JP7371108B2 - Rare earth diffusion magnet manufacturing method and rare earth diffusion magnet - Google Patents

Rare earth diffusion magnet manufacturing method and rare earth diffusion magnet Download PDF

Info

Publication number
JP7371108B2
JP7371108B2 JP2021545306A JP2021545306A JP7371108B2 JP 7371108 B2 JP7371108 B2 JP 7371108B2 JP 2021545306 A JP2021545306 A JP 2021545306A JP 2021545306 A JP2021545306 A JP 2021545306A JP 7371108 B2 JP7371108 B2 JP 7371108B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet
base material
manufacturing
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021545306A
Other languages
Japanese (ja)
Other versions
JP2022516380A (en
Inventor
李志学
董広楽
李紹芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhong Ke San Huan High Tech Co Ltd
Original Assignee
Beijing Zhong Ke San Huan High Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhong Ke San Huan High Tech Co Ltd filed Critical Beijing Zhong Ke San Huan High Tech Co Ltd
Publication of JP2022516380A publication Critical patent/JP2022516380A/en
Application granted granted Critical
Publication of JP7371108B2 publication Critical patent/JP7371108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Description

本発明は、希土類磁石の製造に関し、特に、希土類拡散磁石の製造方法と希土類拡散磁石に関する。 The present invention relates to the production of rare earth magnets, and particularly to a method for producing rare earth diffused magnets and a rare earth diffused magnet.

焼結NdFeB磁石は優れた磁気特性を持ち、電子情報、自動車工業、医療機器、エネルギー交通等の多くの分野で広く使用されている。近年、風力発電、省エネ家電、新エネルギー自動車など、省エネや環境保護の分野で新たな用途がある。結晶粒界拡散の方法で、重希土類元素を磁石の結晶粒界と主相結晶粒のエッジ領域に拡散させる。これにより、残留磁気と磁気エネルギー積を著しく低下させずに、磁石の異方性磁場を増加させるという目的を達成できる。 Sintered NdFeB magnets have excellent magnetic properties and are widely used in many fields such as electronic information, automobile industry, medical equipment, energy transportation, etc. In recent years, new applications have emerged in the fields of energy conservation and environmental protection, such as wind power generation, energy-saving home appliances, and new energy vehicles. Using the grain boundary diffusion method, heavy rare earth elements are diffused into the grain boundaries and edge regions of the main phase grains of the magnet. Thereby, the objective of increasing the anisotropic magnetic field of the magnet can be achieved without significantly reducing the residual magnetism and magnetic energy product.

既存の希土類磁石の製造方法は、連続パス式マグネトロンスパッタリング装置を使用して、磁石の表面にDy、Tbなどの重希土類金属をスパッタリングし、スパッタリング層の厚さおよび均一性を効果的に制御し、結晶粒界拡散技術による磁石の迅速かつ連続的な作製を実現することができる。しかしながら、この方法は、スパッタリング中にDy/Tbターゲットを迅速に消費し、重希土類は高価であり、それは磁石の製造コストを増加させる。 The existing rare earth magnet manufacturing method uses a continuous pass magnetron sputtering device to sputter heavy rare earth metals such as Dy and Tb onto the surface of the magnet, effectively controlling the thickness and uniformity of the sputtered layer. , it is possible to realize rapid and continuous production of magnets using grain boundary diffusion technology. However, this method quickly consumes the Dy/Tb target during sputtering, and heavy rare earths are expensive, which increases the manufacturing cost of the magnet.

別の方法では、複合ターゲット材の化学気相成長により、結晶粒界拡散の希土類永久磁石材料を製造する。複合ターゲット材の堆積、中高温処理、および低温時効処理により、磁石の保磁力は明らかに改善され、残留磁気と磁気エネルギー積は基本的に減少しない。複合ターゲット材は磁石の性能を向上させることができるが、発明者は、複合ターゲットの拡散過程で磁石の内部に元々存在している軽希土類元素が濃度の差により表面に拡散し、磁石の表面に希土類リッチ層を形成していることを発見した。このような希土類リッチ層は酸化しやすく、磁石の耐食性を劣化させる。 Another method produces grain boundary diffused rare earth permanent magnet materials by chemical vapor deposition of composite target materials. Through the deposition of composite target material, medium-high temperature treatment, and low-temperature aging treatment, the coercive force of the magnet is obviously improved, and the residual magnetism and magnetic energy product are basically not reduced. Composite target materials can improve the performance of magnets, but the inventor believes that during the diffusion process of composite targets, the light rare earth elements that originally exist inside the magnets diffuse to the surface due to the difference in concentration, causing the surface of the magnet to It was discovered that a rare earth-rich layer was formed in the area. Such a rare earth rich layer is easily oxidized and deteriorates the corrosion resistance of the magnet.

上記の問題を解決するために、本発明は、希土類拡散磁石の製造方法と希土類拡散磁石を提供し、スパッタリングめっき層中のRLの含有量を制御し、得られた希土類拡散磁石は、高い総合磁気特性と優れた耐食性を有する。 In order to solve the above problems, the present invention provides a method for manufacturing a rare earth diffused magnet and a rare earth diffused magnet, controls the content of RL in the sputtering plating layer, and the obtained rare earth diffused magnet has a high overall It has magnetic properties and excellent corrosion resistance.

本発明の実施形態は以下のステップを含む、希土類拡散磁石の製造方法を提供する:
ステップA.第一ターゲット材を基材にスパッタリングし、前記基材の表面に第一めっき層を形成し、前記第一ターゲット材の組成は、質量パーセントでRHx-RL-Mである。ただし、RHがDy、Tb、またはHoの1つ以上であり、RHはDyまたはTbの少なくとも1つを含み、RLはNd、Pr、Ce、La、およびYの1つ以上であり、RLはNdまたはPrの少なくとも1つを含み、MはCo、Cu、Ga、Ag、SnまたはAlの少なくとも1つの元素であり、yは22~28wt%であり、zは0~20wt%であり、xは(100-y-z)wt%であり、前記基材は希土類磁石であるステップと、
ステップB.スパッタリングされた基材に拡散処理を行い、希土類拡散磁石を得るステップ。
Embodiments of the present invention provide a method of manufacturing a rare earth diffused magnet, including the following steps:
Step A. A first target material is sputtered onto a substrate to form a first plating layer on the surface of the substrate, and the composition of the first target material is RH x -RL y -M z in mass percent. However, RH is one or more of Dy, Tb, or Ho, RH includes at least one of Dy or Tb, RL is one or more of Nd, Pr, Ce, La, and Y, and RL is Contains at least one of Nd or Pr, M is at least one element of Co, Cu, Ga, Ag, Sn or Al, y is 22 to 28 wt%, z is 0 to 20 wt%, x is (100-yz)wt%, and the base material is a rare earth magnet;
Step B. A step of performing a diffusion treatment on the sputtered base material to obtain a rare earth diffused magnet.

好ましくは、前記希土類拡散磁石の製造方法において、yは25~28wt%であり、zは0~12wt%である。 Preferably, in the method for manufacturing a rare earth diffused magnet, y is 25 to 28 wt%, and z is 0 to 12 wt%.

前記希土類拡散磁石の製造方法において、前記第一めっき層の厚さは2~20μmである。 In the method for manufacturing a rare earth diffused magnet, the first plating layer has a thickness of 2 to 20 μm.

