JP7354690B2 - Imaging optical system, imaging device and mobile terminal - Google Patents

Imaging optical system, imaging device and mobile terminal Download PDF

Info

Publication number
JP7354690B2
JP7354690B2 JP2019156240A JP2019156240A JP7354690B2 JP 7354690 B2 JP7354690 B2 JP 7354690B2 JP 2019156240 A JP2019156240 A JP 2019156240A JP 2019156240 A JP2019156240 A JP 2019156240A JP 7354690 B2 JP7354690 B2 JP 7354690B2
Authority
JP
Japan
Prior art keywords
optical system
lens
imaging
imaging optical
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019156240A
Other languages
Japanese (ja)
Other versions
JP2021033180A (en
Inventor
永悟 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2019156240A priority Critical patent/JP7354690B2/en
Priority to CN202010884747.3A priority patent/CN112444946A/en
Publication of JP2021033180A publication Critical patent/JP2021033180A/en
Application granted granted Critical
Publication of JP7354690B2 publication Critical patent/JP7354690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

本発明は、撮像光学系、撮像装置及び携帯端末に関する。 The present invention relates to an imaging optical system, an imaging device, and a mobile terminal.

近年、スマートフォンなどの携帯端末に、比較的短い焦点距離の広角単焦点レンズと、比較的長い焦点距離の望遠単焦点レンズの2つ以上のレンズを備える複眼カメラが搭載されるようになってきた。この複眼カメラでは、電子ズームでその焦点距離の間をシームレスに繋げることで、あたかも光学ズームレンズのような撮影が可能となっている。 In recent years, mobile terminals such as smartphones have come to be equipped with compound-eye cameras that have two or more lenses: a wide-angle single-focal lens with a relatively short focal length and a telephoto single-focal lens with a relatively long focal length. . This compound eye camera uses electronic zoom to seamlessly connect the focal lengths, making it possible to take pictures just like an optical zoom lens.

このような複眼カメラの望遠単焦点レンズで課題となるのは、焦点距離が長いために光学全長が大きくなってしまうことである。
この点、特許文献1に記載の技術では、レンズ群の最も物体側にプリズムを配置して光路を90°折り曲げることで、携帯端末本体の厚みを薄くしている。また、特許文献2に記載の技術では、プリズムを用いた屈曲光学系において、合焦の際にレンズ群の一部を移動させている。
A problem with such a telephoto single focus lens for a compound eye camera is that the focal length is long, so the total optical length becomes large.
In this regard, in the technique described in Patent Document 1, a prism is arranged closest to the object side of the lens group and the optical path is bent by 90 degrees, thereby reducing the thickness of the mobile terminal body. Further, in the technique described in Patent Document 2, in a bending optical system using a prism, a part of the lens group is moved during focusing.

米国特許出願公開第2018/0180847号明細書US Patent Application Publication No. 2018/0180847 特許第4862433号公報Patent No. 4862433

ところで、望遠単焦点レンズでもう一つ課題となるのが、やはり焦点距離が長いために、被写体距離の変化や温度変化時の合焦の際のレンズ群の移動量が大きくなってしまうことである。レンズ群の移動量が大きくなると、移動させるアクチュエーターも大型化してしまい、結果として携帯端末の薄型化を阻害してしまう。
特許文献1に記載の技術では、光路を折り曲げることで薄型化を実現してはいるが、合焦の際のレンズ群の移動量については、低減はおろか言及すらもされていない。
また、特許文献2に記載の技術では、デジタルスチルカメラ等の用途を想定しているため、そもそも合焦時のレンズ群の移動量に大きな制約がない。したがって、この移動量を低減する必要性に乏しく、やはり移動量の低減が図られてはいない。
By the way, another problem with telephoto prime lenses is that, because the focal length is long, the amount of movement of the lens group when focusing when subject distance changes or temperature changes increases. be. When the amount of movement of the lens group becomes large, the actuator that moves the lens group also becomes large, and as a result, it becomes difficult to make the mobile terminal thinner.
In the technique described in Patent Document 1, the thickness is realized by bending the optical path, but the amount of movement of the lens group during focusing is not even mentioned, let alone reduced.
Furthermore, since the technique described in Patent Document 2 is intended for use in digital still cameras and the like, there are no major restrictions on the amount of movement of the lens group during focusing. Therefore, there is no need to reduce the amount of movement, and no attempt has been made to reduce the amount of movement.

本発明は、このような課題に鑑みてなされたものであり、合焦時のレンズ移動量が大きくなりがちな単焦点の撮像光学系において、移動するレンズ又はレンズ群の移動量を低減することを目的とする。 The present invention has been made in view of these problems, and is an object of the present invention to reduce the amount of movement of a moving lens or lens group in a single focus imaging optical system where the amount of lens movement during focusing tends to be large. With the goal.

上記目的を達成するために、本発明に係る撮像光学系は、
固体撮像素子の光電変換部に被写体像を結像させるための単焦点の撮像光学系であって、
物体側から順に、反射光学素子のみを有する第1光学系と、少なくとも2枚以上のレンズを有し、反射光学素子を有さない第2光学系と、を備え、
前記第1光学系内の前記反射光学素子によって、当該反射光学素子よりも物体側に位置する前記第1光学系の光軸と、前記第2光学系の光軸とが略90°折れ曲がっており、
前記反射光学素子は、屈折力を有しておらず、
合焦の際に、前記第2光学系のうち一部のレンズ又はレンズ群が当該第2光学系の光軸上を移動し、
以下の条件式を満足することを特徴とする。
2.50<f/2Y<8.50 ・・・(1)
0.50≦|fD/f|<1.70 ・・・(2)
0.30<fL21/f<1.00 ・・・(3)
ただし、
f:撮像光学系全系の焦点距離
2Y:固体撮像素子の撮像面対角線長
fD:合焦の際に移動するレンズ(群)の焦点距離
fL21:第2光学系のうち最も物体側に配置された正レンズの焦点距離
In order to achieve the above object, an imaging optical system according to the present invention includes:
A single focus imaging optical system for forming a subject image on a photoelectric conversion section of a solid-state imaging device,
In order from the object side, a first optical system having only a reflective optical element, and a second optical system having at least two or more lenses and having no reflective optical element ,
The optical axis of the first optical system located closer to the object than the reflective optical element and the optical axis of the second optical system are bent by approximately 90 degrees by the reflective optical element in the first optical system. ,
The reflective optical element does not have refractive power,
During focusing, some lenses or lens groups of the second optical system move on the optical axis of the second optical system,
It is characterized by satisfying the following conditional expression.
2.50<f/2Y<8.50...(1)
0.50≦|fD/f|<1.70...(2)
0.30<fL21/f<1.00...(3)
however,
f: Focal length of the entire imaging optical system 2Y: Diagonal length of the imaging surface of the solid-state imaging device fD: Focal length of the lens (group) that moves during focusing fL21: The lens located closest to the object side of the second optical system Focal length of positive lens

また、本発明に係る撮像装置は、上記撮像光学系を搭載することを特徴とする。
また、本発明に係る携帯端末は、上記撮像装置を搭載することを特徴とする。
Further, an imaging device according to the present invention is characterized in that it is equipped with the above imaging optical system.
Furthermore, a mobile terminal according to the present invention is characterized in that it is equipped with the above-mentioned imaging device.

