JP7350466B2 - Polyester stretched container - Google Patents

Polyester stretched container Download PDF

Info

Publication number
JP7350466B2
JP7350466B2 JP2017238249A JP2017238249A JP7350466B2 JP 7350466 B2 JP7350466 B2 JP 7350466B2 JP 2017238249 A JP2017238249 A JP 2017238249A JP 2017238249 A JP2017238249 A JP 2017238249A JP 7350466 B2 JP7350466 B2 JP 7350466B2
Authority
JP
Japan
Prior art keywords
silicate
polyester
container
refractive index
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017238249A
Other languages
Japanese (ja)
Other versions
JP2019104524A (en
Inventor
啓介 増子
健 西中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017238249A priority Critical patent/JP7350466B2/en
Publication of JP2019104524A publication Critical patent/JP2019104524A/en
Priority to JP2023112968A priority patent/JP2023126336A/en
Application granted granted Critical
Publication of JP7350466B2 publication Critical patent/JP7350466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はポリエステル系延伸容器用樹脂組成物に関する。 The present invention relates to a polyester-based resin composition for stretched containers.

近年、プラスチック製容器は軽量性、価格、着色性、生産性の観点からガラス代替として、広く普及している。その中でも、ポリエステル系の延伸ブロー容器は、透明性、表面光沢に優れ、かつ、ガスバリア性が高く、保香性にも優れているといった特徴を持つ。そのため、化粧品をはじめ、食品、医療、ヘルスケア等、多くの分野で使用されており、使用量は拡大している。しかし、重厚感を持つガラス風貌や、リサイクル、リターナブル容器として、ガラス容器に対する需要も減少することなく、一定量、市場から求められており、プラスチック容器を用いて、ガラス外観と、これらガラス容器の有するリサイクル、リターナブル性とを満たすことが求められている。 In recent years, plastic containers have become widely used as a substitute for glass due to their light weight, cost, colorability, and productivity. Among them, polyester-based stretch-blown containers are characterized by excellent transparency and surface gloss, as well as high gas barrier properties and excellent fragrance retention. Therefore, it is used in many fields such as cosmetics, food, medicine, and health care, and its usage is increasing. However, the demand for glass containers has not decreased, and a certain amount is required in the market due to the solid appearance of glass and as recyclable and returnable containers. There is a need for recycling and returnability to be met.

プラスチック製容器でスリガラス外観を得るためには、一般的に、プラスチック製容器または、成形金型に表面加工を施す方法が用いられている。例えば特許文献1には金型表面をサンドブラスト、ショットブラスト等で粗面化処理することで、延伸ブロー成形時にフロスト調のガラス製ボトルのような風合いが得られるとの開示がある。また、特許文献2には、容器ラベルにシリカ粒子を含むコーティング層を設けることで、プラスチックの光沢を無くし、マット感を付与する技術が開示されている。特許文献3には透明性合成樹脂の層と、透明性合成樹脂母材中に透明樹脂の粉粒体を分散した層との2層にすることで、スリガラス調を有する製品が得られることが開示されている。 In order to obtain a frosted glass appearance with a plastic container, a method is generally used in which the plastic container or molding die is surface-treated. For example, Patent Document 1 discloses that by roughening the surface of the mold by sandblasting, shotblasting, etc., a frosted glass bottle-like texture can be obtained during stretch blow molding. Further, Patent Document 2 discloses a technique for eliminating the gloss of plastic and giving it a matte feel by providing a coating layer containing silica particles on a container label. Patent Document 3 discloses that a product having a ground glass appearance can be obtained by forming two layers: a transparent synthetic resin layer and a layer in which transparent resin powder is dispersed in a transparent synthetic resin matrix. Disclosed.

特開2000-301596号公報Japanese Patent Application Publication No. 2000-301596 特開2005-345793号公報Japanese Patent Application Publication No. 2005-345793 特開平11-348105号公報Japanese Patent Application Publication No. 11-348105

しかし、金型の表面加工やラベル、樹脂層構成によるスリガラス外観の付与等では工程数の増加および成形品に適した金型、層構成の設計が必要となり、汎用性にかける。
また、従来のプラスチック製容器では、詰め替え等によるリユース容器として用いられる場合に、繰り返し回数が増す度に汚れの付着が問題となる。
However, surface processing of molds, labels, and giving a frosted glass appearance by resin layer configurations require an increased number of steps and the design of a mold and layer configuration suitable for the molded product, which reduces versatility.
Furthermore, when conventional plastic containers are used as reusable containers by refilling, etc., the problem of dirt adhesion becomes a problem as the number of times the container is repeated increases.

本発明は、プラスチック製容器および金型の表面加工を施すことなく、通常の延伸ブロー成形に用いられる鏡面金型においても、スリガラス調のプラスチック製容器の成形が可能であり、容器への汚れの付着が生じにくい。さらに、樹脂以外の物質を配合することに起因する、容器の印刷インキ密着性や落下強度の低下を抑制できるポリエステル系延伸容器用樹脂組成物および容器の提供を目的とする。 The present invention makes it possible to mold plastic containers with a frosted glass appearance even in mirror-finished molds used for ordinary stretch blow molding without subjecting the plastic containers and molds to surface treatments, thereby preventing stains on the containers. Adhesion is less likely to occur. A further object of the present invention is to provide a resin composition for polyester-based stretched containers and a container that can suppress a decrease in printing ink adhesion and drop strength of the container caused by blending substances other than resin.

本発明者らは、前記諸問題を解決するために鋭意研究を重ねた結果、特定の、珪酸塩と、ポリエステル樹脂とを用いることにより、上記課題を解決することが可能であることを見出し、この知見に基づいて本発明をなしたものである。 As a result of intensive research to solve the above problems, the present inventors discovered that the above problems could be solved by using a specific silicate and polyester resin, The present invention was made based on this knowledge.

すなわち、本発明は、珪酸塩(A)と、ポリエステル樹脂(B)とを含み、前記珪酸塩(A)は、アスペクト比が10~90であって、かつ金属酸化物で表面被覆されていない珪酸塩であり、珪酸塩(A)の屈折率(n)と、ポリエステル樹脂(B)の屈折率(N)との差が、下記式(1)を満たす、ポリエステル系延伸容器用樹脂組成物であることを特徴とする。

式(1)
|[珪酸塩(A)の屈折率(n)]-[ポリエステル樹脂(B)の屈折率(N)]|≦0.08
That is, the present invention includes a silicate (A) and a polyester resin (B), and the silicate (A) has an aspect ratio of 10 to 90 and is not surface coated with a metal oxide. A polyester-based stretched container resin composition that is a silicate and in which the difference between the refractive index (n) of the silicate (A) and the refractive index (N) of the polyester resin (B) satisfies the following formula (1) It is characterized by

Formula (1)
| [Refractive index (n) of silicate (A)] - [Refractive index (N) of polyester resin (B)] | ≦0.08

本発明によれば、ポリエステル系延伸容器を形成するための樹脂組成物に、アスペクト比が10~90であって、かつ金属酸化物で表面被覆されていない珪酸塩と、ポリエステル樹脂とを用い、これらの屈折率差を特定範囲にすることで、延伸した際に容器にスリガラス調の外観を付与することができる。また、延伸によって珪酸塩が容器外面、内面に突出することで、凹凸が生じ、撥水効果を付与することが可能となり、長期間使用した場合においても汚れが付着し難くなる。 According to the present invention, a silicate having an aspect ratio of 10 to 90 and whose surface is not coated with a metal oxide and a polyester resin are used in a resin composition for forming a polyester-based stretched container, By setting these refractive index differences within a specific range, it is possible to give the container a ground-glass appearance when stretched. Furthermore, by stretching, the silicate protrudes from the outer and inner surfaces of the container, creating unevenness, making it possible to impart a water-repellent effect and making it difficult for dirt to adhere even after long-term use.

