JP7347795B2 - Organic solvent concentrator and method for determining deterioration of organic solvent concentrator - Google Patents

Organic solvent concentrator and method for determining deterioration of organic solvent concentrator Download PDF

Info

Publication number
JP7347795B2
JP7347795B2 JP2019226067A JP2019226067A JP7347795B2 JP 7347795 B2 JP7347795 B2 JP 7347795B2 JP 2019226067 A JP2019226067 A JP 2019226067A JP 2019226067 A JP2019226067 A JP 2019226067A JP 7347795 B2 JP7347795 B2 JP 7347795B2
Authority
JP
Japan
Prior art keywords
voc
deterioration
rotor
organic solvent
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226067A
Other languages
Japanese (ja)
Other versions
JP2021096096A (en
Inventor
章裕 藤
早紀 田中
香名江 下茂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2019226067A priority Critical patent/JP7347795B2/en
Priority to TW109104963A priority patent/TW202124888A/en
Priority to KR1020200033695A priority patent/KR20210076806A/en
Priority to CN202010453586.2A priority patent/CN112973371B/en
Publication of JP2021096096A publication Critical patent/JP2021096096A/en
Application granted granted Critical
Publication of JP7347795B2 publication Critical patent/JP7347795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Treating Waste Gases (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、有機溶剤濃縮装置の長期使用等により性能低下につながる、劣化の進行度を判定する方法に関するものである。 The present invention relates to a method for determining the degree of deterioration that leads to performance deterioration due to long-term use of an organic solvent concentrator.

近年、地球規模で大気汚染が問題となっているが、トルエン等のVOC(揮発性有機化合物、Volatile Organic Compounds、以下 VOC)もその一つであり、塗装工程や印刷工場等から多く発生する。そのまま排出するとVOCそのものが有害であるばかりでなく、PM2.5の原因物質でもあり重大な健康被害問題につながる可能性がある。 In recent years, air pollution has become a problem on a global scale, and VOCs (Volatile Organic Compounds, hereinafter referred to as VOCs) such as toluene are one of them, and are generated in large quantities from painting processes, printing factories, etc. If emitted as is, VOCs themselves are not only harmful, but also cause PM2.5, which can lead to serious health problems.

低濃度のVOCを含有する排ガスの処理設備(燃焼設備や回収設備)は、処理風量が大きくなると設備が非常に大規模となるばかりでなく、膨大なランニングコストも必要になるという問題がある。これに対して排ガス処理設備の前段機器としてのVOC濃縮装置は、低濃度・大風量のVOC排出ガスを高濃度・低風量に濃縮回収できるので、処理設備全体の設備費およびランニングコストを大幅に削減でき、効率のよいVOC処理を実現することができる。 Processing equipment (combustion equipment and recovery equipment) for exhaust gas containing low concentrations of VOCs has the problem that when the processing air volume becomes large, the equipment not only becomes extremely large-scale, but also requires enormous running costs. On the other hand, VOC concentrators, which are used as front-stage equipment for exhaust gas treatment equipment, can concentrate and recover low-concentration, large-airflow VOC exhaust gases into high-concentration, low-airflow volumes, significantly reducing equipment costs and running costs for the entire treatment equipment. It is possible to realize efficient VOC treatment.

このようなVOC濃縮技術の一つとしてハニカム吸着技術がある。VOC濃縮装置の一つとして、排ガス中のVOCを選択的に吸着し、濃縮するハニカムロータ式VOC濃縮装置がある。図1はVOC濃縮回収フローの一例である。VOC吸着ハニカムロータ1は処理ゾーン2、再生ゾーン3、冷却ゾーン4に区分される。VOC吸着ハニカムロータ1が回転することで、VOCを連続的に吸着除去・濃縮脱着できる。処理ガス中のVOCはVOC吸着ハニカムロータ1の処理ゾーン2を通過する際に、吸着除去される。吸着したハニカムが再生ゾーン3へ回転移行すると、吸着されたVOCは処理風量の1/5~1/15の風量の摂氏200℃(以下、温度は「摂氏」とする)前後の熱風で5~15倍に濃縮脱着され、燃焼処理装置(図示せず)に送られる。再生ゾーン3を通過したハニカムは冷却ゾーン4に移動し、冷却され、再び処理ゾーン2へ移行する。冷却ゾーン4を通過した空気は、再生ヒータ7で加熱されてVOC脱着用の空気として使用される。 Honeycomb adsorption technology is one of such VOC concentration technologies. As one type of VOC concentrator, there is a honeycomb rotor type VOC concentrator that selectively adsorbs and concentrates VOC in exhaust gas. Figure 1 is an example of a VOC concentration and recovery flow. The VOC adsorption honeycomb rotor 1 is divided into a treatment zone 2, a regeneration zone 3, and a cooling zone 4. By rotating the VOC adsorption honeycomb rotor 1, VOC can be continuously adsorbed, removed, concentrated and desorbed. VOCs in the processing gas are adsorbed and removed when passing through the processing zone 2 of the VOC adsorption honeycomb rotor 1. When the adsorbed honeycomb rotates to the regeneration zone 3, the adsorbed VOCs are removed by hot air at around 200 degrees Celsius (hereinafter referred to as "Celsius") with an air volume of 1/5 to 1/15 of the processing air volume. It is concentrated and desorbed 15 times and sent to a combustion treatment device (not shown). The honeycomb that has passed through the regeneration zone 3 moves to the cooling zone 4, where it is cooled, and then moves to the treatment zone 2 again. The air that has passed through the cooling zone 4 is heated by a regeneration heater 7 and used as air for VOC desorption.

通常、VOC吸着ハニカムロータは疎水性ゼオライトが担持されており、200℃前後の熱風により再生するため、吸着と再生を繰り返して使用することが可能である。一方、排ガス中のVOC組成は印刷、電子部品製造、半導体製造、液晶製造、塗装ブースや大型研究設備の排ガス処理等に含まれているため多様である。多様なVOCの吸脱着を繰り返すことで、VOC吸着ハニカムロータは長期使用等により劣化が進行し、性能が徐々に低下する。 Usually, a VOC adsorption honeycomb rotor supports hydrophobic zeolite and is regenerated by hot air of around 200°C, so it can be used repeatedly for adsorption and regeneration. On the other hand, the composition of VOCs in exhaust gas is diverse because it is included in printing, electronic component manufacturing, semiconductor manufacturing, liquid crystal manufacturing, exhaust gas treatment from painting booths and large research facilities, and the like. By repeatedly adsorbing and desorbing various VOCs, the VOC adsorption honeycomb rotor progresses in deterioration due to long-term use, and its performance gradually decreases.