本発明によれば、単焦点の撮像光学系において、移動するレンズ又はレンズ群の移動量を低減することができる。 According to the present invention, it is possible to reduce the amount of movement of a moving lens or lens group in a single focus imaging optical system.

本実施形態の撮像装置を備える携帯端末の断面図である。FIG. 1 is a cross-sectional view of a mobile terminal including an imaging device according to the present embodiment. 本実施形態の撮像装置の概略の制御構成を示すブロック図である。1 is a block diagram showing a schematic control configuration of an imaging device according to an embodiment. FIG. 実施例1の撮像光学系の(a)断面図であり、(b)収差図である。2A is a cross-sectional view of the imaging optical system of Example 1, and FIG. 3B is an aberration diagram. 実施例2の撮像光学系の(a)断面図であり、(b)収差図である。3A is a cross-sectional view of the imaging optical system of Example 2, and FIG. 3B is an aberration diagram. 実施例3の撮像光学系の(a)断面図であり、(b)収差図である。FIG. 6(a) is a cross-sectional view of the imaging optical system of Example 3, and FIG. 7(b) is an aberration diagram. 実施例4の撮像光学系の(a)断面図であり、(b)収差図である。FIG. 6(a) is a cross-sectional view of the imaging optical system of Example 4, and FIG. 7(b) is an aberration diagram. 実施例5の撮像光学系の(a)断面図であり、(b)収差図である。It is (a) sectional view of the imaging optical system of Example 5, and (b) is an aberration diagram.

以下、本発明の実施形態について、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態である撮像装置100を備える携帯端末300の断面図である。
この図に示すように、撮像装置100は、画像信号を形成するためのカメラモジュール30を備える。カメラモジュール30は、撮像光学系10とセンサー部50とを備える。
FIG. 1 is a cross-sectional view of a mobile terminal 300 including an imaging device 100 according to an embodiment of the present invention.
As shown in this figure, the imaging device 100 includes a camera module 30 for forming an image signal. The camera module 30 includes an imaging optical system 10 and a sensor section 50.

撮像光学系10は、撮像素子51の撮像面(被投影面)Iに被写体像を結像させるための単焦点の光学系であり、鏡筒41内に収容されている。撮像光学系10は、物体側から順に、第1光学系11と第2光学系12とを備える。
第1光学系11は、反射光学素子としてのプリズムPrを有する。第2光学系12は、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とを有する。第1光学系11の光軸Ax1と第2光学系12の光軸Ax2とは、第1光学系11内のプリズムPrにより、略90°折れ曲がっている。第1光学系11の光軸Ax1は携帯端末300の厚さ方向に沿っている。
撮像光学系10の構成の詳細については後述する。
The imaging optical system 10 is a single-focus optical system for forming a subject image on the imaging surface (projection surface) I of the imaging element 51, and is housed in the lens barrel 41. The imaging optical system 10 includes a first optical system 11 and a second optical system 12 in order from the object side.
The first optical system 11 includes a prism Pr as a reflective optical element. The second optical system 12 includes, in order from the object side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. The optical axis Ax1 of the first optical system 11 and the optical axis Ax2 of the second optical system 12 are bent by approximately 90 degrees by the prism Pr within the first optical system 11. The optical axis Ax1 of the first optical system 11 is along the thickness direction of the mobile terminal 300.
Details of the configuration of the imaging optical system 10 will be described later.

撮像光学系10を収容する鏡筒41は、物体側からの光を入射させる開口OPを有する。
また、鏡筒41には、第2光学系12を構成するレンズL1~L5のうちの一部のレンズ又はレンズ群を第2光学系12の光軸Ax2に沿って移動させる駆動機構42が設けられている。駆動機構42は、第2光学系12のうちの一部のレンズ又はレンズ群を光軸Ax2上で移動させることにより、撮像光学系10の合焦の動作を可能にする。駆動機構42は、例えばボイスコイルモーターとガイドとを備える。なお、駆動機構42はボイスコイルモーター等に代えてステッピングモーター等で構成してもよい。
The lens barrel 41 that houses the imaging optical system 10 has an opening OP through which light from the object side enters.
Further, the lens barrel 41 is provided with a drive mechanism 42 that moves some of the lenses L1 to L5 constituting the second optical system 12 or a lens group along the optical axis Ax2 of the second optical system 12. It is being The drive mechanism 42 enables the focusing operation of the imaging optical system 10 by moving some lenses or lens groups of the second optical system 12 on the optical axis Ax2. The drive mechanism 42 includes, for example, a voice coil motor and a guide. Note that the drive mechanism 42 may be configured with a stepping motor or the like instead of the voice coil motor or the like.

センサー部50は、撮像光学系10によって形成された被写体像を光電変換する撮像素子(固体撮像素子)51を備える。
撮像素子51は、例えばCMOS型のイメージセンサーである。撮像素子51は、光軸Ax2に対して位置決めされた状態で固定されている。この撮像素子51は、撮像面Iとしての光電変換部51aを有し、その周辺には、不図示の信号処理回路が形成されている。光電変換部51aには、画素つまり光電変換素子が2次元的に配置されている。なお、撮像素子51は、上述のCMOS型のイメージセンサーに限るものでなく、CCD等の他の撮像素子を組み込んだものであってもよい。
The sensor unit 50 includes an image sensor (solid-state image sensor) 51 that photoelectrically converts a subject image formed by the imaging optical system 10.
The image sensor 51 is, for example, a CMOS type image sensor. The image sensor 51 is fixed and positioned with respect to the optical axis Ax2. This image sensor 51 has a photoelectric conversion section 51a as an imaging surface I, and a signal processing circuit (not shown) is formed around the photoelectric conversion section 51a. Pixels, that is, photoelectric conversion elements are two-dimensionally arranged in the photoelectric conversion section 51a. Note that the image sensor 51 is not limited to the above-mentioned CMOS type image sensor, but may incorporate another image sensor such as a CCD.