前記希土類拡散磁石の製造方法の前記ステップAでは、第一ターゲット材がスパッタリングされた後、第二ターゲット材をスパッタリングして、前記第一めっき層上に第二めっき層を形成し、前記第二ターゲット材の組成はCr、Ti、W、Mo、Si、AlまたはZrOの少なくとも1つである。 In step A of the method for manufacturing a rare earth diffused magnet, after the first target material is sputtered, a second target material is sputtered to form a second plating layer on the first plating layer, and the second plating layer is formed on the first plating layer. The composition of the target material is at least one of Cr, Ti, W, Mo, Si, Al2O3 , or ZrO2 .

本発明の好ましい実態形態として、前記第二めっき層の厚さは0.1~6μmである。 In a preferred embodiment of the present invention, the second plating layer has a thickness of 0.1 to 6 μm.

上記の希土類拡散磁石の製造方法では、前記ステップAの前に、さらに前記基材の製造を含み、前記基材の製造は、原材料の溶解と急速な凝固によって合金フレークが作られること、前記合金フレークに対して水素破砕およびジェットミル処理を行い、合金粉末を得ること、前記合金粉末を磁場でプレスしてプレス成形体を得ること、前記プレス成形体を焼結炉に送って焼結させて焼結磁石を得ること、および前記焼結磁石をスライス加工して前記基材を得ることを含む。 The above method for manufacturing a rare earth diffused magnet further includes manufacturing the base material before the step A, and the manufacturing of the base material includes forming alloy flakes by melting and rapid solidification of raw materials, and forming the alloy flakes by melting and rapidly solidifying raw materials. The flakes are subjected to hydrogen crushing and jet mill treatment to obtain an alloy powder, the alloy powder is pressed in a magnetic field to obtain a press molded body, and the press molded body is sent to a sintering furnace to be sintered. The method includes obtaining a sintered magnet, and slicing the sintered magnet to obtain the base material.

上記の希土類拡散磁石の製造方法において、前記合金フレークの厚さは0.15~0.5mmである。 In the above method for manufacturing a rare earth diffused magnet, the thickness of the alloy flakes is 0.15 to 0.5 mm.

上記の希土類拡散磁石の製造方法では、前記基材の厚さは1~10mmである。 In the above method for producing a rare earth diffused magnet, the thickness of the base material is 1 to 10 mm.

上記の希土類拡散磁石の製造方法において、前記拡散処理は、一次熱処理:800~1000℃で2~18時間の保温と、二次熱処理:450℃~600℃で3~8時間の保温とを含む。 In the above method for producing a rare earth diffused magnet, the diffusion treatment includes primary heat treatment: keeping warm at 800 to 1000°C for 2 to 18 hours, and secondary heat treatment: keeping warm at 450 to 600°C for 3 to 8 hours. .

本発明はまた、前記希土類拡散磁石の製造方法で作成された希土類拡散磁石を提供する。 The present invention also provides a rare earth diffused magnet manufactured by the method for manufacturing a rare earth diffused magnet.

本発明の希土類拡散磁石の製造方法およびに希土類拡散磁石において、めっき層中のRL元素の含有量は、基材中のRL元素の含有量に近く、拡散する際に、重希土類元素が基材中に入るが、基材内のRL元素は表面に濃化されないため、希土類拡散磁石の表面に希土類リッチ層は形成されず、希土類拡散磁石の耐食性が改善される。 In the rare earth diffused magnet manufacturing method and rare earth diffused magnet of the present invention, the content of the RL element in the plating layer is close to the content of the RL element in the base material, and when diffusing, the heavy rare earth element is transferred to the base material. However, since the RL elements in the base material are not concentrated on the surface, a rare earth rich layer is not formed on the surface of the rare earth diffused magnet, and the corrosion resistance of the rare earth diffused magnet is improved.

本発明の実施例に係るスパッタリングされた基材の構造の模式図である。FIG. 3 is a schematic diagram of the structure of a sputtered substrate according to an embodiment of the present invention.

以下、本発明の実施形態およびその各利点をよりよく理解できるように、添付の図面および実施例と結合して本発明を実施するための形態をより詳細に説明する。しかしながら、以下に記載される特定の実施形態および実施例は本発明を説明するものにすぎず、本発明を限定するものではない。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to provide a better understanding of embodiments of the present invention and their respective advantages, modes for carrying out the present invention will now be described in more detail in conjunction with the accompanying drawings and examples. However, the specific embodiments and examples described below are merely illustrative of the invention and are not intended to limit the invention.

本発明で言及される「接続」は、他に明確に指定または限定されない限り、広い意味で理解されるべきであり、それは、直接接続されるか、または中間体を介して接続され得る。なお、本発明の説明において、「上」、「下」、「前」、「後」、「左」、「右」、「上端」、「下端」などによって示される方位または位置関係は、添付図面に基づいて示される方位または位置関係である。これは、参照されるデバイスまたは素子が特定の方位を有する必要があることや、特定の方位で構築および操作される必要があることを示したり暗示したりするのではなく、本発明を説明し、説明を単純化するための便宜に過ぎない。このため、これらの記載を本発明の限定として理解すべきではない。 The "connection" referred to in the present invention is to be understood in a broad sense, unless explicitly specified or limited otherwise, and it can be directly connected or connected via an intermediate. In the description of the present invention, directions or positional relationships indicated by "top", "bottom", "front", "rear", "left", "right", "upper end", "lower end", etc. This is the orientation or positional relationship shown based on the drawing. This is not intended to indicate or imply that the referenced devices or elements must have any particular orientation or be constructed or operated in any particular orientation, but rather are intended to illustrate the invention. , is merely a convenience to simplify the explanation. Therefore, these descriptions should not be construed as limitations on the invention.

図1に示すように、本発明の実施形態に係る希土類拡散磁石は、基材1上にスパッタリングしてめっき層を形成し、その後、スパッタリングされた基材に対して拡散処理を行うことにより得られる。前記の基材は希土類磁石である。スパッタリングする際に、基材は第一ターゲット材の下を通過して、基材の表面上に第一めっき層21を形成する。必要に応じて、第一ターゲット材の後に第二ターゲット材を設けて、基材が第一ターゲット材を通過した後、第二ターゲット材をスパッタリングして、第一めっき層21上に第二めっき層22を形成してもよい。第二めっき層22は、希土類拡散磁石の性能をさらに向上させることができる。基材の一つの表面のスパッタリングが完了した後、その後の熱拡散処理を行ってもよく、必要に応じて基材を裏返し、別の表面にスパッタリングした後に熱拡散処理を行ってもよい。一般に、基材のスパッタリングされる2つの表面は相互に反対側になり、スパッタリングされる表面は、基材の磁化方向に垂直な表面である。 As shown in FIG. 1, the rare earth diffused magnet according to the embodiment of the present invention can be obtained by forming a plating layer on a base material 1 by sputtering, and then performing a diffusion treatment on the sputtered base material. It will be done. The base material is a rare earth magnet. During sputtering, the base material passes under the first target material to form a first plating layer 21 on the surface of the base material. If necessary, a second target material is provided after the first target material, and after the base material passes through the first target material, the second target material is sputtered to form a second plating on the first plating layer 21. A layer 22 may also be formed. The second plating layer 22 can further improve the performance of the rare earth diffused magnet. After the sputtering of one surface of the substrate is completed, a subsequent thermal diffusion treatment may be performed, and if necessary, the substrate may be turned over and the thermal diffusion treatment may be performed after sputtering on another surface. Generally, the two sputtered surfaces of the substrate will be opposite each other, and the sputtered surface will be the surface perpendicular to the magnetization direction of the substrate.

