JP7374361B2 - Manufacturing method of flexible mesh gear device - Google Patents

Manufacturing method of flexible mesh gear device Download PDF

Info

Publication number
JP7374361B2
JP7374361B2 JP2023016574A JP2023016574A JP7374361B2 JP 7374361 B2 JP7374361 B2 JP 7374361B2 JP 2023016574 A JP2023016574 A JP 2023016574A JP 2023016574 A JP2023016574 A JP 2023016574A JP 7374361 B2 JP7374361 B2 JP 7374361B2
Authority
JP
Japan
Prior art keywords
hardness
heat treatment
internal
forming
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023016574A
Other languages
Japanese (ja)
Other versions
JP2023054008A (en
Inventor
真司 吉田
正幸 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2023016574A priority Critical patent/JP7374361B2/en
Publication of JP2023054008A publication Critical patent/JP2023054008A/en
Application granted granted Critical
Publication of JP7374361B2 publication Critical patent/JP7374361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/003Making specific metal objects by operations not covered by a single other subclass or a group in this subclass bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/14Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/581Raceways; Race rings integral with other parts, e.g. with housings or machine elements such as shafts or gear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/029Gearboxes; Mounting gearing therein characterised by means for sealing the gearboxes, e.g. to improve airtightness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • F16H2055/176Ring gears with inner teeth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Retarders (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、撓み噛合い式歯車装置の製造方法に関する。 The present invention relates to a method for manufacturing a flexible mesh gear device.

以前より、撓み変形する外歯歯車を備えた撓み噛合い式歯車装置がある(例えば特許文献1を参照)。この外歯歯車は、起振体軸受を介して起振体が内嵌され、起振体が内側で回転することで撓み変形する。さらに、外歯歯車は剛性を有する内歯歯車と噛合う。
そして、このような撓み噛合い式歯車装置には、減速回転の出力や入力を支持する軸受の内輪と内歯歯車とを一体化して部品点数の低減を行っているものがある。
BACKGROUND ART For some time now, there has been a flexible mesh gear device that includes an external gear that flexibly deforms (see, for example, Patent Document 1). A vibrating body is fitted inside the external gear via a vibrating body bearing, and the vibrating body rotates inside, thereby being deflected and deformed. Furthermore, the external gear meshes with the rigid internal gear.
Some of these flexible mesh gear devices have a reduced number of parts by integrating an inner ring of a bearing that supports the output and input of decelerated rotation with an internal gear.

特開2017-106626号公報JP2017-106626A

上述のように、内歯歯車と軸受の内輪が一体化された部材(以下、内歯部材とする)は、内歯歯車の歯面部と軸受の内輪とで要求される硬度が異なる場合があり、部材の場所ごとに硬度の適正化が望まれていた。 As mentioned above, in a member in which an internal gear and the inner ring of a bearing are integrated (hereinafter referred to as an internal gear member), the required hardness may be different between the tooth surface of the internal gear and the inner ring of the bearing. , it was desired to optimize the hardness for each location of the component.

本発明は、内歯部材の硬度の適正化を図ることを目的とする。 An object of the present invention is to optimize the hardness of an internal tooth member.

本発明の撓み噛合い式歯車装置の製造方法は、
起振体と、前記起振体により撓み変形する外歯歯車と、前記外歯歯車が噛合う内歯歯車と、前記内歯歯車を支持する主軸受と、を備えた撓み噛合い式歯車装置の製造方法である。
The method for manufacturing a flexible mesh gear device of the present invention includes:
A flexible meshing gear device comprising a vibrating body, an external gear that is flexibly deformed by the vibrating body, an internal gear that meshes with the external gear, and a main bearing that supports the internal gear. This is a manufacturing method.

さらに、本発明の撓み噛合い式歯車装置の製造方法は、
内周に前記内歯歯車の内歯が形成されるとともに、外周に前記主軸受の内輪転走面が一体的に設けられる内歯部材の形成材料に対して、前記内輪転走面を形成するための溝を外周に形成する溝形成工程と、
前記形成材料に対して、第一の熱処理を行う第一の熱処理工程と、
前記第一の熱処理工程後に、前記形成材料の前記内輪転走面を形成するための溝に対して、第二の熱処理を行う第二の熱処理工程と、
前記第二の熱処理工程後に、前記内歯を形成する内歯形成工程と、を有するように構成されている。
Furthermore, the method for manufacturing a flexible mesh gear device of the present invention includes:
The inner ring raceway surface is formed on a material for forming an internal gear member, in which the internal teeth of the internal gear are formed on the inner periphery, and the inner ring raceway surface of the main bearing is integrally provided on the outer periphery. a groove forming step of forming a groove on the outer periphery;
a first heat treatment step of performing a first heat treatment on the forming material;
After the first heat treatment step, a second heat treatment step of performing a second heat treatment on the groove for forming the inner ring raceway surface of the forming material;
After the second heat treatment step, it is configured to include an internal tooth forming step of forming the internal teeth.

本発明によれば、内歯部材の硬度の適正化を図ることができる。 According to the present invention, it is possible to optimize the hardness of the internal tooth member.

本発明の実施形態に係る撓み噛合い式歯車装置を示す断面図である。FIG. 1 is a sectional view showing a flexible mesh gear device according to an embodiment of the present invention. 内歯部材の周辺部分を示す拡大断面図である。FIG. 3 is an enlarged sectional view showing the peripheral portion of the internal tooth member. 内歯部材の径方向における硬度分布を示すグラフである。It is a graph which shows the hardness distribution in the radial direction of an internal tooth member. 図4(A)~図4(D)は内歯部材の製造方法の各工程を順番に示した説明図である。FIGS. 4(A) to 4(D) are explanatory diagrams sequentially showing each step of a method for manufacturing an internal tooth member. 図5(A)~図5(C)は図4に続く内歯部材の製造方法の各工程を順番に示した説明図である。FIGS. 5(A) to 5(C) are explanatory diagrams sequentially showing each step of the internal tooth member manufacturing method following FIG. 4.

以下、本発明の実施形態について図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

[撓み噛合い式歯車装置]
図1は、本発明の実施形態に係る撓み噛合い式歯車装置1を示す断面図である。本明細書では、回転軸O1に沿った方向を軸方向、回転軸O1に直交する方向を径方向、回転軸O1を中心とする回転方向を周方向と定義する。
[Flexible mesh gear device]
FIG. 1 is a sectional view showing a flexible mesh gear device 1 according to an embodiment of the present invention. In this specification, a direction along the rotation axis O1 is defined as an axial direction, a direction orthogonal to the rotation axis O1 is defined as a radial direction, and a rotation direction around the rotation axis O1 is defined as a circumferential direction.

撓み噛合い式歯車装置1は、図1に示すように、起振体軸10、起振体軸10により撓み変形される外歯歯車12、外歯歯車12と噛合う2つの内歯歯車22g、23g及び起振体軸受15を備える。さらに、撓み噛合い式歯車装置1は、第1ケーシング22、内歯部材23、第2ケーシング24、第1カバー26、第2カバー27、軸受31、32及び主軸受33、シール用のOリング34,35,38及びオイルシール41,42,43を備える。 As shown in FIG. 1, the flexible mesh gear device 1 includes a vibrator shaft 10, an external gear 12 that is flexibly deformed by the vibrator shaft 10, and two internal gears 22g that mesh with the external gear 12. , 23g and a vibrator bearing 15. Furthermore, the flexible mesh gear device 1 includes a first casing 22, an internal gear member 23, a second casing 24, a first cover 26, a second cover 27, bearings 31, 32, a main bearing 33, and an O-ring for sealing. 34, 35, 38 and oil seals 41, 42, 43.

起振体軸10は、中空軸状であり、回転軸O1に垂直な断面の外形が楕円状である起振体10Aと、起振体10Aの軸方向の両側に設けられ回転軸O1に垂直な断面の外形が円形である軸部10B、10Cとを有する。なお、楕円状とは、幾何学的に厳密な楕円に限定されるものではなく、略楕円を含む。起振体軸10は、回転軸O1を中心に回転し、起振体10Aの回転軸O1に垂直な断面の外形形状の中心は回転軸O1と一致する。 The vibration generator shaft 10 has a hollow shaft shape, and includes a vibration generator 10A having an elliptical outer shape in a cross section perpendicular to the rotation axis O1, and a vibration generator shaft 10 provided on both sides of the vibration generator 10A in the axial direction and perpendicular to the rotation axis O1. The shaft portions 10B and 10C have circular cross-sectional outlines. Note that the elliptical shape is not limited to a geometrically strict ellipse, but includes a substantially ellipse. The vibration generator shaft 10 rotates around the rotation axis O1, and the center of the external shape of the cross section perpendicular to the rotation axis O1 of the vibration generator 10A coincides with the rotation axis O1.

外歯歯車12は、可撓性を有する円筒状の金属であり、外周に歯が設けられている。 The external gear 12 is a flexible cylindrical metal and has teeth on its outer periphery.

2つの内歯歯車(第1内歯歯車、第2内歯歯車)22g、23gは、一方が、外歯歯車12の軸方向の中央より片側の歯部に噛合し、他方が、外歯歯車12の軸方向の中央よりもう一方の片側の歯部に噛合する。内歯歯車22gは、第1ケーシング22の内周部の該当箇所に内歯が設けられて構成される。内歯歯車23gは、内歯部材23の内周部の該当箇所に内歯が設けられて構成される。 One of the two internal gears (first internal gear, second internal gear) 22g and 23g meshes with the teeth on one side of the external gear 12 from the center in the axial direction, and the other meshes with the tooth part of the external gear 12 from the center in the axial direction. It meshes with the teeth on the other side from the center in the axial direction of No. 12. The internal gear 22g is configured such that internal teeth are provided at corresponding locations on the inner peripheral portion of the first casing 22. The internal gear 23g is configured such that internal teeth are provided at corresponding locations on the inner circumference of the internal tooth member 23.