なお、撮像光学系10とセンサー部50との間には、平行平板Fを配置してもよい。平行平板Fは、光学的ローパスフィルター、IRカットフィルター、撮像素子51のシールガラス等を想定した平行平板である。平行平板Fは、別体のフィルター部材として配置することもできるが、撮像光学系10を構成するいずれかのレンズ面にその機能を付与することもできる。例えば、赤外カットフィルターの場合、赤外カットコートを1枚又は複数枚のレンズの表面上に施してもよい。 Note that a parallel plate F may be arranged between the imaging optical system 10 and the sensor section 50. The parallel plate F is a parallel plate that is assumed to be used as an optical low-pass filter, an IR cut filter, a seal glass of the image sensor 51, or the like. The parallel plate F can be arranged as a separate filter member, but its function can also be given to any lens surface that constitutes the imaging optical system 10. For example, in the case of an infrared cut filter, an infrared cut coat may be applied on the surface of one or more lenses.

撮像装置100を搭載した携帯端末300は、例えばスマートフォンである。ただし、携帯端末300はスマートフォンに限定されず、携帯電話、PHS(Personal Handyphone System)、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等であってもよい。 The mobile terminal 300 equipped with the imaging device 100 is, for example, a smartphone. However, the mobile terminal 300 is not limited to a smartphone, and may be a mobile phone, a PHS (Personal Handyphone System), a PDA (Personal Digital Assistant), a tablet computer, a mobile computer, a digital still camera, a video camera, or the like.

図2は、撮像装置100の概略の制御構成を示すブロック図である。
この図に示すように、撮像装置100は、カメラモジュール30を動作させる処理部60を備える。
処理部60は、レンズ駆動部61と、素子駆動部62と、入力部63と、記憶部64と、画像処理部65と、表示部66と、制御部67とを備える。
FIG. 2 is a block diagram showing a schematic control configuration of the imaging device 100.
As shown in this figure, the imaging device 100 includes a processing section 60 that operates the camera module 30.
The processing section 60 includes a lens drive section 61 , an element drive section 62 , an input section 63 , a storage section 64 , an image processing section 65 , a display section 66 , and a control section 67 .

レンズ駆動部61は、駆動機構42を動作させ、第2光学系12の第1~第5レンズL1~L5のうちの一部のレンズ又はレンズ群を光軸Ax2に沿って移動させることにより、撮像光学系10の合焦等の動作を行わせる。
素子駆動部62は、制御部67から撮像素子51を駆動するための電圧やクロック信号の供給を受けて撮像素子51に付随する回路へ出力することによって、撮像素子51を動作させる。
入力部63は、ユーザーの操作又は外部装置からのコマンドを受け付ける部分である。
記憶部64は、撮像装置100の動作に必要な情報、カメラモジュール30によって取得した画像データ、画像処理に用いるレンズ補正データ等を保管する部分である。
画像処理部65は、撮像素子51から出力された画像信号に対して画像処理を行う。画像処理部65では、画像信号が例えば動画像に対応するものであるとしてこれを構成するコマ画像に対して加工を施す。画像処理部65は、色補正、階調補正、ズーミング等の通常の画像処理の他に、記憶部64から読み出されたレンズ補正データに基づいて画像信号に対して歪み補正処理を実行する。
表示部66は、ユーザーに提示すべき情報、撮影した画像等を表示する部分である。なお、表示部66は、入力部63の機能を兼用できる。
制御部67は、レンズ駆動部61、素子駆動部62、入力部63、記憶部64、画像処理部65、表示部66等の動作を統括的に制御し、例えばカメラモジュール30によって得た画像データに対して種々の画像処理を行う。
The lens driving unit 61 operates the driving mechanism 42 to move some lenses or lens groups among the first to fifth lenses L1 to L5 of the second optical system 12 along the optical axis Ax2. The imaging optical system 10 is caused to perform operations such as focusing.
The element driving section 62 operates the image sensor 51 by receiving voltage and clock signals for driving the image sensor 51 from the control section 67 and outputting them to a circuit associated with the image sensor 51.
The input unit 63 is a part that receives user operations or commands from an external device.
The storage unit 64 is a part that stores information necessary for the operation of the imaging device 100, image data acquired by the camera module 30, lens correction data used for image processing, and the like.
The image processing unit 65 performs image processing on the image signal output from the image sensor 51. The image processing section 65 processes the frame images constituting the image signal, assuming that the image signal corresponds to a moving image, for example. In addition to normal image processing such as color correction, gradation correction, and zooming, the image processing section 65 performs distortion correction processing on the image signal based on the lens correction data read out from the storage section 64.
The display section 66 is a section that displays information to be presented to the user, captured images, and the like. Note that the display section 66 can also serve as the function of the input section 63.
The control unit 67 centrally controls the operations of the lens drive unit 61, element drive unit 62, input unit 63, storage unit 64, image processing unit 65, display unit 66, etc., and controls image data obtained by the camera module 30, for example. Perform various image processing on the image.

以下、図1に戻り、撮像光学系10についてより詳細に説明する。
撮像光学系10のうち第1光学系11は、反射光学素子としてのプリズムPrを有する。この反射光学素子をミラーなどの反射部材ではなく、光路を媒質で埋められるプリズムPrとすることで、光路長を短くして携帯端末300の厚みを小さくすることができる。
Hereinafter, returning to FIG. 1, the imaging optical system 10 will be explained in more detail.
The first optical system 11 of the imaging optical system 10 includes a prism Pr as a reflective optical element. By using a prism Pr whose optical path is filled with a medium instead of a reflective member such as a mirror as the reflective optical element, the optical path length can be shortened and the thickness of the mobile terminal 300 can be reduced.