本発明の実施形態における上記の希土類拡散磁石の製造方法は、基材の製造プロセスを含み得る。基材の製造は、
S1、基材の組成に応じて原材料を配合し、原材料の溶解と急速凝固によって合金フレークを作成し、好ましくは、合金フレークの厚さは、その後の処理を容易にするために0.15~0.5mmであるように制御されるステップ、
S2、合金フレークを水素破砕し、好ましくは、540℃で6時間脱水素を行い、脱水素後の水素含有量を1200ppmにして、中程度に破砕した粉末を得て、中程度に破砕した粉末をジェットミルに入れて細粉を製造し、D50=4.0μmの合金粉末を得るステップ、
S3、合金粉末を磁場内で、好ましくは磁場強度1.8Tでプレスして、プレス成形体を得るステップ、
S4、プレス成形体を焼結炉に入れて焼結し、好ましくは、焼結温度が1000℃であり、保温時間が6hであり、焼結磁石を得るステップ、
S5、焼結磁石の表面を酸洗いして脱脂し、次にスライス加工して基材を得るステップを含む。
基材の厚みは1~10mmであることが好ましい。
The above method for manufacturing a rare earth diffused magnet in an embodiment of the present invention may include a process for manufacturing a base material. The production of the base material is
S1, blend the raw materials according to the composition of the base material, and create alloy flakes by melting and rapid solidification of the raw materials, preferably the thickness of the alloy flakes is 0.15 ~ 0.15 to facilitate subsequent processing. a step controlled to be 0.5 mm;
S2, hydrogen crush the alloy flakes, preferably perform dehydrogenation at 540 ° C. for 6 hours, and make the hydrogen content after dehydrogenation 1200 ppm to obtain a moderately crushed powder; into a jet mill to produce fine powder to obtain an alloy powder with D50=4.0 μm;
S3, pressing the alloy powder in a magnetic field, preferably at a magnetic field strength of 1.8T to obtain a pressed body;
S4, placing the press molded body in a sintering furnace and sintering it, preferably at a sintering temperature of 1000°C and a heat retention time of 6 hours to obtain a sintered magnet;
S5, including the step of pickling the surface of the sintered magnet to degrease it, and then slicing it to obtain a base material.
The thickness of the base material is preferably 1 to 10 mm.

基材が得られた後、基材に対して後続処理を実行して、希土類拡散磁石を得た。具体的なステップは次のとおりである。 After the substrate was obtained, subsequent processing was performed on the substrate to obtain a rare earth diffused magnet. The specific steps are as follows.

ステップA.基材に対してスパッタリングする。好ましくは、スパッタリング条件は次のとおりである。温度が100~200℃であり、単位面積当たりの堆積圧力はアルゴンガス条件で1~30Paとし、スパッタリングゾーンを通過する基材の速度が0.01~1.0m/sであり、スパッタリングのターゲット材と基材の上面との垂直距離は10~200mmである。 Step A. Sputter onto the base material. Preferably, the sputtering conditions are as follows. The temperature is 100 to 200°C, the deposition pressure per unit area is 1 to 30 Pa under argon gas conditions, the speed of the substrate passing through the sputtering zone is 0.01 to 1.0 m/s, and the sputtering target is The vertical distance between the material and the top surface of the substrate is 10 to 200 mm.

基材は第一ターゲット材の下を通過し、第一ターゲット材のスパッタリングを実行して、第一めっき層が基材の表面に形成される。第一ターゲット材の組成は質量パーセントでRHx-RL-Mである。ただし、RHがDy、Tb、またはHoの1つ以上であり、RHはDyまたはTbの少なくとも1つを含み、RLはNd、Pr、Ce、La、およびYの1つ以上であり、RLはNdまたはPrの少なくとも1つを含み、MはCo、Cu、Ga、Ag、SnまたはAlの少なくとも1つの元素であり、yは22~28wt%であり、zは0~20wt%であり、xは(100-y-z)wt%であり、基材は希土類磁石である。この実施形態では、zは0であってもよい、すなわち、第一ターゲット材はMを含まない。 The substrate passes under the first target material, and the first target material is sputtered to form a first plating layer on the surface of the substrate. The composition of the first target material is RH x -RL y -M z in mass percent. However, RH is one or more of Dy, Tb, or Ho, RH includes at least one of Dy or Tb, RL is one or more of Nd, Pr, Ce, La, and Y, and RL is Contains at least one of Nd or Pr, M is at least one element of Co, Cu, Ga, Ag, Sn or Al, y is 22 to 28 wt%, z is 0 to 20 wt%, x is (100-yz)wt%, and the base material is a rare earth magnet. In this embodiment, z may be 0, ie, the first target material does not contain M.

ステップB.スパッタリングされた基材に拡散処理を行い、希土類拡散磁石を得る。好ましくは、拡散処理は、一次熱処理:800℃~1000℃で2~18時間の保温、二次熱処理:450℃~600℃で3~8時間の保温を含む。 Step B. A diffusion treatment is performed on the sputtered base material to obtain a rare earth diffused magnet. Preferably, the diffusion treatment includes a primary heat treatment: incubation at 800°C to 1000°C for 2 to 18 hours, and a secondary heat treatment: incubation at 450°C to 600°C for 3 to 8 hours.

基材の表面に重希土類めっき層をスパッタリングした後、拡散源である重希土類めっき層について高温で拡散処理を行い、拡散源中の希土類を基材の結晶粒界相と主相へ拡散させる。拡散過程では、めっき層中のRH元素が結晶粒界に沿って拡散し、主相中のRL元素が置換され、主相の結晶粒の周りにコアシェル構造が形成される。主相の中でRL元素が置換された後、主相の結晶粒界に拡散した。基材の表層の希土類と濃度勾配が形成されると、結晶粒界相の中のRL元素が基材の表面へ拡散する。この実施形態では、拡散源中のRL元素の含有量は、基材の内部のRL元素に比較的近い。拡散する際に、拡散源中の重希土類は、基材の内部との濃度の差が依然として存在しているので、基材の内部に拡散し続ける。拡散源中のRL元素の濃度と基材の内部の濃度との差が小さいため、基材内の軽希土類元素が表面に拡散して希土類リッチ層を形成する駆動力が抑制されたので、基材の表面に希土類リッチ層は形成されない。これにより、希土類拡散磁石の耐食性が向上する。ターゲット材に含まれるRL元素の含有量が多すぎると、重希土類の濃度が低下して、最終的な磁石の固有保磁力Hcjの改善が十分ではない。また、RL元素の含有量が少なすぎると、基材内のRL元素の表面濃化を抑制するのに十分ではない。ターゲット材は、少量のCuまたはAlまたはCoを含んでもよく、RH元素の金属原子の拡散をさらに加速し、それによって磁石の保磁力を増加させる。基材の組成に応じて、めっき層中のRL元素の含有量は基材中RL元素の含有量よりも少ないように、めっき層の組成を適切に調整することができる。 After sputtering a heavy rare earth plating layer on the surface of the base material, a diffusion treatment is performed on the heavy rare earth plating layer, which is a diffusion source, at a high temperature, and the rare earth in the diffusion source is diffused into the grain boundary phase and main phase of the base material. In the diffusion process, the RH element in the plating layer diffuses along the grain boundaries, replaces the RL element in the main phase, and forms a core-shell structure around the crystal grains of the main phase. After the RL element was substituted in the main phase, it diffused into the grain boundaries of the main phase. When a concentration gradient is formed with the rare earth in the surface layer of the base material, the RL element in the grain boundary phase diffuses to the surface of the base material. In this embodiment, the content of RL elements in the diffusion source is relatively close to the RL elements inside the substrate. During diffusion, the heavy rare earths in the diffusion source continue to diffuse into the interior of the substrate because a concentration difference with the interior of the substrate still exists. Since the difference between the concentration of the RL element in the diffusion source and the concentration inside the base material was small, the driving force for the light rare earth elements in the base material to diffuse to the surface and form a rare earth rich layer was suppressed. No rare earth rich layer is formed on the surface of the material. This improves the corrosion resistance of the rare earth diffused magnet. If the content of the RL element contained in the target material is too large, the concentration of heavy rare earth elements will decrease, and the final specific coercive force Hcj of the magnet will not be sufficiently improved. Moreover, if the content of the RL element is too small, it will not be sufficient to suppress surface concentration of the RL element within the base material. The target material may contain a small amount of Cu or Al or Co, further accelerating the diffusion of the metal atoms of the RH element, thereby increasing the coercive force of the magnet. Depending on the composition of the base material, the composition of the plating layer can be appropriately adjusted so that the content of the RL element in the plating layer is less than the content of the RL element in the base material.