起振体軸受15は、起振体10Aと外歯歯車12との間に配置される。起振体軸受15は、複数の転動体(コロ)15Aと、外輪15Bと、複数の転動体15Aを保持する保持器15Cとを有する。複数の転動体15Aは、一方の内歯歯車22gの径方向内方に配置され、周方向に並ぶ第1群の転動体15Aと、他方の内歯歯車23gの径方向内方に配置され、周方向に並ぶ第2群の転動体15Aとを有する。複数の転動体15Aは、起振体10Aの外周面と外輪15Bの内周面とを転走面として転動する。 The vibration generator bearing 15 is arranged between the vibration generator 10A and the external gear 12. The vibrator bearing 15 includes a plurality of rolling elements (rollers) 15A, an outer ring 15B, and a retainer 15C that holds the plurality of rolling elements 15A. The plurality of rolling elements 15A are arranged radially inward of one internal gear 22g, and arranged radially inward of the first group of rolling elements 15A lined up in the circumferential direction and the other internal gear 23g, It has a second group of rolling elements 15A arranged in the circumferential direction. The plurality of rolling elements 15A roll on the outer circumferential surface of the vibrator 10A and the inner circumferential surface of the outer ring 15B as rolling surfaces.

外歯歯車12、外輪15B及び保持器15Cの軸方向の両側には、これらに当接して、これらが軸方向に変位することを抑止するスペーサリング36、37が設けられている。 Spacer rings 36 and 37 are provided on both sides of the external gear 12, the outer ring 15B, and the retainer 15C in the axial direction to abut against these and prevent them from being displaced in the axial direction.

第1ケーシング22及び第2ケーシング24は互いに連結されて、内歯歯車22g、23g及び外歯歯車12の径方向外方を覆う。 The first casing 22 and the second casing 24 are connected to each other and cover the internal gears 22g, 23g and the external gear 12 in the radial direction.

第1カバー26は、第1ケーシング22と連結されて、起振体軸10の一端側における外周部を覆う。 The first cover 26 is connected to the first casing 22 and covers the outer peripheral portion of the vibrator shaft 10 at one end side.

第2カバー27は、起振体軸10の他端側における外周部を覆う。第2カバー27及び内歯部材23には、負荷側の端部に軸方向に一続きに延びるボルト連結用穴27h、23hが設けられている。撓み噛合い式歯車装置1が相手装置と接続される際、第2カバー27と内歯部材23はボルト連結用穴27h、23hを介して相手装置の被駆動部材に共締めにより連結される。ボルト連結用穴27h、23hは、周方向の複数の箇所に設けられている。第2カバー27及び内歯部材23には、両者を仮止めするためのボルト穴27j、23jが設けられている。 The second cover 27 covers the outer peripheral portion of the vibrating body shaft 10 on the other end side. The second cover 27 and the internal gear member 23 are provided with bolt connection holes 27h and 23h that extend continuously in the axial direction at the end on the load side. When the flexible mesh gear device 1 is connected to a mating device, the second cover 27 and the internal gear member 23 are jointly connected to the driven member of the mating device through the bolt connection holes 27h and 23h. The bolt connection holes 27h and 23h are provided at multiple locations in the circumferential direction. The second cover 27 and the internal gear member 23 are provided with bolt holes 27j and 23j for temporarily fixing them together.

軸受31は、例えば玉軸受であり、起振体軸10の軸部10Bと第1カバー26との間に配置される。第1カバー26は、軸受31を介して起振体軸10を回転自在に支持する。
起振体軸10には、軸受31の配置箇所に隣接して(軸方向の中央側に)外径が大きく変化する段差h1が設けられている。第1カバー26には、軸受31の配置箇所に隣接して(軸方向の一端側に)内径が小さく変化する段差h2が設けられている。軸方向において、軸受31は、段差h1、h2の間に配置される。段差h1、h2は、軸受31が軸方向に移動するのを係止するストッパーとして機能する。つまり、軸受31は、第1カバー26及び起振体軸10のそれぞれに対してインロー嵌合構造によって取り付けられ、段差h1、h2が軸受31の軸方向の位置決めを行う。
The bearing 31 is, for example, a ball bearing, and is arranged between the shaft portion 10B of the vibrator shaft 10 and the first cover 26. The first cover 26 rotatably supports the vibrator shaft 10 via a bearing 31.
The vibrating body shaft 10 is provided with a step h1 adjacent to the location where the bearing 31 is arranged (on the center side in the axial direction), the outer diameter of which changes significantly. The first cover 26 is provided with a step h2 adjacent to the location where the bearing 31 is arranged (on one end in the axial direction), the inner diameter of which changes small. In the axial direction, the bearing 31 is arranged between the steps h1 and h2. The steps h1 and h2 function as stoppers that prevent the bearing 31 from moving in the axial direction. That is, the bearing 31 is attached to each of the first cover 26 and the vibrator shaft 10 by a spigot fitting structure, and the steps h1 and h2 position the bearing 31 in the axial direction.

軸受32は、例えば玉軸受であり、起振体軸10の軸部10Cと第2カバー27との間に配置される。第2カバー27は、軸受32を介して起振体軸10を回転自在に支持する。
起振体軸10には、軸受32の配置箇所に隣接して(軸方向の中央側に)外径が大きく変化する段差h3が設けられている。第2カバー27には、軸受32の配置箇所に隣接して(軸方向の一端側に)内径が小さく変化する段差h4が設けられている。軸方向において、軸受32は、段差h3、h4の間に配置される。段差h3、h4は、軸受32が軸方向に移動するのを係止するストッパーとして機能する。つまり、軸受32は、第2カバー27及び起振体軸10のそれぞれに対してインロー嵌合構造によって取り付けられ、段差h3、h4が軸受32の軸方向の位置決めを行う。
The bearing 32 is, for example, a ball bearing, and is arranged between the shaft portion 10C of the vibrator shaft 10 and the second cover 27. The second cover 27 rotatably supports the vibrator shaft 10 via the bearing 32.
The vibrating body shaft 10 is provided with a step h3 adjacent to the location where the bearing 32 is disposed (on the center side in the axial direction), the outer diameter of which changes significantly. The second cover 27 is provided with a step h4 (on one end in the axial direction) adjacent to the location where the bearing 32 is disposed, the inner diameter of which changes small. In the axial direction, the bearing 32 is arranged between the steps h3 and h4. The steps h3 and h4 function as stoppers that prevent the bearing 32 from moving in the axial direction. That is, the bearing 32 is attached to each of the second cover 27 and the vibrator shaft 10 by a pilot fitting structure, and the steps h3 and h4 position the bearing 32 in the axial direction.

一方のオイルシール41は、軸方向の一端部で、起振体軸10の軸部10Bと第1カバー26との間に配置され、軸方向外側への潤滑剤の流出を抑制する。
もう一方のオイルシール42は、軸方向の他端部で、起振体軸10の軸部10Cと第2カバー27との間に配置され、軸方向外側への潤滑剤の流出を抑制する。
オイルシール43は、第2ケーシング24と内歯部材23との間に配置され、この部分からの潤滑剤の流出を抑制する。
One oil seal 41 is disposed at one end in the axial direction between the shaft portion 10B of the vibration generator shaft 10 and the first cover 26, and suppresses outflow of the lubricant to the outside in the axial direction.
The other oil seal 42 is disposed at the other end in the axial direction between the shaft portion 10C of the vibration generator shaft 10 and the second cover 27, and prevents the lubricant from flowing outward in the axial direction.
The oil seal 43 is arranged between the second casing 24 and the internal tooth member 23, and suppresses the lubricant from flowing out from this part.

シール用のOリング34,35,38は、それぞれ、第1ケーシング22と第1カバー26との間、第1ケーシング22と第2ケーシング24との間、内歯部材23と第2カバー27との間を、シールし、潤滑剤の漏れを抑止するつまり、本実施形態の撓み噛合い式歯車装置1の内部空間(外歯歯車12や主軸受33の存在する空間)は、潤滑剤が封入される潤滑剤封入空間とされ、Oリング34,35,38やオイルシール41、42、43によって密封されている。 O-rings 34, 35, and 38 for sealing are provided between the first casing 22 and the first cover 26, between the first casing 22 and the second casing 24, and between the internal gear member 23 and the second cover 27, respectively. In other words, the internal space of the flexible mesh gear device 1 of this embodiment (the space where the external gear 12 and the main bearing 33 exist) is filled with lubricant. The space is sealed with O-rings 34, 35, 38 and oil seals 41, 42, 43.

図2は内歯部材23の拡大断面図である。主軸受33は、例えば、クロスローラ軸受であり、内歯部材23と第2ケーシング24との間に配置される。第2ケーシング24は、主軸受33を介して内歯部材23を回転自在に支持する。主軸受33は、内歯部材23と一体化された内輪331と、第2ケーシング24と一体化された外輪332と、内輪331と外輪332との間に配置される複数の転動体333とを有する。
内輪331は、内歯部材23の外周面上に形成された、溝底部の開き角度が90°となるV字溝(軸方向断面がV字型の溝)を有している。また、外輪332は、第2ケーシング24の内周面上に形成された、溝底部の開き角度が90°となるV字溝を有している。
内輪331のV字溝と外輪332のV字溝(逆V字溝)は同一の開口幅であって、互いに対向している。そして、内輪331のV字溝の内側には、互いに逆方向に傾斜した一対の内輪転走面334,335(図2参照)が形成されており、外輪332のV字溝の内側には、互いに逆方向に傾斜した一対の外輪転走面が形成されている。
さらに、内輪331のV字溝と外輪332のV字溝の内側には、周方向に間隔を空けてクロスローラである複数の転動体333が配置されている。複数の転動体333は、転動軸が各V字溝の一方の転走面に垂直となるものと、他方の転走面に垂直となるものとが周方向に交互に配置されている。
FIG. 2 is an enlarged sectional view of the internal tooth member 23. As shown in FIG. The main bearing 33 is, for example, a cross roller bearing, and is arranged between the internal gear member 23 and the second casing 24. The second casing 24 rotatably supports the internal gear member 23 via the main bearing 33. The main bearing 33 includes an inner ring 331 integrated with the internal tooth member 23, an outer ring 332 integrated with the second casing 24, and a plurality of rolling elements 333 arranged between the inner ring 331 and the outer ring 332. have
The inner ring 331 has a V-shaped groove (groove with a V-shaped axial cross section) formed on the outer circumferential surface of the internal gear member 23 and having an opening angle of 90 degrees at the bottom of the groove. Further, the outer ring 332 has a V-shaped groove formed on the inner circumferential surface of the second casing 24 with an opening angle of 90 degrees at the bottom of the groove.
The V-shaped groove of the inner ring 331 and the V-shaped groove (inverted V-shaped groove) of the outer ring 332 have the same opening width and face each other. A pair of inner ring raceway surfaces 334 and 335 (see FIG. 2) which are inclined in opposite directions are formed inside the V-shaped groove of the inner ring 331, and inside the V-shaped groove of the outer ring 332, A pair of outer ring raceway surfaces are formed that are inclined in opposite directions.
Further, inside the V-shaped groove of the inner ring 331 and the V-shaped groove of the outer ring 332, a plurality of rolling elements 333, which are cross rollers, are arranged at intervals in the circumferential direction. The plurality of rolling elements 333 are arranged alternately in the circumferential direction, with those whose rolling axes are perpendicular to one rolling surface of each V-shaped groove and those whose rolling axes are perpendicular to the other rolling surface.