第2光学系12は、本実施形態では、物体側より順に、開口絞りSと、第1~第5レンズL1~L5とから実質的に構成される。ただし、第2光学系12は、少なくとも2枚以上のレンズを有するものであればよい。
第2光学系12のうち、合焦の際に移動する一部のレンズ又はレンズ群は、当該第2光学系12内の最も物体側の第1レンズL1を含むのが好ましい。これにより、第2光学系12のレンズ保持構造を移動レンズ用と固定レンズ用とに2分割するだけで足り、レンズバレル構造が複雑化することがない。また、レンズ保持構造の分割数が増えるごとに、その構造ごとの偏芯誤差に対する性能劣化が発生するので、この分割数を2つに抑えることで最終的な光学性能の劣化を抑制できる。
In this embodiment, the second optical system 12 is substantially composed of an aperture stop S and first to fifth lenses L1 to L5 in order from the object side. However, the second optical system 12 may have at least two or more lenses.
In the second optical system 12, some lenses or lens groups that move during focusing preferably include the first lens L1 closest to the object in the second optical system 12. Thereby, it is sufficient to divide the lens holding structure of the second optical system 12 into two parts, one for the movable lens and one for the fixed lens, and the lens barrel structure does not become complicated. Furthermore, as the number of divisions of the lens holding structure increases, performance deterioration occurs due to eccentricity errors for each structure, so by limiting the number of divisions to two, it is possible to suppress the final deterioration of optical performance.

また、第2光学系12内の第1~第5レンズL1~L5のうち、少なくとも1枚のレンズは、非円形形状に形成されるのが好ましい。第2光学系12内のレンズを円形とすると、携帯端末300の厚みが増大してしまう。そこで、第2光学系12内の第1~第5レンズL1~L5のうち、例えば外径の大きい少なくとも1枚のレンズを、非円形形状、例えば円形の上下を水平に切り取った所謂Iカットレンズとすることで、携帯端末300の厚さ方向にコンパクトに構成できる。なお、非円形形状はIカットに限定されず、一方向だけ切り取ったDカットその他の形状としてもよい。 Further, it is preferable that at least one lens among the first to fifth lenses L1 to L5 in the second optical system 12 is formed in a non-circular shape. If the lens in the second optical system 12 is circular, the thickness of the mobile terminal 300 will increase. Therefore, among the first to fifth lenses L1 to L5 in the second optical system 12, for example, at least one lens having a large outer diameter is formed into a non-circular shape, for example, a so-called I-cut lens in which the top and bottom of a circle are cut horizontally. By doing so, the mobile terminal 300 can be configured compactly in the thickness direction. Note that the non-circular shape is not limited to an I-cut, but may be a D-cut cut in only one direction or other shapes.

撮像光学系10は、以下の条件式(1)及び(2)を満足する。
2.50<f/2Y<8.50 ・・・(1)
0.50≦|fD/f|<1.70 ・・・(2)
ただし、fは撮像光学系10全系の焦点距離であり、2Yは撮像素子51の撮像面対角線長であり、fDは合焦の際に移動する第2光学系12の一部のレンズ又はレンズ群の焦点距離である。
The imaging optical system 10 satisfies the following conditional expressions (1) and (2).
2.50<f/2Y<8.50...(1)
0.50≦ |fD/f|<1.70...(2)
However, f is the focal length of the entire imaging optical system 10, 2Y is the diagonal length of the imaging surface of the imaging element 51, and fD is a part of the lens or lenses of the second optical system 12 that moves during focusing. is the focal length of the group.

撮像光学系10全系の焦点距離が条件式(1)を満足することで、複眼カメラの撮影倍率を大きくすることできる。
条件式(2)は、合焦の際の移動レンズの移動量を最適にするための条件式である。条件式(2)のfD/fの絶対値が上限を下回ることで移動レンズの移動量を小さくすることができ、駆動機構42(アクチュエーター)の負荷を減らすことができる。一方、条件式(2)のfD/fの絶対値が下限を上回ることで、移動レンズの移動量が過度に小さくなり過ぎず、合焦精度を保つことができる。
When the focal length of the entire imaging optical system 10 satisfies conditional expression (1), the imaging magnification of the compound eye camera can be increased.
Conditional expression (2) is a conditional expression for optimizing the amount of movement of the movable lens during focusing. When the absolute value of fD/f in conditional expression (2) is less than the upper limit, the amount of movement of the movable lens can be reduced, and the load on the drive mechanism 42 (actuator) can be reduced. On the other hand, when the absolute value of fD/f in conditional expression (2) exceeds the lower limit, the amount of movement of the movable lens does not become too small, and focusing accuracy can be maintained.

また、撮像光学系10は、上記条件式(1)及び(2)に加えて、以下の条件式(3)を満足する。
0.30<fL21/f<1.00 ・・・(3)
ただし、fL21は第2光学系12のうち最も物体側に配置された正レンズの焦点距離であり、fは撮像光学系10全系の焦点距離である。
Further, the imaging optical system 10 satisfies the following conditional expression (3) in addition to the above conditional expressions (1) and (2).
0.30<fL21/f<1.00...(3)
However, fL21 is the focal length of the positive lens disposed closest to the object side in the second optical system 12, and f is the focal length of the entire imaging optical system 10.

条件式(3)は、良好な収差補正と光学全長の短縮を適切に行うための条件式である。条件式(3)のfL21の値が上限を下回ることで、正のパワーを適度に持たせて、撮像光学系10の光学全長を短縮することができる。さらに、携帯端末300の薄型化に重要なレンズ有効径を小さくできる。一方、条件式(3)のfL21の値が下限を上回ることで、過度に正のパワーが強くなることを抑制し、正レンズで発生する収差を小さく抑えることができる。 Conditional expression (3) is a conditional expression for appropriately correcting aberrations and shortening the total optical length. When the value of fL21 in conditional expression (3) is less than the upper limit, it is possible to provide an appropriate amount of positive power and shorten the total optical length of the imaging optical system 10. Furthermore, the effective diameter of the lens, which is important for making the mobile terminal 300 thinner, can be reduced. On the other hand, when the value of fL21 in conditional expression (3) exceeds the lower limit, it is possible to suppress the positive power from becoming too strong and to suppress the aberrations generated in the positive lens.

