JP7375557B2 - Hot water storage type water heater - Google Patents

Hot water storage type water heater Download PDF

Info

Publication number
JP7375557B2
JP7375557B2 JP2020002118A JP2020002118A JP7375557B2 JP 7375557 B2 JP7375557 B2 JP 7375557B2 JP 2020002118 A JP2020002118 A JP 2020002118A JP 2020002118 A JP2020002118 A JP 2020002118A JP 7375557 B2 JP7375557 B2 JP 7375557B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
insulation material
storage tank
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020002118A
Other languages
Japanese (ja)
Other versions
JP2021110495A (en
Inventor
航太 安藤
翔 後藤
修平 内藤
史郎 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020002118A priority Critical patent/JP7375557B2/en
Publication of JP2021110495A publication Critical patent/JP2021110495A/en
Priority to JP2023179583A priority patent/JP2023181260A/en
Application granted granted Critical
Publication of JP7375557B2 publication Critical patent/JP7375557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Molding Of Porous Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本開示は、貯湯式給湯機、断熱材成形型、及び、断熱材製造方法に関する。 The present disclosure relates to a hot water storage type water heater, a heat insulating mold, and a method for manufacturing a heat insulating material.

従来、貯湯式給湯機の貯湯タンクを覆う断熱材の材料として、発泡スチロールが主流であったが、近年、より断熱性能の高い発泡ウレタン断熱材が注目されている。下記特許文献1には、ポリウレタン発泡体を成形する発泡成形型の下型において、壁面が交差する隅部の下型底面には、その下型底面に注入されたポリウレタン原料が流れ広がる際に、隅部へ向かって流れる原料の中央部の流れがその外側の原料の流れよりも速くなるようにした流速調整部を設けたものが開示されている。 Conventionally, foamed polystyrene has been the mainstream material for the insulation material covering the hot water storage tank of a hot water storage type water heater, but in recent years, foamed urethane insulation material with higher insulation performance has been attracting attention. Patent Document 1 below describes that in the lower die of a foam molding mold for molding a polyurethane foam, when the polyurethane raw material injected into the bottom of the lower die flows and spreads on the bottom of the lower die at the corner where the wall surfaces intersect, A device is disclosed in which a flow rate adjustment section is provided so that the flow of the raw material flowing toward the corner at the center part is faster than the flow of the raw material outside the central part.

特開2008-213160号公報Japanese Patent Application Publication No. 2008-213160

貯湯タンクを覆う断熱材には、貯湯タンクに接続された配管を通す回避穴を設ける必要がある。貯湯タンクを覆う断熱材として発泡ウレタン断熱材を用いる場合の課題として、ウレタン原料を金型へ注入して発泡・成形する際に、金型内の凹凸の影響により、ウレタン原料が金型全体に行き渡らず、成形品に欠肉部が発生することで、断熱性能及び外観に影響を及ぼすという課題がある。例えば、断熱材を成形する金型の下型には、回避穴を成形するための凸部が設けられ、型閉時に当該凸部が上型に接する。それゆえ、当該凸部がウレタン原料の流動に対して障害物となり、成形品に欠肉部が発生しやすい。 The insulating material covering the hot water storage tank must have an escape hole for passing the pipes connected to the hot water storage tank. A problem when using urethane foam insulation as a heat insulating material to cover a hot water storage tank is that when the urethane raw material is injected into a mold and foamed and molded, the urethane raw material spreads over the entire mold due to the effects of unevenness inside the mold. There is a problem that the heat insulating performance and appearance are affected by the lack of thickness and the occurrence of missing parts in the molded product. For example, a lower die of a mold for molding a heat insulating material is provided with a convex portion for forming an avoidance hole, and the convex portion contacts the upper die when the mold is closed. Therefore, the convex portion becomes an obstacle to the flow of the urethane raw material, and the molded product is likely to have a lack of thickness.

本開示は、上述のような課題を解決するためになされたもので、貯湯タンクに接続された配管を通す回避穴を有する発泡ウレタン断熱材の成形時に欠肉部が発生することを防止する上で有利になる貯湯式給湯機、断熱材成形型、及び、断熱材製造方法を提供することを目的とする。 The present disclosure has been made in order to solve the above-mentioned problems, and is aimed at preventing the occurrence of under-walled portions when molding a foamed urethane insulation material having avoidance holes for passing piping connected to a hot water storage tank. It is an object of the present invention to provide a hot water storage type water heater, a heat insulating material molding mold, and a method for producing a heat insulating material that are advantageous in the following.

本開示に係る貯湯式給湯機は、円筒状の貯湯タンクと、貯湯タンクを収納する外郭ケースと、貯湯タンクに接続された配管と、外郭ケース内において貯湯タンクを覆う発泡ウレタン断熱材と、を備え、発泡ウレタン断熱材は、貯湯タンクに向く内壁面と、内壁面とは反対側に向く外壁面と、内壁面から外壁面へ貫通し、配管を通すための回避穴とを有し、回避穴は、外壁面に開口する外側開口と、内壁面に開口する内側開口とを有し、外側開口の形状が楕円形であり、外側開口の面積が内側開口の面積よりも大きいものである。
また、本開示に係る貯湯式給湯機は、円筒状の貯湯タンクと、貯湯タンクを収納する外郭ケースと、貯湯タンクに接続された配管と、外郭ケース内において貯湯タンクを覆う発泡ウレタン断熱材と、を備え、発泡ウレタン断熱材は、貯湯タンクに向く内壁面と、内壁面とは反対側に向く外壁面と、内壁面から外壁面へ貫通し、配管を通すための回避穴とを有し、回避穴は、外壁面に開口する外側開口と、内壁面に開口する内側開口とを有し、外側開口の形状が楕円形であり、回避穴は、錐台状の内部空間を有するものである。
A hot water storage type water heater according to the present disclosure includes a cylindrical hot water storage tank, an outer case that houses the hot water storage tank, piping connected to the hot water storage tank, and a foamed urethane insulation material that covers the hot water storage tank in the outer case. The foamed urethane insulation material has an inner wall surface facing the hot water storage tank, an outer wall surface facing the opposite side from the inner wall surface, and an avoidance hole that penetrates from the inner wall surface to the outer wall surface and allows piping to pass through. The hole has an outer opening opening to the outer wall surface and an inner opening opening to the inner wall surface, the outer opening has an elliptical shape, and the area of the outer opening is larger than the area of the inner opening. .
The hot water storage type water heater according to the present disclosure also includes a cylindrical hot water storage tank, an outer case that houses the hot water storage tank, piping connected to the hot water storage tank, and a foamed urethane insulation material that covers the hot water storage tank in the outer case. , the foamed urethane insulation material has an inner wall surface facing the hot water storage tank, an outer wall surface facing the opposite side to the inner wall surface, and an avoidance hole penetrating from the inner wall surface to the outer wall surface for passing piping. The avoidance hole has an outer opening opening to the outer wall surface and an inner opening opening to the inner wall surface, the outer opening has an elliptical shape, and the avoidance hole has a frustum-shaped internal space. be.

本開示によれば、貯湯タンクに接続された配管を通す回避穴を有する発泡ウレタン断熱材の成形時に欠肉部が発生することを防止する上で有利になる貯湯式給湯機、断熱材成形型、及び、断熱材製造方法を提供することが可能となる。 According to the present disclosure, a hot water storage type water heater and a heat insulating material molding mold are advantageous in preventing the occurrence of under-walled portions when molding a foamed urethane heat insulating material having an avoidance hole for passing piping connected to a hot water storage tank. It becomes possible to provide a method for manufacturing a heat insulating material.

