JP7348108B2 - バッテリユニット - Google Patents

バッテリユニット Download PDF

Info

Publication number
JP7348108B2
JP7348108B2 JP2020038470A JP2020038470A JP7348108B2 JP 7348108 B2 JP7348108 B2 JP 7348108B2 JP 2020038470 A JP2020038470 A JP 2020038470A JP 2020038470 A JP2020038470 A JP 2020038470A JP 7348108 B2 JP7348108 B2 JP 7348108B2
Authority
JP
Japan
Prior art keywords
protection
group
battery
protective
fets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020038470A
Other languages
English (en)
Other versions
JP2021140963A (ja
Inventor
敦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2020038470A priority Critical patent/JP7348108B2/ja
Publication of JP2021140963A publication Critical patent/JP2021140963A/ja
Application granted granted Critical
Publication of JP7348108B2 publication Critical patent/JP7348108B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、バッテリユニットに係り、特に、バッテリモジュールを稼働した状態のままバッテリモジュールの保護機能の故障診断を行うことができるバッテリユニットに関する。
[従来の技術]
近年、あらゆる製品が小型化して携帯する機会が増えたことにより、電源異常時に動作するUPS(Uninterruptible Power Supply:無停電電源装置)等でバッテリが広く使用されている。
また、今後の人口減少に伴い、導入される自動運転の無人機等にも同様の理由でバッテリが搭載され、市場が拡大することが予想される。
バッテリは、使い切りの一次電池、繰り返し充放電が可能な二次電池の2種類がある。二次電池は、特に一般ユーザが扱う機会が多い。
耐環境性能が優先される使い方においては、安全性が高いニッケル水素セルを用いたバッテリの使用も考えられるが、小型化・携帯性及び長時間使用の利点から、エネルギー密度が高いリチウムイオンセルが一般的に普及している。
但し、リチウムイオンセルは、エネルギー密度が高いため、短絡故障が発生した場合に、発火等に至る恐れがあり、使用者に対して危害を及ぼすことがある。そのため、安全機構(保護回路)は必須となっている。
正常動作しているバッテリモジュールは、通常負荷側に電力を供給する場合は放電動作となり、受電する場合は充電動作となる。
バッテリと負荷との間(バッテリの出力側)には、負荷への電力の供給を異常時に停止するスイッチ機能を有する保護用FET(Field Effect Transistor:電界効果トランジスタ)が設けれている。
充放電時、保護用FETは正常に動作している場合、ゲート側はON状態となり、ドレインとソースの間は導通している状態を保つ。
バッテリモジュールに搭載されている保護IC(Integrated Circuit)が保護用FETを制御するものであり、これら保護用部品から取得される情報(電流、電圧、温度等)を元に、バッテリの異常状態を検知すると、保護用FETをOFFにする。これにより、充放電機能をOFFにし、安全状態を保つよう動作する。
保護用FETが正常であれば、異常時に保護用FETをOFFにすることで、安全状態に移行することが可能であるが、保護用FET自体が故障している状態では、保護ICが保護用FETをOFFにする制御を行っても、回路上はON状態のままとなってしまい、装置の異常発生時に電力供給を停止することができなくなってしまう。
[関連技術]
尚、関連する先行技術として、特開2013-084605号公報「電池セル用集積回路」(特許文献1)がある。