以上のように、本実施形態の撮像光学系10によれば、物体側の第1光学系11内のプリズムPr(反射光学素子)によって、第1光学系11の光軸Ax1と第2光学系12の光軸Ax2を略90°折り曲げている。これにより、焦点距離が長く光学全長が大きくなりがちな望遠単焦点レンズ(光学系)であっても、搭載される携帯端末300の厚みを抑えることができる。
また、合焦の際に第2光学系12のうちの一部のレンズ又はレンズ群のみを移動させるようにすることで、全レンズを移動させる場合よりもその移動量を低減することができる。レンズの移動量が大きくなると、アクチュエーター(駆動機構42)の負荷が増大し、それだけ強力なアクチュエーターを搭載する必要が出てくる。強力なアクチュエーターは大型化してしまうので、結果として携帯端末300の厚みが増してしまう。また、移動量が大きいと、それだけ第1光学系11と第2光学系12のクリアランスを大きく確保する必要があり、その結果、第1光学系11内の反射光学素子の大きさが増大する。そのことによっても、携帯端末300の厚さ増大を招来してしまう。したがって、合焦の際のレンズの移動量を小さく抑えることにより、携帯端末300の厚さ増大を抑制することができる。
また、撮像光学系10全系の焦点距離が条件式(1)を満足することで、複眼カメラの撮影倍率を大きくすることができる。
また、条件式(2)を満足することで、合焦の際の移動レンズの移動量を最適にすることができる。
As described above, according to the imaging optical system 10 of the present embodiment, the prism Pr (reflective optical element) in the first optical system 11 on the object side allows the optical axis Ax1 of the first optical system 11 to 12 optical axes Ax2 are bent approximately 90 degrees. Thereby, even if the telephoto single focus lens (optical system) has a long focal length and tends to have a large optical total length, the thickness of the mobile terminal 300 mounted thereon can be suppressed.
Furthermore, by moving only some lenses or lens groups in the second optical system 12 during focusing, the amount of movement can be reduced compared to the case where all lenses are moved. As the amount of movement of the lens increases, the load on the actuator (drive mechanism 42) increases, making it necessary to mount a correspondingly more powerful actuator. Since a powerful actuator becomes large in size, the thickness of the mobile terminal 300 increases as a result. Further, if the amount of movement is large, it is necessary to ensure a large clearance between the first optical system 11 and the second optical system 12, and as a result, the size of the reflective optical element in the first optical system 11 increases. This also results in an increase in the thickness of the mobile terminal 300. Therefore, by keeping the amount of movement of the lens small during focusing, it is possible to suppress an increase in the thickness of the mobile terminal 300.
Further, by making the focal length of the entire imaging optical system 10 satisfy conditional expression (1), the imaging magnification of the compound-eye camera can be increased.
Furthermore, by satisfying conditional expression (2), the amount of movement of the movable lens during focusing can be optimized.

以上、本発明の一実施形態について説明したが、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the present invention has been described above, the embodiment to which the present invention is applicable is not limited to the embodiment described above, and can be modified as appropriate without departing from the spirit of the present invention.

以下、本発明の撮像光学系の実施例を示す。各実施例に使用する記号は下記の通りである。
f :撮像光学系全系の焦点距離
fB :バックフォーカス
F :Fナンバー
2Y :固体撮像素子の撮像面対角線長
R :曲率半径
D :軸上面間隔
Nd :レンズ材料のd線に対する屈折率
νd :レンズ材料のアッベ数
各実施例において、レンズ面データの各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。

Figure 0007354690000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数 Examples of the imaging optical system of the present invention will be shown below. The symbols used in each example are as follows.
f: Focal length of the entire imaging optical system fB: Back focus F: F number 2Y: Diagonal length of the imaging surface of the solid-state image sensor R: Radius of curvature D: Distance between axial surfaces Nd: Refractive index of the lens material for the d-line νd: Lens Abbe number of material In each example, the surface with "*" written after each surface number in the lens surface data is a surface having an aspherical shape, and the shape of the aspherical surface has the vertex of the surface as the origin, The X-axis is taken in the optical axis direction, and the height in the direction perpendicular to the optical axis is h, which is expressed by the following "Equation 1".
Figure 0007354690000001
however,
Ai: i-th order aspheric coefficient R: radius of curvature K: conic constant

(実施例1)
実施例1の撮像光学系の全体諸元を以下に示す。
f=23.37mm
fB=1.58mm
F=3.5
2Y=5mm
(Example 1)
The overall specifications of the imaging optical system of Example 1 are shown below.
f=23.37mm
fB=1.58mm
F=3.5
2Y=5mm

実施例1のレンズ面のデータを以下の表1に示す。

Figure 0007354690000002
The data of the lens surface of Example 1 is shown in Table 1 below.
Figure 0007354690000002

実施例1のレンズ面の非球面係数を以下の表2に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)をE(たとえば2.5E-02)を用いて表すものとする。

Figure 0007354690000003
The aspheric coefficients of the lens surfaces of Example 1 are shown in Table 2 below. Note that hereinafter (including the lens data in the table), a power of 10 (for example, 2.5×10-02) will be expressed using E (for example, 2.5E-02).
Figure 0007354690000003

実施例1の単レンズデータを以下の表3に示す。

Figure 0007354690000004
Single lens data for Example 1 is shown in Table 3 below.
Figure 0007354690000004

実施例1の合焦時の面間隔データを以下の表4に示す。なお、表中の「可変A」及び「可変B」は、上記表1における軸上面間隔Dの該当欄の数値に対応する。

Figure 0007354690000005
Table 4 below shows the interplanar distance data during focusing in Example 1. Note that "Variable A" and "Variable B" in the table correspond to the numerical values in the corresponding column of the shaft top surface distance D in Table 1 above.
Figure 0007354690000005

実施例1の撮像光学系における条件式(1)~(3)の各数値を以下に示す。
条件式(1):f/2Y=4.67
条件式(2):|fD/f|=0.53
条件式(3):fL21/f=0.42
The respective numerical values of conditional expressions (1) to (3) in the imaging optical system of Example 1 are shown below.
Conditional expression (1): f/2Y=4.67
Conditional expression (2): |fD/f|=0.53
Conditional expression (3): fL21/f=0.42

図3(a)は実施例1の撮像光学系の断面図であり、図3(b)は実施例1の縦収差図(球面収差、非点収差、歪曲収差)である。
実施例1の撮像光学系では、合焦に際して第2光学系内のレンズL1~L3が一体で移動する。例えば、本実施例の光学系において、物体距離無限遠の被写体に合焦されている状態から、物体距離1.2mの被写体に合焦する際、レンズL1~L5全体が移動する場合の移動量は約0.45mmである。これに対し、レンズL1~L3のみを移動させる場合には、表4に示すように、その移動量を約0.13mmと大幅に小さくすることができる。これにより、移動用のアクチュエーターの負荷を大幅に減らし、アクチュエーターの小型化等を図ることができる。
3(a) is a cross-sectional view of the imaging optical system of Example 1, and FIG. 3(b) is a longitudinal aberration diagram (spherical aberration, astigmatism, distortion aberration) of Example 1.
In the imaging optical system of Example 1, the lenses L1 to L3 in the second optical system move together when focusing. For example, in the optical system of this embodiment, when focusing on a subject with an object distance of 1.2 m from a state where the subject is focused on an object distance of infinity, the amount of movement when the entire lenses L1 to L5 move is approximately 0.45 mm. On the other hand, when only the lenses L1 to L3 are moved, as shown in Table 4, the amount of movement can be significantly reduced to about 0.13 mm. As a result, the load on the moving actuator can be significantly reduced, and the actuator can be made smaller.