実施の形態1による貯湯式給湯機を示す正面図である。1 is a front view showing a hot water storage type water heater according to Embodiment 1. FIG. 実施の形態1による貯湯式給湯機が備える貯湯タンクの斜視図である。FIG. 2 is a perspective view of a hot water storage tank included in the hot water storage type water heater according to the first embodiment. 貯湯タンク、及び貯湯タンクを覆う断熱材の分解斜視図である。FIG. 2 is an exploded perspective view of a hot water storage tank and a heat insulating material covering the hot water storage tank. 貯湯タンクが断熱材で覆われた状態を示す斜視図である。FIG. 3 is a perspective view showing a hot water storage tank covered with a heat insulating material. 前面断熱材の斜視図である。FIG. 3 is a perspective view of the front insulation material. 前面断熱材の正面図である。FIG. 3 is a front view of the front insulation material. 前面断熱材の断面図である。FIG. 3 is a cross-sectional view of the front insulation material. 実施の形態1による断熱材成形型の下型の一部を示す図である。FIG. 3 is a diagram showing a part of the lower die of the heat insulating material mold according to the first embodiment.

以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、説明を簡略化または省略する。なお、本開示で角度に言及した場合において、和が360度となる優角と劣角とがあるときには原則として劣角の角度を指すものとする。以下の説明において、「水」との記載は、原則として、液体の水を意味し、低温の水から高温の湯までが含まれうるものとする。 Embodiments will be described below with reference to the drawings. Common or corresponding elements in each figure are denoted by the same reference numerals, and description thereof will be simplified or omitted. Note that when an angle is referred to in the present disclosure, when there is a dominant angle and a recessive angle whose sum is 360 degrees, the angle generally refers to the recessive angle. In the following description, the term "water" basically means liquid water, and may include anything from low-temperature water to high-temperature hot water.

実施の形態1.
図1は、実施の形態1による貯湯式給湯機100を示す正面図である。図1に示すように、本実施の形態の貯湯式給湯機100は、貯湯タンク1を内蔵した貯湯タンクユニット30と、水を加熱して高温の湯を生成可能な加熱手段4とを有している。貯湯タンクユニット30と加熱手段4との間は、入水配管3及び出湯配管5により接続されている。貯湯タンクユニット30には、外部の水道等の水源からの水を供給する給水配管2と、風呂給湯配管6と、給湯配管7とが接続されている。貯湯タンク1内に貯留された水は、貯湯タンク1の下部から導出され、入水配管3を通って加熱手段4へ搬送される。加熱手段4は、例えば、冷凍サイクルを用いて水を加熱するヒートポンプユニットで構成される。加熱手段4に搬送された水は、加熱されて高温の湯となる。この高温の湯は、出湯配管5を通って貯湯タンクユニット30に戻り、貯湯タンク1の上部から貯湯タンク1内に流入して貯留される。貯湯タンクユニット30の内部には、貯湯タンク1内から取り出された高温の湯と、給水配管2から供給される水とを混合して温度調節するための混合弁が備えられている。この混合弁により温度調節された湯水は、風呂給湯配管6を介して、浴室の浴槽40へ供給され、あるいは、給湯配管7を介して、シャワー、台所、洗面所の蛇口などの給湯端末へ供給される。なお、本開示における加熱手段は、上述した構成に限定されるものではなく、例えば電気ヒータ等の加熱手段を貯湯タンク1内に配置したものであってもよい。
Embodiment 1.
FIG. 1 is a front view showing a hot water storage type water heater 100 according to the first embodiment. As shown in FIG. 1, a hot water storage type water heater 100 according to the present embodiment includes a hot water storage tank unit 30 having a built-in hot water storage tank 1, and a heating means 4 capable of heating water to generate high temperature hot water. ing. The hot water storage tank unit 30 and the heating means 4 are connected by a water inlet pipe 3 and a hot water outlet pipe 5. A water supply pipe 2 that supplies water from an external water source such as a water supply, a bath hot water supply pipe 6, and a hot water supply pipe 7 are connected to the hot water storage tank unit 30. Water stored in the hot water storage tank 1 is led out from the lower part of the hot water storage tank 1, and is conveyed to the heating means 4 through the water inlet pipe 3. The heating means 4 includes, for example, a heat pump unit that heats water using a refrigeration cycle. The water conveyed to the heating means 4 is heated and becomes hot water. This high temperature hot water returns to the hot water storage tank unit 30 through the hot water outlet pipe 5, flows into the hot water storage tank 1 from the upper part of the hot water storage tank 1, and is stored. Inside the hot water storage tank unit 30, a mixing valve is provided for mixing high temperature hot water taken out from the hot water storage tank 1 and water supplied from the water supply pipe 2 to adjust the temperature. The hot water whose temperature has been adjusted by this mixing valve is supplied to the bathtub 40 in the bathroom via the bath hot water supply pipe 6, or to hot water supply terminals such as shower, kitchen, and washroom faucets via the hot water supply pipe 7. be done. Note that the heating means in the present disclosure is not limited to the configuration described above, and may be, for example, a heating means such as an electric heater arranged in the hot water storage tank 1.

貯湯タンクユニット30は、直方体状の外形を有する箱状の外郭ケース10を備えている。貯湯タンク1は、熱の散逸を抑制するための後述する断熱材により覆われた状態で、外郭ケース10内に収納されている。外郭ケース10の下方には複数本のタンクユニット脚12が設置されている。これらのタンクユニット脚12により貯湯タンクユニット30が地面または台座に対し支持固定されている。 The hot water storage tank unit 30 includes a box-shaped outer case 10 having a rectangular parallelepiped outer shape. The hot water storage tank 1 is housed in an outer case 10 while being covered with a heat insulating material, which will be described later, to suppress heat dissipation. A plurality of tank unit legs 12 are installed below the outer case 10. The hot water storage tank unit 30 is supported and fixed to the ground or a pedestal by these tank unit legs 12.

図1は、外郭ケース10のうちの前面板を取り外した状態を示している。図1のようにすることで、貯湯タンクユニット30内に配置された配管、ポンプ、バルブ、追焚き用熱交換器、制御基板などの機器のメンテナンスを行うことができる。 FIG. 1 shows the outer case 10 with the front plate removed. By doing as shown in FIG. 1, maintenance of equipment such as piping, pumps, valves, reheating heat exchangers, and control boards arranged in the hot water storage tank unit 30 can be performed.

貯湯タンク1の内部には、温度の違いによる水の比重の差によって、上側が高温で下側が低温になる温度成層を形成可能である。貯湯式給湯機100の使用時に、貯湯タンク1の内部には、例えば、上方に高温水層、下方に低温水層、その間に中温水層、という温度分布が形成される。 Inside the hot water storage tank 1, temperature stratification can be formed where the upper side is higher and the lower side is lower due to the difference in specific gravity of water due to the difference in temperature. When the hot water storage type water heater 100 is used, a temperature distribution is formed inside the hot water storage tank 1, such as a high temperature water layer above, a low temperature water layer below, and a medium temperature water layer therebetween.