特許文献1には、車両用電池システムにおいて、過充電、過放電の診断を行って電池セルの状態を監視し、システム全体の信頼性を向上させることが示されている。
特開2013-084605号公報
このように、従来のバッテリの保護回路では、稼動した状態のまま保護用FET等の保護機能用の部品(保護用部品)の故障診断を行うことができず、利便性に欠けるという問題点があった。
また、従来のバッテリの保護回路では、保護用部品の故障を診断するのに部品数が増加して構成が複雑になり、更に、保護用部品の故障を診断した場合に、当該診断を通知するものとはなっていないものである。
また、複数の保護用部品の故障を診断するのに時間が掛かるものとなっていた。
尚、特許文献1には、バッテリモジュールを稼働した状態のままで保護用部品の故障診断を容易に行うことは記載がない。
本発明は上記実情に鑑みて為されたもので、バッテリモジュールを稼働した状態のままバッテリモジュールの保護機能の故障診断を容易に行うことができるバッテリユニットを提供することを目的とする。
上記従来例の問題点を解決するための本発明は、3つ以上の複数のバッテリモジュールを備えるバッテリユニットであって、バッテリモジュール毎に当該バッテリモジュールの安全性を保持する保護機能を有する保護用部品と、複数のバッテリモジュールに対応する複数の保護用部品を制御する制御部とを備え、制御部が、複数の保護用部品を、少なくとも一つが重複する複数のグループに分けて、当該グループ毎に故障診断処理を行って、故障した保護用部品が存在するグループを特定することを特徴とする。
本発明は、上記バッテリユニットにおいて、制御部が、グループ毎の故障診断処理により、特定のグループに故障した保護用部品が存在すると判断した場合に、特定のグループ内の複数の保護用部品を、少なくとも一つが重複する複数の更に小さいグループに分けて、当該小さいグループ毎に故障診断処理を行って、故障した保護用部品を特定して通知することを特徴とする。
本発明は、上記バッテリユニットにおいて、制御部が、定期的にグループ毎の故障診断処理を行って監視し、故障した保護用部品が存在するグループを特定すると、当該特定したグループ内の複数の保護用部品を、少なくとも一つが重複する複数の更に小さいグループに分けて、当該小さいグループで故障診断処理を行い、故障した保護用部品を特定することを特徴とする。
本発明によれば、制御部が、複数のバッテリモジュール毎に当該バッテリモジュールの安全性を保持する保護機能を有する複数の保護用部品を、少なくとも一つが重複するグループに分けて、当該グループ毎に故障診断処理を行って、故障した保護用部品が存在するグループを特定するバッテリユニットとしているので、バッテリモジュールを稼働した状態のままバッテリモジュールの保護機能の故障診断を容易に行うことができる効果がある。
第1のバッテリユニットの回路構成概略図である。 第2のバッテリユニットの回路構成概略図である。 第3のバッテリユニットの回路構成概略図である。 複数のバッテリモジュールに対する故障診断手順を説明する概略図である。 本ユニット装置における動作モードの説明図である。
本発明の実施の形態について図面を参照しながら説明する。
[実施の形態の概要]
本発明の実施の形態に係るバッテリユニット(本ユニット)は、バッテリ駆動中であっても、保護用部品の故障診断を行う制御部を備えたものであり、装置を停止させることなく容易に故障診断を実現できるものである。つまり、本ユニットは、故障診断機能を備えたバッテリユニットである。
次に、本ユニットについて、具体的に第1~3の実施形態のバッテリユニット(第1~3のバッテリユニット)を説明する。
[第1のバッテリユニット:図1]
第1のバッテリユニットについて図1を参照しながら説明する。図1は、第1のバッテリユニットの回路構成概略図である。
第1のバッテリユニットは、図1に示すように、1つのバッテリモジュールを搭載し、2つの保護回路を有するものであり、バッテリモジュールであるバッテリ1aと、保護回路としての保護用FET2a,2bと、保護IC3aと、電流センス抵抗4aと、スイッチ(SW)5a,5bと、電流センス抵抗6a,6bと、整流ダイオード7a,7bと、制御部8と、負荷9とを備えている。
また、第1のバッテリユニットにおいて、バッテリ1aのマイナス端子(-端子)側に電流センス抵抗4aの一端が接続し、他端が接地されている。
バッテリ1aのプラス端子(+端子)が、保護用FET2a,2bのソース端子に接続し、そのドレイン端子が電流センス抵抗6a,6bを介して整流ダイオード7a,7bのアノードに接続されている。また、保護用FET2a,2bのゲート端子にはSW5a,5bの出力端子が接続されている。