好ましくは、前記希土類拡散磁石の製造方法において、第一ターゲット材のyは25~28wt%であり、zは0~12wt%である。 Preferably, in the method for manufacturing a rare earth diffused magnet, y of the first target material is 25 to 28 wt%, and z is 0 to 12 wt%.

好ましくは、前記第一メッキ層の厚さは2~20μmである。第一めっき層の厚さが薄すぎると、固有保磁力Hcjの増加に影響を与えているが、第一めっき層の厚さが厚すぎると、ターゲット材が無駄になる。 Preferably, the first plating layer has a thickness of 2 to 20 μm. If the thickness of the first plating layer is too thin, this will affect the increase in the intrinsic coercive force Hcj, but if the thickness of the first plating layer is too thick, the target material will be wasted.

上記のステップAにおいて、第一ターゲット材がスパッタリングされた後、基材に対して第二ターゲット材がスパッタリングされて、第一めっき層上に第二めっき層を形成する。第二ターゲット材の組成は、Cr、Ti、W、Mo、Si、AlまたはZrOの少なくとも1つである。 In step A above, after the first target material is sputtered, the second target material is sputtered onto the base material to form a second plating layer on the first plating layer. The composition of the second target material is at least one of Cr, Ti, W, Mo, Si, Al2O3 , or ZrO2 .

第二めっき層は、希土類拡散磁石の耐食性をさらに高めることができ、かつ第二めっき層の被覆により、第一めっき層における希土類元素は、拡散処理を行う際に、揮発による損失が少なくなり、それによって希土類拡散磁石の性能がさらに向上する。好ましい実施形態として、第二めっき層の厚さは0.1~6μmである。 The second plating layer can further improve the corrosion resistance of the rare earth diffusion magnet, and due to the coating with the second plating layer, the loss of rare earth elements in the first plating layer due to volatilization is reduced during diffusion treatment. This further improves the performance of the rare earth diffused magnet. In a preferred embodiment, the thickness of the second plating layer is 0.1 to 6 μm.

(実施例1-1)
希土類拡散磁石の製造プロセスは以下のとおりである。
(Example 1-1)
The manufacturing process of the rare earth diffused magnet is as follows.

1.原材料の配合
基材C1および第一ターゲット材の組成質量比に従って、それぞれ原材料を配合する。
1. Mixing of raw materials Raw materials are mixed according to the composition mass ratio of the base material C1 and the first target material.

基材C1の組成はNd22.5Pr6.9Dy2.6Co1.0Cu0.1Ga0.12Al0.30.98Febalである。 The composition of the base material C1 is Nd 22.5 Pr 6.9 Dy 2.6 Co 1.0 Cu 0.1 Ga 0.12 Al 0.3 B 0.98 Fe bal .

第一ターゲット材の組成はTb68Nd23PrAlである。 The composition of the first target material is Tb 68 Nd 23 Pr 4 Al 5 .

2.溶解
基材C1の原材料は、溶解され、急速に凝固されて、合金フレークの薄いストリップになり、そのキャスト温度は1380℃であり、合金フレークの厚さは0.2~0.5mmに制御される。
2. Melting The raw material of the substrate C1 is melted and rapidly solidified into thin strips of alloy flakes, the casting temperature of which is 1380 °C, and the thickness of the alloy flakes is controlled to be 0.2-0.5 mm. Ru.

第一ターゲット材の原材料を真空溶解炉に入れて真空溶解させる。溶解温度は1050℃、溶解時間は15分、合金インゴットにキャストして、鍛造、熱間圧延、冷間圧延および機械的加工をした後、第一ターゲット材を形成する。 The raw material for the first target material is placed in a vacuum melting furnace and melted in vacuum. The melting temperature is 1050° C., the melting time is 15 minutes, and the alloy ingot is cast and subjected to forging, hot rolling, cold rolling and mechanical processing to form the first target material.

3.基材の作製
31.基材C1の合金フレークを水素破砕し、540℃で6時間脱水素を行い、脱水素後の水素含有量を1200ppmにして、合金を中程度に破砕した粉末を得る。中程度に破砕した粉末をジェットミルに入れて、細粉を製造し、D50=4.0μmの合金粉末を得る。
3. Preparation of base material 31. The alloy flakes of the base material C1 are subjected to hydrogen crushing and dehydrogenation is performed at 540° C. for 6 hours, and the hydrogen content after dehydrogenation is set to 1200 ppm to obtain a powder in which the alloy is crushed to a medium degree. The medium crushed powder is put into a jet mill to produce fine powder, and an alloy powder with D50=4.0 μm is obtained.

32.合金粉末は、磁場内で、好ましく1.8Tの磁場強度で、プレスされて、プレス成形体を得て、プレス成形体の密度は4.3g/cmである。 32. The alloy powder is pressed in a magnetic field, preferably at a field strength of 1.8 T, to obtain a pressed body, the density of which is 4.3 g/cm 3 .

33.プレス成形体を焼結炉に入れて焼結し、焼結温度は1000℃、保温時間は6hであり、焼結磁石を得る。焼結磁石の密度は7.56g/cmである。 33. The press-formed body is placed in a sintering furnace and sintered at a sintering temperature of 1000° C. and a heat retention time of 6 hours to obtain a sintered magnet. The density of the sintered magnet is 7.56 g/ cm3 .

34.焼結磁石の表面を酸洗いして油を除去し、次にスライス加工して30×17×5mmの基材C1を得る。 34. The surface of the sintered magnet is pickled to remove oil, and then sliced to obtain a base material C1 of 30 x 17 x 5 mm.

4.基材に対してスパッタリングする
スパッタリングはメッキ室内で行われ、ターゲット材が第一ターゲット材であり、基材C1が第一ターゲット材の下を通過して、基材の表面に第一めっき層を形成する。第一めっき層の厚さは8μmである。
4. Sputtering is performed on the base material Sputtering is performed in a plating chamber, the target material is the first target material, and the base material C1 passes under the first target material to form the first plating layer on the surface of the base material. Form. The thickness of the first plating layer is 8 μm.

5.スパッタリングされた後の基材C1に対して拡散処理を行い、このプロセスは800℃で18時間保温した後、焼戻し時効処理を500℃で4時間行い、希土類拡散磁石を得る。 5. A diffusion treatment is performed on the sputtered base material C1, and after this process is kept at 800° C. for 18 hours, a tempering aging treatment is performed at 500° C. for 4 hours to obtain a rare earth diffused magnet.