本発明により、容器の防汚性が良好であり、さらに、プラスチック製容器および金型の表面加工を施すことなく、スリガラス調の容器を成形できるポリエステル系延伸容器用樹脂組成物および容器を提供できる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a polyester-based stretched container resin composition and a container, which have good antifouling properties and can be molded into a ground glass-like container without surface treatment of a plastic container or mold. .

まず、本発明を詳細に説明する。なお、本明細書において、「任意の数A~任意の数B」の記載は、数A及び数Aより大きい範囲であって、数B及び数Bより小さい範囲を意味する。 First, the present invention will be explained in detail. In addition, in this specification, the description of "any number A to any number B" means a range larger than number A and number A, and smaller than number B and number B.

《ポリエステル系延伸容器用樹脂組成物》
本発明のポリエステル系延伸容器用樹脂組成物は、ポリエステル系延伸容器を形成するための樹脂組成物であって、珪酸塩(A)と、ポリエステル樹脂(B)とを含み、前記珪酸塩(A)は、アスペクト比が10~90であって、かつ金属酸化物で表面被覆されていない珪酸塩であり、珪酸塩(A)の屈折(n)と、ポリエステル樹脂(B)の屈折(N)との差が、下記式(1)を満たす。

式(1)
|[珪酸塩(A)の屈折率(n)]-[ポリエステル樹脂(B)の屈折率(N)]|≦0.08
《Polyester-based stretched container resin composition》
The resin composition for a polyester stretched container of the present invention is a resin composition for forming a polyester stretched container, and includes a silicate (A) and a polyester resin (B), and includes the silicate (A) and a polyester resin (B). ) is a silicate with an aspect ratio of 10 to 90 and whose surface is not coated with metal oxide, and the refraction (n) of the silicate (A) and the refraction (N) of the polyester resin (B) The difference between the two satisfies the following formula (1).

Formula (1)
| [Refractive index (n) of silicate (A)] - [Refractive index (N) of polyester resin (B)] | ≦0.08

このようなポリエステル系延伸容器用樹脂組成物を用いて延伸成形することで、プラスチック製容器および金型の表面加工を施すことなく、防汚性が良好で、スリガラス調の容器を成形できる。
このように、防汚性が良好であることから、本発明のポリエステル系延伸容器は、繰り返し用いた場合の汚れの付着が抑制され、リユース容器としても、好適に用いることが可能である。
By stretch-molding using such a polyester-based stretched container resin composition, a ground-glass-like container with good stain resistance can be molded without surface treatment of the plastic container or mold.
As described above, since the polyester-based stretched container of the present invention has good stain resistance, adhesion of stains is suppressed even when used repeatedly, and it can be suitably used as a reusable container.

樹脂組成物の形状は、例えば、ペレット状、粉末状、顆粒状の形状が好ましく、ペレット状が好ましい。
ポリエステル系延伸容器を形成する際、ペレット状等の樹脂組成物は、その他の樹脂等により希釈せず、そのまま溶融させて延伸成形することもできるが、その他の樹脂、なかでも、ポリエステル樹脂(B)と溶融混合し、容器を形成する方法を用いることが好ましい。
The shape of the resin composition is preferably, for example, a pellet, powder, or granule shape, and a pellet shape is preferable.
When forming a polyester-based stretched container, the resin composition in the form of pellets or the like can be directly melted and stretched without being diluted with other resins. ) is preferably used to form a container.

すなわち、ポリエステル系延伸容器用樹脂組成物は、珪酸塩(A)を高濃度で配合したペレット状のマスターバッチとして製造することが好ましい。マスターバッチは、珪酸塩(A)とポリエステル樹脂(B)を溶融混練し、さらにペレット状に成形することで製造できる。この場合、珪酸塩(A)はポリエステル系延伸容器用樹脂組成物100重量%中に3~30重量%配合することが好ましい。より好ましくは5~25重量%である。
このように、マスターバッチとして珪酸塩(A)をポリエステル樹脂(B)中に予備分散した後で、希釈樹脂の樹脂と溶融混練して延伸容器を形成すると、樹脂中に珪酸塩(A)がより均一に分散され、スリガラス調の外観と防汚性に優れた容器とすることができる。さらに、希釈して使用する場合の方が、熱履歴が少ないため、形成された容器の強度低下を少なくすることができる。
このとき用いる希釈樹脂は、とくに制限されないが、通常、透明性の観点でマスターバッチに用いた樹脂と同じ樹脂を用いることが多い。
That is, the polyester-based stretched container resin composition is preferably manufactured as a pellet-like masterbatch containing a high concentration of silicate (A). A masterbatch can be produced by melt-kneading a silicate (A) and a polyester resin (B), and then forming the mixture into pellets. In this case, the silicate (A) is preferably blended in an amount of 3 to 30% by weight in 100% by weight of the polyester resin composition for stretched containers. More preferably, it is 5 to 25% by weight.
In this way, when the silicate (A) is preliminarily dispersed in the polyester resin (B) as a masterbatch and then melt-kneaded with the diluted resin to form a stretching container, the silicate (A) is dispersed in the resin. It is possible to obtain a container that is more uniformly dispersed, has a ground-glass appearance, and has excellent stain resistance. Furthermore, when diluted and used, there is less heat history, so it is possible to reduce the decrease in strength of the formed container.
The diluent resin used at this time is not particularly limited, but usually the same resin as the resin used for the masterbatch is often used from the viewpoint of transparency.

<珪酸塩(A)>
本発明の珪酸塩(A)は、アスペクト比が10~90であって、かつ金属酸化物で表面被覆されていない珪酸塩である。
珪酸塩(A)は、珪酸塩単独のみならず、珪酸塩を核とし、有機物(例えば、配位子、表面処理剤)により被覆した、被覆層を有しているものであってもよい。
しかし、被覆層に金属酸化物を用いると、加工中に珪酸塩の金属酸化物が剥がれおち、樹脂組成物中に単独で存在し、著しい意匠性低下を招く。そのため、珪酸塩(A)は、金属酸化物により、表面被覆されていないものである必要がある。
なお、被覆層を有する場合は、表面被覆後の珪酸塩のアスペクト比の値が、10~90である。
このような珪酸塩(A)であることにより、延伸時に珪酸塩とポリエステル樹脂界面の空隙が生じやすく、意匠性に優れる樹脂組成物を形成することができる。
<Silicate (A)>
The silicate (A) of the present invention is a silicate having an aspect ratio of 10 to 90 and whose surface is not coated with a metal oxide.
The silicate (A) is not limited to a silicate alone, but may also have a coating layer formed of a silicate as a core and coated with an organic substance (for example, a ligand, a surface treatment agent).
However, when a metal oxide is used in the coating layer, the metal oxide of the silicate peels off during processing and is present alone in the resin composition, resulting in a significant deterioration in design. Therefore, the silicate (A) needs to be one whose surface is not coated with metal oxide.
In addition, when a coating layer is provided, the aspect ratio value of the silicate after surface coating is 10 to 90.
By using such a silicate (A), voids are likely to occur at the interface between the silicate and the polyester resin during stretching, making it possible to form a resin composition with excellent design.