保護IC3aは、バッテリ1aのプラス端子とマイナス端子、電流センス抵抗4aの他端に接続して、それら電圧を入力し、電圧値を検知すると共に、電流センス抵抗4aを流れる電流値を検出している。
また、保護IC3aは、制御部8にも接続し、制御部8の制御を受けるようになっている。具体的な制御は後述する。
SW5a,5bは、保護IC3aから電源が供給され、制御部8からの制御により保護用FET2a,2bのゲート端子のオン/オフを行う。
また、整流ダイオード7a,7bのカソード側は結合され、負荷9に電流が供給される。
制御部8は、負荷9の内部に設けているが、別個の構成であってもよい。別個の構成の場合は、負荷9に供給される電流を分岐して制御部8に入力する構成とする。
制御部8は、保護IC3aとの間で入出力を行い、電流センス抵抗6a,6bを流れる電流値を検知し、SW5a,5bにオン/オフ切替の制御指示を出力している。
また、制御部8は、保護用部品に対する故障診断処理を行い、故障を検出すると、使用者に故障と診断された保護用部品を特定して通知する。
[第1のバッテリユニットの動作]
第1のバッテリユニットは、バッテリ1aが保護IC3aにより保護される構造である。
具体的には、保護IC3aがバッテリ1aに流れる電流を電流センス抵抗4aで測定・モニタし、電流が閾値と比べて多いと判断すると、制御部8を介して保護用FET2a,2bをオフにすることで、バッテリ1aからの電源供給を止め、保護機能を動作させる。
保護用FET2a,2bは、SW5a,5bが制御部8からの指示でオン/オフの制御が為される。
尚、保護用部品の正常/異常を監視するために、制御部8が保護用FET2a,2bをオフにして保護機能を動作させることがある。この動作は後述する。
第1のバッテリユニットの動作の詳細を説明すると、通常、保護用FET2a,2bの一方がオン状態(導通状態)であり、例えば、保護用FET2aをオン状態にして負荷9に電源が供給される。
負荷9が短絡し、電流センス抵抗4aを流れる電流が通常より多くなったことを保護IC3aが検知すると、制御部8が、SW5a,5bをオフ(切り)にし、保護用FET2a,2bをオフ(非導通状態)として、負荷9への電源供給が停止する。この時、保護用FET2a,2bの後段に接続される電流センス抵抗6a,6bを流れる電流を制御部8がモニタする。
[故障診断処理]
次に、制御部8での保護用部品の故障診断処理について説明する。
バッテリ1aの電流センス抵抗4aを流れる電流値をC、電流センス抵抗6aを流れる電流値をA、電流センス抵抗6bを流れる電流値をBとすると、制御部8で「A+B=C」と判断されれば、保護用FET2a,2bは正常に動作しており、故障診断の結果、正常と判断される。
次に、制御部8が、「A+B≠C」と判断すると、保護用FET2a又は保護用FET2bが故障と診断する。但し、電流センス抵抗4aを流れる電流Cが正常値であることが前提である。
そして、制御部8が、「A+B≠C」と判断した場合には、装置に定常的に流れる電流値(例えば1アンペア)で正常に動作している際にモニタしたA+BとCの電流値を比較する。AとBの電流が合計して正常範囲内であることを判断するために、制御部8内に閾値を保持しておく必要がある。
例えば、A=B=0.5アンペアの場合、合計で1アンペアとなり、Cの電流値が1アンペアではないので、電流センス抵抗4aを流れるCの電流値がNGであることが分かる。
つまり、電流センス抵抗4aの故障可能性が高いと判断でき、制御部8が、電流センス抵抗4aの故障可能性を使用者に通知する。
また、A≠Bの場合は、A又はBの電流値がNGとなるため、保護用FET2a又は保護用FET2bが故障している可能性があり、電流が流せない状態であることが分かる。この場合も、制御部8が、使用者に保護用FET2a又は保護用FET2bの故障の可能性を通知する。
次に、制御部8が、モニタしているA又はBの電流値が定常電流の正常範囲から外れていると判断した場合に、正常範囲から外れている電流値の経路に接続するSW5a又はSW5bをオフにして、再度、一方の電流値が電流値Cと一致することを確認する。
例えば、電流値B<電流値Aであれば、電流値Bが流れる経路のSW5bをオフにすることで、電流値A≒電流値Cとなることを確認できれば、電流値Bが流れる経路の保護用FET2bが故障している可能性が高いと判断でき、制御部8が、使用者に保護用FET2bの故障の可能性を通知する。
このように、第1のバッテリユニットでは、一方の保護用FETが故障した場合に、他方の保護用FETで動作できるので、動作状態を継続しながら故障診断処理を行い、使用者に故障の可能性を通知できるものである。