希土類拡散磁石の磁気性能試験および耐食性試験を実施する。本実施例の希土類拡散磁石の性能を表1に示す。 Conduct magnetic performance tests and corrosion resistance tests on rare earth diffused magnets. Table 1 shows the performance of the rare earth diffused magnet of this example.

表1における基材サンプル1は、めっき層のスパッタリングと拡散処理を行っていない基材C1のサンプルであり、2段階の焼き戻し時効熱処理を経た後に製造されたものである。その中で、焼き戻しプロセスは次のとおりである。一次焼き戻しプロセスは920℃で2時間の保温であり、二次焼戻しプロセスは500℃で4時間の保温である。 Base material sample 1 in Table 1 is a sample of base material C1 that has not undergone sputtering and diffusion treatment for the plating layer, and was manufactured after undergoing two-stage tempering and aging heat treatment. Among them, the tempering process is as follows: The primary tempering process is kept at 920°C for 2 hours, and the secondary tempering process is kept at 500°C for 4 hours.

耐食性試験の条件:サンプルをPCTエージングテストボックスに入れ、条件を2atm、120℃、100%RHに96時間設定し、耐食性試験を実施する。 Corrosion resistance test conditions: A sample is placed in a PCT aging test box, the conditions are set to 2 atm, 120°C, and 100% RH for 96 hours, and a corrosion resistance test is conducted.

減量率=(サンプルの初期重量-PCT実験後のサンプルの重量)/サンプルの表面積。 Weight loss rate=(initial weight of sample−weight of sample after PCT experiment)/surface area of sample.

(実施例1-2)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材はTb70Nd25Alであり、めっき層の厚さは8μmである。
(Example 1-2)
This example is basically the same as Example 1 except that the sputtering target material is different, but the sputtering target material is Tb 70 Nd 25 Al 5 , and the thickness of the plating layer is 8 μm.

(実施例1-3)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材の組成はTb70Nd25Gaであり、基材C1の表面でのそのスパッタリング厚さは8μmである。
(Example 1-3)
It is basically the same as Example 1 except that the sputtering target material is different, but the composition of the sputtering target material is Tb 70 Nd 25 Ga 5 , and its sputtering thickness on the surface of the base material C1 is 8 μm.

(実施例1-4)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材の組成はTb70Nd25Cuであり、基材C1の表面でのそのスパッタリング厚さは8μmである。
(Example 1-4)
It is basically the same as Example 1 except that the sputtering target material is different, but the composition of the sputtering target material is Tb 70 Nd 25 Cu 5 , and its sputtering thickness on the surface of the base material C1 is 8 μm.

(実施例1-5)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材の組成はTb70Nd25Agであり、基材C1の表面でのそのスパッタリング厚さは8μmである。
(Example 1-5)
It is basically the same as Example 1 except that the sputtering target material is different, but the composition of the sputtering target material is Tb 70 Nd 25 Ag 5 , and its sputtering thickness on the surface of the base material C1 is 8 μm.

(実施例1-6)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材の組成はTb70Nd22CeAlであり、基材C1の表面でのそのスパッタリング厚さは8μmである。
(Example 1-6)
It is basically the same as Example 1 except that the sputtering target material is different, but the composition of the sputtering target material is Tb 70 Nd 22 Ce 3 Al 5 , and its sputtering on the surface of the base material C1 The thickness is 8 μm.

(実施例1-7)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材の組成はTb70Nd22LaAlであり、基材C1の表面でのそのスパッタリング厚さは8μmである。
(Example 1-7)
It is basically the same as Example 1 except that the sputtering target material is different, but the composition of the sputtering target material is Tb 70 Nd 22 La 3 Al 5 , and its sputtering on the surface of the base material C1 The thickness is 8 μm.

(比較例1)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じである。スパッタリングのターゲット材は純金属Tbターゲットであり、Tbめっき層の厚さは8μmである。
(Comparative example 1)
This example is basically the same as Example 1 except that the sputtering target material is different. The sputtering target material was a pure metal Tb target, and the thickness of the Tb plating layer was 8 μm.

(比較例2)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材の組成はTb80Nd15Alであり、基材C1の表面でのそのスパッタリング厚さは8μmである。
(Comparative example 2)
It is basically the same as Example 1 except that the sputtering target material is different, but the composition of the sputtering target material is Tb 80 Nd 15 Al 5 , and its sputtering thickness on the surface of the base material C1 is 8 μm.

(比較例3)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例1と同じであるが、スパッタリングのターゲット材の組成はTb55Nd40Alであり、基材C1の表面でのそのスパッタリング厚さは8μmである。
(Comparative example 3)
It is basically the same as Example 1 except that the sputtering target material is different, but the composition of the sputtering target material is Tb 55 Nd 40 Al 5 , and its sputtering thickness on the surface of the base material C1 is 8 μm.

Figure 0007371108000001
Figure 0007371108000001

表1において「Br」とは残留磁気であり、「Hcj」とは固有保磁力であり、(BH)maxとは最大磁気エネルギー積であり、「Hk/Hcj」とは角型度である。 In Table 1, "Br" is residual magnetism, "Hcj" is intrinsic coercive force, (BH)max is maximum magnetic energy product, and "Hk/Hcj" is squareness.

比較からわかるように、実施例1-1から1-7、比較例1、比較例2、および比較例3で製造された希土類拡散磁石は、基材サンプル1と比較して、Hcjが大幅に増加され、Brがわずかに減少した。耐食性の試験結果によれば、実施例1-1から1-7の希土類拡散磁石の耐食性は、比較例1、比較例2、比較例3で作製した希土類拡散磁石の耐食性よりも高い。実施例1-1から実施例1-7の耐食性と、基材サンプル1の耐食性が近い。これからわかるように、実施例1-1から1-7の希土類拡散磁石には、スパッタリングおよび拡散処理が施されているものの、耐食性が低下していないのに対して、比較例1、2および3の希土類拡散磁石の耐食性は大幅に低下した。 As can be seen from the comparison, the rare earth diffused magnets manufactured in Examples 1-1 to 1-7, Comparative Example 1, Comparative Example 2, and Comparative Example 3 have significantly higher Hcj than base material sample 1. and Br decreased slightly. According to the corrosion resistance test results, the corrosion resistance of the rare earth diffused magnets of Examples 1-1 to 1-7 is higher than that of the rare earth diffused magnets produced in Comparative Example 1, Comparative Example 2, and Comparative Example 3. The corrosion resistance of Examples 1-1 to 1-7 is similar to that of base material sample 1. As can be seen, although the rare earth diffused magnets of Examples 1-1 to 1-7 were subjected to sputtering and diffusion treatment, their corrosion resistance did not deteriorate, whereas the rare earth diffused magnets of Comparative Examples 1, 2, and The corrosion resistance of rare earth diffused magnets was significantly reduced.

(実施例2)
基本的に実施例1のプロセスと同じであるが、次の点が異なる。
(Example 2)
The process is basically the same as that of Example 1, but differs in the following points.

この実施例の基材C2の組成はNd31Dy0.5Co1.2Cu0.16Al0.40.98Febalである。 The composition of the base material C2 of this example is Nd 31 Dy 0.5 Co 1.2 Cu 0.16 Al 0.4 B 0.98 Fe bal .

第一ターゲット材の組成はTb65Pr25Al10である。 The composition of the first target material is Tb 65 Pr 25 Al 10 .

スパッタリングされた第一めっき層の厚さは6μmである。 The thickness of the sputtered first plating layer is 6 μm.