珪酸塩とは、ケイ素を中心としたケイ素酸素四面体を基本にもつ一群の物質であり、カオリナイト、カオリンクレー、ポイオフィライト、タルク(滑石)、セリサイト(絹雲母)、マスコバイト(白雲母)、フロゴパイト(金雲母)、合成雲母等が挙げられる。
なかでも雲母が好ましく、さらに好ましくは、マスコバイト(白雲母)、フロゴパイト(金雲母)、または合成雲母である。特に好ましくは、マスコバイト(白雲母)である。
雲母は薄い板状であり、熱的、化学的に安定で、高いアスペクト比(粒径と厚みの比)を有する。そのため、雲母粒子が成形品中で配向することで、低ソリ性、高剛性、低収縮性等の機械物性の向上や、絶縁性、制振性等の付与が可能となる。さらに、基材樹脂との界面反射により、光沢感の付与も可能なため、家電分野、重電機分野、電線分野等、幅広く使用されている。雲母はマイカ原鉱を精製、粉砕、分級することで得られるが、アスペクト比が高い方が、物性面での特異性が発現しやすい。
Silicates are a group of substances based on silicon-oxygen tetrahedra, including kaolinite, kaolin clay, poiophyllite, talc, sericite, and muscovite. mica), phlogopite (phlogopite), synthetic mica, etc.
Among them, mica is preferable, and muscovite (muscovite), phlogopite (phlogopite), or synthetic mica is more preferable. Particularly preferred is muscovite (muscovite).
Mica has a thin plate shape, is thermally and chemically stable, and has a high aspect ratio (ratio of particle size to thickness). Therefore, by orienting the mica particles in the molded product, it is possible to improve mechanical properties such as low warpage, high rigidity, and low shrinkage, and to impart insulation properties, vibration damping properties, etc. Furthermore, since it is possible to impart a glossy appearance through interfacial reflection with the base resin, it is widely used in the fields of home appliances, heavy electrical equipment, electric wires, etc. Mica is obtained by refining, crushing, and classifying mica raw ore, and the higher the aspect ratio, the more specific it is in terms of physical properties.

珪酸塩(A)のアスペクト比は、10~90であり、より好ましくは20~80である。
ここでいうアスペスト比とは、珪酸塩の粒子の厚みに対する、平均粒子径の比であって、下記式により求められる値である。

アスペクト比=平均粒子径[μm]/平均厚み[μm]
The aspect ratio of the silicate (A) is 10-90, more preferably 20-80.
The aspest ratio here is the ratio of the average particle diameter to the thickness of the silicate particles, and is a value determined by the following formula.

Aspect ratio = average particle diameter [μm] / average thickness [μm]

また、珪酸塩(A)の平均粒子径は5~70μmであることが好ましい。より好ましくは5~60μmであり、さらに好ましくは5~55μmである。5μm以上であることで延伸時に外面、内面の表層が凹凸を生じやすくなり、防汚性が得やすくなる。また、70μm以下であることで、表面積が増大し、印刷インキと容器との密着性が向上し、インキ剥離を抑制しやすくなる。 Further, the average particle diameter of the silicate (A) is preferably 5 to 70 μm. More preferably 5 to 60 μm, still more preferably 5 to 55 μm. When the thickness is 5 μm or more, the outer and inner surface layers tend to become uneven during stretching, making it easier to obtain antifouling properties. Further, when the thickness is 70 μm or less, the surface area increases, the adhesion between the printing ink and the container improves, and it becomes easier to suppress ink peeling.

なお、平均粒子径は、走査電子顕微鏡の拡大画像(例えば500倍~1万倍)から観察できる30個程度の粒子に関する粒子径を測定し、平均値を求めて得られる。アスペクト比は、平均粒子径を求める方法と同様にして、珪酸塩の厚み平均値を求めた後、珪酸塩の平均粒子径と平均厚みとの比から求められる。 Note that the average particle diameter is obtained by measuring the particle diameters of about 30 particles that can be observed from an enlarged image of a scanning electron microscope (for example, 500 times to 10,000 times) and calculating the average value. The aspect ratio is determined from the ratio of the average particle diameter and the average thickness of the silicate after determining the average thickness of the silicate in the same manner as the method for determining the average particle diameter.

さらに、本発明は、ポリエステル樹脂(B)の屈折率(N)と珪酸塩(A)の屈折率(n)が、下記式(1)を満たすことで、延伸した際に、珪酸塩が容器外面、内面近傍に配向して凹凸が生じ、ロータス効果により、防汚性が発現する。

式(1)
|[珪酸塩(A)の屈折率(n)]-[ポリエステル樹脂(B)の屈折率(N)]|≦0.08
Furthermore, in the present invention, the refractive index (N) of the polyester resin (B) and the refractive index (n) of the silicate (A) satisfy the following formula (1), so that when the silicate is stretched, the silicate is The unevenness is oriented near the outer and inner surfaces, and the lotus effect provides antifouling properties.

Formula (1)
| [Refractive index (n) of silicate (A)] - [Refractive index (N) of polyester resin (B)] | ≦0.08

すなわち、珪酸塩(A)の屈折(n)と、ポリエステル樹脂(B)の屈折(N)の屈折率差は、-0.08以上、0.08以下である。
より好ましくは、屈折率差の絶対値が0.06以下であり、すなわち、-0.06以上、0.06以下であることが好ましい。
この範囲にあることで、スリガラス調の外観と防汚性とがより、両立できる。
That is, the refractive index difference between the refraction (n) of the silicate (A) and the refraction (N) of the polyester resin (B) is -0.08 or more and 0.08 or less.
More preferably, the absolute value of the refractive index difference is 0.06 or less, that is, −0.06 or more and 0.06 or less.
By falling within this range, it is possible to achieve both a frosted glass appearance and antifouling properties.

本発明の珪酸塩(A)の屈折率は1.52~1.62であることが好ましい。より好ましくは1.53~1.62であり、さらに好ましくは1.54~1.61である。
この範囲にあることで、珪酸塩の粒子光沢を抑制し、スリガラス調を再現した意匠性に優れたものとなる。
また、屈折率は浸液法により、珪酸塩を浸液に入れベッケ線の移動で数種類の浸液と珪酸塩の屈折率を比較して珪酸塩の屈折率を測定することができる。
測定方法は浸液法のみならず、最小偏角法、臨界角法、Vブロック法等、種々の測定方法を用いることもできる。
The refractive index of the silicate (A) of the present invention is preferably 1.52 to 1.62. More preferably 1.53 to 1.62, still more preferably 1.54 to 1.61.
By being within this range, the particle luster of the silicate is suppressed, and an excellent design that reproduces a ground glass appearance is obtained.
Furthermore, the refractive index of the silicate can be measured by the immersion method by placing a silicate in an immersion liquid and comparing the refractive index of several types of immersion liquids and the silicate by moving the Becke line.
The measurement method is not limited to the immersion method, but various measurement methods such as the minimum deviation angle method, the critical angle method, and the V-block method can also be used.

珪酸塩(A)が、珪酸塩表面に有機化合物を被覆層として有する場合、防汚性の点で好ましい。なかでも有機化合物が、有機ケイ素化合物であることが、珪酸塩表面への被覆の簡便さ、さらに、意匠性に悪影響を及ぼすことなく、防汚性の向上を可能にするため好ましい。 When the silicate (A) has an organic compound as a coating layer on the silicate surface, it is preferable in terms of antifouling properties. Among these, it is preferable that the organic compound is an organosilicon compound, since this makes it possible to easily coat the silicate surface and further improves the antifouling property without adversely affecting the design.