[第2のバッテリユニット:図2]
次に、第2のバッテリユニットについて図2を参照しながら説明する。図2は、第2のバッテリユニットの回路構成概略図である。
第2のバッテリユニットは、図2に示すように、2つのバッテリモジュールを搭載し、それに対応して2つの保護回路を有するものであり、バッテリ1b,1cと、保護用FET2c,2dと、保護IC3b,3cと、電流センス抵抗4b,4cと、整流ダイオード7c,7dと、制御部8と、負荷9とを備えている。
また、第2のバッテリユニットにおいて、バッテリ1b,1cのマイナス端子(-端子)側に電流センス抵抗4b,4cの一端が接続し、他端が接地されている。
バッテリ1b,1cのプラス端子(+端子)が、保護用FET2c,2dのソース端子に接続し、そのドレイン端子が整流ダイオード7c,7dのアノードに接続されている。また、保護用FET2c,2dのゲート端子には保護IC3b,3cが接続されている。
保護IC3b,3cは、バッテリ1b,1cのプラス端子とマイナス端子、電流センス抵抗4b,4cの他端に接続して、それら電圧を入力し、電圧値を検知すると共に、電流センス抵抗4b,4cを流れる電流値を検出している。
また、保護IC3b,3cは、制御部8にも接続し、制御部8の制御を受けるようになっている。具体的な制御は後述する。
そして、整流ダイオード7c,7dのカソード側は結合され、負荷9の一端に電流が供給される。また、負荷9の他端は、接地されている。
制御部8は、負荷9の内部に設けているが、別個の構成であってもよい。
制御部8は、保護IC3b,3cとの間で入出力を行い、保護用FET2c,2dのゲート端子に出力する電圧を制御し、保護用FET2c,2dの動作を制御している。
[第2のバッテリユニットの動作]
第2のバッテリユニットにおいて、制御部8による保護IC3b,3cを介した保護用FET2c,2dのオン/オフの制御は異常時の保護動作(保護用FET2c,2dのオフ動作)を可能としている。
第2のバッテリユニットが正常に稼働している場合に、バッテリ1b,1cはそれぞれ放電を行っているが、故障診断時は、制御部8から保護IC3b,3cに制御信号を送信することで保護用FET2c,2dのオフ制御を行うことができる。
例えば、保護用FET2cの故障診断時は、保護用FET2cをオンした状態での電流センス抵抗4bを流れる電流を保護IC3bでモニタする。このモニタした電流値をデータ1(DATA1)とする。更に、保護用FET2cをオフにした状態で電流センス抵抗4bを流れる電流値をモニタする。このモニタした電流値をデータ2(DATA2)とする。取得したデータの差分が誤差を含む電流値以下にならないことを確認する。
つまり、
(DATA1-DATA2)-誤差を含む電流値>0 ならば「正常」
(DATA1-DATA2)-誤差を含む電流値≦0 ならば「異常(故障)」
と制御部8が、診断し、故障の場合は使用者に保護用FET2cの故障を通知する。尚、誤差を含む電流値は、予め測定等された特定値である。
[第3のバッテリユニット:図3]
次に、第3のバッテリユニットについて図3を参照しながら説明する。図3は、第3のバッテリユニットの回路構成概略図である。
第3のバッテリユニットは、バッテリモジュールが3個以上動作し、故障診断を行うものである。尚、図3では、3つのバッテリモジュールを搭載した例を示している。
第3のバッテリユニットは、図3に示すように、3つのバッテリモジュールを搭載し、それに対応して3つの保護回路を有するものであり、バッテリ1d,1e,1fと、保護用FET2e,2f、2gと、保護IC3d,3e,3fと、電流センス抵抗4d,4e,4f,4gと、整流ダイオード7e,7f、7gと、制御部8と、負荷9とを備えている。
また、第3のバッテリユニットにおいて、バッテリ1d,1e,1fのマイナス端子(-端子)側に電流センス抵抗4d,4e,4fの一端が接続し、他端が接地されている。
バッテリ1d,1e,1fのプラス端子(+端子)が、保護用FET2e,2f,2gのソース端子に接続し、そのドレイン端子が整流ダイオード7e,7f,7gのアノードに接続されている。また、保護用FET2e,2f,2gのゲート端子には保護IC3d,3e,3fが接続されている。
保護IC3d,3e,3fは、バッテリ1d,1e,1fのプラス端子とマイナス端子、電流センス抵抗4d,4e,4fの他端に接続して、それら電圧を入力し、電圧値を検知すると共に、電流センス抵抗4d,4e,4fを流れる電流値を検出している。