上記内歯部材23は、前述したように、内周に内歯歯車23gの内歯が形成されている。そして、主軸受33の内輪331の内輪転走面334及び335は、径方向から見て、内歯歯車23gの内歯と重なる配置となっている。換言すると、内歯と内輪転走面334及び335は、軸方向について重なる配置となっている。
図2の例では、内歯歯車23gの内歯の軸方向全体の範囲と内輪転走面334及び335の軸方向全体の範囲とが、径方向から見て略一致するように重なっているが、内歯の一部の範囲と内輪転走面334又は335のいずれか一方の一部の範囲とが重なる配置であっても良い。なお、この場合、少なくとも、内輪転走面334又は335のいずれか一方の軸方向における中間点と内歯とが径方向から見て重なることが好ましい。
また、内歯部材23の内周には、内歯と軸方向に隣接して内歯よりも内径の大きい第1隣接内周面234および第2隣接内周面235が設けられている。第1隣接内周面234は、第1ケーシング22から遠い側に設けられ、軸方向端部の面取り部を除いて内径が一定とされている。第2隣接内周面235は、第1ケーシング22に近い側に設けられ、第1ケーシング22に向かって内径が徐々に大きくなる傾斜面とされている。なお、第1隣接内周面234および第2隣接内周面235は、いずれか一方のみ設けられてもよい。
As described above, the internal tooth member 23 has the internal teeth of the internal gear 23g formed on its inner periphery. Inner ring raceway surfaces 334 and 335 of the inner ring 331 of the main bearing 33 are arranged to overlap with the internal teeth of the internal gear 23g when viewed from the radial direction. In other words, the internal teeth and the inner ring raceway surfaces 334 and 335 are arranged to overlap in the axial direction.
In the example of FIG. 2, the entire axial range of the internal teeth of the internal gear 23g and the entire axial range of the inner ring raceway surfaces 334 and 335 overlap so that they substantially match when viewed from the radial direction. , a partial range of the internal teeth and a partial range of either the inner ring raceway surface 334 or 335 may be arranged to overlap. In this case, it is preferable that at least the intermediate point in the axial direction of either inner ring raceway surface 334 or 335 and the inner teeth overlap when viewed from the radial direction.
Further, on the inner periphery of the internal tooth member 23, a first adjacent internal peripheral surface 234 and a second adjacent internal peripheral surface 235, which are adjacent to the internal teeth in the axial direction and have an inner diameter larger than that of the internal teeth, are provided. The first adjacent inner circumferential surface 234 is provided on the side far from the first casing 22, and has a constant inner diameter except for the chamfered portion at the axial end. The second adjacent inner circumferential surface 235 is provided on the side closer to the first casing 22 and is an inclined surface whose inner diameter gradually increases toward the first casing 22. Note that only one of the first adjacent inner peripheral surface 234 and the second adjacent inner peripheral surface 235 may be provided.

[撓み噛合い式歯車装置の動作]
上記撓み噛合い式歯車装置1では、図示略のモータ等から回転運動が入力され、起振体軸10が回転すると、起振体10Aの運動が外歯歯車12に伝わる。このとき、外歯歯車12は、起振体10Aの外周面に沿った形状に規制され、軸方向から見て、長軸部分と短軸部分とを有する楕円形状に撓んでいる。さらに、外歯歯車12は、固定された第1ケーシング22の内歯歯車22gと長軸部分で噛合っている。このため、外歯歯車12は起振体10Aと同じ回転速度で回転することはなく、外歯歯車12の内側で起振体10Aが相対的に回転する。そして、この相対的な回転に伴って、外歯歯車12は長軸位置と短軸位置とが周方向に移動するように撓み変形する。この変形の周期は、起振体軸10の回転周期に比例する。
[Operation of flexible mesh gear device]
In the flexible mesh gear device 1, rotational motion is input from a motor or the like (not shown), and when the vibrating body shaft 10 rotates, the motion of the vibrating body 10A is transmitted to the external gear 12. At this time, the external gear 12 is restricted to a shape along the outer circumferential surface of the vibrating body 10A, and is bent into an elliptical shape having a long axis portion and a short axis portion when viewed from the axial direction. Furthermore, the external gear 12 meshes with the internal gear 22g of the fixed first casing 22 at its long axis portion. Therefore, the external gear 12 does not rotate at the same rotation speed as the vibration generator 10A, and the vibration generator 10A rotates relatively inside the external gear 12. As a result of this relative rotation, the external gear 12 is flexibly deformed so that the major axis position and the minor axis position move in the circumferential direction. The period of this deformation is proportional to the rotation period of the vibrator shaft 10.

外歯歯車12が撓み変形する際、その長軸位置が移動することで、外歯歯車12と内歯歯車22gとの噛合う位置が回転方向に変化する。ここで、外歯歯車12の歯数が100で、内歯歯車22gの歯数が102だとすると、噛合う位置が一周するごとに、外歯歯車12と内歯歯車22gとの噛合う歯がずれていき、これにより外歯歯車12が回転(自転)する。上記の歯数であれば、起振体軸10の回転運動は減速比100:2で減速されて外歯歯車12に伝達される。 When the external gear 12 bends and deforms, the position of its long axis moves, so that the meshing position between the external gear 12 and the internal gear 22g changes in the rotational direction. Here, if the number of teeth of the external gear 12 is 100 and the number of teeth of the internal gear 22g is 102, the meshing teeth of the external gear 12 and the internal gear 22g will shift each time the meshing position goes around. As a result, the external gear 12 rotates (rotates). With the above number of teeth, the rotational motion of the vibrating body shaft 10 is reduced at a reduction ratio of 100:2 and transmitted to the external gear 12.

一方、外歯歯車12はもう一方の内歯歯車23gとも噛合っているため、起振体軸10の回転によって外歯歯車12と内歯歯車23gとの噛合う位置も回転方向に変化する。一方、内歯歯車23gの歯数と外歯歯車12の歯数とは一致しているため、外歯歯車12と内歯歯車23gとは相対的に回転せず、外歯歯車12の回転運動が減速比1:1で内歯歯車23gへ伝達される。これらによって、起振体軸10の回転運動が減速比100:2で減速されて、第2内歯部材23g及び第2カバー27へ伝達される。そして、この減速された回転運動が相手部材に出力される。 On the other hand, since the external gear 12 also meshes with the other internal gear 23g, the rotation of the vibration generator shaft 10 also changes the meshing position between the external gear 12 and the internal gear 23g in the rotational direction. On the other hand, since the number of teeth of the internal gear 23g and the number of teeth of the external gear 12 match, the external gear 12 and the internal gear 23g do not rotate relative to each other, and the rotational movement of the external gear 12 is transmitted to the internal gear 23g at a reduction ratio of 1:1. As a result, the rotational motion of the vibrator shaft 10 is reduced by a reduction ratio of 100:2 and transmitted to the second internal gear member 23g and the second cover 27. This decelerated rotational motion is then output to the mating member.

[内歯部材の硬度分布]
図3は内歯部材23の径方向における硬度分布を示すグラフである。この図3に基づいて、内歯部材23の特徴的な硬度分布について説明する。
内歯部材23は、金属材料、例えば、クロムモリブデン鋼鋼材(JISでいうSCM材)やS55C等の機械構造用合金鋼鋼材等を素材としている。
そして、内歯部材23は、前述したように、その外周に主軸受33の内輪331が一体的に設けられ、その内周に内歯歯車23gが一体的に設けられている。このため、内歯歯車23gの内歯と内輪331の内輪転走面334,335とで要求される硬度に差があることから、内歯部材23は、その製造工程において、全体的に焼き入れ、焼き戻しからなる第一の熱処理が行われ、その後に、内輪331の内輪転走面334,335に対して第二の熱処理である高周波焼き入れが行われている。そして、これにより、内歯部材23は、径方向における硬度分布に関して図3に示すような特徴を有している。
[Hardness distribution of internal tooth members]
FIG. 3 is a graph showing the hardness distribution of the internal tooth member 23 in the radial direction. Based on this FIG. 3, the characteristic hardness distribution of the internal tooth member 23 will be explained.
The internal tooth member 23 is made of a metal material, for example, chromium molybdenum steel (SCM material in JIS), alloy steel for machine structures such as S55C, or the like.
As described above, the inner ring 331 of the main bearing 33 is integrally provided on the outer periphery of the internal tooth member 23, and the internal gear 23g is integrally provided on the inner periphery. Therefore, since there is a difference in hardness required between the internal teeth of the internal gear 23g and the inner raceway surfaces 334 and 335 of the inner ring 331, the internal gear member 23 is entirely hardened during the manufacturing process. A first heat treatment consisting of , tempering is performed, and then a second heat treatment, ie, induction hardening, is performed on the inner ring raceway surfaces 334 and 335 of the inner ring 331. As a result, the internal tooth member 23 has the characteristics shown in FIG. 3 regarding the hardness distribution in the radial direction.