一般的に吸着材の劣化現象には、以下の原因が考えられる。
(a)半融現象による細孔の部分的消失
(b)吸着材表面および細孔内のカーボン、重合物、化合物等による被覆または閉塞
(c)化学反応による結晶細孔の減少
VOC吸着ハニカムロータの性能劣化原因の多くは、(b)による。使用塗料やインク等の成分に重合する成分が含まれている場合はもちろんのこと、特に重合しないVOCでも、長期間の吸脱着の繰り返しによって、徐々に化学反応を起こして固体化・蓄積していき、最終的には脱着不能な物質に変化していく可能性も考えられる。
Generally, the following causes can be considered for the deterioration phenomenon of adsorbents.
(a) Partial disappearance of pores due to smelting phenomenon (b) Covering or clogging of adsorbent surface and pores with carbon, polymers, compounds, etc. (c) Reduction of crystal pores due to chemical reaction VOC adsorption honeycomb rotor Most of the causes of performance deterioration are due to (b). Not only can the paints and inks used contain components that polymerize, but even non-polymerizable VOCs can gradually cause chemical reactions to solidify and accumulate due to repeated adsorption and desorption over a long period of time. There is also the possibility that it will eventually change into a substance that cannot be removed.

VOC吸着ハニカムロータの劣化原因は、実使用条件(稼働期間や有機溶剤の使用量、腐食ガス含有等)に大きく影響される。VOC吸着ハニカムロータの劣化が進行したまま放置すると、VOC濃縮装置自体の濃縮回収率は低下し、濃縮ガス濃度が低濃度になるため、燃焼装置のランニングコストが高くなる。また、処理後のVOC濃度が上昇し環境基準にも影響する虞がある。また、性能が低下した場合、VOC吸着ハニカムロータを所定の頻度で交換することも可能であるが、交換頻度が高いと、メンテナンスコストが高くなる。 The cause of deterioration of a VOC-adsorbing honeycomb rotor is greatly influenced by actual usage conditions (operation period, amount of organic solvent used, corrosive gas content, etc.). If the deterioration of the VOC adsorption honeycomb rotor is left as it is, the concentration recovery rate of the VOC concentrator itself will decrease, and the concentration of concentrated gas will become low, resulting in an increase in the running cost of the combustion device. Furthermore, the VOC concentration after treatment may increase, which may affect environmental standards. Further, when the performance deteriorates, it is possible to replace the VOC adsorption honeycomb rotor at a predetermined frequency, but if the replacement frequency is high, the maintenance cost increases.

VOC吸着ハニカムロータにおいて、運転時の処理出口側のVOC濃度を測定し、除去効率を求めることで性能低下は判断できるが、装置自体の負荷変動や周辺機器の状態の影響を排除できず、純粋にVOC吸着ハニカムロータの性能の劣化を把握することは難しい。また、再生ゾーンの熱風で脱着されない物質(以下、蓄積物)が付着した状態で、運転を続けると圧力損失の上昇の原因となるだけでなく、ハニカムロータの発火の危険性がある。そこで、従来、VOC吸着ハニカムロータの素子の一部をサンプリングし、性能低下の原因や現在の吸着状態を調査して劣化の進行度を判定する方法が知られている(非特許文献1)。 In a VOC adsorption honeycomb rotor, performance deterioration can be determined by measuring the VOC concentration on the treatment outlet side during operation and determining the removal efficiency. However, it is difficult to understand the deterioration of the performance of VOC adsorption honeycomb rotors. Furthermore, if the operation continues with substances that are not desorbed by the hot air in the regeneration zone (hereinafter referred to as accumulated substances) attached, not only will this cause an increase in pressure loss, but there is also a risk of the honeycomb rotor catching fire. Therefore, conventionally, a method is known in which a part of the elements of a VOC adsorption honeycomb rotor is sampled, and the cause of performance decline and the current adsorption state are investigated to determine the degree of deterioration (Non-Patent Document 1).

同じくハニカムロータを用いた除湿装置においても、特許文献1のように、ロータが劣化していない初期の処理空気入口絶対湿度と減湿量の相関関係と、ロータの劣化が進行した状態での診断時の相関関係を比較することで、ロータの劣化の進行度を連続的に診断するという劣化判断方法があるが、処理の対象が水分で、使用環境がドライルームと本発明の対象とするVOC濃縮装置とは異なっており、VOC濃縮装置における劣化判定方法とは性質の異なるものである。また、ロータの劣化の診断は可能だが、ロータ劣化の原因やロータ自体にどのような現象が起きているか等推測することが難しいという問題もある。 Similarly, in a dehumidifying device using a honeycomb rotor, as in Patent Document 1, there is a correlation between the absolute humidity at the treated air inlet and the amount of dehumidification at an initial stage when the rotor has not deteriorated, and a diagnosis when the rotor has progressed to deterioration. There is a deterioration judgment method that continuously diagnoses the degree of deterioration of the rotor by comparing the correlation between the times, but the target of treatment is moisture, the usage environment is a dry room, and the VOC target of the present invention is This method is different from a concentrator, and has different characteristics from the deterioration determination method used in a VOC concentrator. Further, although it is possible to diagnose rotor deterioration, there is also the problem that it is difficult to estimate the cause of rotor deterioration or what phenomenon is occurring in the rotor itself.

劣化したVOC吸着ハニカムロータは交換可能であるが、ロータ自体が比較的高価であるため突発的な予算確保が困難であること、ロータ交換のための排ガス処理施設の停止に伴う生産や製造等の一時停止を招くことが突然の事態として起こることは、現実的に好ましくない。定期的な劣化判定の実施によりVOC吸着ハニカムロータの交換の時期を予め予測することにより、ロータ交換作業にかかる費用の計画的な管理を行うことができる。 A deteriorated VOC adsorption honeycomb rotor can be replaced, but the rotor itself is relatively expensive, so it is difficult to secure a sudden budget, and production and manufacturing costs will be affected due to the suspension of exhaust gas treatment facilities to replace the rotor. It is realistically undesirable for the suspension to occur suddenly. By predicting the time to replace the VOC adsorption honeycomb rotor in advance through periodic deterioration determination, it is possible to systematically manage the cost of rotor replacement work.

従来の劣化判定方法の一例を説明する。まず、図2のようにVOC吸着ハニカムロータ1の一部を、円筒型の冶具9を用いてくり貫き、取り出してサンプリングする。そのくり貫き素子10をロータ厚み方向(軸方向)に、図1のVOC吸着ハニカムロータ1の処理ゾーン2における空気流れ方向に沿って、処理入口側11および処理出口側12の二箇所を所定の大きさに切り出して、劣化ハニカム供試体(数十g程度)とする。このとき、ロータ表面には摺動性や強度向上の目的で端面処理が施してあるため、処理入口側および処理出口側のロータ表面両端からロータ厚み方向中心部に向かって10mm以上離れたところから切り出すようにするとよい。なお、処理入口側及び処理出口側の他に、追加でロータ厚み方向の中央部からも劣化ハニカム供試体を切り出してもよい。 An example of a conventional deterioration determination method will be explained. First, as shown in FIG. 2, a part of the VOC adsorption honeycomb rotor 1 is hollowed out using a cylindrical jig 9 and taken out for sampling. The hollow element 10 is inserted in the rotor thickness direction (axial direction) along the air flow direction in the processing zone 2 of the VOC adsorption honeycomb rotor 1 shown in FIG. Cut it into a size and use it as a deteriorated honeycomb specimen (about several tens of grams). At this time, since the rotor surface is edge-treated to improve sliding properties and strength, it is necessary to remove the rotor from a point 10 mm or more away from both ends of the rotor surface on the processing inlet side and the processing outlet side toward the center of the rotor thickness direction. It is best to cut it out. In addition to the treatment inlet and treatment outlet sides, the deteriorated honeycomb specimen may be additionally cut out from the center of the rotor in the thickness direction.