表面被覆量は、表面被覆する前の珪酸塩100重量部に対して、有機ケイ素化合物0.1~2.5重量部で形成してなる被覆層を備えることが好ましい。より好ましくは0.1~2.0重量部、さらに好ましくは0.2~1.5重量部である。有機ケイ素化合物を、珪酸塩の表面に被覆することで、珪酸塩の表面が親水性であっても、疎水性に改質することができ、防汚性効果を高めることができる。有機ケイ素化合物が0.1重量部以上であることで、防汚性の効果が増す。2.5重量部以下であることにより、スリガラス調の意匠性がより優れる。 The amount of surface coating is preferably 0.1 to 2.5 parts by weight of the organosilicon compound relative to 100 parts by weight of the silicate before surface coating. More preferably 0.1 to 2.0 parts by weight, still more preferably 0.2 to 1.5 parts by weight. By coating the surface of the silicate with an organosilicon compound, even if the surface of the silicate is hydrophilic, it can be modified to be hydrophobic, and the antifouling effect can be enhanced. When the amount of the organosilicon compound is 0.1 part by weight or more, the antifouling effect increases. When the amount is 2.5 parts by weight or less, the ground glass-like design is more excellent.

有機ケイ素化合物としては、シラン化合物、およびその加水分解物、およびその縮合反応物、ならびにポリシロキサンが好ましい。特に好ましくはポリシロキサンである。
ポリシロキサンを用いることにより樹脂との親和性の観点から、延伸時の空隙形成を損なうことなく、撥水性を付与することで優れた防汚性とすることができる。
As the organosilicon compound, silane compounds, hydrolysates thereof, condensation products thereof, and polysiloxanes are preferred. Particularly preferred is polysiloxane.
By using polysiloxane, from the viewpoint of affinity with the resin, excellent stain resistance can be achieved by imparting water repellency without impairing void formation during stretching.

前記シラン化合物は、下記一般式(2)で表されるシラン化合物およびその加水分解縮合反応物の少なくともいずれかであることが好ましい。

一般式(2) R-Si-(OR’)4-n

(式中、nは1~3の整数であり、Rは水素原子、アルキル基、ビニル基、メタクリル基、エポキシ基を表し、R’はアルキル基、アリール基、アシル基を表す。ここで、nが2または3の場合、Rは同一でも相違していても良い。また、nが1または2の場合、R’は同一でも相違していても良い。)
The silane compound is preferably at least one of a silane compound represented by the following general formula (2) and a hydrolysis condensation product thereof.

General formula (2) R n -Si-(OR') 4-n

(In the formula, n is an integer of 1 to 3, R represents a hydrogen atom, an alkyl group, a vinyl group, a methacrylic group, or an epoxy group, and R' represents an alkyl group, an aryl group, or an acyl group. Here, When n is 2 or 3, R's may be the same or different. Also, when n is 1 or 2, R' may be the same or different.)

前記一般式(2)で表されるシラン化合物は、例えばβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、エチルトリメトキシシラン、ジエチルジメトキシシラン、エチルトリエトキシシラン、ジエチルジエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルメチルジメトキシシラン、ヘキシルメチルジエトキシシラン、シクロヘキシルメチルジエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、フェニルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン等が好ましい。これらの中でも前記一般式(2)においてRnは、炭素数10~16のアルキル基で、nが1の化合物がより好ましい。 Examples of the silane compound represented by the general formula (2) include β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-(methacryloyloxypropyl)trimethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane. , 3-mercaptopropyltrimethoxysilane, 3-chloropropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, diethyldimethoxysilane, ethyltriethoxysilane, Diethyldiethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, hexylmethyldimethoxysilane, hexylmethyldiethoxysilane, Cyclohexylmethyldiethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, phenyltriethoxysilane, trifluoropropyltrimethoxysilane, trideca Fluorooctyltrimethoxysilane and the like are preferred. Among these, compounds in which Rn in the general formula (2) is an alkyl group having 10 to 16 carbon atoms and n is 1 are more preferable.

前記ポリシロキサンは、例えばジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルメトキシポリシロキサン、メチルフェニルポリシロキサン、ジメチルポリシロキサンジオール、ジメチルポリシロキサンジハイドロジェン、側鎖または両末端または片末端エポキシ変性ポリシロキサン、両末端または片末端メタクリル変性ポリシロキサン、側鎖または両末端カルボキシル変性ポリシロキサン、両末端または側鎖ポリエーテル変性ポリシロキサン、側鎖アルキル変性ポリシロキサン、側鎖メチルスチリル変性ポリシロキサン、側鎖高級カルボン酸エステル変性ポリシロキサン、側鎖フルオロアルキル変性ポリシロキサンまたはそれらの共重合体が挙げられる。 The polysiloxane is, for example, dimethylpolysiloxane, methylhydrogenpolysiloxane, methylmethoxypolysiloxane, methylphenylpolysiloxane, dimethylpolysiloxane diol, dimethylpolysiloxane dihydrogen, side chain or both terminals or one terminal epoxy-modified polysiloxane. , both ends or one end methacrylic modified polysiloxane, side chain or both ends carboxyl modified polysiloxane, both ends or side chain polyether modified polysiloxane, side chain alkyl modified polysiloxane, side chain methylstyryl modified polysiloxane, side chain high grade Examples include carboxylic acid ester-modified polysiloxanes, side-chain fluoroalkyl-modified polysiloxanes, and copolymers thereof.

珪酸塩に対する被覆層の形成方法を説明する。
被覆層を形成する方法は、公知の方法を使用できる。例えば、(1)珪酸塩を水性スラリーから固液分離し、乾燥した後、前記有機ケイ素化合物と気相中で接触させることにより、被覆層を形成する方法(以下、気相法という)。または、(2)珪酸塩と前記有機ケイ素化合物を水性スラリー中で接触させることで形成する方法(以下、液相法という)が好ましい。
A method for forming a coating layer on a silicate will be explained.
A known method can be used to form the coating layer. For example, (1) a method in which a silicate is solid-liquid separated from an aqueous slurry, dried, and then brought into contact with the organosilicon compound in a gas phase to form a coating layer (hereinafter referred to as a gas phase method). Alternatively, (2) a method in which a silicate and the organosilicon compound are brought into contact with each other in an aqueous slurry (hereinafter referred to as a liquid phase method) is preferable.

前記気相法は、例えば流体エネルギー粉砕機、衝撃粉砕機等の乾式粉砕機や、ヘンシェルミキサー、スーパーミキサー等の高速攪拌機等を用い、珪酸塩と前記有機ケイ素化合物を攪拌、混合することで実施できる。 The gas phase method is carried out by stirring and mixing the silicate and the organosilicon compound using, for example, a dry pulverizer such as a fluid energy pulverizer or an impact pulverizer, or a high-speed stirrer such as a Henschel mixer or a super mixer. can.

前記液相法は、当該水性スラリーに前記有機ケイ素化合物を添加し、攪拌、混合することで実施できる。 The liquid phase method can be carried out by adding the organosilicon compound to the aqueous slurry and stirring and mixing.

<ポリエステル樹脂(B>
本発明においてポリエステル樹脂(B)は、例えば、芳香族ジカルボン酸または脂環族ジカルボン酸等の酸成分とジオール成分による重合体であり、ホモポリマーであってもコポリマーであってもよい。また、これらの混合などによるポリマーブレンドでもよい。
<Polyester resin (B>)
In the present invention, the polyester resin (B) is, for example, a polymer composed of an acid component such as an aromatic dicarboxylic acid or an alicyclic dicarboxylic acid and a diol component, and may be a homopolymer or a copolymer. Further, a polymer blend obtained by mixing these may also be used.