スパッタリング後の拡散処理は、一次熱処理:1000℃で2時間の保温、二次熱処理:600℃で3時間の保温を含んだ。 The diffusion treatment after sputtering included primary heat treatment: keeping warm at 1000°C for 2 hours, and secondary heat treatment: keeping warm at 600°C for 3 hours.

実施例2の希土類拡散磁石の性能および耐食性試験の結果を表2に示す。 Table 2 shows the performance and corrosion resistance test results of the rare earth diffused magnet of Example 2.

表2における基材サンプル2は、めっき層のスパッタリングと拡散処理を行っていない基材C2のサンプルであり、2段階の焼き戻し時効熱処理を経た後に調製されたものである。この焼き戻しプロセスは次のとおりである。一次焼き戻しプロセスは1000℃で2時間の保温であり、二次焼戻しプロセスは600℃で3時間の保温である。 Base material sample 2 in Table 2 is a sample of base material C2 without sputtering and diffusion treatment of the plating layer, and was prepared after undergoing two-stage tempering and aging heat treatment. This tempering process is as follows. The primary tempering process is kept at 1000°C for 2 hours, and the secondary tempering process is kept at 600°C for 3 hours.

(実施例3)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例2と同じであるが、スパッタリングのターゲット材の組成はDy65Pr25Sn10であり、基材C2の表面でのそのスパッタリング厚さは6μmである。
(Example 3)
It is basically the same as Example 2 except that the sputtering target material is different, but the composition of the sputtering target material is Dy 65 Pr 25 Sn 10 , and its sputtering thickness on the surface of the base material C2 is 6 μm.

(実施例4)
スパッタリングのターゲット材が異なることを除いて、基本的に実施例2と同じであるが、スパッタリングのターゲット材の組成はDy35Tb25Pr25Cu15であり、基材C2の表面でのそのスパッタリング厚さは6μmである。
(Example 4)
It is basically the same as Example 2 except that the sputtering target material is different, but the composition of the sputtering target material is Dy 35 Tb 25 Pr 25 Cu 15 , and its sputtering on the surface of the base material C2 The thickness is 6 μm.

(実施例5)
スパッタリングのターゲット材が異なることを除いて、実施例2と基本的に同じであり、スパッタリングのターゲット材の組成はTb60HoPr22Al10であり、基材C2の表面でのそのスパッタリング厚さは6μmである。
(Example 5)
It is basically the same as Example 2 except that the sputtering target material is different, and the composition of the sputtering target material is Tb 60 Ho 8 Pr 22 Al 10 , and its sputtering thickness on the surface of the base material C2 is The diameter is 6 μm.

(実施例6)
スパッタリングのターゲット材が異なることを除いて、実施例2と基本的に同じであり、スパッタリンのグターゲット材の組成はTb66Pr20Co12であり、基材C2の表面でのそのスパッタリング厚さは6μmである。
(Example 6)
It is basically the same as Example 2 except that the sputtering target material is different, and the composition of the sputtering target material is Tb 66 Pr 20 Y 2 Co 12 . The sputtering thickness is 6 μm.

(実施例7)
スパッタリングのターゲット材が異なることを除いて、実施例2と基本的に同じであり、スパッタリングのターゲット材の組成はTb63Pr27Al10であり、基材C2の表面でのそのスパッタリング厚さは6μmである。
(Example 7)
It is basically the same as Example 2 except that the sputtering target material is different, and the composition of the sputtering target material is Tb 63 Pr 27 Al 10 , and its sputtering thickness on the surface of the base material C2 is It is 6 μm.

Figure 0007371108000002
Figure 0007371108000002

表2から、本発明の希土類拡散磁石は、基材と比較して耐食性がわずかに変化していたことが分かる。本発明のターゲット材でスパッタリングした後、作製された希土類拡散磁石の耐食性は大幅に改善されている。実際のニーズに応じて、第一めっき層の厚さを2μmに減らすことができる。 From Table 2, it can be seen that the corrosion resistance of the rare earth diffused magnet of the present invention was slightly changed compared to the base material. After sputtering with the target material of the present invention, the corrosion resistance of the prepared rare earth diffused magnet is significantly improved. According to actual needs, the thickness of the first plating layer can be reduced to 2 μm.

(実施例8~15)
基材C2を使用して、組成はNd31Dy0.5Co1.2Cu0.16Al0.40.98Febalである。
(Examples 8 to 15)
Using base material C2, the composition is Nd 31 Dy 0.5 Co 1.2 Cu 0.16 Al 0.4 B 0.98 Fe bal .

基材C2の製造プロセスは、実施例1と同様である。第一ターゲット材および第二ターゲット材の製造プロセスは、実施例1における第一ターゲット材の製造プロセスと同じである。 The manufacturing process for the base material C2 is the same as in Example 1. The manufacturing process of the first target material and the second target material is the same as the manufacturing process of the first target material in Example 1.

基材C2に対してスパッタリングする時に、まず、第一ターゲット材のスパッタリングが行われ、基材C2の表面に第一めっき層が形成され、次に第二ターゲット材がスパッタリングされ、第二めっき層が第一めっき層の表面に形成される。第一めっき層と第二めっき層の厚さを表3に示す載されている。 When sputtering the base material C2, first, a first target material is sputtered to form a first plating layer on the surface of the base material C2, and then a second target material is sputtered to form a second plating layer. is formed on the surface of the first plating layer. The thicknesses of the first plating layer and the second plating layer are shown in Table 3.

スパッタリングされた後の基材C2は拡散処理される。拡散処理は一次熱処理:920℃で6時間の保温、二次熱処理:450℃で8時間の保温を含んだ。 The base material C2 after being sputtered is subjected to a diffusion treatment. The diffusion treatment included a primary heat treatment: incubation at 920°C for 6 hours, and a secondary heat treatment: incubation at 450°C for 8 hours.

実施例8~15のめっき層の組成、磁気特性および耐食性の試験結果を表3に示す。 Table 3 shows the composition, magnetic properties, and corrosion resistance test results of the plating layers of Examples 8 to 15.

表3における基材サンプル3は、めっき層のスパッタリングと拡散処理を行っていない基材C2のサンプルであり、2段階の焼き戻し時効熱処理を経た後に製造されたものである。この焼き戻しプロセスは次のとおりである。一次焼き戻しプロセスは920℃で4時間の保温であり、二次焼戻しプロセスは450℃で8時間の保温である。 Base material sample 3 in Table 3 is a sample of base material C2 without sputtering and diffusion treatment of the plating layer, and was manufactured after undergoing two-stage tempering and aging heat treatment. This tempering process is as follows. The primary tempering process is kept at 920°C for 4 hours, and the secondary tempering process is kept at 450°C for 8 hours.

Figure 0007371108000003
Figure 0007371108000003

塩水噴霧試験:試験サンプルを塩水噴霧試験箱に入れて、連続噴霧環境での腐食を行った。噴霧溶液の液体は5%NaCl溶液であり、PH=7.1であり、温度25℃で、24時間ごとにサンプルに錆の斑点があるかどうかを観察する。 Salt spray test: The test sample was placed in a salt spray test box to undergo corrosion in a continuous spray environment. The liquid of the spray solution is a 5% NaCl solution, pH=7.1, and the temperature is 25° C. The samples are observed every 24 hours for rust spots.