これらの劣化ハニカム供試体を用いて、下記の項目を調査することにより、劣化の進行度を調査(以下、劣化判定方法)する。
(A)VOC静的吸着量試験
(B)TG/DTA(Thermogravimetry/Differential Thermal Analysis、熱重量・示差熱同時分析。以下、TG/DTA。)
による有機物蓄積量測定
Using these deteriorated honeycomb specimens, the following items are investigated to investigate the degree of progress of deterioration (hereinafter referred to as the deterioration determination method).
(A) VOC static adsorption test (B) TG/DTA (Thermogravimetry/Differential Thermal Analysis, simultaneous thermogravimetry/differential thermal analysis. Hereinafter referred to as TG/DTA)
Measurement of organic matter accumulation by

(A)VOC静的吸着量試験
処理入口側11および処理出口側12の劣化ハニカム供試体、および比較のための同型の新品ハニカム供試体を、前処理として、ハニカムロータの再生温度付近(例えば200℃)で一定時間加熱した後、アセトンやトルエン等から選ばれる少なくとも1種類のVOCを飽和させたデシケータ内に静置し、飽和状態まで吸着させる。吸着前後のハニカム供試体重量差から、各ハニカム供試体のVOC吸着率を求め、新品ハニカム供試体の吸着率を100%として、それに対する劣化ハニカム供試体の静的吸着比率γ[%]を求める。すなわち、以下の(1)式のようになる。

Figure 0007347795000001
ads:劣化ハニカム供試体が吸着したVOC重量、Wsample:劣化ハニカム供試体重量、Mads:新品ハニカム供試体が吸着したVOC重量、Mvirgin:新品ハニカム供試体重量、いずれも[g]である。 (A) VOC Static Adsorption Amount Test Deteriorated honeycomb specimens on the treatment inlet side 11 and treatment outlet side 12, and a new honeycomb specimen of the same type for comparison were pretreated at around the regeneration temperature of the honeycomb rotor (e.g. 200 ℃) for a certain period of time, the mixture is placed in a desiccator saturated with at least one type of VOC selected from acetone, toluene, etc., and adsorbed to a saturated state. Determine the VOC adsorption rate of each honeycomb specimen from the difference in weight of the honeycomb specimen before and after adsorption, and, assuming the adsorption rate of the new honeycomb specimen as 100%, determine the static adsorption ratio γ [%] of the deteriorated honeycomb specimen relative to that. . That is, the following equation (1) is obtained.
Figure 0007347795000001
W ads : Weight of VOCs adsorbed by the deteriorated honeycomb specimen, W sample : Weight of the deteriorated honeycomb specimen, M ads : Weight of VOCs adsorbed by the new honeycomb specimen, M virgin : Weight of the new honeycomb specimen, both in [g] be.

(B)TG/DTAによる有機物蓄積量測定
TG/DTAは、試料を一定速度で加熱した場合の、試料の重量変化及び熱量変化を測定する。試料の吸熱変化(例えば脱水・分解)、発熱変化(例えば燃焼)が起こる温度域と重量変化を観測し、試料が何℃で水等を放出するか、試料が何℃で燃えるか、等の現象を確認できる。ハニカム供試体を所定量(例えば、数十mg程度)調整した後、TG/DTA測定装置に供する。図3は測定結果の一例である。測定結果から、処理入口側11の劣化ハニカム供試体の400℃付近におけるDTAの発熱(燃焼)ピークが確認され、TGの重量減少も確認される。これにより、VOC吸着ハニカムロータにロータの性能を低下させる原因となる蓄積物が蓄積していることを確認することができる。TG重量減少率αTG[%]は再生温度付近の温度T1(例えば200℃)におけるハニカム供試体の試料の重量から、TG/DTA測定によって分析した所定の温度T2(例えば700℃)における燃焼後のハニカム供試体の試料の重量を減じた減少重量を、試料の初期総重量で除した算出式(2)によって算出される。

Figure 0007347795000002
T1-T2:T1~T2における減少重量、msample:試料の初期総重量、いずれも[g]である。 (B) Measuring the amount of organic substance accumulation by TG/DTA TG/DTA measures the weight change and calorific value change of the sample when the sample is heated at a constant rate. Observe the temperature range and weight change in which endothermic changes (e.g., dehydration and decomposition) and exothermic changes (e.g., combustion) occur in the sample, and determine at what temperature the sample releases water, etc., and at what temperature the sample burns. You can check the phenomenon. After adjusting a predetermined amount (for example, about several tens of mg) of the honeycomb specimen, it is subjected to a TG/DTA measuring device. FIG. 3 shows an example of the measurement results. From the measurement results, an exothermic (combustion) peak of DTA in the vicinity of 400° C. of the deteriorated honeycomb specimen on the treatment inlet side 11 was confirmed, and a weight reduction of TG was also confirmed. This makes it possible to confirm that the VOC-adsorbing honeycomb rotor has accumulated substances that cause deterioration in rotor performance. TG weight reduction rate α TG [%] is calculated from the weight of the honeycomb specimen sample at a temperature T1 (e.g. 200°C) near the regeneration temperature, after combustion at a predetermined temperature T2 (e.g. 700°C) analyzed by TG/DTA measurement. It is calculated by formula (2), which is the reduced weight obtained by subtracting the weight of the honeycomb specimen sample by the initial total weight of the sample.
Figure 0007347795000002
m T1-T2 : weight loss from T1 to T2, m sample : initial total weight of the sample, both of which are [g].

(A)VOC静的吸着量試験に必要な供試体は数十g程度、直径φ60mm程度×数十mm程度の量が必要である。一方、(B)TG/DTAによる有機物蓄積量測定では、数十mg程度とごく少量でよい。 (A) The specimen required for the VOC static adsorption amount test is approximately several tens of grams and has a diameter of approximately 60 mm x several tens of mm. On the other hand, in (B) TG/DTA measurement of the amount of organic matter accumulated, a very small amount of about several tens of mg is sufficient.