芳香族ジカルボン酸成分としては、例えば、フタル酸、イソフタル酸、テレフタル酸、1、4-ナフタレンジカルボン酸、1、5-ナフタレンジカルボン酸、2、6-ナフタレンジカルボン酸等が挙げられる。好ましくは、フタル酸、テレフタル酸および2、6-ナフタレンジカルボン酸である。 Examples of the aromatic dicarboxylic acid component include phthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, and 2,6-naphthalene dicarboxylic acid. Preferred are phthalic acid, terephthalic acid and 2,6-naphthalene dicarboxylic acid.

脂環族ジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸等を用いることができる。 As the alicyclic dicarboxylic acid component, for example, cyclohexanedicarboxylic acid or the like can be used.

ジオール成分としては、例えば、エチレングリコール、1、2-プロパンジオール、1、3-プロパンジオール、ネオペンチルグリコール、1、3-ブタンジオール、1、4-ブタンジオール、1、5-ペンタンジオール、1、6-ヘキサンジオール、1、2-シクロヘキサンジメタノール、1、3-シクロヘキサンジメタノール、1、4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコールおよび2、2’-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン等が挙げられる。好ましくは、エチレングリコール、1、4-ブタンジオール、1、4-シクロヘキサンジメタノールおよびジエチレングリコール等である。これらのジオール成分は一種のみを用いてもよく、二種以上を併用してもよい。 Examples of diol components include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 , 6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol and 2,2'-bis(4'- Examples include β-hydroxyethoxyphenyl)propane. Preferred are ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, diethylene glycol, and the like. These diol components may be used alone or in combination of two or more.

ここで、ポリエステル樹脂の屈折率は繰り返し単位の分子体積(構成される原子の原子半径および結合距離)と分子屈折(原子屈折の合計)に関係して変化するため、カルボン酸成分、ジオール成分を変更することで、屈折率が変わる。ポリエステル樹脂の屈折率は、射出成形や押出成形により、所定のサイズの成形品を作製した後、アッベ屈折計または多波長アッベ屈折計等を用いて測定することができる。 Here, the refractive index of polyester resin changes in relation to the molecular volume of the repeating unit (atomic radius and bond distance of the constituent atoms) and molecular refraction (total of atomic refraction), so the carboxylic acid component and diol component Changing this changes the refractive index. The refractive index of a polyester resin can be measured using an Abbe refractometer, a multiwavelength Abbe refractometer, or the like after producing a molded product of a predetermined size by injection molding or extrusion molding.

本発明のポリエステル樹脂(B)の屈折率は下記式(1)を満たせば、特に限定されないが、好ましくは1.54~1.64である。より好ましくは1.56~1.63である。
この範囲にあることで、ポリエステル樹脂合成時の特別な官能基導入などの分子設計を必要とせず、従来の生産方法でポリエステル樹脂を合成することができ、ハンドリング性に優れたものとなる。

式(1)
|[珪酸塩(A)の屈折率(n)]-[ポリエステル樹脂(B)の屈折率(N)]|≦0.08
The refractive index of the polyester resin (B) of the present invention is not particularly limited as long as it satisfies the following formula (1), but is preferably 1.54 to 1.64. More preferably it is 1.56 to 1.63.
By being within this range, the polyester resin can be synthesized by conventional production methods without requiring molecular design such as special functional group introduction during polyester resin synthesis, and has excellent handling properties.

Formula (1)
| [Refractive index (n) of silicate (A)] - [Refractive index (N) of polyester resin (B)] | ≦0.08

なお、複数のポリエステル樹脂を使用する場合、屈折率は、混合後のポリエステル樹脂の屈折率の値を用いる。 Note that when a plurality of polyester resins are used, the value of the refractive index of the polyester resins after mixing is used as the refractive index.

本発明のポリエスエル系延伸容器用樹脂組成物は、珪酸塩(A)およびポリエスエル樹脂(B)以外の任意成分として、顔料、染料、酸化防止剤、光安定剤、紫外線吸収剤、分散剤等を含むことができる。 The polyester-based stretched container resin composition of the present invention contains pigments, dyes, antioxidants, light stabilizers, ultraviolet absorbers, dispersants, etc. as optional components other than the silicate (A) and the polyester resin (B). can be included.

<ポリエステル系延伸容器用樹脂組成物の製造方法>
本発明のポリエステル系延伸容器用樹脂組成物は、ポリエステル樹脂(B)と珪酸塩(A)に、さらに必要に応じて各種フィラーや添加剤等を加え、例えば単軸混練押出機、二軸混練押出機、またはタンデム式二軸混練押出機等を用いて溶融混練し、ペレット状、粉体状、顆粒状またはビーズ状等の形状の樹脂組成物を得ることができる。
<Method for producing polyester-based resin composition for stretched containers>
The polyester resin composition for stretched containers of the present invention can be produced by adding various fillers, additives, etc. to the polyester resin (B) and silicate (A), if necessary, and using, for example, a single-screw kneading extruder or a twin-screw kneading machine. The resin composition can be melt-kneaded using an extruder, a tandem twin-screw extruder, or the like to obtain a resin composition in the form of pellets, powder, granules, beads, or the like.

これらの中でも、珪酸塩(A)を高濃度で配合したペレット状のマスターバッチとして製造することが好ましく、マスターバッチは、珪酸塩(A)とポリエステル樹脂(B)を溶融混練し、さらにペレット状に成形することで製造できる。 Among these, it is preferable to produce a masterbatch in the form of pellets containing a high concentration of silicate (A), and the masterbatch is prepared by melt-kneading the silicate (A) and polyester resin (B), and It can be manufactured by molding it into

マスターバッチは、ポリエステル樹脂(B)100重量部に対して、珪酸塩(A)を2~50重量部配合することが好ましい。 The masterbatch preferably contains 2 to 50 parts by weight of silicate (A) per 100 parts by weight of polyester resin (B).

溶融混錬温度は、ポリエステル樹脂(B)の種類により異なるが通常220~300℃程度である。 The melting and kneading temperature varies depending on the type of polyester resin (B), but is usually about 220 to 300°C.

<ポリエステル系延伸容器>
本発明のポリエステル系延伸容器は、ポリエステル系延伸容器用樹脂組成物を用い、射出ブロー成形、ダイレクトブロー成形、真空成形等により延伸成形することで得られる。
この時、延伸成形前の樹脂組成物は、ポリエステル系延伸容器用樹脂組成物を単独で溶融混練したものでもよく、また、珪酸塩(A)を高濃度で配合したペレット状のマスターバッチと、希釈用の樹脂とを一緒に溶融混練してなる樹脂組成物であってもよい。
<Polyester-based stretched container>
The polyester stretched container of the present invention is obtained by stretch-molding a polyester stretched container resin composition by injection blow molding, direct blow molding, vacuum forming, or the like.
At this time, the resin composition before stretch molding may be one obtained by melt-kneading a polyester-based stretched container resin composition alone, or a pellet-shaped masterbatch containing a high concentration of silicate (A), It may also be a resin composition formed by melt-kneading together with a diluent resin.