図3のグラフでは、内歯部材23の内輪331の一方の内輪転走面334の表面からの深さとビッカース硬度との関係を示す。このグラフでは、製法が等しく、各部の寸法が異なる内歯部材23の二つの実施例(1)(白色菱形のドット)と実施例(2)(黒丸のドット)の硬度分布を示している。これら実施例(1)、(2)に対して、内歯部材23の内輪331の一方の内輪転走面334の軸方向の幅をlとした場合に、片側の内輪転走面334の軸方向における中間点Pから内歯歯車23gの内歯までの径方向の範囲Dにおける硬度を深さ0.25mm間隔で測定した硬度分布を示している。ただし、図3においては、一部領域(深さ4~6mm、6.5~7mm)については、0.5mm間隔で測定している。 The graph in FIG. 3 shows the relationship between the depth from the surface of one inner ring raceway surface 334 of the inner ring 331 of the internal gear member 23 and the Vickers hardness. This graph shows the hardness distribution of two embodiments (1) (white diamond-shaped dots) and (2) (black circle dots) of the internal tooth member 23 manufactured by the same method but having different dimensions in each part. Regarding these embodiments (1) and (2), when the width in the axial direction of one inner ring raceway surface 334 of the inner ring 331 of the internal gear member 23 is l, the axis of the inner ring raceway surface 334 on one side is The hardness distribution in the radial range D from the midpoint P in the direction to the internal teeth of the internal gear 23g is measured at intervals of 0.25 mm in depth. However, in FIG. 3, some areas (depths of 4 to 6 mm and 6.5 to 7 mm) are measured at intervals of 0.5 mm.

また、このグラフでは、横軸は内歯部材23の内輪転走面334の表面から内歯歯車23gの内歯に向かう径方向の深さを示す。横軸において、0[mm]は実施例(1)、(2)の内輪転走面334の表面、6.5[mm]は実施例(2)の内歯の表面、7.5[mm]は実施例(1)の内歯の表面の各位置を示している。
また、縦軸は、JIS Z2244に準拠したビッカース硬さ試験に準じた方法により測定された硬度を示しており、縦軸の一目盛りは200[HV0.3]である。
Further, in this graph, the horizontal axis indicates the depth in the radial direction from the surface of the inner ring raceway surface 334 of the internal tooth member 23 toward the internal teeth of the internal gear 23g. On the horizontal axis, 0 [mm] is the surface of the inner ring raceway surface 334 of Examples (1) and (2), 6.5 [mm] is the surface of the inner tooth of Example (2), and 7.5 [mm] is the surface of the inner ring raceway 334 of Example (1) and (2). (1) shows each position on the surface of the internal tooth.
Moreover, the vertical axis shows the hardness measured by a method according to the Vickers hardness test based on JIS Z2244, and one scale of the vertical axis is 200 [HV0.3].

図3に示す実施例(1)の内歯部材23は、内輪転走面334から内歯に向けて(径方向内側に向けて真っ直ぐ)、転走面硬度部H11と、当該転走面硬度部H11から硬度が急激に低下する硬度急低下部H12と、硬度急低下部H12よりも硬度変化の傾きの絶対値が小さくなるように硬度が上昇する硬度上昇部H13と、をこの順に有する硬度分布となっている。
また、実施例(2)の内歯部材23も実施例(1)と同様に、内輪転走面334から内歯に向けて、転走面硬度部H21と、当該転走面硬度部H21から硬度が急激に低下する硬度急低下部H22と、硬度急低下部H22よりも硬度変化の傾きの絶対値が小さくなるように硬度が上昇する硬度上昇部H23と、をこの順に有する硬度分布となっている。なお、硬度上昇部H13、H23の終点が、内歯の表面硬度となる。
The internal gear member 23 of the embodiment (1) shown in FIG. Hardness having, in this order, a hardness rapidly decreasing part H12 where the hardness rapidly decreases from the hardness rapidly decreasing part H11, and a hardness increasing part H13 where the hardness increases so that the absolute value of the slope of hardness change is smaller than the hardness rapidly decreasing part H12. distribution.
Similarly to the embodiment (1), the internal tooth member 23 of the embodiment (2) also has a hard raceway portion H21 from the inner ring raceway surface 334 toward the internal teeth, and a hard raceway portion H21 from the raceway hardness portion H21. The hardness distribution has, in this order, a hardness rapidly decreasing part H22 where the hardness rapidly decreases and a hardness increasing part H23 where the hardness increases so that the absolute value of the slope of the hardness change is smaller than the hardness rapidly decreasing part H22. ing. Note that the end points of the hardness increasing portions H13 and H23 become the surface hardness of the internal teeth.

転走面硬度部H11は、内輪転走面334の表面から硬度急低下部H12まで連続し、転走面硬度部H21は、内輪転走面334の表面から硬度急低下部H22まで連続している。
硬度急低下部H12は、転走面硬度部H11から硬度上昇部H13まで連続し、硬度急低下部H22は、転走面硬度部H21から硬度上昇部H23まで連続している。
硬度上昇部H13は、硬度急低下部H12から内歯歯車23gの内歯の表面まで連続し、硬度上昇部H23は、硬度急低下部H22から内歯歯車23gの内歯の表面まで連続している。
The raceway hardness portion H11 is continuous from the surface of the inner ring raceway surface 334 to the sudden hardness drop portion H12, and the raceway hardness portion H21 is continuous from the surface of the inner ring raceway surface 334 to the sudden hardness drop portion H22. There is.
The hardness rapidly decreasing portion H12 is continuous from the raceway hardness portion H11 to the hardness increasing portion H13, and the hardness rapidly decreasing portion H22 is continuous from the raceway hardness portion H21 to the hardness increasing portion H23.
The hardness increasing part H13 is continuous from the hardness rapidly decreasing part H12 to the surface of the internal tooth of the internal gear 23g, and the hardness increasing part H23 is continuous from the hardness rapidly decreasing part H22 to the surface of the internal tooth of the internal gear 23g. There is.

転走面硬度部H11、H21は、硬度分布において、内輪転走面334の表面硬度を示す測定点を起点とし、当該起点以降の各測定点における硬度が転走面に要求される硬度(例えば、500HV)以上の硬度であって、硬度の変動が小さく所定幅内に収まっている領域をいう。この所定幅は、硬度急低下部と識別できるように適宜設定すればよいが、本実施例においては、着目する測定点の硬度を一つ手前の(0.25mm深さの浅い)測定点の硬度と比較したときの硬度の低下量が50HV以下であれば、当該着目する測定点は転走面硬度部と判断し、硬度の低下量が50HVを超えていれば硬度急低下部と判断する。 In the hardness distribution, the raceway hardness parts H11 and H21 have a measurement point that indicates the surface hardness of the inner ring raceway 334 as the starting point, and the hardness at each measurement point after the starting point corresponds to the hardness required for the raceway (e.g. , 500 HV) or more, and the variation in hardness is small and falls within a predetermined width. This predetermined width may be set as appropriate so that the hardness can be identified as a sudden drop in hardness. If the amount of decrease in hardness compared to the hardness is 50 HV or less, the measurement point of interest is determined to be a hardness area of the raceway surface, and if the amount of decrease in hardness exceeds 50 HV, it is determined to be an area where hardness suddenly decreases. .

図3では、転走面硬度部H11が転走面334の表面からの深さがおよそ0~2.5[mm]までの範囲、転走面硬度部H21が転走面334の表面からの深さがおよそ0~2.25[mm]までの範囲である場合を例示する。
転走面334は、前述したように、高周波焼き入れによる表面硬化処理が施されており、上記の深さ範囲まで、マルテンサイト等を主相とする焼入れ組織からなる硬化層が形成されている。このため、転走面硬度部H11、H21では、一定の高硬度が維持されている。この転走面硬度部H11、H21における硬度は、内輪331の転走面334、335に要求される硬度を満足する範囲である。
In FIG. 3, the raceway hardness portion H11 has a depth from the surface of the raceway 334 in a range of approximately 0 to 2.5 [mm], and the raceway hardness portion H21 has a depth from the surface of the raceway 334. The case where the range is approximately 0 to 2.25 [mm] will be exemplified.
As described above, the raceway surface 334 has been subjected to surface hardening treatment by induction hardening, and a hardened layer consisting of a hardened structure containing martensite or the like as a main phase is formed up to the above-mentioned depth range. . Therefore, a constant high hardness is maintained in the raceway hardness portions H11 and H21. The hardness of the raceway hardness portions H11 and H21 is within a range that satisfies the hardness required for the raceway surfaces 334 and 335 of the inner ring 331.

硬度急低下部H12,H22は、硬度分布において、硬度変化の傾きの絶対値が前述した規定の閾値を超える下降勾配に転じた測定点を起点とし、起点以降の規定の閾値を超えた下降勾配の傾きとなる他の測定点を全て含んだ範囲である。前述したように、本実施例においては、着目する測定点の硬度を一つ前の測定点の硬度と比較した硬度低下量が50HVを超えていれば、一つ前の測定点から当該着目する測定点の間は硬度急低下部であると判断する。ただし、この判断の基準となる硬度低下量は50HVに限定されるものではなく、測定点の間隔等により変化し、転走面硬度部や硬度上昇部と硬度急低下部を識別できる値に適宜設定すればよい。 The hardness sudden drop portions H12 and H22 are defined as a measurement point in the hardness distribution where the absolute value of the slope of hardness change turns into a downward slope exceeding the specified threshold value mentioned above, and a downward slope exceeding the specified threshold value after the starting point. This range includes all other measurement points that have a slope of . As mentioned above, in this example, if the hardness reduction amount when comparing the hardness of the measurement point of interest with the hardness of the previous measurement point exceeds 50 HV, the measurement point of interest is changed from the previous measurement point. The area between the measurement points is determined to be a region where the hardness rapidly decreases. However, the amount of hardness reduction, which is the standard for this judgment, is not limited to 50 HV, but may vary depending on the distance between measurement points, etc., and may be adjusted to a value that allows discrimination between rolling surface hardness areas, hardness increasing areas, and hardness rapidly decreasing areas. Just set it.