高温高圧実験:試験サンプルを高温高圧実験ボックスに入れ、実験温度は120±3℃、蒸気圧は0.20MPa、実験は288時間を行った後にサンプルを取り出し、超音波洗浄を使用して腐食生成物を除去し、腐食前後の重量差を記録する。最後に、減量をサンプルの表面積で割って、基材の減量パラメーターとして単位表面積あたりの減量を計算する。 High-temperature and high-pressure experiment: put the test sample into a high-temperature and high-pressure experiment box, the experiment temperature is 120 ± 3 ° C, the vapor pressure is 0.20 MPa, the experiment is carried out for 288 hours, and then the sample is taken out and ultrasonic cleaning is used to investigate the corrosion generation. Remove the object and record the difference in weight before and after corrosion. Finally, the weight loss per unit surface area is calculated as the substrate weight loss parameter by dividing the weight loss by the surface area of the sample.

第一めっき層のみがスパッタリングされた希土類拡散磁石と比較して、第二めっき層がスパッタリングされた後、希土類拡散磁石の耐塩水噴霧試験の時間数が増加し、減量試験の減量率が低下し、その耐食性はさらに改善される。同時に、第二めっき層がスパッタリングされた磁石は、第一めっき層のみがスパッタリングされた磁石よりも、Hcjがわずかに向上した。 Compared with the rare earth diffused magnet in which only the first plating layer was sputtered, the time of the salt water spray resistance test of the rare earth diffused magnet increased after the second plating layer was sputtered, and the weight loss rate in the weight loss test decreased. , its corrosion resistance is further improved. At the same time, the magnet with the second plating layer sputtered had slightly improved Hcj than the magnet with only the first plating layer sputtered.

なお、添付の図面を参照して記載された上記の様々な実施例は、本発明を説明するためのものに過ぎず、本発明の範囲を限定するものではない。当業者は、本発明の思想および範囲から逸脱することなく、本発明に対してなされた修正または同等の置換が、すべて本発明の範囲内に含まれるべきであると理解すべきである。さらに、文脈で別段の指示がない限り、単数形で表示される単語には複数形が含まれ、その逆も同様である。さらに、特に明記しない限り、任意の実施例の全部または一部を、他の任意の実施例の全部または一部と組み合わせて使用することができる。 The various embodiments described above with reference to the accompanying drawings are merely for explaining the present invention, and do not limit the scope of the present invention. Those skilled in the art should understand that all modifications or equivalent substitutions made to the present invention without departing from the spirit and scope of the invention are to be included within the scope of the invention. Further, unless the context dictates otherwise, words appearing in the singular include the plural and vice versa. Further, unless otherwise specified, all or a portion of any embodiment may be used in combination with all or a portion of any other embodiment.

Claims (9)

ステップA.基材に第一ターゲット材をスパッタリングし、前記基材の表面に第一めっき層を形成し、前記第一ターゲット材の組成は、質量パーセントでRH-RL-Mであり、ただし、RHがDy、Tb、またはHoの1つ以上であり、RHはDyまたはTbの少なくとも1つを含み、RLはNd、Pr、Ce、La、およびYの1つ以上であり、RLはNdまたはPrの少なくとも1つを含み、MはCo、Cu、Ga、Ag、SnまたはAlの少なくとも1つの元素であり、yは25~28wt%であり、zは0~20wt%であり、xは(100-y-z)wt%であり、前記基材は焼結NdFeB磁石であるステップと、
ステップB.スパッタリングされた基材に対して拡散処理を行い、希土類拡散磁石を得るステップとを
含むことを特徴とする希土類拡散磁石の製造方法。
Step A. A first target material is sputtered onto a base material to form a first plating layer on the surface of the base material, and the composition of the first target material is RH x -RL y -M z in mass percent, provided that: RH is one or more of Dy, Tb, or Ho, RH includes at least one of Dy or Tb, RL is one or more of Nd, Pr, Ce, La, and Y, and RL is Nd or M is at least one element of Co, Cu, Ga, Ag, Sn or Al, y is 25 to 28 wt%, z is 0 to 20 wt%, and x is ( 100-y-z) wt%, and the substrate is a sintered NdFeB magnet;
Step B. A method for manufacturing a rare earth diffused magnet, comprising the step of performing a diffusion treatment on a sputtered base material to obtain a rare earth diffused magnet.
zが0~12wt%であることを特徴とする、請求項1に記載の希土類拡散磁石の製造方法。 The method for manufacturing a rare earth diffused magnet according to claim 1, wherein z is 0 to 12 wt%. 前記第一めっき層の厚さが2~20μmであることを特徴とする、請求項1に記載の希土類拡散磁石の製造方法。 The method for manufacturing a rare earth diffused magnet according to claim 1, wherein the first plating layer has a thickness of 2 to 20 μm. 前記ステップAにおいて、第一ターゲット材をスパッタリングした後、第二ターゲット材をスパッタリングして、前記第一めっき層に第二めっき層が形成され、前記第二ターゲット材の組成は、Cr、Ti、W、Mo、Si、AlまたはZrOの少なくとも1つであることを特徴とする、請求項1に記載の希土類拡散磁石の製造方法。 In step A, after sputtering a first target material, a second target material is sputtered to form a second plating layer on the first plating layer, and the second target material has a composition of Cr, Ti, The method for manufacturing a rare earth diffused magnet according to claim 1, characterized in that the magnet is at least one of W, Mo, Si, Al2O3 , or ZrO2 . 前記第二めっき層の厚さが0.1~6μmであることを特徴とする、請求項4に記載の希土類拡散磁石の製造方法。 5. The method for manufacturing a rare earth diffused magnet according to claim 4, wherein the second plating layer has a thickness of 0.1 to 6 μm. 前記ステップAの前に前記基材の製造をさらに含み、前記基材の製造は
原材料の溶解と急速な凝固により、合金フレークが作られること、
前記合金フレークに対して水素破砕およびジェットミル処理を行って、合金粉末を得ること、
前記合金粉末を磁場でプレスしてプレス成形体を得ること、
前記プレス成形体を焼結炉に入れて焼結し、焼結磁石を得ること、および
前記焼結磁石をスライス加工して、前記基材を得ることを含むことを特徴とする、請求項1に記載の希土類拡散磁石の製造方法。
Before said step A, the manufacturing of said substrate further comprises: producing alloy flakes by melting and rapid solidification of raw materials;
performing hydrogen crushing and jet milling on the alloy flakes to obtain alloy powder;
pressing the alloy powder in a magnetic field to obtain a press molded body;
Claim 1 characterized by comprising: placing the press molded body in a sintering furnace and sintering it to obtain a sintered magnet; and slicing the sintered magnet to obtain the base material. A method for manufacturing a rare earth diffused magnet described in .
前記合金フレークの厚さが0.15~0.5mmであることを特徴とする、請求項6に記載の希土類拡散磁石の製造方法。 The method for manufacturing a rare earth diffused magnet according to claim 6, wherein the thickness of the alloy flakes is 0.15 to 0.5 mm. 前記基材の厚さが1~10mmであることを特徴とする、請求項6に記載の希土類拡散磁石の製造方法。 The method for manufacturing a rare earth diffused magnet according to claim 6, wherein the thickness of the base material is 1 to 10 mm. 前記拡散処理が以下の一次熱処理及び二次熱処理を含むことを特徴とする、請求項1に記載の希土類拡散磁石の製造方法。
一次熱処理:800~1000℃で2~18時間の保温
二次熱処理:450~600℃で3~8時間の保温
The method for manufacturing a rare earth diffused magnet according to claim 1, wherein the diffusion treatment includes the following primary heat treatment and secondary heat treatment.
Primary heat treatment: Insulation at 800-1000℃ for 2-18 hours Secondary heat treatment: Insulation at 450-600℃ for 3-8 hours
JP2021545306A 2019-02-01 2019-02-01 Rare earth diffusion magnet manufacturing method and rare earth diffusion magnet Active JP7371108B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074467 WO2020155113A1 (en) 2019-02-01 2019-02-01 Preparation method for rare earth diffused magnet and rare earth diffused magnet