(実施例2)
実施例2の撮像光学系の全体諸元を以下に示す。
f=23.36mm
fB=1.79mm
F=3.7
2Y=5mm
(Example 2)
The overall specifications of the imaging optical system of Example 2 are shown below.
f=23.36mm
fB=1.79mm
F=3.7
2Y=5mm

実施例2のレンズ面のデータを以下の表5に示す。

Figure 0007354690000006
The lens surface data of Example 2 is shown in Table 5 below.
Figure 0007354690000006

実施例2のレンズ面の非球面係数を以下の表6に示す。

Figure 0007354690000007
The aspheric coefficients of the lens surfaces of Example 2 are shown in Table 6 below.
Figure 0007354690000007

実施例2の単レンズデータを以下の表7に示す。

Figure 0007354690000008
Single lens data for Example 2 is shown in Table 7 below.
Figure 0007354690000008

実施例2の合焦時の面間隔データを以下の表8に示す。なお、表中の「可変A」及び「可変B」は、上記表5における軸上面間隔Dの該当欄の数値に対応する。

Figure 0007354690000009
Table 8 below shows the interplanar distance data during focusing in Example 2. Note that "Variable A" and "Variable B" in the table correspond to the numerical values in the corresponding column of the shaft top surface distance D in Table 5 above.
Figure 0007354690000009

実施例2の撮像光学系における条件式(1)~(3)の各数値を以下に示す。
条件式(1):f/2Y=4.67
条件式(2):|fD/f|=0.54
条件式(3):fL21/f=0.44
The respective numerical values of conditional expressions (1) to (3) in the imaging optical system of Example 2 are shown below.
Conditional expression (1): f/2Y=4.67
Conditional expression (2): |fD/f|=0.54
Conditional expression (3): fL21/f=0.44

図4(a)は実施例2の撮像光学系の断面図であり、図4(b)は実施例2の縦収差図(球面収差、非点収差、歪曲収差)である。
実施例2の撮像光学系では、合焦に際して第2光学系内のレンズL1~L3が一体で移動する。
FIG. 4(a) is a cross-sectional view of the imaging optical system of Example 2, and FIG. 4(b) is a longitudinal aberration diagram (spherical aberration, astigmatism, distortion aberration) of Example 2.
In the imaging optical system of Example 2, the lenses L1 to L3 in the second optical system move together when focusing.

(実施例3)
実施例3の撮像光学系の全体諸元を以下に示す。
f=20.01mm
fB=4.7mm
F=3.5
2Y=5mm
(Example 3)
The overall specifications of the imaging optical system of Example 3 are shown below.
f=20.01mm
fB=4.7mm
F=3.5
2Y=5mm

実施例3のレンズ面のデータを以下の表9に示す。

Figure 0007354690000010
The lens surface data of Example 3 is shown in Table 9 below.
Figure 0007354690000010

実施例3のレンズ面の非球面係数を以下の表10に示す。

Figure 0007354690000011
The aspheric coefficients of the lens surfaces of Example 3 are shown in Table 10 below.
Figure 0007354690000011

実施例3の単レンズデータを以下の表11に示す。

Figure 0007354690000012
Single lens data for Example 3 is shown in Table 11 below.
Figure 0007354690000012

実施例3の合焦時の面間隔データを以下の表12に示す。なお、表中の「可変A」及び「可変B」は、上記表9における軸上面間隔Dの該当欄の数値に対応する。

Figure 0007354690000013
Table 12 below shows the interplanar distance data during focusing in Example 3. Note that "Variable A" and "Variable B" in the table correspond to the numerical values in the corresponding column of the shaft top surface distance D in Table 9 above.
Figure 0007354690000013

実施例3の撮像光学系における条件式(1)~(3)の各数値を以下に示す。
条件式(1):f/2Y=4.00
条件式(2):|fD/f|=0.50
条件式(3):fL21/f=0.46
The numerical values of conditional expressions (1) to (3) in the imaging optical system of Example 3 are shown below.
Conditional expression (1): f/2Y=4.00
Conditional expression (2): |fD/f|=0.50
Conditional expression (3): fL21/f=0.46

図5(a)は実施例3の撮像光学系の断面図であり、図5(b)は実施例3の縦収差図(球面収差、非点収差、歪曲収差)である。
実施例3の撮像光学系では、合焦に際して第2光学系内のレンズL1、L2が一体で移動する。
5(a) is a cross-sectional view of the imaging optical system of Example 3, and FIG. 5(b) is a longitudinal aberration diagram (spherical aberration, astigmatism, distortion aberration) of Example 3.
In the imaging optical system of Example 3, lenses L1 and L2 in the second optical system move together when focusing.

(実施例4)
実施例4の撮像光学系の全体諸元を以下に示す。
f=23.37mm
fB=0.11mm
F=3.5
2Y=5mm
(Example 4)
The overall specifications of the imaging optical system of Example 4 are shown below.
f=23.37mm
fB=0.11mm
F=3.5
2Y=5mm

実施例4のレンズ面のデータを以下の表13に示す。

Figure 0007354690000014
The lens surface data of Example 4 is shown in Table 13 below.
Figure 0007354690000014

実施例4のレンズ面の非球面係数を以下の表14に示す。

Figure 0007354690000015
The aspherical coefficients of the lens surfaces of Example 4 are shown in Table 14 below.
Figure 0007354690000015

実施例4の単レンズデータを以下の表15に示す。

Figure 0007354690000016
Single lens data for Example 4 is shown in Table 15 below.
Figure 0007354690000016

実施例4の合焦時の面間隔データを以下の表16に示す。なお、表中の「可変A」及び「可変B」は、上記表13における軸上面間隔Dの該当欄の数値に対応する。

Figure 0007354690000017
Table 16 below shows the interplanar distance data during focusing in Example 4. Note that "Variable A" and "Variable B" in the table correspond to the numerical values in the corresponding column of the shaft top surface distance D in Table 13 above.
Figure 0007354690000017

実施例4の撮像光学系における条件式(1)~(3)の各数値を以下に示す。
条件式(1):f/2Y=4.67
条件式(2):|fD/f|=1.45
条件式(3):fL21/f=0.76
The numerical values of conditional expressions (1) to (3) in the imaging optical system of Example 4 are shown below.
Conditional expression (1): f/2Y=4.67
Conditional expression (2): |fD/f|=1.45
Conditional expression (3): fL21/f=0.76

図6(a)は実施例4の撮像光学系の断面図であり、図6(b)は実施例4の縦収差図(球面収差、非点収差、歪曲収差)である。
実施例4の撮像光学系では、合焦に際して第2光学系内のレンズL1~L3が一体で移動する。
FIG. 6(a) is a cross-sectional view of the imaging optical system of Example 4, and FIG. 6(b) is a longitudinal aberration diagram (spherical aberration, astigmatism, distortion aberration) of Example 4.
In the imaging optical system of Example 4, the lenses L1 to L3 in the second optical system move together when focusing.