図2は、実施の形態1による貯湯式給湯機100が備える貯湯タンク1の斜視図である。図2に示すように、貯湯タンク1は、円筒状の形状を有する。貯湯タンク1は、例えば、ステンレス鋼のような金属材料で作られている。貯湯タンクユニット30が設置場所に据え付けられた状態では、貯湯タンク1の円筒軸方向は鉛直線に対して実質的に平行になる。貯湯タンク1は、円筒軸方向に沿って直径が一定となった胴部1aと、胴部1aの上方に設けられた上部1bと、胴部1aの下方に設けられた下部1cとを備える。上部1b及び下部1cのそれぞれは、例えば半球状または椀状の鏡板により形成される。 FIG. 2 is a perspective view of the hot water storage tank 1 included in the hot water storage type water heater 100 according to the first embodiment. As shown in FIG. 2, the hot water storage tank 1 has a cylindrical shape. The hot water storage tank 1 is made of a metal material such as stainless steel, for example. When the hot water storage tank unit 30 is installed at the installation location, the cylindrical axis direction of the hot water storage tank 1 is substantially parallel to the vertical line. The hot water storage tank 1 includes a body portion 1a having a constant diameter along the cylindrical axis direction, an upper portion 1b provided above the body portion 1a, and a lower portion 1c provided below the body portion 1a. Each of the upper part 1b and the lower part 1c is formed, for example, by a hemispherical or bowl-shaped mirror plate.

貯湯タンク1の胴部1aに中温水口17が設けられている。中温水が通る配管(図示省略)が中温水口17に接続される。中温水口17から中温水が貯湯タンク1に流入したり、貯湯タンク1内の中温水が中温水口17から流出したりする。図示の例では、二つの中温水口17が設けられている。二つの中温水口17は、貯湯タンク1の円筒軸方向に関して互いに異なる位置にあるとともに、貯湯タンク1の周方向に関して互いに同じ位置にある。貯湯タンク1が備える中温水口17の数は、この例に限定されず、例えば一つだけでもよい。 A medium temperature water port 17 is provided in the body 1a of the hot water storage tank 1. A pipe (not shown) through which medium-temperature water passes is connected to medium-temperature water port 17 . Medium temperature water flows into the hot water storage tank 1 from the medium temperature water port 17, and medium temperature water in the hot water storage tank 1 flows out from the medium temperature water port 17. In the illustrated example, two medium temperature water ports 17 are provided. The two medium-temperature water ports 17 are located at different positions relative to the cylindrical axis of the hot water storage tank 1 and at the same position relative to the circumferential direction of the hot water storage tank 1. The number of medium temperature water ports 17 provided in the hot water storage tank 1 is not limited to this example, and may be only one, for example.

貯湯タンク1の上部1bに高温水口18が設けられている。図示の例では、二つの高温水口18が設けられており、一方の高温水口18に出湯配管5が接続され、他方の高温水口18に給湯配管7が接続される。出湯配管5を通る高温水が上記一方の高温水口18から貯湯タンク1に流入する。貯湯タンク1内の高温水が上記他方の高温水口18から給湯配管7へ流出する。貯湯タンク1が備える高温水口18の数は、この例に限定されず、例えば一つだけでもよい。 A high temperature water inlet 18 is provided in the upper part 1b of the hot water storage tank 1. In the illustrated example, two high-temperature water ports 18 are provided, the hot water outlet pipe 5 is connected to one high-temperature water port 18, and the hot water supply pipe 7 is connected to the other high-temperature water port 18. High-temperature water passing through the hot water outlet pipe 5 flows into the hot water storage tank 1 from one of the high-temperature water ports 18. High temperature water in the hot water storage tank 1 flows out from the other high temperature water port 18 to the hot water supply pipe 7. The number of high temperature water ports 18 provided in the hot water storage tank 1 is not limited to this example, and may be only one, for example.

図示を省略するが、貯湯タンク1の下部1cに設けられた低温水口に給水配管2及び入水配管3が接続されている。給水配管2を通る低温水が低温水口から貯湯タンク1に流入する。貯湯タンク1内の低温水が低温水口から入水配管3へ流出する。また、貯湯タンク1の表面には、複数の貯湯温度センサ(図示省略)が互いに高さの異なる位置に設置されている。これらの貯湯温度センサにより貯湯タンク1内の鉛直方向に沿った水温分布を検出することにより、貯湯タンク1内の残湯量及び蓄熱量を検出できる。残湯量あるいは蓄熱量が少なくなると、加熱手段4を用いて貯湯タンク1内に湯を貯める貯湯運転が実行される。 Although not shown, a water supply pipe 2 and a water inlet pipe 3 are connected to a low-temperature water port provided in the lower part 1c of the hot water storage tank 1. Low-temperature water passing through the water supply pipe 2 flows into the hot water storage tank 1 from the low-temperature water inlet. Low-temperature water in the hot water storage tank 1 flows out from the low-temperature water inlet to the water inlet pipe 3. Further, on the surface of the hot water storage tank 1, a plurality of hot water storage temperature sensors (not shown) are installed at positions that are different from each other in height. By detecting the water temperature distribution along the vertical direction in the hot water storage tank 1 using these hot water storage temperature sensors, the amount of remaining hot water and the amount of heat storage in the hot water storage tank 1 can be detected. When the amount of remaining hot water or the amount of stored heat decreases, a hot water storage operation is performed in which hot water is stored in the hot water storage tank 1 using the heating means 4.

図3は、貯湯タンク1、及び貯湯タンク1を覆う断熱材の分解斜視図である。図4は、貯湯タンク1が断熱材で覆われた状態を示す斜視図である。図3に示すように、本実施の形態の貯湯式給湯機100は、貯湯タンク1を覆う断熱材として、真空断熱材11と、上部断熱材13と、前面断熱材14と、背面断熱材15と、下部断熱材16とを備える。真空断熱材11は、貯湯タンク1の胴部1aを覆う。図示の例では、2枚の真空断熱材11が設けられており、一方の真空断熱材11が胴部1aの外周のうちの左側の半周を覆い、他方の真空断熱材11が胴部1aの外周のうちの右側の半周を覆う。 FIG. 3 is an exploded perspective view of the hot water storage tank 1 and the heat insulating material covering the hot water storage tank 1. FIG. 4 is a perspective view showing the hot water storage tank 1 covered with a heat insulating material. As shown in FIG. 3, the hot water storage type water heater 100 of the present embodiment includes a vacuum insulation material 11, an upper insulation material 13, a front insulation material 14, and a back insulation material 15 as insulation materials that cover the hot water storage tank 1. and a lower heat insulating material 16. The vacuum insulation material 11 covers the body portion 1a of the hot water storage tank 1. In the illustrated example, two vacuum insulation materials 11 are provided, one vacuum insulation material 11 covers the left half of the outer circumference of the trunk portion 1a, and the other vacuum insulation material 11 covers the left half of the outer circumference of the trunk portion 1a. Cover the right half of the outer circumference.

上部断熱材13は、貯湯タンク1の上部1bを覆う。前面断熱材14及び背面断熱材15は、真空断熱材11の上から貯湯タンク1の胴部1aを覆う。前面断熱材14は、胴部1aの外周のうち、前面側の半周を覆う。背面断熱材15は、胴部1aの外周のうち、背面側の半周を覆う。下部断熱材16は、貯湯タンク1の下部1cを覆う。上部断熱材13、前面断熱材14、背面断熱材15、及び下部断熱材16のそれぞれは、発泡プラスチックを成形して作られている。 The upper insulating material 13 covers the upper part 1b of the hot water storage tank 1. The front insulation material 14 and the back insulation material 15 cover the body portion 1a of the hot water storage tank 1 from above the vacuum insulation material 11. The front heat insulating material 14 covers half of the outer circumference of the body portion 1a on the front side. The back insulation material 15 covers half of the outer circumference of the body portion 1a on the back side. The lower heat insulating material 16 covers the lower part 1c of the hot water storage tank 1. Each of the upper insulating material 13, the front insulating material 14, the back insulating material 15, and the lower insulating material 16 is made by molding foamed plastic.