特許第3753752号公報Patent No. 3753752

「VOC吸着濃縮ロータの劣化現象とその評価」、分離技術会年会2018技術・研究発表講演要旨集、p.33“Deterioration phenomenon of VOC adsorption concentration rotor and its evaluation”, Separation Technology Society Annual Meeting 2018 Technical and Research Presentation Abstracts, p. 33

従来の劣化判定方法では(A)VOC静的吸着量試験のため、VOC吸着ハニカムロータ(直径φ0.5~4.5m)からくり貫き素子を直径φ60mm程度でくり貫く必要があった。くり貫いた後のハニカムロータをそのままにすると、リークが生じて性能低下の原因となることから、くり貫き素子と同等サイズの埋戻し素子やコーキング等で埋め戻す作業が必要であり、くり貫きから埋戻しまでに時間や手間がかかるため、VOC濃縮装置を停止する時間が長くなり、その分ユーザーの生産ラインの停止時間も長くなってしまう。ここで、劣化ハニカム供試体として最低限必要な処理入口側および処理出口側の各両端からロータ厚み中心部に向かって、数十mm程度だけをくり貫き、ロータ中心部の一部を残すことも考えられるが、直径φ60mm程度とくり貫きの径が大きいので、コーキングのみで埋めることは困難であり、やはり埋戻し素子が必要となる。 In the conventional deterioration determination method, for (A) VOC static adsorption amount test, it was necessary to hollow out a hollow element with a diameter of about 60 mm from a VOC adsorption honeycomb rotor (diameter 0.5 to 4.5 m). If the honeycomb rotor is left as it is after hollowing out, leaks will occur and performance will deteriorate, so it is necessary to backfill with a backfilling element of the same size as the hollowing element, caulking, etc. Since backfilling takes time and effort, the VOC concentrator needs to be stopped for a long time, and the user's production line also has to be stopped for a long time. Here, it is also possible to hollow out only a few tens of millimeters from each end of the treatment inlet side and the treatment outlet side, which are the minimum required for a deteriorated honeycomb specimen, toward the center of the rotor thickness, leaving a part of the rotor center. Although this is possible, since the diameter of the hollow hole is large, about 60 mm in diameter, it is difficult to fill it with caulking alone, and a backfilling element is still required.

また、分析のためにくり貫き素子を必要な大きさに切り出し、(A)VOC静的吸着量試験、および(B)TG/DTAによる有機物蓄積量測定の2通りの分析に時間と手間がかかるため、VOC吸着ハニカムロータの劣化進行度を調査して判定を行うのに時間がかかり、劣化進行度が判明するまでVOC濃縮装置の運転を停止、ひいてはユーザーの生産ラインを停止しせざるを得ないという状況が生じる問題があった。 In addition, it takes time and effort to cut out the hollow element to the required size for analysis and perform two types of analysis: (A) VOC static adsorption amount test, and (B) organic matter accumulation amount measurement by TG/DTA. Therefore, it takes time to investigate and judge the degree of deterioration of the VOC adsorption honeycomb rotor, and the operation of the VOC concentrator must be stopped until the degree of deterioration of the VOC adsorption honeycomb rotor is determined, and the user's production line must be stopped. There was a problem that resulted in a situation where there was no such thing.

上記の実情に鑑み、本発明はVOC吸着ハニカムロータの劣化判定方法を簡素化することにより、くり貫きから判定までの時間や手間を低減でき、さらにロータ交換の時期や性能回復措置の時期を予測することができる方法を提供することを目的とする。 In view of the above circumstances, the present invention simplifies the method for determining deterioration of VOC-adsorbing honeycomb rotors, thereby reducing the time and effort from hollowing out to determination, and further predicting the timing of rotor replacement and performance recovery measures. The purpose is to provide a method that can be used.

発明者らは従来の劣化判定方法により、長年に渡り百数十検体もの劣化判定調査を行い、データを蓄積してきた。発明者らは、前記の課題を解決するため、多くのデータの蓄積および豊富な劣化判定調査の経験や知見をもとに、データを鋭意分析・検討した結果、(A)VOC静的吸着量試験の静的吸着比率γ、および(B)TG/DTAによる有機物蓄積量測定のTG重量減少率αTGには相関関係があること、また、吸着の理論式から前記相関関係を理論的に導出できることを見出した。 The inventors have conducted deterioration determination studies on over 100 samples over many years using conventional deterioration determination methods, and have accumulated data. In order to solve the above-mentioned problem, the inventors have intensively analyzed and studied data based on the accumulation of a large amount of data and extensive experience and knowledge from deterioration determination surveys, and found that (A) VOC static adsorption amount There is a correlation between the static adsorption ratio γ of the test and (B) the TG weight reduction rate α of organic matter accumulation measured by TG/DTA, and the above correlation can be theoretically derived from the theoretical formula of adsorption. I found out what I can do.

本発明にかかる劣化判定方法により、VOC濃縮ロータの劣化判定の調査方法を簡素化でき、分析の手間と時間を削減し、ロータ交換あるいは性能回復措置の時期を予測することが可能となる。 The deterioration determination method according to the present invention can simplify the investigation method for determining deterioration of a VOC concentration rotor, reduce the effort and time of analysis, and make it possible to predict the timing of rotor replacement or performance recovery measures.

図1はVOC濃縮回収フローの一例である。Figure 1 is an example of a VOC concentration and recovery flow. 図2は従来の劣化判定方法において、VOC吸着ハニカムロータの一部のサンプリングおよびくり抜き素子から劣化ハニカム供試体を切り出すことを示す図である。FIG. 2 is a diagram showing sampling of a portion of a VOC adsorption honeycomb rotor and cutting out a deteriorated honeycomb specimen from a hollow element in a conventional deterioration determination method. 図3はTG/DTAによる有機物蓄積量測定結果の一例である。FIG. 3 shows an example of the results of measuring the amount of organic matter accumulated by TG/DTA. 図4は(A)VOC静的吸着量試験の静的吸着比率γ、および(B)TG/DTAによる有機物蓄積量測定のTG重量減少率αTGの相関関係を示すグラフである。FIG. 4 is a graph showing the correlation between (A) the static adsorption ratio γ of the VOC static adsorption amount test, and (B) the TG weight reduction rate α of the organic matter accumulation amount measurement by TG/DTA. 図5は本発明の実施例2にかかるカートリッジ式のVOC吸着ハニカムロータを示す図である。FIG. 5 is a diagram showing a cartridge type VOC adsorption honeycomb rotor according to Example 2 of the present invention. 図6は本発明の実施例3にかかる静的吸着比率γもしくはTG重量減少率αTGと、VOC吸着ハニカムロータの稼働期間の近似曲線で示される相関関係を示すグラフである。FIG. 6 is a graph showing the correlation between the static adsorption ratio γ or the TG weight reduction rate α TG and the operating period of the VOC adsorption honeycomb rotor according to Example 3 of the present invention, as shown by an approximate curve.