(実施例5)
実施例5の撮像光学系の全体諸元を以下に示す。
f=25.8mm
fB=1.22mm
F=3.37
2Y=5mm
(Example 5)
The overall specifications of the imaging optical system of Example 5 are shown below.
f=25.8mm
fB=1.22mm
F=3.37
2Y=5mm

実施例5のレンズ面のデータを以下の表17に示す。

Figure 0007354690000018
The lens surface data of Example 5 is shown in Table 17 below.
Figure 0007354690000018

実施例5のレンズ面の非球面係数を以下の表18に示す。

Figure 0007354690000019
The aspheric coefficients of the lens surfaces of Example 5 are shown in Table 18 below.
Figure 0007354690000019

実施例5の単レンズデータを以下の表19に示す。

Figure 0007354690000020
Single lens data for Example 5 is shown in Table 19 below.
Figure 0007354690000020

実施例5の合焦時の面間隔データを以下の表20に示す。なお、表中の「可変A」及び「可変B」は、上記表17における軸上面間隔Dの該当欄の数値に対応する。

Figure 0007354690000021
Table 20 below shows the interplanar distance data during focusing in Example 5. Note that "Variable A" and "Variable B" in the table correspond to the values in the corresponding column of the shaft top surface distance D in Table 17 above.
Figure 0007354690000021

実施例5の撮像光学系における条件式(1)~(3)の各数値を以下に示す。
条件式(1):f/2Y=5.16
条件式(2):|fD/f|=0.32
条件式(3):fL21/f=0.41
The respective numerical values of conditional expressions (1) to (3) in the imaging optical system of Example 5 are shown below.
Conditional expression (1): f/2Y=5.16
Conditional expression (2): |fD/f|=0.32
Conditional expression (3): fL21/f=0.41

図7(a)は実施例5の撮像光学系の断面図であり、図7(b)は実施例5の縦収差図(球面収差、非点収差、歪曲収差)である。
実施例5の撮像光学系では、合焦に際して第2光学系内のレンズL5のみが移動する。
FIG. 7(a) is a cross-sectional view of the imaging optical system of Example 5, and FIG. 7(b) is a longitudinal aberration diagram (spherical aberration, astigmatism, distortion aberration) of Example 5.
In the imaging optical system of Example 5, only the lens L5 in the second optical system moves during focusing.

10 撮像光学系
11 第1光学系
12 第2光学系
42 駆動機構
51 撮像素子
100 撮像装置
300 携帯端末
Ax1 (第1光学系の)光軸
Ax2 (第2光学系の)光軸
I 撮像面
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
Pr プリズム(反射光学素子)
10 Imaging optical system 11 First optical system 12 Second optical system 42 Drive mechanism 51 Image sensor 100 Imaging device 300 Mobile terminal Ax1 Optical axis Ax2 (of the first optical system) Optical axis I (of the second optical system) Imaging surface L1 First lens L2 Second lens L3 Third lens L4 Fourth lens L5 Fifth lens Pr Prism (reflective optical element)

Claims (6)

固体撮像素子の光電変換部に被写体像を結像させるための単焦点の撮像光学系であって、
物体側から順に、反射光学素子のみを有する第1光学系と、少なくとも2枚以上のレンズを有し、反射光学素子を有さない第2光学系と、を備え、
前記第1光学系内の前記反射光学素子によって、当該反射光学素子よりも物体側に位置する前記第1光学系の光軸と、前記第2光学系の光軸とが略90°折れ曲がっており、
前記反射光学素子は、屈折力を有しておらず、
合焦の際に、前記第2光学系のうち一部のレンズ又はレンズ群が当該第2光学系の光軸上を移動し、
以下の条件式を満足することを特徴とする撮像光学系。
2.50<f/2Y<8.50 ・・・(1)
0.50≦|fD/f|<1.70 ・・・(2)
0.30<fL21/f<1.00 ・・・(3)
ただし、
f:撮像光学系全系の焦点距離
2Y:固体撮像素子の撮像面対角線長
fD:合焦の際に移動するレンズ(群)の焦点距離
fL21:第2光学系のうち最も物体側に配置された正レンズの焦点距離
A single focus imaging optical system for forming a subject image on a photoelectric conversion section of a solid-state imaging device,
In order from the object side, a first optical system having only a reflective optical element, and a second optical system having at least two or more lenses and having no reflective optical element ,
The optical axis of the first optical system located closer to the object than the reflective optical element and the optical axis of the second optical system are bent by approximately 90 degrees by the reflective optical element in the first optical system. ,
The reflective optical element does not have refractive power,
During focusing, some lenses or lens groups of the second optical system move on the optical axis of the second optical system,
An imaging optical system characterized by satisfying the following conditional expression.
2.50<f/2Y<8.50...(1)
0.50≦|fD/f|<1.70...(2)
0.30<fL21/f<1.00...(3)
however,
f: Focal length of the entire imaging optical system 2Y: Diagonal length of the imaging surface of the solid-state imaging device fD: Focal length of the lens (group) that moves during focusing fL21: The lens located closest to the object side of the second optical system Focal length of positive lens
前記第2光学系のうち、合焦の際に移動する前記一部のレンズ又はレンズ群は、当該第2光学系内の最も物体側のレンズを含むことを特徴とする請求項1に記載の撮像光学系。 2. The lens or lens group of the second optical system that moves during focusing includes a lens closest to the object in the second optical system. Imaging optical system. 前記第1光学系内の前記反射光学素子がプリズムであることを特徴とする請求項1又は2に記載の撮像光学系。 3. The imaging optical system according to claim 1, wherein the reflective optical element in the first optical system is a prism. 前記第2光学系内のレンズのうち、少なくとも1枚のレンズが非円形形状であることを特徴とする請求項1~3のいずれか1項に記載の撮像光学系。 The imaging optical system according to claim 1, wherein at least one lens among the lenses in the second optical system has a non-circular shape. 請求項1~4のいずれか1項に記載の撮像光学系を搭載する撮像装置。 An imaging device equipped with the imaging optical system according to claim 1. 請求項5に記載の撮像装置を搭載する携帯端末。 A mobile terminal equipped with the imaging device according to claim 5.
JP2019156240A 2019-08-29 2019-08-29 Imaging optical system, imaging device and mobile terminal Active JP7354690B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019156240A JP7354690B2 (en) 2019-08-29 2019-08-29 Imaging optical system, imaging device and mobile terminal
CN202010884747.3A CN112444946A (en) 2019-08-29 2020-08-28 Imaging optical system, imaging device, and mobile terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019156240A JP7354690B2 (en) 2019-08-29 2019-08-29 Imaging optical system, imaging device and mobile terminal