また、保護IC3d,3e,3fは、制御部8にも接続し、制御部8の制御を受けるようになっている。具体的な制御は後述する。
そして、整流ダイオード7e,7f,7gのカソード側は結合され、負荷9の一端に電流が供給される。また、負荷9の他端は、接地されている。
制御部8は、負荷9とは別個の構成としているが、負荷9の内部に設ける構成であってもよい。
制御部8は、保護IC3d,3e,3fとの間で入出力を行い、保護用FET2e,2f,2gのゲート端子に出力する電圧を制御し、保護用FET2e,2f,2gの動作を制御している。
また、制御部8は、電流センス抵抗4gを流れる全体の電流の電流値を入力し、故障診断に利用している。具体的には、図4を参照しながら説明する。
[第3のバッテリユニットの動作]
第3のバッテリユニットでの動作は、第2のバッテリユニットと同様であり、故障診断処理も同様である。但し、バッテリモジュールが複数あるため、グループに分けてグループ内では一斉に診断処理を行う。
例えば、図3では、保護IC3dと保護IC3eを第1のグループとし、保護IC3eと保護IC3fを第2のグループとし、グループ単位で故障診断処理を行い、故障部品が存在するグループを特定し、故障部品を絞り込むようにしている。
ここで、グループに含まれる保護ICは重複させる必要があり、重複させて診断を行う保護用FETの個数と、各グループで診断を行う保護用FETの個数をほぼ同数とする。これにより、故障部品があった場合に、それを特定するまでに迅速に絞り込むことができる。
[複数のバッテリモジュールに対する故障診断手順:図4]
次に、複数のバッテリモジュールを搭載した構成に対する故障診断手順について図4を参照しながら説明する。図4は、複数のバッテリモジュールに対する故障診断手順を説明する概略図である。
図4では、装置全体でバッテリモジュールを9個搭載し、その保護用FETをそれぞれ保護FET(1)~(9)とすると、グループを以下のように分ける。
グループA:保護FET(1)~(6)
グループB:保護FET(4)~(9)
[故障診断手順1(1)]
まず、全ての保護FET(1)~(9)がオン状態のときの全体の電流値を電流センス抵抗4gで測定し、全体合計電流値I(1-9)として制御部8が記憶しておく。
そして、グループAを故障診断の対象とし、制御部8が、グループAに属する保護ICを制御して保護FET(1)~(6)をオフにし、グループAに属さない保護FET(7)~(9)をオンにし、電流センス抵抗4gで保護FET(7)~(9)オン時の電流値I(7-9)を測定して記憶する。
次に、全体合計電流値I(1-9)と電流値I(7-9)との差分を演算し、その差分が定常電流値Ir1と一致するか否かを判定する。定常電流値とは、保護FET(1)~(9)の全てに故障がない場合(全て正常の場合)に得られた差分電流値である。
そして、演算した差分[I(1-9)-I(7-9)]=Ir1の場合、グループAの保護FET(1)~(6)を正常と判定する。
[I(1-9)-I(7-9)]≠Ir1の場合、グループAの保護FET(1)~(6)の中に故障した保護FETが含まれると判定する。
[故障診断手順1(2)]
同様に、故障診断の対象をグループBとして診断処理を行うと、グループBの保護FET(4)~(9)が正常であること、またはグループBの保護FET(4)~(9)の中に故障した保護FETが含まれることが判定される。
グループAが正常であり、かつ、グループBが正常であれば、2回の診断処理で故障した保護用部品がないと診断できる。
[故障診断手順2(1)]
上記手順1(1)と手順1(2)で故障部品が存在すると判定された場合で、グループAが正常の場合は、グループAに属さない保護FET(7)~(9)を故障診断の対象とし、更に、保護FET(7)~(8)のグループ(グループ7-8)と保護FET(8)~(9)のグループ(グループ8-9)の2つに分ける。
そして、制御部8が、グループAとグループ7-8に属する保護ICを制御して保護FET(1)~(8)をオフにし、グループAとグループ7-8に属さない保護FET(9)をオンにし、電流センス抵抗4gで保護FET(9)オン時の電流値I(9)を測定して記憶する。
次に、全体合計電流値I(1-9)と電流値I(9)との差分を演算し、その差分が定常電流値Ir2と一致するか否かを判定する。定常電流値Ir2も正常時に予め測定された値である。
差分[I(1-9)-I(9)]=Ir2であれば、保護FET(1)~(8)は正常であり、保護FET(9)が故障部品と判定できる。ここまでで、3回の故障診断処理により故障部品を特定できる。
