支持部材の表面に前記第2支持部材と接触した状態で移送する、
    請求項6に記載の電極用成形体の製造方法。
  8. 前記成膜ベルトの上に長尺の第3支持部材を連続供給する工程を更に有し、
    前記第3工程は、前記電極材料を、成膜ベルト上の前記第3支持部材の表面に移送する、
    請求項1~請求項5のいずれか1項に記載の電極用成形体の製造方法。
  9. 前記第1ベルトの前記電極材料を搬送する搬送面、及び前記成膜ベルトの上に移送された電極材料上に、長尺の第2支持部材を連続供給する工程を更に有し、
    前記第2工程は、導入された前記電極材料を、前記第2ベルトと前記第1ベルト上の前記第2支持部材とによりベルト搬送し、かつ、加圧し、
    前記第3工程は、前記電極材料を、前記成膜ベルト上の前記第3支持部材の表面に前記第2支持部材と接触した状態で移送する、
    請求項8に記載の電極用成形体の製造方法。
  10. 前記成膜ベルトの前記電極材料の搬送方向に並んで前記第2ベルトと前記第1ベルトとがこの順に配置され、成膜ベルトのベルト搬送速度が、前記一対の搬送ベルトの第1ベルトのベルト搬送速度より大きい、請求項1~請求項のいずれか1項に記載の電極用成形体の製造方法。
  11. 前記第1工程は、前記電極材料を供給用ベルトで搬送し、搬送された前記電極材料を前記供給用ベルトの搬送方向下流で落下させる請求項1~請求項10のいずれか1項に記載の電極用成形体の製造方法。
  12. 前記第1工程は、前記電極材料を、均一化部材を前記電極材料に接触させて前記供給用ベルトにより搬送する請求項11に記載の電極用成形体の製造方法。
  13. 前記第3工程は、前記電極材料を、均し部材を前記電極材料に接触させて前記成膜ベルトで移送する請求項1~請求項12のいずれか1項に記載の電極用成形体の製造方法。
JP2021540689A 2019-08-19 2020-07-27 電極用成形体の製造方法 Active JP7376599B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019149868 2019-08-19
JP2019149868 2019-08-19
PCT/JP2020/028715 WO2021033492A1 (ja) 2019-08-19 2020-07-27 電極用成形体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2021033492A1 JPWO2021033492A1 (ja) 2021-02-25
JP7376599B2 true JP7376599B2 (ja) 2023-11-08

Family

ID=74660849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021540689A Active JP7376599B2 (ja) 2019-08-19 2020-07-27 電極用成形体の製造方法

Country Status (3)

Country Link
US (1) US20220158161A1 (ja)
JP (1) JP7376599B2 (ja)
WO (1) WO2021033492A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022208371A1 (de) 2022-08-11 2024-02-22 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung lösemittelfreien Elektrodenmaterials in Filmform
DE102022211993A1 (de) 2022-11-11 2024-05-16 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Trockenfilms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080406A (ja) 1997-03-24 2000-03-21 Katayama Tokushu Kogyo Kk 電池用電極の製造方法および該方法で製造された電池用電極
JP2007227666A (ja) 2006-02-23 2007-09-06 Nippon Zeon Co Ltd 電気化学素子の製造方法
WO2013031854A1 (ja) 2011-08-31 2013-03-07 日本ゼオン株式会社 粉体成形装置及び粉体成形物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249857A (ja) * 1990-12-28 1992-09-04 Sanyo Electric Co Ltd 電池用極板の製造方法
JPH09106816A (ja) * 1995-10-09 1997-04-22 Toyota Autom Loom Works Ltd 水素吸蔵合金電極の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080406A (ja) 1997-03-24 2000-03-21 Katayama Tokushu Kogyo Kk 電池用電極の製造方法および該方法で製造された電池用電極
JP2007227666A (ja) 2006-02-23 2007-09-06 Nippon Zeon Co Ltd 電気化学素子の製造方法
WO2013031854A1 (ja) 2011-08-31 2013-03-07 日本ゼオン株式会社 粉体成形装置及び粉体成形物の製造方法

Also Published As

Publication number Publication date
WO2021033492A1 (ja) 2021-02-25
US20220158161A1 (en) 2022-05-19
JPWO2021033492A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7422158B2 (ja) 電極用成形体の製造方法
CN106605329B (zh) 具有混合粒度的电极材料
WO2019188487A1 (ja) 全固体二次電池及びその製造方法
US20220158161A1 (en) Method of manufacturing formed body for electrode
US11605805B2 (en) Method of manufacturing formed body for electrode
JP2023144101A (ja) 電極用成形体の製造方法
WO2022071392A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JPWO2019208346A1 (ja) 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
JP2022542843A (ja) 水分との反応性が緩和された高ニッケル電極シートおよびその製造方法
JP7061728B2 (ja) 複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法
US20220123280A1 (en) Method of manufacturing formed body for electrode
JP7448657B2 (ja) 全固体二次電池用シート及び全固体二次電池の製造方法、並びに、全固体二次電池用シート及び全固体二次電池
JP7344964B2 (ja) 電極用成形体の製造方法
WO2024024785A1 (ja) シート状電極用成形体の製造方法
KR102668117B1 (ko) 전극 코팅재의 제조 장치, 이를 이용하는 전극 코팅재의 제조 방법, 전지의 전극 제조 장치 및 이를 이용하는 전지의 전극 제조 방법
JP7427106B2 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
US20220311047A1 (en) All-solid secondary battery
WO2023054455A1 (ja) 電極用シート及び全固体二次電池、並びに、電極用シート、電極シート及び全固体二次電池の製造方法
WO2024024737A1 (ja) シート状電極用成形体の製造方法
US20220293905A1 (en) Method of producing electrode for secondary battery
US20230238510A1 (en) Solid secondary battery, solid secondary battery module comprising solid secondary battery, and charging method thereof
WO2024071056A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2024024786A1 (ja) 電極材料の製造方法、電池用電極の製造方法、及び、電池の製造方法
KR20240035351A (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231026

R150 Certificate of patent or registration of utility model

Ref document number: 7376599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150