ポリエステル系延伸容器は、これらの、延伸成形前の樹脂組成物に対し、軸方向の延伸倍率1.2~2.5倍、周方向の延伸倍率1.5~4.0倍に延伸成形してなることが好ましい。より好ましくは軸方向1.2~2.5倍、周方向2.0~3.5倍である。
容器の軸方向の延伸倍率として、この範囲にあることで、より意匠性、機械物性のバランスが優れる。なお、部分的に延伸倍率の異なる部分が存在する場合は、平均した倍率を用いる。
Polyester-based stretched containers are made by stretch-molding these resin compositions before stretch-molding to a stretching ratio of 1.2 to 2.5 times in the axial direction and a stretching ratio of 1.5 to 4.0 times in the circumferential direction. It is preferable that the More preferably, it is 1.2 to 2.5 times in the axial direction and 2.0 to 3.5 times in the circumferential direction.
When the stretching ratio in the axial direction of the container is within this range, the balance between design and mechanical properties is better. In addition, when there are parts with different stretching ratios, the average ratio is used.

上記延伸倍率であることにより、珪酸塩と樹脂の界面に空隙が発生し、空気層での乱反射が起こることで、優れたスリガラス調の外観を付与することができる。これは、珪酸塩の屈折率と樹脂の屈折率との差の関係が、式(1)の範囲にあることで、可視光の透過性を大幅に損なうことなく、成形品内部からの反射光が入射面に戻ってくるためと推察される。ここで、樹脂容器中、珪酸塩(A)は0.2~2.0重量%が好ましく、より好ましくは、0.4~1.5重量%である。0.2重量%以上配合することでスリガラス調の意匠かつ、防汚性に優れる。 By using the above stretching ratio, voids are generated at the interface between the silicate and the resin, and diffuse reflection occurs in the air layer, so that an excellent ground glass appearance can be imparted. This is because the relationship between the difference between the refractive index of the silicate and the refractive index of the resin is within the range of formula (1), which allows the reflected light from inside the molded product to be absorbed without significantly impairing the transmittance of visible light. It is presumed that this is because the light returns to the incident surface. Here, the content of the silicate (A) in the resin container is preferably 0.2 to 2.0% by weight, more preferably 0.4 to 1.5% by weight. By blending 0.2% by weight or more, a frosted glass-like design and excellent stain resistance can be achieved.

ポリエステル系延伸容器は、医療用ボトル、食品用ボトル、化粧品用ボトル、スキンケア等のヘルスケア用ボトル等に使用することが好ましい。 The polyester stretched container is preferably used for medical bottles, food bottles, cosmetic bottles, bottles for health care such as skin care, and the like.

次に、本発明を具体的に実施例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下、部は重量部、%は重量%を意味する。 Next, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples. In addition, hereinafter, parts mean parts by weight, and % means weight %.

また、珪酸塩の平均粒子径とアスペクト比、および珪酸塩とポリエステル樹脂の屈折率の測定方法は以下の通りである。 The methods for measuring the average particle diameter and aspect ratio of the silicate, and the refractive index of the silicate and polyester resin are as follows.

<珪酸塩の平均粒子径とアスペクト比>
平均粒子径は、走査型電子顕微鏡の拡大画像(例えば500倍~1万倍)から観察できる30個程度の粒子に関する粒子径を測定し、平均値を求めて得た。また、アスペクト比は、平均粒子径を求める方法と同様にして、珪酸塩鉱物の厚み平均値を求めた後、珪酸塩鉱物の平均粒子径と平均厚みとの比を、下記式により求めた。

アスペクト比=平均粒子径[μm]/平均厚み[μm]
<Average particle diameter and aspect ratio of silicate>
The average particle diameter was obtained by measuring the particle diameters of about 30 particles that can be observed from an enlarged image of a scanning electron microscope (for example, 500 times to 10,000 times) and calculating the average value. Further, the aspect ratio was determined by determining the average thickness of the silicate mineral in the same manner as the method used to determine the average particle diameter, and then determining the ratio between the average particle diameter and the average thickness of the silicate mineral using the following formula.

Aspect ratio = average particle diameter [μm] / average thickness [μm]

<珪酸塩の屈折率>
珪酸塩の屈折率は、23℃、50%-RH環境下で、浸液法により測定した。先ず、少量の屈折率が既知の浸液をスライドガラス上に滴下し、珪酸塩をスライドガラスの浸液上にのせた。次いで、カバーガラスを載せて、顕微鏡のステージにスライドガラスを置き、珪酸塩に焦点を合わせ、珪酸塩と既知の屈折率の浸液とが一致するまで浸液の調整を繰り返し、珪酸塩の屈折率を求めた。なお、浸液には、フタル酸n-ブチル、1-ブロモナフタレン、よう化メチレンを用いた。
<Refractive index of silicate>
The refractive index of the silicate was measured by an immersion method at 23° C. in a 50%-RH environment. First, a small amount of an immersion liquid with a known refractive index was dropped onto a glass slide, and a silicate was placed on the immersion liquid on the slide glass. Then place the glass slide on the stage of the microscope with a cover glass, focus on the silicate, and repeat the adjustment of the immersion liquid until the silicate matches the immersion liquid of known refractive index, and the refraction of the silicate The rate was calculated. Note that n-butyl phthalate, 1-bromonaphthalene, and methylene iodide were used as the immersion liquid.

<ポリエステル樹脂の屈折率>
ポリエステル樹脂の屈折率はアッベ屈折計を用いて行った。先ず、射出成形により作製した試験片の表面に微量の接触液(フタル酸n-ブチル及び1-ブロモナフタレンの混合液)を滴下し、試験片のエッジを光源の方に向けてプリズムの表面に密着させた。その後、全ての色が視野からなくなるまで調節し、明視野と暗視野との間の境界線を接眼レンズの十字線の交点に一致させ、屈折率目盛に示される試験への屈折率を読み取った。また、光源にはナトリウムランプを用いて行った。
<Refractive index of polyester resin>
The refractive index of the polyester resin was measured using an Abbe refractometer. First, a small amount of contact liquid (a mixture of n-butyl phthalate and 1-bromonaphthalene) was dropped onto the surface of a test piece made by injection molding, and the edge of the test piece was turned toward the light source and placed on the surface of the prism. Closely attached. Then adjust until all colors disappear from the field of view, align the border between bright field and dark field with the intersection of the eyepiece crosshairs, and read the refractive index to the test shown on the refractive index scale. . In addition, a sodium lamp was used as a light source.

実施例および比較例に用いる原料を以下に示す。 The raw materials used in Examples and Comparative Examples are shown below.

珪酸塩およびその表面被覆方法の例を以下に示す。 Examples of silicates and their surface coating methods are shown below.

<珪酸塩の表面被覆層形成>
[珪酸塩(A-4)の製造]
表面被覆する前の珪酸塩100重量部に対して、ジメチルポリシロキサン0.2重量部を添加し、混合して被覆することで有機ケイ素化合物を使用した表面被覆層を有する平均粒子径25μmの珪酸塩(A-4)を得た。
<Formation of silicate surface coating layer>
[Production of silicate (A-4)]
By adding 0.2 parts by weight of dimethylpolysiloxane to 100 parts by weight of silicate before surface coating, mixing and coating, silicic acid with an average particle diameter of 25 μm has a surface coating layer using an organosilicon compound. Salt (A-4) was obtained.

[珪酸塩(A-5~7))の製造]
上記と同様の方法により(A-5~7)について表1に記載した比率で、珪酸塩を形成した。
[Production of silicates (A-5 to 7)]
Silicates were formed in the ratios listed in Table 1 for (A-5 to 7) in the same manner as above.

<珪酸塩>
珪酸塩の性状を表1に示す。
<Silicate>
Table 1 shows the properties of the silicate.