また、差分[I(1-9)-I(9)]≠Ir2であれば、保護FET(1)~(6),(9)は正常であり、保護FET(7)~(8)が故障部品と判定できる。この後は、保護FET(7)又は保護FET(8)のみをオンにして全体合計電流値I(1-9)との差分を演算し、定常電流値Ir2と一致するか否かを判断して故障診断し、故障部品を特定する。ここまでで、4回の故障診断処理により故障部品を特定できる。
[故障診断手順2(2)]
上記手順1(1)と手順1(2)で故障部品が存在すると判定された場合で、グループBが正常の場合は、グループBに属さない保護FET(1)~(3)を故障診断の対象とし、更に、保護FET(1)~(2)のグループ(グループ1-2)と保護FET(2)~(3)のグループ(グループ2-3)の2つに分けて、上記と同様に故障診断処理を行う。
[故障診断手順2(3)]
上記手順1(1)と手順1(2)で故障部品が存在すると判定された場合で、グループAに故障部品が含まれ、かつ、グループBにも故障部品が含まれる場合は、グループAとグループBが重複する保護用部品に故障部品が存在することになる。
この場合、その重複する部分である保護FET(4)~(6)を故障診断の対象とし、更に、保護FET(4)~(5)のグループ(グループ4-5)と保護FET(5)~(6)のグループ(グループ5-6)の2つに分けて故障診断処理を行う。
具体的には、制御部8が、グループAとグループ7-8に属する保護ICを制御して保護FET(1)~(5)(7)~(9)をオフにし、保護FET(6)をオンにし、電流センス抵抗4gで保護FET(6)オン時の電流値I(6)を測定して記憶する。
この後は、全体合計電流値I(1-9)と電流値I(6)の差分を演算し、定常電流値Ir2と一致するか否かを判断して故障診断し、故障部品を特定する。
図4では、保護FET(5)が故障部品と特定された例を示している。9個の保護用部品で4回の診断処理で故障部品を特定できるものである。
[動作モード:図5]
次に、本ユニットにおける動作モードについて図5を参照しながら説明する。図5は、本ユニットにおける動作モードの説明図である。
図5に示すように、本装置は、全て運用中でモード変更を行うものであり、通常モードで、一定時間間隔(例えば1時間毎)で装置の故障状態の監視を行う定期監視モードになる。
定期監視モードでは、故障診断手順1(1),1(2)を行い、故障があるか否かを判断する。故障がなければ、通常モードに戻る。
故障があれば、故障個所特定モードに移行し、故障診断手順2(1),2(2),2(3)を行って、故障個所を特定し、使用者にエラー表示を行う。エラー表示としては、ログの表示、ランプ(LED)表示等を行い、通常モードに戻る。
このようにして、本装置でのモード変更が為される。
[実施の形態の効果]
本ユニットによれば、複数の保護用部品を稼働させた状態で、保護用部品の保護機能を診断して故障部品を使用者に通知するようにしているので、故障部品を容易に把握できる効果がある。
[第1のバッテリユニットの効果]
第1のバッテリユニットによれば、1つのバッテリモジュールに2系統の保護用部品を備えて、一方の保護用部品で稼動させた状態で、他方の保護用部品で故障診断を行うようにしているので、バッテリモジュールを稼働した状態のままで故障診断できる効果がある。
[第2のバッテリユニットの効果]
第2のバッテリユニットによれば、2つのバッテリモジュールにそれぞれの保護用部品を備えて、一方の保護用部品で稼動させた状態で、他方の保護用部品で故障診断を行うようにしているので、バッテリモジュールを稼働した状態のままで故障診断できる効果がある。
[第3のバッテリユニットの効果]
第3のバッテリユニットによれば、3つ以上の複数のバッテリモジュールにそれぞれの保護用部品を備えて、保護用部品を重複する2つのクループに分けて、一部の保護用部品で稼動させた状態で、その他の保護用部品の故障診断を行うようにしているので、バッテリモジュールを稼働した状態のままで故障診断できる効果がある。
本発明は、バッテリモジュールを稼働した状態のままバッテリモジュールの保護機能の故障診断を容易に行うことができるバッテリユニットに好適である。
1a,1b,1c,1d,1e,1f…バッテリ、 2a,2b,2c,2d,2e,2f,2g…保護用FET、 3a,3b,3c.3d,3e,3f…保護IC、 4a,4b,4c,4d,4e,4f,4g…電流センス抵抗、 5a,5b…スイッチ(SW)、 6a,6b…電流センス抵抗、 7a,7b,7c,7d,7e,7f,7g…整流ダイオード、 8…制御部、 9…負荷