本発明の発明者らが見出した、(A)VOC静的吸着量試験の静的吸着比率γ、および(B)TG/DTAによる有機物蓄積量測定のTG重量減少率αTGの相関関係について説明する。ここで、前記相関関係は、吸着材としてVOC吸着ハニカムロータに用いられる疎水性ゼオライトの種類や担持量、劣化ハニカム供試体の切り出し位置、吸着されるVOCの種類に関係なく成り立つことを確認している。 Explanation of the correlation between (A) static adsorption ratio γ in VOC static adsorption test and (B) TG weight loss rate α in organic matter accumulation measurement by TG/DTA, discovered by the inventors of the present invention. do. Here, it was confirmed that the above correlation holds true regardless of the type and amount of hydrophobic zeolite used as an adsorbent in the VOC adsorption honeycomb rotor, the cutting position of the deteriorated honeycomb specimen, and the type of VOC to be adsorbed. There is.

図4は(A)VOC静的吸着量試験の静的吸着比率γ、および(B)TG/DTAによる有機物蓄積量測定のTG重量減少率αTGの相関関係の近似直線を示すグラフである。図4の近似直線は、蓄積してきた百数十検体もの試験データをプロットし、両者の相関関係を最小二乗法により(3)式で表される線形関係(近似直線)として求めたものである。なお、蓄積物重量が0gのとき、すなわちTG重量減少率αTGが0%のとき、静的吸着比率γ=100%とした。なお、ユーザーの処理ガス成分や使用条件等により定数Aの値は異なる。

Figure 0007347795000003
γ:静的吸着比率[%]、αTG:TG重量減少率[%]、A:定数 FIG. 4 is a graph showing an approximate straight line of the correlation between (A) the static adsorption ratio γ of the VOC static adsorption amount test, and (B) the TG weight reduction rate α of the organic matter accumulation amount measurement using TG/DTA. The approximate straight line in Figure 4 is obtained by plotting the accumulated test data of more than 100 samples and determining the correlation between the two using the least squares method as a linear relationship (approximate straight line) expressed by equation (3). . Note that when the weight of the accumulated material was 0 g, that is, when the TG weight reduction rate α TG was 0%, the static adsorption ratio γ was set as 100%. Note that the value of the constant A varies depending on the user's processing gas components, usage conditions, etc.
Figure 0007347795000003
γ: static adsorption ratio [%], α TG : TG weight reduction rate [%], A: constant

しかしながら、相関式(3)は経験則に基づいた実験式であり、グラフに数式を外挿的に当てはめたものである。そこで、発明者らは理論的にも前記相関式が成立することを検証した。 However, the correlation formula (3) is an experimental formula based on empirical rules, and is obtained by extrapolating a mathematical formula to a graph. Therefore, the inventors verified that the above correlation formula also holds true theoretically.

当業者であれば、以下の方法によって近似式を導出することができる。理論式から近似式を導出する過程において、発明者らは、以下の4つの仮定を前提とした。蓄積物上には吸着が起こらない(仮定1)、VOCはハニカム供試体上に均一に多分子層吸着する(仮定2)、BET理論式における吸着パラメータC(吸着第1層と吸着第2層以降の吸着熱の差を示すパラメータ)は一定とする(仮定3)、蓄積物は1種類とする(仮定4)。 A person skilled in the art can derive an approximate expression by the following method. In the process of deriving the approximate formula from the theoretical formula, the inventors assumed the following four assumptions. Adsorption does not occur on the accumulated material (Assumption 1), VOCs are uniformly adsorbed in multiple layers on the honeycomb specimen (Assumption 2), adsorption parameter C in the BET theoretical formula (first adsorption layer and second adsorption layer). Subsequent parameters (indicating the difference in adsorption heat) are assumed to be constant (assumption 3), and the number of accumulated substances is one type (assumption 4).

以上の仮定に基づき、(A)VOC静的吸着量試験の静的吸着比率γ、および(B)TG/DTAによる有機物蓄積量測定のTG重量減少率αTGの相関関係の近似式を導出した。以下、特に記述が無い限り、重量は[g]である。 Based on the above assumptions, we derived an approximate formula for the correlation between (A) the static adsorption ratio γ of the VOC static adsorption amount test, and (B) the TG weight reduction rate α of the organic matter accumulation amount measurement by TG/DTA. . Hereinafter, unless otherwise specified, the weight is [g].

前記の(1)式において、劣化ハニカム供試体重量Wsampleと新品ハニカム供試体重量Mvirginはほぼ等しいと近似すると、(1)'式となる。

Figure 0007347795000004
また、劣化ハニカム供試体が吸着したVOC重量Wadsは、劣化ハニカム供試体に吸着できないVOC重量Wnotadsを用いて、(4)式のように表現できる。
Figure 0007347795000005
ads:新品ハニカム供試体が吸着したVOC重量、Wnotads:劣化ハニカム供試体に吸着できないVOC重量 In the above equation (1), if it is approximated that the deteriorated honeycomb sample weight W sample and the new honeycomb sample weight M virgin are approximately equal, then equation (1)' is obtained.
Figure 0007347795000004
Further, the weight of VOCs W ads adsorbed by the deteriorated honeycomb specimen can be expressed as in equation (4) using the weight W notads of VOCs that cannot be adsorbed to the deteriorated honeycomb specimen.
Figure 0007347795000005
M ads : Weight of VOCs adsorbed by a new honeycomb specimen, W notads : Weight of VOCs that cannot be adsorbed by a deteriorated honeycomb specimen.

ここで、劣化ハニカム供試体に吸着できないVOC重量WnotadsをBET理論式より(5)式に表す。

Figure 0007347795000006
notads:劣化ハニカム供試体に吸着できない単分子層VOC量、C:吸着相互作用等によるBET理論式における吸着パラメータC(定数)、P:VOC分圧、P:VOC初期飽和蒸気圧 Here, the VOC weight W notads that cannot be adsorbed to the deteriorated honeycomb specimen is expressed by equation (5) using the BET theoretical equation.
Figure 0007347795000006
V notads : monomolecular layer VOC amount that cannot be adsorbed to the deteriorated honeycomb specimen, C: adsorption parameter C (constant) in the BET theoretical formula due to adsorption interaction, etc., P: VOC partial pressure, P 0 : VOC initial saturated vapor pressure