図3では、硬度急低下部H12が転走面334の表面からの深さがおよそ2.5~3[mm]までの範囲、硬度急低下部H22が転走面334の表面からの深さがおよそ2.25~2.5[mm]までの範囲である場合を例示する。
硬度急低下部H12,H22は、高周波焼き入れによる組織変化が及ばなくなる深さ範囲であり、その硬度は急激に低下を生じる。硬度急低下部H12,H22は、内歯歯車23gの内歯に要求される硬度又はそれよりも幾分低硬度まで低下を生じる。
In FIG. 3, the hardness rapidly decreasing portion H12 has a depth from the surface of the raceway surface 334 in a range of approximately 2.5 to 3 [mm], and the hardness rapidly decreasing portion H22 has a depth from the surface of the raceway surface 334 approximately in a range of approximately 2.5 to 3 [mm]. The case where the range is from 2.25 to 2.5 [mm] will be exemplified.
The rapidly decreasing hardness portions H12 and H22 are depth ranges where the structure change due to induction hardening does not reach, and the hardness thereof rapidly decreases. The hardness abruptly decreasing portions H12 and H22 cause a decrease in hardness to the level required for the internal teeth of the internal gear 23g or to a somewhat lower hardness than that.

このように、硬度急低下部H12,H22は、硬度変化の傾きの絶対値が規定の閾値を超える下降勾配の傾きとなる測定点からなる範囲なので、径方向について硬度変化を生じる範囲を縮小することができる。このため、転走面334、335に適した硬度となる転走面硬度部H11と、内歯歯車23gの内歯に適した硬度となる硬度上昇部H13、H23の径方向の幅を広く確保し易くなる。 In this way, the hardness rapid decrease parts H12 and H22 are ranges consisting of measurement points where the absolute value of the slope of the hardness change is a downward gradient exceeding a prescribed threshold value, so the range in which hardness changes occur in the radial direction is reduced. be able to. For this reason, a wide radial width is ensured for the raceway hardness portion H11, which has a hardness suitable for the raceway surfaces 334 and 335, and the hardness increasing portions H13 and H23, which have a hardness suitable for the internal teeth of the internal gear 23g. It becomes easier to do.

硬度上昇部H13,H23は、硬度分布において、硬度変化の傾きの絶対値が前述した規定の閾値以下の勾配に転じた測定点を起点とし、当該起点以降の各測定点における硬度変化の傾きの絶対値が前述した規定の閾値以下となる範囲である。本実施例においては、着目する測定点の硬度を一つ前の測定点の硬度と比較した硬度変化量がプラスである(硬度が上昇している)か、マイナスであっても絶対値で50HV未満である場合には、一つ前の測定点から当該着目する測定点の間は硬度上昇部であると判断する。実際には、硬度急低下部以降で初めてこの条件を満たした測定点の一つ前の測定点を、硬度急低下部の終点かつ硬度上昇部の起点とし、以降の測定点は全て硬度上昇部としている。なお、硬度変化量がマイナスである場合の閾値である50HVについても50HVに限定されるものではなく、測定点の間隔等により変化し、硬度急低下部と識別できる値に適宜設定すればよい。例えば、本実施例においても測定間隔が0.5mmとなっている測定点については100HVで判定してもよい。また、硬度上昇部H13,H23に属する測定点における硬度は、内歯歯車23gの内歯に要求される硬度以上の硬度であることが好ましい。さらに、硬度上昇部H13,H23に属する測定点における硬度は、内輪331の転走面334、335に要求される硬度に満たない硬度であることが好ましい。内歯歯車23gの内歯は、歯切り加工により形成されるため、硬度を必要以上に高くしないことで歯切り加工の加工性が向上する。 The hardness increasing portions H13 and H23 are defined by starting from a measurement point in the hardness distribution where the absolute value of the slope of the hardness change changes to a slope below the prescribed threshold value mentioned above, and measuring the slope of the hardness change at each measurement point after the starting point. This is a range in which the absolute value is less than or equal to the prescribed threshold value described above. In this example, even if the hardness change amount when comparing the hardness of the measurement point of interest with the hardness of the previous measurement point is positive (the hardness is increasing) or negative, the absolute value is 50 HV. If it is less than, it is determined that the area between the previous measurement point and the measurement point of interest is a hardness increasing area. In reality, the measurement point immediately before the measurement point that satisfies this condition for the first time after the sudden hardness drop is taken as the end point of the sudden hardness drop and the starting point of the hardness increase, and all subsequent measurement points are taken as the hardness increase. It is said that Note that 50HV, which is the threshold value when the amount of change in hardness is negative, is not limited to 50HV, but may be changed depending on the interval between measurement points, etc., and may be appropriately set to a value that can be identified as a rapidly decreasing hardness portion. For example, in this embodiment as well, measurement points where the measurement interval is 0.5 mm may be determined at 100 HV. Further, the hardness at the measurement points belonging to the hardness increasing portions H13 and H23 is preferably higher than the hardness required for the internal teeth of the internal gear 23g. Further, the hardness at the measurement points belonging to the hardness increasing portions H13 and H23 is preferably less than the hardness required for the raceway surfaces 334 and 335 of the inner ring 331. Since the internal teeth of the internal gear 23g are formed by gear cutting, the workability of gear cutting is improved by not increasing the hardness more than necessary.

図3では、硬度上昇部H13が転走面334の表面からの深さがおよそ3~7.5[mm]までの範囲、硬度上昇部H23が転走面334の表面からの深さがおよそ2.5~6.5[mm]までの範囲である場合を例示する。
硬度上昇部H13,H23では、一部で硬度変化が増加しない測定点が含まれるが、硬度上昇部H13,H23の測定点の硬度変化の傾きの全体的な平均をとると、硬度は増加している。
In FIG. 3, the hardness increasing portion H13 has a depth from the surface of the raceway surface 334 in a range of approximately 3 to 7.5 [mm], and the hardness increasing portion H23 has a depth from the surface of the raceway surface 334 in a range of approximately 2.5 to 7.5 [mm]. The case where the range is up to 6.5 [mm] will be exemplified.
In the hardness increasing portions H13 and H23, there are some measurement points where the hardness change does not increase, but if you take the overall average of the slope of the hardness change at the measurement points in the hardness increasing portions H13 and H23, the hardness will increase. ing.

この硬度上昇部H13,H23における硬度変化の傾きの絶対値と硬度急低下部H12,H22における硬度変化の傾きの絶対値とを比較した場合、硬度急低下部H12,H22の硬度変化の傾きの絶対値は、硬度上昇部H13,H23の硬度変化の傾きの絶対値の少なくとも5倍以上、好ましくは10倍以上、より好ましくは15倍以上となっている。ここで、硬度上昇部(における硬度変化)の傾きとは、硬度上昇部の起点から終点までの硬度上昇量を、起点から終点までの深さで割った値である。また、硬度急低下部(における硬度変化)の傾きとは、硬度急低下部の起点から終点までの硬度低下量を、起点から終点までの深さで割った値である。
また、この硬度上昇部H13,H23の径方向における深さ範囲の幅は、前述した転走面硬度部H11、H21の径方向における深さ範囲の幅の1倍以上、3倍未満であることが好ましい。
When comparing the absolute value of the slope of hardness change in the hardness increasing portions H13, H23 with the absolute value of the slope of hardness change in the hardness rapidly decreasing portions H12, H22, the slope of hardness change in the hardness rapidly decreasing portions H12, H22 is compared. The absolute value is at least 5 times or more, preferably 10 times or more, and more preferably 15 times or more the absolute value of the slope of the hardness change in the hardness increasing portions H13 and H23. Here, the slope of (hardness change in) the hardness increasing portion is the value obtained by dividing the amount of hardness increase from the starting point to the end point of the hardness increasing portion by the depth from the starting point to the ending point. Furthermore, the slope of (the change in hardness in) the rapidly decreasing hardness section is the value obtained by dividing the amount of decrease in hardness from the starting point to the end point of the sudden hardness decreasing section by the depth from the starting point to the ending point.
In addition, the width of the depth range in the radial direction of the hardness increasing portions H13 and H23 shall be at least one time and less than three times the width of the depth range in the radial direction of the raceway hardness portions H11 and H21 mentioned above. is preferred.

硬度上昇部H13,H23では、全体的に緩やかに硬度が増加しているので、例えば、前述した硬度急低下部H12,H22において、内歯歯車23gの内歯に要求される硬度よりも低い値まで低下した場合であっても、内歯歯車23gの内歯の表面に到るまでには硬度が増加して必要硬度の要求を満たすことができる。
また、この硬度上昇部H13,H23では、全体で(起点から終点までで)少なくとも20[HV0.3]以上の硬度の増加が生じることが好ましい。
In the hardness increasing portions H13 and H23, the hardness increases gradually as a whole, so for example, in the hardness rapidly decreasing portions H12 and H22 described above, the hardness is lower than the hardness required for the internal teeth of the internal gear 23g. Even if the hardness decreases to 23g, the hardness increases by the time it reaches the surface of the internal teeth of the internal gear 23g, and the required hardness can be met.
Further, in the hardness increasing portions H13 and H23, it is preferable that the hardness increases by at least 20 [HV0.3] as a whole (from the starting point to the ending point).