Claims (3)

  1. 3つ以上の複数のバッテリモジュールを備えるバッテリユニットであって、
    前記バッテリモジュール毎に当該バッテリモジュールの安全性を保持する保護機能を有する保護用部品と、前記複数のバッテリモジュールに対応する複数の前記保護用部品を制御する制御部とを備え、
    前記制御部が、前記複数の保護用部品を、少なくとも一つが重複する複数のグループに分けて、当該グループ毎に故障診断処理を行って、故障した保護用部品が存在するグループを特定することを特徴とするバッテリユニット。
  2. 制御部が、グループ毎の故障診断処理により、特定のグループに故障した保護用部品が存在すると判断した場合に、前記特定のグループ内の複数の保護用部品を、少なくとも一つが重複する複数の更に小さいグループに分けて、当該小さいグループ毎に故障診断処理を行って、故障した保護用部品を特定して通知することを特徴とする請求項1記載のバッテリユニット。
  3. 制御部が、定期的にグループ毎の故障診断処理を行って監視し、故障した保護用部品が存在するグループを特定すると、当該特定したグループ内の複数の保護用部品を、少なくとも一つが重複する複数の更に小さいグループに分けて、当該小さいグループで故障診断処理を行い、前記故障した保護用部品を特定することを特徴とする請求項2記載のバッテリユニット。
JP2020038470A 2020-03-06 2020-03-06 バッテリユニット Active JP7348108B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020038470A JP7348108B2 (ja) 2020-03-06 2020-03-06 バッテリユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038470A JP7348108B2 (ja) 2020-03-06 2020-03-06 バッテリユニット