一方で、劣化ハニカム供試体に吸着できない単分子吸着量VnotadsをLangmuir式より(6)式に表す。

Figure 0007347795000007
a:吸着平衡定数、b:飽和吸着量
notadsを用いて、比表面積Snotadsを表すと、(7)式のようになる。
Figure 0007347795000008
notads:劣化ハニカム供試体に吸着できない比表面積、σVOC:VOCの吸着断面積
劣化ハニカム供試体に吸着できない比表面積Snotadsと蓄積物が付着している比表面積Saccは等しいので、(8)式のようになる。
Figure 0007347795000009
acc:蓄積物が付着している比表面積 On the other hand, the adsorption amount V notads of single molecules that cannot be adsorbed to the deteriorated honeycomb specimen is expressed by Equation (6) using the Langmuir equation.
Figure 0007347795000007
When the specific surface area S notads is expressed using a: adsorption equilibrium constant and b: saturated adsorption amount V notads , it becomes as shown in equation (7).
Figure 0007347795000008
S notads : Specific surface area that cannot be adsorbed to the deteriorated honeycomb specimen, σ VOC : Adsorption cross section of VOC The specific surface area that cannot be adsorbed to the deteriorated honeycomb specimen S notads is equal to the specific surface area S acc to which accumulated substances are attached, so (8 ) is as follows.
Figure 0007347795000009
S acc : Specific surface area to which accumulated substances are attached

(7)式を(8)式に対応させると、(9)式のようになる。

Figure 0007347795000010
acc:単分子層蓄積物吸着量、σacc:蓄積物の吸着断面積 When equation (7) is made to correspond to equation (8), equation (9) is obtained.
Figure 0007347795000010
V acc : Adsorption amount of monomolecular layer accumulation, σ acc : Adsorption cross section of accumulation

ここで、TG重量減少率αTGを表す(2)式において、T1~T2における減少重量mT1-T2は蓄積物重量maccと同等であるとすると、

Figure 0007347795000011
と表現される。蓄積物が第一層目だけに吸着していると仮定すると、
Figure 0007347795000012
(9)式を(2)'式、(10)式を用いて変形すると、(11)式のようになる。
Figure 0007347795000013
Here, in equation (2) expressing the TG weight reduction rate α TG , assuming that the reduced weight m T1-T2 from T1 to T2 is equivalent to the accumulated weight m acc ,
Figure 0007347795000011
It is expressed as Assuming that the accumulation is adsorbed only in the first layer,
Figure 0007347795000012
When formula (9) is transformed using formula (2)' and formula (10), formula (11) is obtained.
Figure 0007347795000013

(5)式に(11)式を代入し、TG/DTA測定試料の初期総重量msampleおよびPを一定と仮定すると、

Figure 0007347795000014
D:定数
となり、劣化ハニカム供試体に吸着できないVOC重量WnotadsはTG/DTA測定試料の初期総重量msampleの関数となる。 Substituting equation (11) into equation (5) and assuming that the initial total weight m sample and P of the TG/DTA measurement sample are constant,
Figure 0007347795000014
D: constant
Therefore, the weight W notads of VOCs that cannot be adsorbed to the deteriorated honeycomb specimen becomes a function of the initial total weight m sample of the TG/DTA measurement sample.

最終的に、(1)式は(1)'式と(4)式と(12)式より、

Figure 0007347795000015
ここで(13)式において、E=D/Mads×100(定数)とすると、(14)式が導出される。
Figure 0007347795000016
γ:静的吸着比率[%]、αTG:TG重量減少率[%]、E:定数
このように、(A)VOC静的吸着量試験の静的吸着比率γ、および(B)TG/DTAによる有機物蓄積量測定のTG重量減少率αTGの相関関係は理論的にも線形関係で表されることが分かった。 Finally, equation (1) is obtained from equation (1)', equation (4), and equation (12).
Figure 0007347795000015
Here, in equation (13), if E=D/M ads ×100 (constant), equation (14) is derived.
Figure 0007347795000016
γ: static adsorption ratio [%], α TG : TG weight reduction rate [%], E: constant Thus, (A) static adsorption ratio γ of VOC static adsorption amount test, and (B) TG/ It was found that the correlation between the TG weight reduction rate α and the TG in the measurement of organic matter accumulation by DTA is theoretically expressed as a linear relationship.

ここで、試験データより求めた相関関係を示す相関式(3)と理論的に求めた近似式(14)を比較すると、(3)式における定数Aが(14)式における定数Eに対応している。以上のように、実験的にも理論的にも静的吸着比率γおよびTG重量減少率αTGには線形関係の相関式が成立することが示された。 Here, when comparing the correlation formula (3) showing the correlation determined from the test data and the approximate formula (14) determined theoretically, the constant A in the formula (3) corresponds to the constant E in the formula (14). ing. As described above, it has been shown both experimentally and theoretically that a linear correlation equation holds true for the static adsorption ratio γ and the TG weight reduction rate α TG .

(3)式の相関関係によると、(A)VOC静的吸着量試験、もしくは(B)TG/DTAによる有機物蓄積量測定のいずれか一方のみを実施することにより、もう一方の結果を予測することができる。本発明において、劣化判定手法を簡素化できるポイントは、(B)TG/DTAによる有機物蓄積量測定のみを実施すれば、(A)VOC静的吸着量試験による静的吸着比率γを予測できるので、(A)VOC静的吸着量試験を省略できることにある。相関式(3)は理論的にも成立することが示されたので、経験に則った劣化判定方法の簡略化だけでなく、理論的にも劣化判定方法をTG/DTA測定のみに移行することが可能となる。(A)VOC静的吸着量試験は供試体の量をある程度必要とするため、くり貫き素子のサンプリング、ハニカム供試体の切り出し、測定の準備・調製、測定自体等に時間と手間がかかる。一方、(B)TG/DTAによる有機物蓄積量測定のためのハニカム供試体量はごくわずかで済み、サンプリングも少量で良く、測定のための準備・調製、測定自体にもさほど時間も手間もかからない。 According to the correlation in equation (3), by conducting only either (A) VOC static adsorption test or (B) measurement of organic matter accumulation by TG/DTA, the results of the other can be predicted. be able to. In the present invention, the point of simplifying the deterioration determination method is that (B) if only the organic matter accumulation amount measurement by TG/DTA is carried out, it is possible to predict the static adsorption ratio γ by (A) VOC static adsorption amount test. (A) The VOC static adsorption amount test can be omitted. Since it has been shown that correlation formula (3) holds true theoretically, it is important not only to simplify the deterioration determination method based on experience, but also to theoretically shift the deterioration determination method to only TG/DTA measurements. becomes possible. (A) Since the VOC static adsorption amount test requires a certain amount of specimen, it takes time and effort to sample the hollow element, cut out the honeycomb specimen, prepare for measurement, and the measurement itself. On the other hand, (B) the amount of honeycomb specimen for measuring the amount of organic matter accumulation by TG/DTA is very small, the amount of sampling required is small, and the preparation for measurement and the measurement itself do not require much time or effort. .