Publications (2)

Publication Number Publication Date
JP2021033180A JP2021033180A (en) 2021-03-01
JP7354690B2 true JP7354690B2 (en) 2023-10-03

Family

ID=74675755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019156240A Active JP7354690B2 (en) 2019-08-29 2019-08-29 Imaging optical system, imaging device and mobile terminal

Country Status (2)

Country Link
JP (1) JP7354690B2 (en)
CN (1) CN112444946A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988945B2 (en) 2021-06-02 2024-05-21 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
KR20220168423A (en) * 2021-06-16 2022-12-23 삼성전기주식회사 Optical imaging system
JP7254864B2 (en) 2021-09-03 2023-04-10 シャープセンシングテクノロジー株式会社 Optical system and camera module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128065A (en) 2003-10-21 2005-05-19 Sony Corp Zoom lens and imaging apparatus
JP2007033819A (en) 2005-07-26 2007-02-08 Konica Minolta Opto Inc Imaging optical system, imaging lens device, and digital equipment
JP2008197659A (en) 2007-02-14 2008-08-28 Samsung Electro Mech Co Ltd Refraction type small zoom lens optical system
JP2010032936A (en) 2008-07-31 2010-02-12 Optical Logic Inc Zoom lens
JP2010169848A (en) 2009-01-22 2010-08-05 Optical Logic Inc Zoom lens
WO2010103948A1 (en) 2009-03-10 2010-09-16 コニカミノルタオプト株式会社 Image-capturing optical system, image-capturing optical device, and digital equipment
JP2017219648A (en) 2016-06-07 2017-12-14 キヤノン株式会社 Imaging optical system
US20180017767A1 (en) 2016-07-14 2018-01-18 Largan Precision Co., Ltd. Optical photographing assembly, image capturing apparatus and electronic device
US20180180847A1 (en) 2016-12-28 2018-06-28 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US20190086638A1 (en) 2017-09-20 2019-03-21 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus having the same
JP2019101381A (en) 2017-12-08 2019-06-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823630B2 (en) * 2005-09-28 2011-11-24 富士フイルム株式会社 Zoom lens
KR20160000759A (en) * 2014-06-25 2016-01-05 삼성전자주식회사 Slim telephoto lens system
CN109031617B (en) * 2014-12-30 2021-01-29 大立光电股份有限公司 Image pickup optical lens group and image capturing device
CN206440880U (en) * 2015-12-25 2017-08-25 康达智株式会社 Pick-up lens

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128065A (en) 2003-10-21 2005-05-19 Sony Corp Zoom lens and imaging apparatus
JP2007033819A (en) 2005-07-26 2007-02-08 Konica Minolta Opto Inc Imaging optical system, imaging lens device, and digital equipment
JP2008197659A (en) 2007-02-14 2008-08-28 Samsung Electro Mech Co Ltd Refraction type small zoom lens optical system
JP2010032936A (en) 2008-07-31 2010-02-12 Optical Logic Inc Zoom lens
JP2010169848A (en) 2009-01-22 2010-08-05 Optical Logic Inc Zoom lens
WO2010103948A1 (en) 2009-03-10 2010-09-16 コニカミノルタオプト株式会社 Image-capturing optical system, image-capturing optical device, and digital equipment
JP2017219648A (en) 2016-06-07 2017-12-14 キヤノン株式会社 Imaging optical system
US20180017767A1 (en) 2016-07-14 2018-01-18 Largan Precision Co., Ltd. Optical photographing assembly, image capturing apparatus and electronic device
US20180180847A1 (en) 2016-12-28 2018-06-28 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US20190086638A1 (en) 2017-09-20 2019-03-21 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus having the same
JP2019101381A (en) 2017-12-08 2019-06-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
CN112444946A (en) 2021-03-05
JP2021033180A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP5321670B2 (en) Variable magnification optical system and digital equipment
JP4840719B2 (en) Zoom lens and imaging device
JP5083219B2 (en) Variable-magnification optical system, imaging device, and digital device
JP6836142B2 (en) Imaging optical system and imaging device
US9325907B2 (en) Zoom lens and camera
US7746562B2 (en) Zoom lens and image pickup apparatus using the same
JP6742149B2 (en) Variable magnification optical system and imaging device
KR102052126B1 (en) Zoom lens and photographing lens having the same
KR101499556B1 (en) Zoom lens and imaging optical device having the same
JPWO2008075566A1 (en) Variable-magnification optical system, imaging device, and digital device
JP7354690B2 (en) Imaging optical system, imaging device and mobile terminal
JPWO2008072466A1 (en) Variable-magnification optical system, imaging device, and digital device
US8873157B2 (en) Inner-focus zoom lens system
JP2007121459A (en) Variable magnification optical system, imaging lens device and digital apparatus
JP2006078979A (en) Zoom lens, camera, and personal digital terminal unit
JP2014095841A (en) Imaging optical system, camera device, and mobile information terminal device
JP2006163075A (en) Variable power optical system, imaging lens device, and digital equipment
JP4569155B2 (en) Magnification optical system, imaging lens device, and digital device
JP2006154481A (en) Variable power optical system, imaging lens device and digital equipment
JP2011059495A (en) Zoom lens and imaging device
JP2006119319A (en) Variable power optical system, imaging lens device and digital equipment
US9547161B2 (en) Single focal length lens system and image pickup apparatus using the same
CN107402438B (en) Variable magnification optical system and imaging device
CN112882192A (en) Imaging optical system, imaging device, and mobile terminal
JP6657009B2 (en) Variable power optical system and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7354690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150