図3及び図4が示すとおり、上部断熱材13、前面断熱材14、背面断熱材15、及び下部断熱材16のそれぞれは、複雑な形状を有している。その理由は大きく分けて二つある。一つの理由は、貯湯タンク1の各部に接続された配管を避けるためである。もう一つの理由は、熱交換器あるいは循環ポンプなどの機器を支持するためである。これらの理由により、各断熱材には、配管を通すための回避穴、機器を支持する凸部などが設けられる。 As shown in FIGS. 3 and 4, each of the upper insulating material 13, the front insulating material 14, the back insulating material 15, and the lower insulating material 16 has a complicated shape. There are two main reasons for this. One reason is to avoid piping connected to various parts of the hot water storage tank 1. Another reason is to support equipment such as heat exchangers or circulation pumps. For these reasons, each heat insulating material is provided with escape holes for passing pipes, protrusions for supporting equipment, and the like.

貯湯式給湯機100においては、貯湯タンク1に貯えられた湯から散逸する熱量を低減することが、省エネルギー性能を高める上で重要になる。このため、貯湯タンク1を覆う断熱材の断熱性能が重要となる。一般的に広く使用されている断熱材の材料として、発泡ポリスチレン(以下、EPSと称する)がある。また、EPSよりも熱伝導率が小さい発泡ウレタン断熱材は、断熱性能に優れる。一般的に、EPSの熱伝導率は、33mW/(m・K)~38mW/(m・K)程度であり、発泡ウレタン断熱材の熱伝導率は、20mW/(m・K)~24mW/(m・K)程度である。よって、発泡ウレタン断熱材は、同じ厚さのEPSに比べて、1.5倍~2倍程度の断熱性能を有する。 In the hot water storage type water heater 100, reducing the amount of heat dissipated from the hot water stored in the hot water storage tank 1 is important for improving energy saving performance. For this reason, the heat insulation performance of the heat insulating material covering the hot water storage tank 1 is important. Expanded polystyrene (hereinafter referred to as EPS) is a commonly used material for heat insulating materials. Moreover, foamed urethane insulation material, which has a lower thermal conductivity than EPS, has excellent insulation performance. Generally, the thermal conductivity of EPS is about 33mW/(m・K) to 38mW/(m・K), and the thermal conductivity of urethane foam insulation is 20mW/(m・K) to 24mW/ (m・K). Therefore, the foamed urethane heat insulating material has a heat insulating performance that is about 1.5 to 2 times that of EPS of the same thickness.

真空断熱材11は、例えばグラスウールで作られた芯材を、ガスバリア性を有するラミネートフィルムからなる袋に入れ、内部を真空に近い減圧状態(以下、「真空状態」と称する)にしたものである。真空断熱材11は、袋内の空気を極力なくし、真空状態とすることで、高い断熱性能を達成することができる。真空断熱材11の熱伝導率は、例えば1.8mW/(m・K)~2.8mW/(m・K)程度である。このような真空断熱材11は、同じ厚さのEPSに比べ、15倍~20倍の断熱性能を有する。その一方で、真空断熱材11は衝撃に弱く、袋に穴が開いて真空状態が解除されると、その熱伝導率は、30mW/(m・K)~40mW/(m・K)程度まで上昇してしまう。 The vacuum insulation material 11 is a material in which a core material made of glass wool, for example, is placed in a bag made of a laminate film having gas barrier properties, and the inside is brought into a reduced pressure state close to vacuum (hereinafter referred to as "vacuum state"). . The vacuum heat insulating material 11 can achieve high heat insulating performance by eliminating air in the bag as much as possible and creating a vacuum state. The thermal conductivity of the vacuum heat insulating material 11 is, for example, about 1.8 mW/(m·K) to 2.8 mW/(m·K). Such a vacuum heat insulating material 11 has a heat insulating performance that is 15 to 20 times higher than that of EPS of the same thickness. On the other hand, the vacuum insulation material 11 is weak against shock, and when a hole is made in the bag and the vacuum state is released, its thermal conductivity decreases to about 30mW/(m・K) to 40mW/(m・K). It will rise.

上述したように、断熱性能においてはEPSよりも発泡ウレタン断熱材の方が優れるが、成形性においては発泡ウレタン断熱材よりもEPSの方が優れている。EPSは、スチレンの原料ビーズに蒸気を当て樹脂を柔らかくするのと同時に、ビーズの中に入っているガスを膨張させて予備発泡させた後、金型に充填されたビーズ同士を融着させることで成形を行う。EPSの成形においては、金型の細部までビーズが行き渡るため、欠肉部が発生しにくい。これに対し、発泡ウレタン断熱材は、原料となるポリオールとイソシアネートのそれぞれを成分を主とした2つの原液を発泡機で混合後、充填する空間に液状で注入し、発泡及び硬化させる。このような発泡ウレタン断熱材の成形においては、原料が粘度の高い液体であるため、成形品の形状が複雑な場合、細部の形状に対応できず欠肉部が発生する可能性がある。 As mentioned above, urethane foam insulation is superior to EPS in heat insulation performance, but EPS is superior to urethane foam insulation in moldability. EPS applies steam to raw material beads of styrene to soften the resin, at the same time expands the gas inside the beads to pre-foam them, and then fuses the beads filled in a mold together. Perform molding. In EPS molding, the beads are distributed throughout the details of the mold, making it difficult for underfill areas to occur. On the other hand, foamed urethane insulation materials are made by mixing two stock solutions mainly consisting of polyol and isocyanate as raw materials in a foaming machine, and then injecting the mixture in liquid form into the space to be filled, allowing it to foam and harden. In the molding of such foamed urethane insulation materials, the raw material is a liquid with high viscosity, so if the shape of the molded product is complex, it may not be possible to accommodate the detailed shape, which may result in underfilling.

本実施の形態において、前面断熱材14は、発泡ウレタン断熱材である。前面断熱材14を発泡ウレタン断熱材にすることで、前面断熱材14をEPSにした場合に比べて、断熱性能が向上する。図4に示すように、前面断熱材14は、中温水口17に接続される配管を通すための回避穴19を有している。本実施の形態では、二つの中温水口17に対応して、二つの回避穴19が前面断熱材14に形成されている。 In this embodiment, the front insulation material 14 is a foamed urethane insulation material. By using the foamed urethane insulation material as the front insulation material 14, the insulation performance is improved compared to the case where the front insulation material 14 is made of EPS. As shown in FIG. 4, the front insulation material 14 has an escape hole 19 through which a pipe connected to the medium-temperature water port 17 is passed. In this embodiment, two avoidance holes 19 are formed in the front insulation material 14 in correspondence with the two medium temperature water ports 17 .