内歯部材23は、全体的に焼き入れと焼き戻し(第一の熱処理)を行い、内歯歯車23gの内歯に要求される硬度まで硬化させている。これに対して、主軸受33の内輪331の転走面334,335には、より高い硬度が要求される。
このため、転走面334,335には、表面硬化処理として高周波焼き入れ(第二の熱処理)を行っている。これにより、転走面334,335の表面に近い範囲では、硬度が増加して転走面に要求される硬度を満足することができる。一方、転走面334,335の表面から離れた部分では、転走面334,335よりも低温で高周波焼き入れの熱が伝わって、硬度の低下が生じる。
本実施形態では、内歯部材23を所定の製造方法で製造することにより、高周波焼き入れによる硬度低下の影響を抑制し、硬度上昇部H13,H23における硬度増加を図っている。
The internal tooth member 23 is entirely quenched and tempered (first heat treatment) to harden it to the hardness required for the internal teeth of the internal gear 23g. On the other hand, the raceway surfaces 334 and 335 of the inner ring 331 of the main bearing 33 are required to have higher hardness.
For this reason, the raceway surfaces 334 and 335 are subjected to induction hardening (second heat treatment) as surface hardening treatment. As a result, the hardness increases in a range close to the surfaces of the raceway surfaces 334 and 335, and the hardness required for the raceway surfaces can be satisfied. On the other hand, in the portions of the raceway surfaces 334, 335 that are away from the surface, the heat of induction hardening is transmitted at a lower temperature than the raceway surfaces 334, 335, resulting in a decrease in hardness.
In this embodiment, by manufacturing the internal tooth member 23 using a predetermined manufacturing method, the influence of hardness reduction due to induction hardening is suppressed, and hardness is increased in the hardness increasing portions H13 and H23.

[内歯部材の製造方法]
図4(A)~図5(C)は内歯部材23の製造方法の各工程を順番に示した説明図である。
内歯部材23の製造に当たっては、まず、内歯部材23の形成材料(母材)である円柱状の金属ブロック23Mが素材から切り出される(図4(A):素材切断工程)。
[Manufacturing method of internal tooth member]
FIGS. 4(A) to 5(C) are explanatory diagrams sequentially showing each step of the method for manufacturing the internal tooth member 23. FIG.
In manufacturing the internal tooth member 23, first, a cylindrical metal block 23M, which is a forming material (base material) of the internal tooth member 23, is cut out of a material (FIG. 4(A): material cutting step).

次いで、金属ブロック23Mの中心に各種加工の際の位置決め或いは取り付け用となる貫通孔231Mが形成され、さらに、軸方向両端部の面取り加工及び内輪331のV字溝232Mの旋削加工が行われる(一次旋削工程(貫通孔形成工程、溝形成工程))。
なお、貫通孔231Mは、内歯歯車23gの内歯を形成する位置よりも内径が十分に小さい小孔であることが望ましく、例えば金属ブロック23Mの外径の3分の1未満であることが望ましい。従って、この段階では、金属ブロック23Mは、内歯を形成する位置よりも径方向内側に肉を残した状態となっている。この余分な肉は、後述する二次旋削工程において除去される。また、この貫通孔231Mは、軸方向に内径が一定とされる(ただし、貫通孔231Mの両端部に面取りを施した場合、当該面取り部は除く)。
Next, a through hole 231M for positioning or attachment during various processing is formed in the center of the metal block 23M, and further, chamfering of both axial ends and turning of the V-shaped groove 232M of the inner ring 331 are performed ( Primary turning process (through hole forming process, groove forming process)).
Note that the through hole 231M is preferably a small hole whose inner diameter is sufficiently smaller than the position where the internal teeth of the internal gear 23g are formed, for example, it is preferably less than one third of the outer diameter of the metal block 23M. desirable. Therefore, at this stage, the metal block 23M is in a state in which the meat remains radially inward from the position where the internal teeth are to be formed. This excess meat is removed in a secondary turning process to be described later. Further, this through hole 231M has a constant inner diameter in the axial direction (however, if both ends of the through hole 231M are chamfered, the chamfered portions are excluded).

そして、この一次旋削工程済みの金属ブロック23Mに対して、焼き入れと焼き戻しとが実行される(第一の熱処理工程)。
このとき、第一の熱処理工程では、金属ブロック23Mは、内歯を形成する位置よりも径方向内側の肉を残した状態で焼き入れと焼き戻しとが行われる。
さらに、第一の熱処理工程済みの金属ブロック23MのV字溝232Mに対して、高周波焼き入れが実行される(図4(B):第二の熱処理工程)。
Hardening and tempering are then performed on the metal block 23M that has undergone the primary turning process (first heat treatment process).
At this time, in the first heat treatment step, the metal block 23M is quenched and tempered while leaving the meat on the radially inner side of the position where the internal teeth are to be formed.
Further, induction hardening is performed on the V-shaped groove 232M of the metal block 23M that has undergone the first heat treatment process (FIG. 4(B): second heat treatment process).

次いで、第二の熱処理工程後の金属ブロック23Mの中心を軸方向に広く開口させて内周面233Mを形成する旋削加工が行われる(図4(C):二次旋削工程(内周面形成工程、隣接内周面形成工程))。
このとき、内周面233Mの軸方向における内歯歯車23gの内歯の形成位置については、軸方向両側の隣接内周面234,235よりも内径が小径となるように旋削が行われる。
Next, a turning process is performed to form an inner circumferential surface 233M by widening the center of the metal block 23M in the axial direction after the second heat treatment process (FIG. 4(C): secondary turning process (inner circumferential surface formation). process, adjacent inner circumferential surface formation process)).
At this time, regarding the formation position of the internal teeth of the internal gear 23g in the axial direction of the internal circumferential surface 233M, turning is performed so that the inner diameter is smaller than the adjacent inner circumferential surfaces 234, 235 on both sides in the axial direction.

さらに、二次旋削工程後の金属ブロック23Mの内周面233Mの軸方向一端部にテーパ(第2隣接内周面235)を形成し、軸方向の他端部及び内歯の形成位置等に面取りを形成する旋削加工が行われる(図4(D):三次旋削工程)。
また、旋削後の内周面233Mの各部に研削が行われ、金属ブロック23Mの軸方向他端部側の端面に穴あけ加工が行われ、タップを使用してボルト連結用穴23h及びボルト穴23jが形成される。
Furthermore, a taper (second adjacent inner circumferential surface 235) is formed at one axial end of the inner circumferential surface 233M of the metal block 23M after the secondary turning process, and a taper (second adjacent inner circumferential surface 235) is formed at the other end in the axial direction and at the formation position of internal teeth. Turning to form a chamfer is performed (FIG. 4(D): tertiary turning process).
Further, each part of the inner circumferential surface 233M after turning is ground, and the end face on the other axial end side of the metal block 23M is drilled, and a tap is used to drill the bolt connection hole 23h and the bolt hole 23j. is formed.

次いで、三次旋削工程後の金属ブロック23Mの内周面233Mの内側の内歯の形成位置に歯切りが行われ、内歯歯車23gの内歯が形成される(図5(A):内歯形成工程)。
さらに、金属ブロック23Mの外周面のV字溝232Mの内面の研削が行われ、目標とする表面粗さでV字溝232M内に内輪転走面334,335が形成される(図5(B):転走面形成工程)。これにより、内歯部材23が出来上がる。
なお、図4(A)~(D)および図5(A)、(B)に基づいて説明した上記各工程の順序は、上記説明した順序に限定されるものではなく、順序に意味のない工程については適宜順序を入れ替えてよい。例えば、内歯形成工程と転走面形成工程の順序は逆でもよい。
Next, gear cutting is performed at the formation position of the internal teeth on the inside of the inner circumferential surface 233M of the metal block 23M after the tertiary turning process, and the internal teeth of the internal gear 23g are formed (FIG. 5(A): Internal teeth forming process).
Furthermore, the inner surface of the V-shaped groove 232M on the outer peripheral surface of the metal block 23M is ground, and inner ring raceway surfaces 334 and 335 are formed within the V-shaped groove 232M with the target surface roughness (Fig. 5(B) ): Rolling surface formation process). As a result, the internal tooth member 23 is completed.
Note that the order of the steps described above based on FIGS. 4(A) to (D) and FIGS. 5(A) and (B) is not limited to the order described above, and the order has no meaning. The order of the steps may be changed as appropriate. For example, the order of the internal tooth forming step and the raceway surface forming step may be reversed.

次いで、転走面形成工程後の内歯部材23の内輪331と第2ケーシング24の外輪332との間に転動体333を介挿させた状態で、第2ケーシング24の内側に内歯部材23を嵌め込むことで、クロスローラ軸受からなる主軸受33が組み立てられる(図5(C):軸受組立工程)。 Next, with the rolling elements 333 inserted between the inner ring 331 of the inner tooth member 23 after the raceway surface forming step and the outer ring 332 of the second casing 24, the inner tooth member 23 is placed inside the second casing 24. By fitting the main bearing 33, which is a cross roller bearing, the main bearing 33 is assembled (Fig. 5(C): bearing assembly process).

[本発明の実施形態の技術的効果]
以上のように、撓み噛合い式歯車装置1は、内歯部材23が、内輪331の内輪転走面334,335から内歯歯車23gの内歯に向けて、転走面硬度部H11,H21と硬度急低下部H12,H22と硬度上昇部H13,H23とをこの順に有している。
このため、内歯部材23に、要求される硬度が異なる内輪331の内輪転走面334,335と内歯歯車23gの内歯とが設けられる場合でも、個々の硬度の要求に適正に対応する内歯部材23を提供することが可能となる。
[Technical effects of embodiments of the present invention]
As described above, in the flexible meshing gear device 1, the internal tooth member 23 moves from the inner ring raceway surfaces 334, 335 of the inner ring 331 toward the internal teeth of the internal gear 23g to the raceway surface hardness portions H11, H21. , rapidly decreasing hardness portions H12 and H22, and increasing hardness portions H13 and H23 in this order.
Therefore, even when the internal gear member 23 is provided with the inner raceway surfaces 334 and 335 of the inner ring 331 and the internal teeth of the internal gear 23g, which require different hardnesses, the individual hardness requirements can be appropriately met. It becomes possible to provide the internal tooth member 23.

また、内歯部材23は、硬度が上昇する硬度上昇部H13,H23を備えているので、硬度急低下部H12,H22において、硬度の低下幅が大きくなる場合でも、硬度上昇部H13,H23で硬度が上昇するので、内歯の表面硬度は要求される硬度を確保することが容易となる。 Moreover, since the internal tooth member 23 is provided with the hardness increasing portions H13 and H23 where the hardness increases, even if the hardness decrease width becomes large in the hardness rapidly decreasing portions H12 and H22, the hardness increasing portions H13 and H23 Since the hardness increases, it becomes easier to ensure the required surface hardness of the internal teeth.