VOC吸着ハニカムロータ交換や性能回復措置を推奨する参考値となる静的吸着比率γを設定することにより、前記相関式(3)から相当するTG重量減少率αTGを求め、TG/DTA測定結果のみからロータ交換推奨可否や性能回復措置の時期を判断するようにしてもよい。あるいは、ロータ交換推奨や性能回復措置を推奨する参考値となるTG重量減少率αTGを予め設定してある場合は、(B)TG/DTAによる有機物蓄積量測定のみを実施するようにし、目安として必要に応じて相関式(3)から静的吸着比率γを計算して推測するようにしてもよい。 By setting the static adsorption ratio γ, which is a reference value for recommending VOC adsorption honeycomb rotor replacement and performance recovery measures, the corresponding TG weight reduction rate α TG is calculated from the above correlation formula (3), and the TG/DTA measurement results are calculated. It may also be possible to determine whether or not rotor replacement is recommended or the timing of performance recovery measures based solely on this information. Alternatively, if the TG weight loss rate α TG is set in advance as a reference value for recommending rotor replacement or performance recovery measures, (B) only measure the amount of organic matter accumulated by TG/DTA, and use it as a guideline. If necessary, the static adsorption ratio γ may be calculated and estimated from the correlation equation (3).

(A)VOC静的吸着量試験には、数十g程度のハニカム供試体量が必要であるため、従来の劣化判定方法はくり貫き素子をVOC吸着ハニカムロータからφ60mm程度でくり貫き、ハニカム供試体の厚みを例えば10mm程度に切り出す必要があった。一方、本発明の劣化判定方法によれば、(B)TG/DTAによる有機物蓄積量測定のみ実施すればよいので、ハニカム供試体の試料の重量は数十mg程度もあれば十分である。そこで、ハニカム供試体のくり貫き径はφ数mmで足りるが、ハニカムロータ厚み方向を全てくり貫く場合、径が細すぎると、くり貫き途中で折れやすくなる。このため作業性を考慮して、サンプルのくり貫きはφ15~30mm程度がよい。φ15~30mm程度でくり貫く場合、埋戻し素子でくり貫き部分を埋め戻す必要はなく、コーキング等でくり貫き穴を塞げばよい。このため、従来のサンプリング方法に比べて簡易であり、くり貫きの時間も手間もかからない。ただし、ロータ厚み方向全体を抜き取らなくとも、処理入口側および処理出口側の両端からそれぞれロータ厚み方向中心部に向かって、必要とする部分のみ、例えば厚み方向20~100mm程度だけ抜き取るようにしてもよい。この場合、φ5~20mm程度のコルクポーラー等でくり貫いてもよく、くり貫き方法が簡単になる。また、ロータ厚み方向中央部が残存するので、コーキング等で塞ぐ必要がない。これにより若干偏流は生じるが、影響はごくわずかであり、ロータ全体の通気には問題ない。なお、処理入口側のみ又は処理出口側のみの劣化の進行度を調査する場合は、いずれか一端から必要とする部分のみをくり貫くようにしてもよい。 (A) A VOC static adsorption amount test requires a honeycomb specimen of several tens of grams, so the conventional method for determining deterioration is to hollow out a hollow element with a diameter of approximately 60 mm from a VOC adsorption honeycomb rotor. It was necessary to cut out the specimen to a thickness of about 10 mm, for example. On the other hand, according to the deterioration determination method of the present invention, it is only necessary to measure the amount of accumulated organic matter by (B) TG/DTA, so it is sufficient if the weight of the honeycomb specimen sample is about several tens of mg. Therefore, the hollowing diameter of the honeycomb specimen is sufficient to be several mm, but when hollowing out the entire thickness direction of the honeycomb rotor, if the diameter is too small, it will easily break during the hollowing out. Therefore, in consideration of workability, it is best to cut out the sample with a diameter of about 15 to 30 mm. When hollowing out to a diameter of about 15 to 30 mm, there is no need to backfill the hollowed out portion with a backfilling element, and the hollowed out hole can be plugged with caulking or the like. Therefore, it is simpler than conventional sampling methods, and requires less time and effort for hollowing out. However, instead of extracting the entire rotor in the thickness direction, it is possible to extract only the necessary portion, for example, about 20 to 100 mm in the thickness direction, from both ends of the processing inlet and processing outlet toward the center of the rotor in the thickness direction. good. In this case, it may be hollowed out using a cork polar or the like with a diameter of about 5 to 20 mm, which simplifies the hollowing out method. Furthermore, since the central portion in the thickness direction of the rotor remains, there is no need to close it with caulking or the like. Although this causes a slight drift, the effect is minimal and there is no problem with the ventilation of the entire rotor. Note that when investigating the degree of deterioration only on the processing inlet side or only on the processing outlet side, only the necessary portion may be hollowed out from either end.

劣化判定のための分析は定期的に行う必要があり、そのたびに素子をくり貫くのは手間がかかる。VOC吸着ハニカムロータ部分に取り外し(脱着)や取り付け、あるいは交換が容易なように、予めくり貫き素子を耐熱性のある例えば金属性のパイプ等に嵌めたもの(以下、「カートリッジ」という)をVOC吸着ハニカムロータ1に図5のように、空気流で飛ばされない強度で挿入固定しておき、劣化判定の度に引き抜く「カートリッジ式」としてもよい。この場合、カートリッジ13を引き抜いた際に生じる穴はコーキングで埋めるか、あるいは新しいカートリッジと交換しても良い。 Analysis to determine deterioration must be performed periodically, and it is time-consuming to hollow out the element each time. A VOC adsorption honeycomb rotor is a VOC cartridge in which a hollowed-out element is fitted in a heat-resistant material such as a metal pipe (hereinafter referred to as a "cartridge") so that it can be easily removed, attached, or replaced. As shown in FIG. 5, it may be a "cartridge type" in which the suction honeycomb rotor 1 is inserted and fixed with sufficient strength to prevent it from being blown away by airflow, and pulled out every time deterioration is determined. In this case, the hole created when the cartridge 13 is pulled out may be filled with caulking or replaced with a new cartridge.

処理ガス条件等に応じて、劣化調査回数を予測しておき、その回数分あるいはその回数分を超える個数のカートリッジを設けるようにしてもよい。この際、設置位置は図5のようにハニカムロータ半径方向の中央部となるよう、かつ均等に設けるとよい。ただし、これに限るものではない。 The number of deterioration inspections may be predicted in accordance with the processing gas conditions, etc., and a number of cartridges corresponding to or exceeding the number of inspections may be provided. At this time, it is preferable that the installation positions be at the center of the honeycomb rotor in the radial direction, as shown in FIG. 5, and evenly. However, it is not limited to this.