Figure 0007350466000001
Figure 0007350466000001

<ポリエステル樹脂>
(B-1)SA-135(三井化学社製 屈折率1.59)
(B-2)イースター6763(イーストマンケミカル社製 屈折率1.58)
(B-3)PIFG5(ベルポリエステルプロダクツ社製 屈折率1.60)
<Polyester resin>
(B-1) SA-135 (manufactured by Mitsui Chemicals, refractive index 1.59)
(B-2) Easter 6763 (manufactured by Eastman Chemical Company, refractive index 1.58)
(B-3) PIFG5 (manufactured by Bell Polyester Products, refractive index 1.60)

[実施例1]
ポリエステル樹脂(B-1)80重量%、珪酸塩(A-1)20重量%となるように、ポリエステル樹脂(B-1)と珪酸塩(A-1)とを、別々の供給口から二軸押出機(日本製鋼所製)を用いて280℃で溶融混練することでペレット状のポリエステル系延伸容器用樹脂組成物であるマスターバッチを得た。
[Example 1]
Polyester resin (B-1) and silicate (A-1) were fed from separate supply ports so that the polyester resin (B-1) was 80% by weight and the silicate (A-1) was 20% by weight. A masterbatch, which is a pellet-shaped polyester resin composition for stretched containers, was obtained by melt-kneading at 280° C. using a shaft extruder (manufactured by Japan Steel Works).

得られたポリエステル系延伸容器用樹脂組成物5重量%、ポリエステル樹脂(B-1)95重量%となるように、射出ブロー成形機(日精エーエスビー社製)を用いて温度280℃にてブロー成形を行い、ポリエステル容器を形成した。 Blow molding was carried out at a temperature of 280°C using an injection blow molding machine (manufactured by Nissei ASB Co., Ltd.) so that the obtained polyester resin composition for stretched containers was 5% by weight and the polyester resin (B-1) was 95% by weight. Molding was performed to form a polyester container.

[実施例2~12]
珪酸塩(A)、およびポリエステル樹脂(B)の種類、および配合量(重量%)を、それぞれ表2に記載したように変更した以外は、実施例1と同様にしてポリエステル系延伸
容器用樹脂組成物を製造し、得られた樹脂組成物を用いてポリエステル容器を形成した。
ただし、実施例5、10、および11は参考例である。
[Examples 2 to 12]
A polyester stretched container resin was produced in the same manner as in Example 1, except that the types and blending amounts (wt%) of the silicate (A) and polyester resin (B) were changed as shown in Table 2. A composition was produced, and the resulting resin composition was used to form a polyester container.
However, Examples 5, 10, and 11 are reference examples.

Figure 0007350466000002
Figure 0007350466000002

[比較例1~4]
珪酸塩、およびポリエステル樹脂の種類、および配合量(重量%)を、表3に記載したように変更した以外は、実施例1と同様にしてポリエステル系延伸容器用樹脂組成物を製造し、得られた樹脂組成物を用いてポリエステル容器を形成した。
[Comparative Examples 1 to 4]
A polyester-based stretched container resin composition was produced in the same manner as in Example 1, except that the types and amounts (wt%) of the silicate and polyester resin were changed as shown in Table 3. A polyester container was formed using the resulting resin composition.

Figure 0007350466000003
Figure 0007350466000003

実施例および比較例で得られた容器を以下の基準で評価し、評価結果を表4に示す。 The containers obtained in Examples and Comparative Examples were evaluated according to the following criteria, and the evaluation results are shown in Table 4.

Figure 0007350466000004
Figure 0007350466000004

[意匠性]
得られた容器のスリガラス調の外観の有無を下記基準で目視にて評価した。また、容器を5cm角(厚み500μm)に切り取り、ヘーズメーター(BYK Gardner社製)を用いて全光線透過率とヘーズを測定した。スリガラス調外観の容器は内部での乱反射が多いため、ヘーズが高く、全光線透過率も高い数値となる。

○:スリガラス調の外観が得られている
×:スリガラス調とは異なる外観となっている
[Creativity]
The presence or absence of a ground glass-like appearance of the obtained container was visually evaluated according to the following criteria. Further, the container was cut into a 5 cm square (thickness: 500 μm), and the total light transmittance and haze were measured using a haze meter (manufactured by BYK Gardner). Containers with a frosted glass exterior have a lot of diffuse reflection inside, resulting in high haze and high total light transmittance.

○: A frosted glass appearance is obtained. ×: An appearance different from the ground glass appearance.

[防汚性]
得られた容器内にケチャップ(カゴメトマトケチャップ)20mlかつ水20mlを滴下し、シェーカーで5分間混ぜた。次いで、5分間容器を逆さまにして内容物を取り出した後、容器壁面への内容物付着度合いを目視にて下記の基準で評価した。

◎:内容物の付着が全く見られない
○:僅かに内容物の付着が見られる
△:逆さまにして取り出した際の、内容物の流れに沿った付着が一部見られる
×:容器全体に内容物の付着が見られる
[Antifouling property]
20 ml of ketchup (Kagome tomato ketchup) and 20 ml of water were dropped into the resulting container and mixed for 5 minutes using a shaker. Next, after the container was turned upside down for 5 minutes and the contents were taken out, the degree of adhesion of the contents to the container wall was visually evaluated according to the following criteria.

◎: No adhesion of contents is observed ○: Slight adhesion of contents is observed △: Part of adhesion along the flow of contents when taken out upside down ×: All over the container Adhesion of contents can be seen

[印刷適性]
得られた容器に、UV硬化型インキ(FDSS PET391;東洋インキ製)によって、シルクスクリーン印刷を施した後、印刷部をセロハンテープ(ニチバン社製)にて剥離した。その際、テープに付着したインキの面積割合でもって下記の基準で評価した。

◎:全くインキが剥離しない
○:剥離部分5%未満
△:剥離部分5%以上20%未満
×:剥離部分20%以上
[Print suitability]
After performing silk screen printing on the obtained container using UV curable ink (FDSS PET391; manufactured by Toyo Ink), the printed portion was peeled off using cellophane tape (manufactured by Nichiban Co., Ltd.). At that time, the area ratio of the ink attached to the tape was evaluated according to the following criteria.

◎: No ink peeled off at all ○: Peeled part less than 5% △: Peeled part 5% or more and less than 20% ×: Peeled part 20% or more

[落下強度]
得られた容器に水を満たして密栓し、高さ1mからコンクリート床面上に底面部及び平面部が接触するように2回落下させ、下記の基準で評価した。

○:亀裂や割れは生じず、内容物の漏れも見られない
△:内容物の漏れは見られないが、亀裂又は割れが生じた
×:亀裂、割れが生じ、内容物の漏れが見られた
[Fall strength]
The obtained container was filled with water, sealed tightly, and dropped twice onto a concrete floor from a height of 1 m so that the bottom and flat parts were in contact, and evaluated according to the following criteria.

○: No cracks or cracks are observed, and no leakage of contents is observed. △: No leakage of contents is observed, but cracks or cracks are observed. ×: Cracks or cracks are observed, and leakage of contents is observed. Ta

表4の結果より、本発明の、アスペクト比が10~90であり、かつ金属酸化物で被覆されていない珪酸塩を有しており、さらに該珪酸塩(A)と、ポリエステル樹脂(B)との屈折率差が、特定の関係を満たした樹脂組成物は、意匠性、防汚性、印刷適性、落下強度の全ての評価項目において、優れた結果であった。そして、この樹脂組成物により形成してなるポリエステル系延伸容器は、スリガラス調の意匠性を有し、印刷適性、落下強度を損なうことなく、防汚性も良好であった。

From the results in Table 4, it is clear that the present invention has a silicate having an aspect ratio of 10 to 90 and is not coated with a metal oxide, and further contains the silicate (A) and the polyester resin (B). Resin compositions whose refractive index difference satisfied a specific relationship had excellent results in all evaluation items of design, antifouling properties, printability, and drop strength. The polyester stretched container formed from this resin composition had a frosted-glass design, and had good stain resistance without impairing printability or drop strength.