図5は、前面断熱材14の斜視図である。図6は、前面断熱材14の正面図である。図7は、前面断熱材14の断面図である。図7の断面は、貯湯タンク1の円筒軸と回避穴19とを通る平面で切断した断面である。これらの図に示すように、前面断熱材14は、貯湯タンク1の表面に向く内壁面14aと、内壁面14aとは反対側に向く外壁面14bとを有する。回避穴19は、内壁面14aから外壁面14bへ貫通する。図7に示すように、回避穴19は、外壁面14bに開口する外側開口19bと、内壁面14aに開口する内側開口19aとを有する。図6に示すように、外側開口19bの形状は、楕円形である。ここで、本開示における「楕円形」とは、数学上で円錐曲線の一つとして定義される楕円の形状に限定されるものではない。本開示における「楕円形」とは、長手方向を有する丸みを帯びた形状を広く含むものであり、例えば、半円の両端と別の半円の両端とが二つの線分を介してつながったような形状でもよいし、ラグビーボールの縦断面のような形状でもよい。 FIG. 5 is a perspective view of the front insulation material 14. FIG. 6 is a front view of the front insulation material 14. FIG. 7 is a cross-sectional view of the front insulation material 14. The cross section of FIG. 7 is a cross section cut along a plane passing through the cylindrical axis of the hot water storage tank 1 and the avoidance hole 19. As shown in these figures, the front insulation material 14 has an inner wall surface 14a facing the surface of the hot water storage tank 1, and an outer wall surface 14b facing the opposite side from the inner wall surface 14a. The avoidance hole 19 penetrates from the inner wall surface 14a to the outer wall surface 14b. As shown in FIG. 7, the avoidance hole 19 has an outer opening 19b opening to the outer wall surface 14b and an inner opening 19a opening to the inner wall surface 14a. As shown in FIG. 6, the outer opening 19b has an elliptical shape. Here, the term "ellipse" in the present disclosure is not limited to the shape of an ellipse that is mathematically defined as one type of conic section. In the present disclosure, "elliptical" broadly includes rounded shapes with a longitudinal direction, for example, both ends of a semicircle and both ends of another semicircle are connected via two line segments. It may have a shape like this, or it may have a shape like a longitudinal section of a rugby ball.

本実施の形態であれば、回避穴19の外側開口19bが楕円形であることで、以下の効果が得られる。前面断熱材14を貯湯タンク1に取り付けた後に中温水口17に配管を接続する作業のときに、回避穴19の内側の空間に余裕が生まれるので、作業がしやすいとともに、中温水口17に配管を固定するファスナー(図示省略)が前面断熱材14に接触することを確実に防止できる。これらのことから、作業性が向上する。 In this embodiment, the following effects can be obtained by having the outer opening 19b of the avoidance hole 19 having an elliptical shape. When connecting piping to the medium temperature water inlet 17 after attaching the front insulation material 14 to the hot water storage tank 1, there is an extra space inside the avoidance hole 19, which makes the work easier and allows the connection of the pipe to the medium temperature water inlet 17. It is possible to reliably prevent the fasteners (not shown) that fix the pipes from coming into contact with the front insulation material 14. These things improve workability.

本実施の形態による断熱材製造方法は、ウレタン原料を断熱材成形型に注入して発泡及び硬化させることより前面断熱材14を成形する方法である。図8は、本実施の形態による断熱材成形型の下型21の一部を示す図である。図8に示すように、下型21は、金型内面21aと、金型内面21aから突出する金型凸部22とを有している。図8中の上の図は金型内面21aに対して垂直な平面で切断した断面図であり、図8中の下の図は金型内面21aに対して垂直な方向から金型凸部22を見た図である。金型内面21aは、前面断熱材14の外壁面14bを成形する面である。金型凸部22は、回避穴19を成形するための凸部である。成形時には、上型(図示省略)が下型21の上に重なり、その上型が金型凸部22の上面に接する。 The method of manufacturing a heat insulating material according to this embodiment is a method of molding the front heat insulating material 14 by injecting a urethane raw material into a heat insulating material mold, foaming and curing it. FIG. 8 is a diagram showing a part of the lower mold 21 of the heat insulating mold according to this embodiment. As shown in FIG. 8, the lower mold 21 has a mold inner surface 21a and a mold convex portion 22 protruding from the mold inner surface 21a. The upper diagram in FIG. 8 is a sectional view taken along a plane perpendicular to the mold inner surface 21a, and the lower diagram in FIG. This is a diagram showing the. The mold inner surface 21a is a surface on which the outer wall surface 14b of the front insulation material 14 is formed. The mold convex portion 22 is a convex portion for molding the avoidance hole 19. During molding, an upper mold (not shown) overlaps the lower mold 21, and the upper mold contacts the upper surface of the mold convex portion 22.

金型凸部22の形状は、回避穴19の形状に対応している。金型凸部22は、楕円形の基部22aを有する。基部22aは、金型凸部22のうち、金型内面21aに接する部分である。基部22aにより外側開口19bが成形される。基部22aの楕円形は、外側開口19bの楕円形に対応している。金型凸部22は、その突出方向に垂直な断面形状が楕円形である。図8中には、成形時のウレタン原料の流れ方向が矢印で示されている。このように、本実施の形態の断熱材製造方法では、金型凸部22の近くにおいて、ウレタン原料が、金型凸部22の楕円形の長手方向に沿って流れるようにウレタン原料を注入する。これにより、ウレタン原料が金型凸部22の裏側まで回り込みやすいので、欠肉部の発生を確実に防止することができる。 The shape of the mold convex portion 22 corresponds to the shape of the avoidance hole 19. The mold protrusion 22 has an oval base 22a. The base portion 22a is a portion of the mold convex portion 22 that is in contact with the mold inner surface 21a. An outer opening 19b is formed by the base 22a. The oval shape of the base portion 22a corresponds to the oval shape of the outer opening 19b. The mold convex portion 22 has an elliptical cross-sectional shape perpendicular to its protrusion direction. In FIG. 8, arrows indicate the flow direction of the urethane raw material during molding. As described above, in the heat insulating material manufacturing method of the present embodiment, the urethane raw material is injected near the mold convex part 22 so that the urethane raw material flows along the longitudinal direction of the oval shape of the mold convex part 22. . Thereby, the urethane raw material can easily go around to the back side of the mold convex portion 22, so that it is possible to reliably prevent the occurrence of under-walled portions.

前面断熱材14は、貯湯タンク1の円筒軸方向を長手方向とする形状を有している。成形時には、前面断熱材14の長手方向に沿ってウレタン原料が流れる。図6に示すように、本実施の形態おける外側開口19bの長手方向は、貯湯タンク1の円筒軸方向に平行である。したがって、金型凸部22の楕円形の長手方向に沿ってウレタン原料が流れるので、欠肉部の発生を確実に防止することができる。 The front insulation material 14 has a shape whose longitudinal direction is the cylindrical axis direction of the hot water storage tank 1 . During molding, the urethane raw material flows along the longitudinal direction of the front insulation material 14. As shown in FIG. 6, the longitudinal direction of the outer opening 19b in this embodiment is parallel to the cylindrical axis direction of the hot water storage tank 1. Therefore, since the urethane raw material flows along the longitudinal direction of the ellipse of the mold convex portion 22, it is possible to reliably prevent the occurrence of underfill portions.