Publications (2)

Publication Number Publication Date
JP2021140963A JP2021140963A (ja) 2021-09-16
JP7348108B2 true JP7348108B2 (ja) 2023-09-20

Family

ID=77668895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038470A Active JP7348108B2 (ja) 2020-03-06 2020-03-06 バッテリユニット

Country Status (1)

Country Link
JP (1) JP7348108B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023548688A (ja) * 2021-09-30 2023-11-20 エルジー エナジー ソリューション リミテッド バッテリーの保護方法およびシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183075A (ja) 2003-12-17 2005-07-07 Toyota Motor Corp 蓄電機構の異常判定装置
JP2019517102A (ja) 2016-09-09 2019-06-20 エルジー・ケム・リミテッド バッテリーパック故障検出装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016082667A (ja) * 2014-10-15 2016-05-16 株式会社豊田自動織機 電源装置及び異常検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183075A (ja) 2003-12-17 2005-07-07 Toyota Motor Corp 蓄電機構の異常判定装置
JP2019517102A (ja) 2016-09-09 2019-06-20 エルジー・ケム・リミテッド バッテリーパック故障検出装置および方法

Also Published As

Publication number Publication date
JP2021140963A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
JP3908077B2 (ja) 直流バックアップ電源装置とその診断方法
KR101473397B1 (ko) 배터리 팩의 전류센서 이상 진단 장치 및 방법
KR101213480B1 (ko) 배터리 보호회로 및 이의 제어방법
US20090206841A1 (en) Intelligent fault-tolerant battery management system
JP5717599B2 (ja) 蓄電池装置及び蓄電池装置の点検保守方法
US9539963B2 (en) Battery system and method of operating the battery system
KR20180023140A (ko) 파워릴레이 어셈블리의 고장제어 시스템 및 그 제어방법
KR101745167B1 (ko) 불량 배터리 셀 검출 방법 및 이를 실행하는 시스템
US20160233560A1 (en) Power Storage System and Maintenance Method of the Power Storage System
JP6733783B2 (ja) 電源装置、及び、電源装置の異常を診断する診断方法
US11418042B2 (en) Battery management unit
JP7348108B2 (ja) バッテリユニット
CN114256811B (zh) 电池保护装置和包括其的电池***
US20220285803A1 (en) Safety protection device and method for battery test system
KR101065562B1 (ko) 셀 밸런싱 스위치의 고장 진단 장치 및 방법
KR20160002614A (ko) 셀 밸런싱 회로의 고장 진단 장치 및 방법
EP3680955B1 (en) Battery system
CN116298853A (zh) 继电器检测电路、电池管理***、电池模组和储能***
KR101147937B1 (ko) 자가복구형 배터리 및 이의 제어방법, 자가복구형 배터리 시스템
KR20200088153A (ko) 전류 센서 진단 장치 및 이를 포함하는 배터리 팩
JP2013074715A (ja) 充電装置
WO2013118401A1 (ja) 電池制御装置
KR20200108587A (ko) 에너지 저장 장치를 보호하기 위한 이중화 보호 장치 및 이를 갖는 에너지 저장 시스템
JP2018196293A (ja) 組電池の故障検出装置
WO2024135108A1 (ja) 複合電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230907

R150 Certificate of patent or registration of utility model

Ref document number: 7348108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150