Claims (4)

珪酸塩(A)と、ポリエステル樹脂(B)とを含み、
前記珪酸塩(A)は、平均粒子径が5~70μm、およびアスペクト比が10~90であって、かつ金属酸化物で表面被覆されていないマスコバイトであり、
珪酸塩(A)の屈折率(n)と、ポリエステル樹脂(B)の屈折率(N)との差が、下記式(1)を満たし、
ポリエステル系延伸容器中の珪酸塩(A)の含有率は0.2~1.0重量%であり、
延伸成形前の樹脂組成物に対し、軸方向の延伸倍率1.2~2.5倍、周方向の延伸倍率1.5~4.0倍に延伸成形してなる、
ポリエステル系延伸容

式(1)
|[珪酸塩(A)の屈折率(n)]-[ポリエステル樹脂(B)の屈折率(N)]|≦0.08
Contains a silicate (A) and a polyester resin (B),
The silicate (A) is muscovite with an average particle diameter of 5 to 70 μm and an aspect ratio of 10 to 90, and whose surface is not coated with a metal oxide,
The difference between the refractive index (n) of the silicate (A) and the refractive index (N) of the polyester resin (B) satisfies the following formula (1),
The content of silicate (A) in the polyester stretching container is 0.2 to 1.0% by weight,
Stretch-molded with a stretching ratio of 1.2 to 2.5 times in the axial direction and 1.5 to 4.0 times in the circumferential direction with respect to the resin composition before stretch-molding,
Polyester stretched container .

Formula (1)
| [Refractive index (n) of silicate (A)] - [Refractive index (N) of polyester resin (B)] | ≦0.08
前記珪酸塩(A)の屈折率(n)が、1.52~1.62であることを特徴とする請求項1記載のポリエステル系延伸容The polyester stretched container according to claim 1, wherein the silicate (A) has a refractive index (n) of 1.52 to 1.62. 前記珪酸塩(A)が、有機ケイ素化合物により表面被覆されてなる雲母であって、
表面被覆する前のマスコバイト100重量部に対して、有機ケイ素化合物0.1~2.5重量部で形成してなる被覆層を備えることを特徴とする請求項1または2記載のポリエステル系延伸容
The silicate (A) is a mica whose surface is coated with an organosilicon compound,
3. The stretched polyester according to claim 1, further comprising a coating layer formed of 0.1 to 2.5 parts by weight of an organosilicon compound based on 100 parts by weight of muscovite before surface coating. container .
前記有機ケイ素化合物が、ポリシロキサンであることを特徴とする請求項3記載のポリエステル系延伸容
4. The polyester stretching container according to claim 3, wherein the organosilicon compound is polysiloxane.
JP2017238249A 2017-12-13 2017-12-13 Polyester stretched container Active JP7350466B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017238249A JP7350466B2 (en) 2017-12-13 2017-12-13 Polyester stretched container
JP2023112968A JP2023126336A (en) 2017-12-13 2023-07-10 Master batch for polyester stretched container, master batch and manufacturing method of polyester stretched container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238249A JP7350466B2 (en) 2017-12-13 2017-12-13 Polyester stretched container

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023112968A Division JP2023126336A (en) 2017-12-13 2023-07-10 Master batch for polyester stretched container, master batch and manufacturing method of polyester stretched container

Publications (2)

Publication Number Publication Date
JP2019104524A JP2019104524A (en) 2019-06-27
JP7350466B2 true JP7350466B2 (en) 2023-09-26

Family

ID=67060962

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017238249A Active JP7350466B2 (en) 2017-12-13 2017-12-13 Polyester stretched container
JP2023112968A Pending JP2023126336A (en) 2017-12-13 2023-07-10 Master batch for polyester stretched container, master batch and manufacturing method of polyester stretched container

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023112968A Pending JP2023126336A (en) 2017-12-13 2023-07-10 Master batch for polyester stretched container, master batch and manufacturing method of polyester stretched container

Country Status (1)

Country Link
JP (2) JP7350466B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247652B2 (en) 1998-05-19 2002-01-21 株式会社さとうベネック Structure settlement control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773045A (en) * 1980-10-27 1982-05-07 Teijin Ltd Polyester container
JP2000309630A (en) * 1999-04-23 2000-11-07 Kanegafuchi Chem Ind Co Ltd Polyester resin composition and its production
EP3323590A4 (en) * 2015-07-15 2019-03-20 Toyo Seikan Group Holdings, Ltd. Multilayer preform and multilayer stretch blow molded container

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247652B2 (en) 1998-05-19 2002-01-21 株式会社さとうベネック Structure settlement control method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
「透明フィルム、シートの鮮明さを測定するアッベ数と屈折率の測定」、[online]、株式会社三井化学分析センター、[令和5年4月8日検索]、インターネット <URL:https://www.mcanac.co.jp/images/pdf/6b001.pdf>
トピー工業株式会社カタログ、「SYNTHETIC MICA 合成マイカ-工業用-」、トピー工業株式会社サイエンス事業部マイカ部、2010年10月25日改定
太田俊一、「特集 添加剤・フィラーの活用術 合成マイカフィラーグレード」、プラスチックス9月号、株式会社工業調査会、2010年9月1発行、第61巻、第9号、27~29ページ

Also Published As

Publication number Publication date
JP2019104524A (en) 2019-06-27
JP2023126336A (en) 2023-09-07

Similar Documents

Publication Publication Date Title
CN102449072B (en) Organosiloxane resin composition and laminate comprising same
TWI364367B (en) Siloxane-based coating, optical article and process for producing the siloxane-based coating
CA3102383C (en) Blow molded article with visual effects
ES2892291T3 (en) Concentrate for polyester-based materials
CN102838849A (en) Polyester resin composition having good reflectance, heat resistance, yellowing resistance and humidity resistance
CN113330067A (en) Cycloolefin polymer concentrate for polyester-based materials
Yong et al. Advances in polymer‐based matte coatings: A review
JP2006348299A (en) Glass fiber thermoplastic resin composite material
KR20150076534A (en) Thermoplastic resin composition
JP7350466B2 (en) Polyester stretched container
CN108070225B (en) Polyester articles having a simulated metallic or pearlescent appearance
CN101428478B (en) Light reflector and method for producing molded article for light reflector
JP5957746B1 (en) Light reflecting resin composition and molded body
US9120915B2 (en) Polyester composition comprising silica particles and use thereof for making packaging articles
JPH0491282A (en) Flooring material
CN103849136A (en) Reinforced polymer composition containing coated titanium dioxide particles
JP5519459B2 (en) Resin composition for artificial marble and artificial marble
WO2007040175A1 (en) Polyester resin composition and molded body made of same
JP2000313794A (en) Polyester resin composition
JPH0376652B2 (en)
JP2009149869A (en) Resin composition for molded article substitutive for ceramic ware and molded article comprising the same
JP7464384B2 (en) Metal printing ink
JPS6322338A (en) Cosmetic vessel having ground glass-like gloss and manufacture thereof
CN109666399A (en) Hardcoat film constituent and hardcoat film
JP2000248160A (en) Polyester resin composition,

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220222

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220222

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220309

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220315

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220408

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220412

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20230124

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230207

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230913

R151 Written notification of patent or utility model registration

Ref document number: 7350466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151