図8に示すように、本実施の形態における金型凸部22は、内側開口19aを成形する頂部22bを有する。図6に示すように、本実施の形態における内側開口19aの形状は、円形である。このため、頂部22bの形状の円形である。本実施の形態であれば、頂部22bが円形であることで、頂部22bの周りにウレタン原料がさらに回り込みやすくなる。それゆえ、欠肉部の発生を防止する上でより有利になる。なお、内側開口19a及び頂部22bの形状を楕円形にしてもよい。その場合でも、同様の効果が得られる。 As shown in FIG. 8, the mold convex portion 22 in this embodiment has a top portion 22b that forms the inner opening 19a. As shown in FIG. 6, the shape of the inner opening 19a in this embodiment is circular. Therefore, the shape of the top portion 22b is circular. In this embodiment, the circular top portion 22b makes it easier for the urethane raw material to wrap around the top portion 22b. Therefore, it is more advantageous in preventing the occurrence of underfill portions. Note that the inner opening 19a and the top portion 22b may have an oval shape. Even in that case, similar effects can be obtained.

図6及び図7に示すように、本実施の形態における外側開口19bの面積は、内側開口19aの面積よりも大きい。これにより、以下の効果が得られる。外側開口19bの面積が大きいので、回避穴19の内側の空間がさらに広くなり、中温水口17に配管を接続するときの作業性を向上する上でより有利になる。また、内側開口19aの面積が小さいので、貯湯タンク1の熱が回避穴19から漏洩することを抑制する上でより有利になる。 As shown in FIGS. 6 and 7, the area of the outer opening 19b in this embodiment is larger than the area of the inner opening 19a. This provides the following effects. Since the area of the outer opening 19b is large, the space inside the avoidance hole 19 becomes wider, which is more advantageous in improving the workability when connecting piping to the medium temperature water port 17. Furthermore, since the area of the inner opening 19a is small, it is more advantageous in suppressing heat from the hot water storage tank 1 from leaking from the avoidance hole 19.

図8に示すように、本実施の形態における金型凸部22の形状は、その突出方向に垂直な断面積が、金型内面21aから離れるにつれて漸減する錐台状を呈する。これにより、以下の効果が得られる。金型凸部22の側面22cと、金型内面21aとの間の角度が鈍角になるので、金型凸部22の周りにウレタン原料がさらに回り込みやすくなる。それゆえ、欠肉部の発生を防止する上でより有利になる。なお、金型凸部22の形状が錐台状を呈することで、図7のように、回避穴19の内部空間の形状も錐台状となる。 As shown in FIG. 8, the mold protrusion 22 in this embodiment has a truncated cone shape in which the cross-sectional area perpendicular to the protruding direction gradually decreases as it moves away from the mold inner surface 21a. This provides the following effects. Since the angle between the side surface 22c of the mold convex part 22 and the mold inner surface 21a is an obtuse angle, the urethane raw material can more easily wrap around the mold convex part 22. Therefore, it is more advantageous in preventing the occurrence of underfill portions. Note that since the shape of the mold convex portion 22 is frustum-shaped, the shape of the internal space of the avoidance hole 19 is also frustum-shaped, as shown in FIG.

特に、図8に示す例において、金型凸部22の側面22cは、金型凸部22の上方の空間の一点と、楕円形の基部22aの外周の各点とを結ぶ線分により形作られる楕円推体に沿う形状を有する。これにより、金型凸部22の周りにウレタン原料がさらに回り込みやすくなる。それゆえ、欠肉部の発生を防止する上でより有利になる。なお、回避穴19の内部空間の形状は、楕円錐台状となる。 In particular, in the example shown in FIG. 8, the side surface 22c of the mold convex portion 22 is formed by a line segment connecting a point in the space above the mold convex portion 22 and each point on the outer circumference of the elliptical base 22a. It has a shape that follows an ellipsoid. This makes it easier for the urethane raw material to wrap around the mold convex portion 22. Therefore, it is more advantageous in preventing the occurrence of underfill portions. Note that the shape of the internal space of the avoidance hole 19 is an elliptic truncated cone shape.

図8に示す例に代えて、金型凸部22の形状は、その突出方向に垂直な断面において、ウレタン原料の流れ方向に沿う方向を長軸とする楕円形の断面になる楕円柱状を呈するものでもよい。その場合であっても、金型凸部22の周りにウレタン原料が回り込みやすいので、欠肉部の発生を防止する上でより有利になる。 Instead of the example shown in FIG. 8, the shape of the mold convex portion 22 is an elliptical columnar shape in a cross section perpendicular to its protruding direction, with an oval cross section whose major axis is along the flow direction of the urethane raw material. It can be anything. Even in that case, the urethane raw material tends to wrap around the mold convex portion 22, which is more advantageous in preventing the occurrence of underfill portions.

本実施の形態において、背面断熱材15は、発泡ウレタン断熱材であることが好ましい。背面断熱材15を発泡ウレタン断熱材にすることで、背面断熱材15をEPSにした場合に比べて、断熱性能が向上する。背面断熱材15が発泡ウレタン断熱材である場合、前面断熱材14が第一発泡ウレタン断熱材に相当し、背面断熱材15は、前面断熱材14に隣り合って配置される第二発泡ウレタン断熱材に相当する。 In this embodiment, the back insulation material 15 is preferably a foamed urethane insulation material. By using foamed urethane insulation material as the back insulation material 15, the insulation performance is improved compared to when the back insulation material 15 is made of EPS. When the back insulation material 15 is a foamed urethane insulation material, the front insulation material 14 corresponds to the first foamed urethane insulation material, and the back insulation material 15 corresponds to the second foamed urethane insulation material arranged adjacent to the front insulation material 14. Corresponds to wood.

図3及び図5に示すように、前面断熱材14は、背面断熱材15に接するエッジ14cの一部に形成された曲線形状の第一切欠き部20を有する。背面断熱材15は、前面断熱材14に接するエッジ15aの一部に形成された曲線形状の第二切欠き部23を有する。図示の例は、第一切欠き部20及び第二切欠き部23のそれぞれは、中心角が180度の円弧形状の縁部を有する。図4に示すように、前面断熱材14及び背面断熱材15が貯湯タンク1に取り付けられてエッジ14cがエッジ15aに接すると、第一切欠き部20と第二切欠き部23とが合わさって円形の開口が形成される。この開口から、真空断熱材11の一部を目視可能である。真空断熱材11の袋に穴が開いて空気が入り込むことで真空状態が解除されると、真空断熱材11が空気で膨らむ。このため、上記開口から真空断熱材11の一部を目視して膨らんでいないかどうかを確認すれば、真空断熱材11の袋に穴が開いていないかどうか、すなわち真空断熱材11の断熱性能が低下していないかどうかを点検できる。本実施の形態であれば、前面断熱材14及び背面断熱材15を取り外すことなく、真空断熱材11の断熱性能が低下していないかどうかを容易に点検できる。本実施の形態であれば、第一切欠き部20と第二切欠き部23とが合わさって形成される開口から真空断熱材11の一部を目視できるので、目視できる範囲が大きくなり、真空断熱材11を点検しやすい。 As shown in FIGS. 3 and 5, the front heat insulator 14 has a curved first notch 20 formed in a part of the edge 14c in contact with the back heat insulator 15. As shown in FIGS. The back insulation material 15 has a curved second notch 23 formed in a part of the edge 15a that is in contact with the front insulation material 14. In the illustrated example, each of the first notch 20 and the second notch 23 has an arc-shaped edge with a center angle of 180 degrees. As shown in FIG. 4, when the front insulation material 14 and the back insulation material 15 are attached to the hot water storage tank 1 and the edge 14c contacts the edge 15a, the first cutout part 20 and the second cutout part 23 are combined. A circular aperture is formed. A part of the vacuum heat insulating material 11 can be visually observed through this opening. When a hole is made in the bag of the vacuum insulation material 11 and air enters the bag and the vacuum state is released, the vacuum insulation material 11 expands with air. Therefore, if you visually check a part of the vacuum insulation material 11 through the opening to check whether it has expanded, you can check whether there is a hole in the bag of the vacuum insulation material 11, that is, the insulation performance of the vacuum insulation material 11. You can check to see if it has decreased. According to this embodiment, it is possible to easily check whether the insulation performance of the vacuum insulation material 11 has deteriorated without removing the front insulation material 14 and the back insulation material 15. In this embodiment, a part of the vacuum heat insulating material 11 can be visually observed from the opening formed by combining the first notch 20 and the second notch 23, so the visible range becomes larger and the vacuum It is easy to inspect the insulation material 11.