また、内歯部材23は、硬度急低下部H12,H22の傾きの絶対値が硬度上昇部H13,H23の傾きの絶対値の5倍以上を有するので、内輪転走面334,335に適した硬度の範囲となる転走面硬度部H11,H21と内歯に適した硬度範囲となる硬度上昇部H13,H23とを有する場合であっても、これらの間で硬度が遷移する硬度急低下部H12,H22の径方向の幅を十分に縮小化することができ、転走面硬度部H11,H21や硬度上昇部H13,H23を広く確保することが可能となる。 In addition, the internal gear member 23 is suitable for the inner ring raceway surfaces 334 and 335 because the absolute value of the slope of the hardness rapidly decreasing portions H12 and H22 is more than five times the absolute value of the slope of the hardness increasing portions H13 and H23. Even if the raceway surface hardness portions H11 and H21 have a hardness range and hardness increasing portions H13 and H23 have a hardness range suitable for internal teeth, there is a sudden hardness decreasing portion where the hardness changes between these portions. The radial widths of H12 and H22 can be sufficiently reduced, and it becomes possible to secure a wide rolling surface hardness portion H11 and H21 and hardness increasing portions H13 and H23.

また、内歯部材23において、内輪転走面334,335と内歯歯車23gの内歯が、径方向から見て重なる配置とした場合には、転走面硬度部H11,H21と硬度急低下部H12,H22と硬度上昇部H13,H23の硬度分布によって、内輪転走面334,335と内歯歯車23gの内歯とついて、それぞれ硬度の適正化を容易に実現することが可能となる。 In addition, in the internal tooth member 23, when the inner ring raceway surfaces 334, 335 and the internal teeth of the internal gear 23g are arranged to overlap when viewed from the radial direction, the hardness of the raceway surface hardness portions H11, H21 suddenly decreases. The hardness distribution of the portions H12, H22 and the hardness increasing portions H13, H23 makes it possible to easily optimize the hardness of the inner ring raceway surfaces 334, 335 and the internal teeth of the internal gear 23g, respectively.

また、内歯部材23において、硬度上昇部H13,H23の径方向の深さ範囲を、転走面硬度部H11,H21の深さ範囲の3倍未満とした場合には、内歯部材23の外径の小型化を図ることが可能となる。 In addition, in the internal tooth member 23, when the radial depth range of the hardness increasing portions H13 and H23 is less than three times the depth range of the rolling surface hardness portions H11 and H21, the internal tooth member 23 It becomes possible to reduce the outer diameter.

また、上記撓み噛合い式歯車装置1の内歯部材23を製造する場合に、金属ブロック23Mの内側に内歯を形成する位置よりも径方向内側に肉を残した状態で第一の熱処理と第二の熱処理とが行われる。
このため、金属ブロック23Mの熱容量が高い状態で、内輪転走面を形成するための溝に対して第二の熱処理としての高周波焼き入れを行うことができる。従って、高い硬度が要求される内輪転走面を形成するための溝の表面付近よりも径方向内側部分への熱伝達量が低減することができる。これにより、第一の熱処理を行われた径方向内側部分に対して、高周波焼き入れの再加熱による硬度低下を抑制することができ、硬度上昇部H13,H23による必要硬度を容易に実現することが可能となる。
In addition, when manufacturing the internal gear member 23 of the flexible mesh gear device 1, the first heat treatment is performed with the metal block 23M remaining inside the metal block 23M in the radial direction from the position where the internal teeth are to be formed. A second heat treatment is performed.
Therefore, in a state where the heat capacity of the metal block 23M is high, induction hardening as the second heat treatment can be performed on the groove for forming the inner ring raceway surface. Therefore, the amount of heat transferred to the radially inner portion can be reduced compared to the vicinity of the surface of the groove for forming the inner ring raceway surface, which requires high hardness. As a result, it is possible to suppress a decrease in hardness due to reheating during induction hardening for the radially inner portion subjected to the first heat treatment, and it is possible to easily achieve the required hardness by the hardness increasing portions H13 and H23. becomes possible.

[その他]
以上、本発明の実施形態について説明した。しかし、本発明は上記の実施形態に限られず、実施の形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施形態では、撓み噛合い式歯車装置として、所謂筒型の構成を示したが、これに限定されず、本発明に係る撓み噛合い式歯車装置は、例えば所謂カップ型又はシルクハット型の撓み噛合い式歯車装置であってもよい。
また、主軸受33は、クロスローラ軸受を例示したが、これに限定されず、各種軸受を採用でき、例えば4点接触玉軸受、深溝玉軸受、ころ軸受なども採用できる。この場合、内歯部材23には採用した軸受に対応した内輪転走面を有する溝が設けられる。
[others]
The embodiments of the present invention have been described above. However, the present invention is not limited to the embodiments described above, and the details shown in the embodiments can be changed as appropriate without departing from the spirit of the invention.
For example, in the above embodiment, the flexible mesh gear device has a so-called cylindrical structure, but the structure is not limited to this, and the flexible mesh gear device according to the present invention has, for example, a so-called cup shape or top hat structure. It may also be a type of flexure-mesh gearing.
Moreover, although the main bearing 33 is a cross roller bearing, it is not limited to this, and various bearings can be used, for example, a four-point contact ball bearing, a deep groove ball bearing, a roller bearing, etc. can be used. In this case, the internal gear member 23 is provided with a groove having an inner raceway surface corresponding to the adopted bearing.

また、内歯部材23に形成される内歯歯車23gの内歯と内輪転走面334及び335は、径方向から見て重なる配置となる内歯部材23を例示したが、これに限定されない。即ち、内歯部材23において、内歯と内輪転走面334及び335とは、径方向から見て全く重ならない配置としても良い。その場合でも、内歯部材に対して、前述と同じ第一及び第二の熱処理工程を経ている限り、内輪転走面334又は335の軸方向における中間点から径方向内側に向かって到達した内周面上の到達点の硬度分布は、内歯歯車23gの内歯と同じ硬度分布になると予測される。従って、内輪転走面334又は335の中間点から上記到達点までの範囲の硬度分布が、前述した転走面硬度部、硬度急低下部、硬度上昇部をこの順に有するように、内歯部材23を構成することで、内歯歯車23gの内歯に対しても、硬度の適正化を実現することができる。つまり、「内輪転走面から内歯に向けて」とは、内輪転走面から径方向内側に向かってまっすぐ硬度分布を測定した場合に、内周面での到達点が内歯でない場合も含む。この場合には、到達した内周面を内歯と擬制するということである。 Further, although the internal tooth member 23 has been exemplified in which the internal teeth of the internal gear 23g and the inner raceway surfaces 334 and 335 overlap when viewed from the radial direction, the present invention is not limited thereto. That is, in the internal tooth member 23, the internal teeth and the inner ring raceway surfaces 334 and 335 may be arranged so that they do not overlap at all when viewed from the radial direction. Even in that case, as long as the internal gear member is subjected to the same first and second heat treatment steps as described above, the internal The hardness distribution at the reaching point on the circumferential surface is predicted to be the same hardness distribution as the internal teeth of the internal gear 23g. Therefore, the internal gear member is designed so that the hardness distribution in the range from the midpoint of the inner ring raceway surface 334 or 335 to the above-mentioned reaching point has the aforementioned raceway surface hardness section, hardness sudden decrease section, and hardness increase section in this order. By configuring 23, it is possible to achieve appropriate hardness also for the internal teeth of the internal gear 23g. In other words, "from the inner ring raceway surface toward the internal teeth" means that when the hardness distribution is measured straight from the inner ring raceway surface toward the inside in the radial direction, the point reached on the inner circumferential surface may not be the internal tooth. include. In this case, the inner peripheral surface that has been reached is assumed to be an internal tooth.

また、内歯部材23の製造方法において、第一及び第二の熱処理工程の前工程である一次旋削工程において、金属ブロック23Mの中心に貫通孔231Mを設ける例を示したが、貫通孔231Mは必須ではなく、貫通孔231Mのない中実の金属ブロック23Mに対して、第一の熱処理工程と第二の熱処理工程とを行っても良い。 In addition, in the method for manufacturing the internal gear member 23, an example was shown in which the through hole 231M is provided at the center of the metal block 23M in the primary turning process which is a pre-process of the first and second heat treatment processes, but the through hole 231M is Although not essential, the first heat treatment step and the second heat treatment step may be performed on the solid metal block 23M without the through hole 231M.

内歯部材23の製造方法における第一及び第二の熱処理工程の熱処理は、焼き入れと焼き戻し、高周波焼き入れに限らず、内輪転走面334及び335や内歯に要求される硬度を実現可能な他の熱処理を行っても良い。例えば、浸炭処理やレーザ焼入れ処理を採用してもよい。
また、これらの硬度分布を満たすための熱処理の具体的な諸条件は、実験や解析等によって定めてもよい。
The heat treatment in the first and second heat treatment steps in the method for manufacturing the internal tooth member 23 is not limited to quenching, tempering, and induction hardening, but also achieves the hardness required for the inner ring raceway surfaces 334 and 335 and the internal teeth. Other possible heat treatments may also be performed. For example, carburizing treatment or laser hardening treatment may be employed.
Further, specific conditions for heat treatment to satisfy these hardness distributions may be determined by experiment, analysis, or the like.