Publications (2)

Publication Number Publication Date
JP2022516380A JP2022516380A (en) 2022-02-25
JP7371108B2 true JP7371108B2 (en) 2023-10-30

Family

ID=71840777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021545306A Active JP7371108B2 (en) 2019-02-01 2019-02-01 Rare earth diffusion magnet manufacturing method and rare earth diffusion magnet

Country Status (3)

Country Link
JP (1) JP7371108B2 (en)
CN (1) CN111524670B (en)
WO (1) WO2020155113A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430800B (en) * 2020-10-23 2023-04-28 杭州永磁集团振泽磁业有限公司 Preparation method of neodymium iron boron material containing composite coating
CN112992521B (en) * 2021-03-09 2023-03-17 合肥工业大学 Preparation method of low-weight-loss sintered NdFeB magnet
CN113871123A (en) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 Low-cost rare earth magnet and manufacturing method thereof
CN113871121A (en) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 High-temperature-resistant magnet and manufacturing method thereof
CN113957405A (en) * 2021-11-25 2022-01-21 中国科学院宁波材料技术与工程研究所 Rare earth alloy target material for magnetron sputtering grain boundary diffusion and preparation method thereof
CN114783751A (en) * 2022-03-31 2022-07-22 山西师范大学 Grain boundary diffusion process of high-performance sintered neodymium-iron-boron magnet
CN115116734B (en) * 2022-07-21 2024-02-02 宁波松科磁材有限公司 Method for preparing high-performance neodymium-iron-boron permanent magnet material by improving grain boundary diffusion

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304038A (en) 2003-03-31 2004-10-28 Japan Science & Technology Agency Micro high-performance rare-earth magnet for micro product and its manufacturing method
JP2005294558A (en) 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
WO2006100968A1 (en) 2005-03-18 2006-09-28 Ulvac, Inc. Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet
WO2007102391A1 (en) 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
WO2008032667A1 (en) 2006-09-14 2008-03-20 Ulvac, Inc. Permanent magnet and process for producing the same
WO2011007758A1 (en) 2009-07-15 2011-01-20 日立金属株式会社 Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
JP2012039100A (en) 2010-07-14 2012-02-23 Toyota Motor Corp Permanent magnet and method for manufacturing the same
WO2013002170A1 (en) 2011-06-27 2013-01-03 日立金属株式会社 Rh diffusion source, and method for producing r-t-b-based sintered magnet using same
CN108417380A (en) 2018-05-21 2018-08-17 钢铁研究总院 A kind of low cost diffusion source alloy and grain boundary decision magnet and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087145B1 (en) * 2005-03-10 2006-08-08 Robert Choquette Sputtering cathode assembly
MY142024A (en) * 2005-03-23 2010-08-16 Shinetsu Chemical Co Rare earth permanent magnet
JP5057111B2 (en) * 2009-07-01 2012-10-24 信越化学工業株式会社 Rare earth magnet manufacturing method
AU2014281646A1 (en) * 2013-06-17 2016-02-11 Urban Mining Technology Company, Llc Magnet recycling to create Nd-Fe-B magnets with improved or restored magnetic performance
CN103451663B (en) * 2013-08-19 2015-09-02 南通保来利轴承有限公司 A kind of method of surface of rare earth permanent-magnetic process
CN105755441B (en) * 2016-04-20 2019-01-11 中国科学院宁波材料技术与工程研究所 A kind of method that magnetron sputtering method expands infiltration heavy rare earth raising coercivity of sintered ndfeb
CN106282948B (en) * 2016-07-28 2017-12-01 北京中科三环高技术股份有限公司 A kind of preparation method of film plating process and coating system and rare-earth magnet
CN109192495B (en) * 2018-11-07 2021-01-29 安徽大地熊新材料股份有限公司 Preparation method of regenerative sintered neodymium-iron-boron permanent magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304038A (en) 2003-03-31 2004-10-28 Japan Science & Technology Agency Micro high-performance rare-earth magnet for micro product and its manufacturing method
JP2005294558A (en) 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
WO2006100968A1 (en) 2005-03-18 2006-09-28 Ulvac, Inc. Method of film formation, film formation apparatus, permanent magnet, and process for producing permanent magnet
WO2007102391A1 (en) 2006-03-03 2007-09-13 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
WO2008032667A1 (en) 2006-09-14 2008-03-20 Ulvac, Inc. Permanent magnet and process for producing the same
WO2011007758A1 (en) 2009-07-15 2011-01-20 日立金属株式会社 Process for production of r-t-b based sintered magnets and r-t-b based sintered magnets
JP2012039100A (en) 2010-07-14 2012-02-23 Toyota Motor Corp Permanent magnet and method for manufacturing the same
WO2013002170A1 (en) 2011-06-27 2013-01-03 日立金属株式会社 Rh diffusion source, and method for producing r-t-b-based sintered magnet using same
CN108417380A (en) 2018-05-21 2018-08-17 钢铁研究总院 A kind of low cost diffusion source alloy and grain boundary decision magnet and preparation method thereof

Also Published As

Publication number Publication date
CN111524670B (en) 2022-04-12
WO2020155113A1 (en) 2020-08-06
CN111524670A (en) 2020-08-11
JP2022516380A (en) 2022-02-25

Similar Documents

Publication Publication Date Title
JP7371108B2 (en) Rare earth diffusion magnet manufacturing method and rare earth diffusion magnet
KR102572176B1 (en) R-T-B permanent magnet material and its manufacturing method and application
TWI464757B (en) Manufacture of rare earth magnets
CN104900359B (en) The method that composition target gaseous phase deposition prepares grain boundary decision rare earth permanent-magnetic material
JP7220300B2 (en) Rare earth permanent magnet material, raw material composition, manufacturing method, application, motor
JP2017535056A (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
Zhong et al. Microstructure, magnetic properties and diffusion mechanism of DyMg co-deposited sintered Nd-Fe-B magnets
WO2019169875A1 (en) High-coercivity neodymium iron boron magnet and preparation method therefor
JP7091562B2 (en) Rare earth magnets, rare earth sputtering magnets, rare earth diffuse magnets and their manufacturing methods
CN103903823A (en) Rare earth permanent magnetic material and preparation method thereof
JP7054761B2 (en) Plating equipment and plating method
WO2021249159A1 (en) Heavy rare earth alloy, neodymium-iron-boron permanent magnet material, raw material, and preparation method
US20220044853A1 (en) NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof
KR102287740B1 (en) Rare earth permanent magnet material and manufacturing method thereof
CN105321702A (en) Method for improving coercivity of sintered NdFeB magnet
JP7253071B2 (en) RTB Permanent Magnet Material, Manufacturing Method, and Application
US11923114B2 (en) NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof
CN106384637A (en) Method for improving boundary structure to prepare high-performance neodymium iron boron magnet
CN104575901A (en) Neodymium iron boron magnet added with terbium powder and preparation method thereof
CN105989983A (en) Permanent magnet
CN105810425A (en) Manufacturing method of intensively sintered NdFeB permanent magnet
CN108735494A (en) The preparation method of high-coercive force neodymium iron boron magnetic body
CN111180190A (en) Method for improving magnetic property of sintered neodymium-iron-boron magnet
CN110993311A (en) Method for preparing high-performance bulk neodymium-iron-boron magnet through grain boundary diffusion
CN111748783A (en) Multi-element heavy rare earth metal target for magnetic material coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7371108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150