なお、図示の例に代えて、背面断熱材15に第二切欠き部23を設けずに、前面断熱材14の第一切欠き部20だけから真空断熱材11の一部を目視可能とするようにしてもよい。あるいは、前面断熱材14に第一切欠き部20を設けずに、背面断熱材15の第二切欠き部23だけから真空断熱材11の一部を目視可能とするようにしてもよい。 Note that instead of the illustrated example, a part of the vacuum insulation material 11 is made visible only from the first notch part 20 of the front insulation material 14 without providing the second notch part 23 in the back insulation material 15. You can do it like this. Alternatively, a part of the vacuum heat insulating material 11 may be made visible only from the second notch 23 of the back heat insulating material 15 without providing the first notch 20 in the front heat insulating material 14.

独立した穴を前面断熱材14に設ける場合には、前面断熱材14の成形時に原料の合流が発生するのでウェルドラインが発生する可能性がある。これに対し、第一切欠き部20の成形においては、原料の合流が発生しないので、ウェルドラインの発生を防ぐことができる。特に、第一切欠き部20が曲線形状であることから、第一切欠き部20を成形する金型凸部も曲線形状となるので、ウレタン原料の流動に対する抵抗が低くなり、欠肉部の発生をより確実に防ぐことができる。背面断熱材15の第二切欠き部23についても、上記と同様の効果が得られる。 If independent holes are provided in the front insulation material 14, raw materials may merge when the front insulation material 14 is formed, which may cause weld lines. On the other hand, in forming the first cutout portion 20, the raw materials do not merge, so it is possible to prevent the formation of weld lines. In particular, since the first cutout part 20 has a curved shape, the convex part of the mold for molding the first cutout part 20 also has a curved shape, so the resistance to the flow of the urethane raw material is lowered, and the lack of thickness The occurrence can be more reliably prevented. The same effect as described above can also be obtained with the second notch 23 of the back insulation material 15.

上部断熱材13及び下部断熱材16の少なくとも一方を発泡ウレタン断熱材としてもよい。本実施の形態では、配管を通す回避穴19を前面断熱材14に形成する例について説明したが、上部断熱材13、背面断熱材15、及び下部断熱材16のうちの少なくとも一つに、本実施の形態と同様にして、回避穴19を形成してもよい。 At least one of the upper heat insulating material 13 and the lower heat insulating material 16 may be a foamed urethane heat insulating material. In this embodiment, an example has been described in which the avoidance hole 19 through which the pipe passes is formed in the front insulation material 14. The avoidance hole 19 may be formed in the same manner as in the embodiment.

1 貯湯タンク、 1 貯湯タンク、 1a 胴部、 1b 上部、 1c 下部、 2 給水配管、 3 入水配管、 4 加熱手段、 5 出湯配管、 6 風呂給湯配管、 7 給湯配管、 10 外郭ケース、 11 真空断熱材、 12 タンクユニット脚、 13 上部断熱材、 14 前面断熱材、 14a 内壁面、 14b 外壁面、 14c エッジ、 15 背面断熱材、 15a エッジ、 16 下部断熱材、 17 中温水口、 18 高温水口、 19 回避穴、 19a 内側開口、 19b 外側開口、 20 第一切欠き部、 21 下型、 21a 金型内面、 22 金型凸部、 22a 基部、 22b 頂部、 22c 側面、 23 第二切欠き部、 30 貯湯タンクユニット、 40 浴槽、 100 貯湯式給湯機 1 Hot water storage tank, 1 Hot water storage tank, 1a Body, 1b Upper part, 1c Lower part, 2 Water supply pipe, 3 Water inlet pipe, 4 Heating means, 5 Hot water outlet pipe, 6 Bath hot water supply pipe, 7 Hot water supply pipe, 10 Outer case, 11 Vacuum insulation material, 12 tank unit leg, 13 upper insulation material, 14 front insulation material, 14a inner wall surface, 14b outer wall surface, 14c edge, 15 back insulation material, 15a edge, 16 lower insulation material, 17 medium temperature water inlet, 18 high temperature water inlet, 19 avoidance hole, 19a inner opening, 19b outer opening, 20 first notch, 21 lower mold, 21a mold inner surface, 22 mold convex part, 22a base, 22b top, 22c side surface, 23 second notch, 30 hot water storage tank unit, 40 bathtub, 100 hot water storage type water heater

Claims (6)