1 撓み噛合い式歯車装置
10 起振体軸
10A 起振体
12 外歯歯車
22g、23g 内歯歯車
23 内歯部材
23M 金属ブロック(形成材料)
33 主軸受
231M 貫通孔
232M V字溝
233M 内周面
234,235 隣接内周面
331 内輪
332 外輪
333 転動体
334,335 内輪転走面
H11、H21 転走面硬度部
H12,H22 硬度急低下部
H13、H23 硬度上昇部
O1 回転軸
P 中間点
1 Flexible mesh gear device 10 Vibrator shaft 10A Vibrator 12 External gears 22g, 23g Internal gear 23 Internal gear member 23M Metal block (forming material)
33 Main bearing 231M Through hole 232M V-shaped groove 233M Inner circumferential surface 234, 235 Adjacent inner circumferential surface 331 Inner ring 332 Outer ring 333 Rolling elements 334, 335 Inner ring raceway surface H11, H21 Raceway surface hardness portion H12, H22 Rapidly decreasing hardness portion H13, H23 Hardness increasing part O1 Rotating axis P Intermediate point

Claims (5)

起振体と、前記起振体により撓み変形する外歯歯車と、前記外歯歯車が噛合う内歯歯車と、前記内歯歯車を支持する主軸受と、を備えた撓み噛合い式歯車装置の製造方法であって、
内周に前記内歯歯車の内歯が形成されるとともに、外周に前記主軸受の内輪転走面が一体的に設けられる内歯部材の形成材料に対して、前記内輪転走面を形成するための溝を外周に形成する溝形成工程と、
前記形成材料に対して、第一の熱処理を行う第一の熱処理工程と、
前記第一の熱処理工程後に、前記形成材料の前記内輪転走面を形成するための溝に対して、第二の熱処理を行う第二の熱処理工程と、
前記第二の熱処理工程後に、前記内歯を形成する内歯形成工程と、を有する撓み噛合い式歯車装置の製造方法。
A flexible meshing gear device comprising a vibrating body, an external gear that is flexibly deformed by the vibrating body, an internal gear that meshes with the external gear, and a main bearing that supports the internal gear. A method of manufacturing,
The inner ring raceway surface is formed on a material for forming an internal gear member, in which the internal teeth of the internal gear are formed on the inner periphery, and the inner ring raceway surface of the main bearing is integrally provided on the outer periphery. a groove forming step of forming a groove on the outer periphery;
a first heat treatment step of performing a first heat treatment on the forming material;
After the first heat treatment step, a second heat treatment step of performing a second heat treatment on the groove for forming the inner ring raceway surface of the forming material;
After the second heat treatment step, a method for manufacturing a flexible mesh gear device, comprising: an internal tooth forming step of forming the internal teeth.
前記形成材料に対して、前記内歯を形成する位置よりも径方向内側に貫通孔を形成する貫通孔形成工程をさらに有し、
前記第二の熱処理工程では、前記貫通孔が形成された形成材料に対して、前記第二の熱処理が行われることを特徴とする請求項1に記載の撓み噛合い式歯車装置の製造方法。
further comprising a through-hole forming step of forming a through-hole in the forming material radially inward from a position where the internal teeth are to be formed;
2. The method for manufacturing a flexible mesh gear device according to claim 1, wherein in the second heat treatment step, the second heat treatment is performed on the forming material in which the through hole is formed.
前記貫通孔形成工程においては、軸方向において内径が一定の貫通孔を形成し、
前記第二の熱処理工程後に、前記内歯と軸方向に隣接する部分に、内歯よりも内径の大きい隣接内周面を形成する隣接内周面形成工程をさらに有する請求項2に記載の撓み噛合い式歯車装置の製造方法。
In the through hole forming step, a through hole having a constant inner diameter in the axial direction is formed,
The deflection according to claim 2, further comprising, after the second heat treatment step, an adjacent inner peripheral surface forming step of forming an adjacent inner peripheral surface having an inner diameter larger than that of the internal teeth in a portion adjacent to the internal teeth in the axial direction. A method for manufacturing a meshing gear device.
前記第一の熱処理工程においては、前記形成材料に対して、前記内歯を形成する位置よりも径方向内側に肉を残した状態で第一の熱処理を行い、
前記第二の熱処理工程においては、前記内歯を形成する位置よりも径方向内側に肉を残した状態で、前記形成材料の前記内輪転走面を形成するための溝に対して第二の熱処理を行い、
前記第二の熱処理工程後に、前記内歯を形成する位置よりも径方向内側の前記肉を除去する内周面形成工程を有する請求項1に記載の撓み噛合い式歯車装置の製造方法。
In the first heat treatment step, the forming material is subjected to a first heat treatment with meat remaining radially inward from the position where the internal teeth are to be formed;
In the second heat treatment step, a second heat treatment step is applied to the groove for forming the inner ring raceway surface of the forming material while leaving the meat radially inward from the position where the inner teeth are formed. Perform heat treatment,
2. The method for manufacturing a flexible mesh gear device according to claim 1, further comprising, after the second heat treatment step, an inner circumferential surface forming step of removing the meat radially inner than a position where the internal teeth are to be formed.
前記第二の熱処理は、高周波焼入れである請求項1に記載の撓み噛合い式歯車装置の製造方法。 The method for manufacturing a flexible mesh gear device according to claim 1, wherein the second heat treatment is induction hardening.
JP2023016574A 2019-02-21 2023-02-07 Manufacturing method of flexible mesh gear device Active JP7374361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023016574A JP7374361B2 (en) 2019-02-21 2023-02-07 Manufacturing method of flexible mesh gear device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019029798A JP7438666B2 (en) 2019-02-21 2019-02-21 Flexible mesh gear device and its manufacturing method
JP2023016574A JP7374361B2 (en) 2019-02-21 2023-02-07 Manufacturing method of flexible mesh gear device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019029798A Division JP7438666B2 (en) 2019-02-21 2019-02-21 Flexible mesh gear device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2023054008A JP2023054008A (en) 2023-04-13
JP7374361B2 true JP7374361B2 (en) 2023-11-06

Family

ID=72139002

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019029798A Active JP7438666B2 (en) 2019-02-21 2019-02-21 Flexible mesh gear device and its manufacturing method
JP2023016574A Active JP7374361B2 (en) 2019-02-21 2023-02-07 Manufacturing method of flexible mesh gear device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019029798A Active JP7438666B2 (en) 2019-02-21 2019-02-21 Flexible mesh gear device and its manufacturing method

Country Status (3)

Country Link
JP (2) JP7438666B2 (en)
CN (1) CN111594582B (en)
DE (1) DE102020102403B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021181126A (en) * 2020-05-18 2021-11-25 住友重機械工業株式会社 Method of manufacturing gear, gear, and deflection meshing type gear device
JP7492444B2 (en) * 2020-11-20 2024-05-29 住友重機械工業株式会社 Manufacturing method of gear device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517441A (en) 2014-04-23 2017-06-29 イルジン グローバル カンパニー リミテッド Drive wheel bearing and manufacturing method thereof
JP2018091444A (en) 2016-12-06 2018-06-14 住友重機械工業株式会社 Flexible meshing type gear device
JP2018115669A (en) 2017-01-16 2018-07-26 住友重機械工業株式会社 Speed reduction device and method of processing workpiece

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939210Y2 (en) * 1980-10-07 1984-11-01 日本精工株式会社 slewing ring bearing
WO2004007219A1 (en) * 2002-07-15 2004-01-22 Nsk Ltd. Rolling bearing unit for supporting wheel
JP5487376B2 (en) * 2012-02-28 2014-05-07 富士高周波工業株式会社 Laser cladding method and tool material
US10151377B2 (en) * 2015-03-05 2018-12-11 California Institute Of Technology Systems and methods for implementing tailored metallic glass-based strain wave gears and strain wave gear components
JP2017096478A (en) * 2015-11-27 2017-06-01 住友重機械工業株式会社 Flexible engagement type gear device and process of manufacture of its exciter
JP6779116B2 (en) 2015-12-08 2020-11-04 住友重機械工業株式会社 Flexible meshing gear device
JP6685889B2 (en) 2016-12-16 2020-04-22 住友重機械工業株式会社 Flexible mesh gear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517441A (en) 2014-04-23 2017-06-29 イルジン グローバル カンパニー リミテッド Drive wheel bearing and manufacturing method thereof
JP2018091444A (en) 2016-12-06 2018-06-14 住友重機械工業株式会社 Flexible meshing type gear device
JP2018115669A (en) 2017-01-16 2018-07-26 住友重機械工業株式会社 Speed reduction device and method of processing workpiece

Also Published As

Publication number Publication date
DE102020102403A1 (en) 2020-08-27
CN111594582A (en) 2020-08-28
JP2020133800A (en) 2020-08-31
JP2023054008A (en) 2023-04-13
DE102020102403B4 (en) 2023-06-22
CN111594582B (en) 2023-05-02
JP7438666B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
JP7374361B2 (en) Manufacturing method of flexible mesh gear device
US6269711B1 (en) Transmission device using flexible gear
US20190353230A1 (en) Ball Screw Device
KR20170062378A (en) Flexible engagement gear device and method for fabricating a body thereof
CN100378353C (en) Four-point contact ball bearing
CN103534501A (en) Rolling bearing having insulating material.
US10962058B2 (en) Rotator support shaft, method for manufacturing rotator support shaft, and roller bearing
US10458461B2 (en) Bearing shaft and bearing
EP3492775B1 (en) Wave generator, and wave gear device
EP3076035A1 (en) Bearing structure and manufacturing method thereof
US20170138403A1 (en) Rolling bearing
KR20160031965A (en) Hub unit manufacturing apparatus
EP1816230A2 (en) Ball bearing for pinion shaft
US9995343B2 (en) Rolling bearing
CN114542580A (en) Eccentric oscillating type reduction gear
JP2009079656A (en) Actuator for continuously variable transmission
US10197094B2 (en) Double-row spherical roller bearing
US10830279B2 (en) Tapered roller bearing
CN112135981B (en) Raceway ring intermediate part of rolling bearing, raceway ring, rolling bearing, and method for manufacturing same
JP6867837B2 (en) Eccentric swing type gear device and its manufacturing method
US7435007B2 (en) Self-aligning roller bearing
JP2009275878A (en) Spline shaft, power transmission shaft, and outer ring of constant velocity universal joint
US11313415B2 (en) Method for manufacturing a sensor bearing unit, and associated sensor bearing unit
JP7273210B2 (en) tapered roller bearing
JPWO2019193772A1 (en) Rolling bearing race ring manufacturing method and rolling bearing manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7374361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150