円筒状の貯湯タンクと、
前記貯湯タンクを収納する外郭ケースと、
前記貯湯タンクに接続された配管と、
前記外郭ケース内において前記貯湯タンクを覆う発泡ウレタン断熱材と、
を備え、
前記発泡ウレタン断熱材は、前記貯湯タンクに向く内壁面と、前記内壁面とは反対側に向く外壁面と、前記内壁面から前記外壁面へ貫通し、前記配管を通すための回避穴とを有し、
前記回避穴は、前記外壁面に開口する外側開口と、前記内壁面に開口する内側開口とを有し、
前記外側開口の形状が楕円形であり、
前記外側開口の面積が前記内側開口の面積よりも大きい貯湯式給湯機。
A cylindrical hot water storage tank,
an outer case that houses the hot water storage tank;
Piping connected to the hot water storage tank;
a foamed urethane insulation material that covers the hot water storage tank within the outer case;
Equipped with
The foamed urethane insulation material has an inner wall surface facing the hot water storage tank, an outer wall surface facing the opposite side from the inner wall surface, and an avoidance hole penetrating from the inner wall surface to the outer wall surface for passing the pipe. have,
The avoidance hole has an outer opening that opens to the outer wall surface and an inner opening that opens to the inner wall surface,
the outer opening has an elliptical shape;
A hot water storage type water heater , wherein the area of the outer opening is larger than the area of the inner opening .
円筒状の貯湯タンクと、
前記貯湯タンクを収納する外郭ケースと、
前記貯湯タンクに接続された配管と、
前記外郭ケース内において前記貯湯タンクを覆う発泡ウレタン断熱材と、
を備え、
前記発泡ウレタン断熱材は、前記貯湯タンクに向く内壁面と、前記内壁面とは反対側に向く外壁面と、前記内壁面から前記外壁面へ貫通し、前記配管を通すための回避穴とを有し、
前記回避穴は、前記外壁面に開口する外側開口と、前記内壁面に開口する内側開口とを有し、
前記外側開口の形状が楕円形であり、
前記回避穴は、錐台状の内部空間を有する貯湯式給湯機。
A cylindrical hot water storage tank,
an outer case that houses the hot water storage tank;
Piping connected to the hot water storage tank;
a foamed urethane insulation material that covers the hot water storage tank within the outer case;
Equipped with
The foamed urethane insulation material has an inner wall surface facing the hot water storage tank, an outer wall surface facing the opposite side from the inner wall surface, and an avoidance hole penetrating from the inner wall surface to the outer wall surface for passing the pipe. have,
The avoidance hole has an outer opening that opens to the outer wall surface and an inner opening that opens to the inner wall surface,
the outer opening has an elliptical shape;
The avoidance hole has a frustum-shaped internal space in a hot water storage type water heater.
前記外側開口の長手方向が前記貯湯タンクの円筒軸方向に平行である請求項1または請求項2に記載の貯湯式給湯機。 The hot water storage type water heater according to claim 1 or 2, wherein the longitudinal direction of the outer opening is parallel to the cylindrical axis direction of the hot water storage tank. 前記内側開口の形状が円形または楕円形である請求項1から請求項3のいずれか一項に記載の貯湯式給湯機。 The hot water storage type water heater according to any one of claims 1 to 3, wherein the inner opening has a circular or elliptical shape. 前記貯湯タンクと前記発泡ウレタン断熱材との間に配置された真空断熱材をさらに備え、
前記発泡ウレタン断熱材は、エッジと、前記エッジの一部に形成された曲線形状の切欠き部とをさらに有し、
前記切欠き部から、前記真空断熱材の一部を目視可能である請求項1から請求項のいずれか一項に記載の貯湯式給湯機。
further comprising a vacuum insulation material disposed between the hot water storage tank and the foamed urethane insulation material,
The urethane foam insulation material further includes an edge and a curved notch formed in a part of the edge,
The hot water storage type water heater according to any one of claims 1 to 4 , wherein a part of the vacuum insulation material is visible from the notch.
前記発泡ウレタン断熱材は、第一発泡ウレタン断熱材であり、
前記第一発泡ウレタン断熱材に隣り合って配置され、前記外郭ケース内において前記貯湯タンクを覆う第二発泡ウレタン断熱材と、
前記貯湯タンクと、前記第一発泡ウレタン断熱材及び前記第二発泡ウレタン断熱材との間に配置された真空断熱材と、
をさらに備え、
前記第一発泡ウレタン断熱材は、前記第二発泡ウレタン断熱材に接するエッジの一部に形成された第一切欠き部を有し、
前記第二発泡ウレタン断熱材は、前記第一発泡ウレタン断熱材に接するエッジの一部に形成された第二切欠き部を有し、
前記第一切欠き部と前記第二切欠き部とが合わさって形成される開口から、前記真空断熱材の一部を目視可能である請求項1から請求項のいずれか一項に記載の貯湯式給湯機
The foamed urethane insulation material is a first foamed urethane insulation material,
a second urethane foam insulation material disposed adjacent to the first urethane foam insulation material and covering the hot water storage tank within the outer case;
a vacuum insulation material disposed between the hot water storage tank, the first foamed urethane insulation material and the second foamed urethane insulation material;
Furthermore,
The first foamed urethane insulation material has a first notch formed in a part of the edge that contacts the second foamed urethane insulation material,
The second foamed urethane insulation material has a second notch formed in a part of the edge in contact with the first foamed urethane insulation material,
5. A part of the vacuum heat insulating material is visible through an opening formed by combining the first notch and the second notch, according to any one of claims 1 to 4 . Hot water storage type water heater .
JP2020002118A 2020-01-09 2020-01-09 Hot water storage type water heater Active JP7375557B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020002118A JP7375557B2 (en) 2020-01-09 2020-01-09 Hot water storage type water heater
JP2023179583A JP2023181260A (en) 2020-01-09 2023-10-18 Heat insulation material shaping mold and heat insulation material shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020002118A JP7375557B2 (en) 2020-01-09 2020-01-09 Hot water storage type water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023179583A Division JP2023181260A (en) 2020-01-09 2023-10-18 Heat insulation material shaping mold and heat insulation material shaping method

Publications (2)

Publication Number Publication Date
JP2021110495A JP2021110495A (en) 2021-08-02
JP7375557B2 true JP7375557B2 (en) 2023-11-08

Family

ID=77059667

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020002118A Active JP7375557B2 (en) 2020-01-09 2020-01-09 Hot water storage type water heater
JP2023179583A Pending JP2023181260A (en) 2020-01-09 2023-10-18 Heat insulation material shaping mold and heat insulation material shaping method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023179583A Pending JP2023181260A (en) 2020-01-09 2023-10-18 Heat insulation material shaping mold and heat insulation material shaping method

Country Status (1)

Country Link
JP (2) JP7375557B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226872A (en) 2008-03-25 2009-10-08 Mazda Motor Corp Method and apparatus for molding foamed resin molding
JP2012112606A (en) 2010-11-26 2012-06-14 Rinnai Corp Insulation hot water storage device
JP2013088079A (en) 2011-10-20 2013-05-13 Mitsubishi Electric Corp Storage type water heater and method of manufacturing shaped heat insulating material
JP2019120453A (en) 2018-01-05 2019-07-22 三菱電機株式会社 Hot water storage type water heater
JP2019215092A (en) 2018-06-11 2019-12-19 三菱電機株式会社 Water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226872A (en) 2008-03-25 2009-10-08 Mazda Motor Corp Method and apparatus for molding foamed resin molding
JP2012112606A (en) 2010-11-26 2012-06-14 Rinnai Corp Insulation hot water storage device
JP2013088079A (en) 2011-10-20 2013-05-13 Mitsubishi Electric Corp Storage type water heater and method of manufacturing shaped heat insulating material
JP2019120453A (en) 2018-01-05 2019-07-22 三菱電機株式会社 Hot water storage type water heater
JP2019215092A (en) 2018-06-11 2019-12-19 三菱電機株式会社 Water heater

Also Published As

Publication number Publication date
JP2023181260A (en) 2023-12-21
JP2021110495A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP7375557B2 (en) Hot water storage type water heater
JP2015034654A5 (en) Hot water supply system and tank unit manufacturing method
JP6206265B2 (en) Hot water storage water heater
JP6533978B2 (en) Hot water storage type hot water heater
JP2015148438A (en) Tank unit, tank unit manufacturing method, and hot water supply system
JP6840009B2 (en) Effervescent insulation and hot water storage type water heater
JP4971682B2 (en) Water heater
JP2023123827A (en) Hot water storage tank unit
JP7094136B2 (en) Hot water storage tank unit and its manufacturing method
JP2015140968A (en) Storage type water heater
JP4262223B2 (en) Hot water storage tank
JP6089936B2 (en) Hot water storage water heater
JP6447191B2 (en) Hot water storage water heater
JP7156510B2 (en) Polyurethane foam insulation and storage water heater
JP7264033B2 (en) Storage hot water heater
JP6844387B2 (en) Hot water storage type water heater
JP2007303748A (en) Water heater
JP2019090604A (en) Hot water storage type water heater
JP6301221B2 (en) Hot water storage tank unit
JP2019120453A (en) Hot water storage type water heater
JP6524301B2 (en) Hot water storage tank unit
JP2017048955A5 (en)
US11988413B2 (en) Water heater
JP6975947B2 (en) Water faucet
JP6948593B2 (en) Water faucet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150