以上の劣化判定方法により少なくとも一回以上判定し、処理ガス成分条件、VOC吸着ハニカムロータ稼働期間や劣化判定を実施する時期、判定結果およびロータ交換推奨値または性能回復措置推奨値等から劣化の進行度や傾向を診断することにより、VOC吸着ハニカムロータ交換時期や性能回復措置の時期を予測することができる。性能回復措置として、例えば、ロータを再生温度より高い温度で再生することにより、200℃前後の再生温度でも脱着されない蓄積物を除去して性能を回復させる方法等が挙げられる。 The deterioration is determined at least once using the above deterioration determination method, and the progress of deterioration is determined based on the processing gas component conditions, the VOC adsorption honeycomb rotor operating period, the timing of deterioration determination, the determination results, and the recommended value for rotor replacement or recommended value for performance recovery measures, etc. By diagnosing the degree and trend, it is possible to predict when to replace the VOC adsorption honeycomb rotor and when to take performance recovery measures. Examples of performance recovery measures include a method of recovering performance by regenerating the rotor at a temperature higher than the regeneration temperature to remove accumulated materials that are not desorbed even at a regeneration temperature of around 200°C.

発明者らが従来の方法によって長年に渡り実施してきた百数十検体もの劣化判定調査の結果、図6のように、静的吸着比率γもしくはTG重量減少率αTGには、VOC吸着ハニカムロータの稼働期間と近似曲線で示される相関関係が成立することが分かっている。ただし、ユーザーの処理ガス成分や使用条件等により、近似曲線は様々に異なる。 As a result of the deterioration determination investigation of over 100 samples conducted by the inventors over many years using conventional methods, as shown in Fig. 6, the static adsorption ratio γ or the TG weight reduction rate α TG has a VOC adsorption honeycomb rotor. It is known that there is a correlation between the operating period and the approximate curve. However, the approximate curve varies depending on the user's processing gas components, usage conditions, etc.

VOC吸着ハニカムロータ交換時期や性能回復措置の時期を予測するには、ロータ稼働期間中に処理ガス成分や使用条件がある程度一定である必要があるが、通常大きく条件が変わることはない。ロータ交換推奨値または性能回復措置推奨値となる静的吸着比率γを定めている場合は、相関式(3)により、相当するTG重量減少率αTGが求まるので、(A)VOC静的吸着量試験を実施することなく、(B)TG/DTAによる有機物蓄積量測定のみで、前記近似曲線とロータ交換推奨値または性能回復措置推奨値からVOC吸着ハニカムロータ交換時期あるいは性能回復措置の時期を推測することができる。一方、ロータ交換推奨値または性能回復措置推奨値となるTG重量減少率αTGを予め設定してある場合は、(B)TG/DTAによる有機物蓄積量測定のみを実施し、同様に前記近似曲線とロータ交換推奨値からロータ交換推奨時期あるいは性能回復措置の時期を推測することができる。 In order to predict when to replace the VOC adsorption honeycomb rotor or when to take performance recovery measures, it is necessary that the processing gas components and usage conditions remain constant to some extent during the rotor's operating period, but usually the conditions do not change significantly. If the static adsorption ratio γ is determined as the recommended value for rotor replacement or the recommended value for performance recovery measures, the corresponding TG weight reduction rate α TG can be determined using the correlation equation (3), so (A) VOC static adsorption (B) Only by measuring the amount of organic matter accumulated by TG/DTA, it is possible to determine when to replace the VOC adsorbing honeycomb rotor or take performance recovery measures based on the approximate curve and the recommended values for rotor replacement or performance recovery measures, without conducting a quantity test. You can guess. On the other hand, if the TG weight reduction rate α TG , which is the recommended value for rotor replacement or the recommended value for performance recovery measures, is set in advance, (B) only the organic matter accumulation amount measurement by TG/DTA is performed, and the approximate curve From the recommended rotor replacement value, it is possible to estimate the recommended time for rotor replacement or the time for performance recovery measures.

本発明の有機溶剤濃縮装置および有機溶剤濃縮装置の劣化判定方法によれば、TG/DTAによる有機物蓄積量測定のみで、VOC静的吸着量試験を実施することなく静的吸着比率を予測できるので、VOC濃縮ロータの劣化判定方法を簡素化でき、くり貫き作業および劣化判定調査の手間と時間を低減することができ、迅速な劣化判定が可能となる。 According to the organic solvent concentrator and the method for determining deterioration of the organic solvent concentrator of the present invention, it is possible to predict the static adsorption ratio only by measuring the amount of organic matter accumulated by TG/DTA without conducting a VOC static adsorption amount test. , the method for determining deterioration of the VOC concentration rotor can be simplified, the effort and time of hollowing out work and deterioration determination investigation can be reduced, and prompt deterioration determination can be made.

1 VOC吸着ハニカムロータ
2 処理ゾーン
3 再生ゾーン
4 冷却ゾーン
5 プレフィルター
6 処理ファン
7 再生ヒータ
8 再生ファン
9 冶具
10 くり貫き素子
11 処理入口側ハニカム供試体
12 処理出口側ハニカム供試体
13 カートリッジ
1 VOC adsorption honeycomb rotor 2 Treatment zone 3 Regeneration zone 4 Cooling zone 5 Pre-filter 6 Treatment fan 7 Regeneration heater 8 Regeneration fan 9 Jig 10 Hollowing element 11 Processing inlet side honeycomb specimen 12 Processing outlet side honeycomb specimen 13 Cartridge

Claims (6)

VOC吸着ハニカムロータからくり貫いたくり貫き素子の劣化の進行度の判定において、(A)VOC静的吸着量試験、および(B)TG/DTAによる有機物蓄積量測定に基づき、予め求めた相関式に基づき、(A)VOC静的吸着量試験、もしくは(B)TG/DTAによる有機物蓄積量測定のいずれか一方のみを実施し、他方の試験結果を予測するとともに、劣化の進行度を判断する有機溶剤濃縮装置の劣化判定方法。 In determining the degree of deterioration of the hollow element hollowed out from the VOC adsorption honeycomb rotor, a correlation formula determined in advance is used based on (A) VOC static adsorption amount test and (B) organic matter accumulation amount measurement by TG/DTA. , (A) VOC static adsorption amount test, or (B) organic matter accumulation amount measurement by TG/DTA, and predict the results of the other test and determine the degree of deterioration of the organic solvent. Method for determining deterioration of concentrator. 前記相関式を最小二乗法により線形関係として求める、請求項1に記載の有機溶剤濃縮装置の劣化判定方法。 2. The method for determining deterioration of an organic solvent concentrator according to claim 1, wherein the correlation equation is determined as a linear relationship by a least squares method. 前記くり貫き素子はφ5~30mmの円筒型のくり貫き冶具により、前記VOC吸着ハニカムロータ厚み方向全体、あるいは処理入口側および処理出口側の両端又はいずれか一端から前記VOC吸着ハニカムロータ厚み方向中心部に向かって20~100mm抜き取るようにしたことを特徴とする請求項1または2に記載の有機溶剤濃縮装置の劣化判定方法。 The hollowing element uses a cylindrical hollowing jig with a diameter of 5 to 30 mm to cut through the entire thickness of the VOC-adsorbing honeycomb rotor, or from both ends or either end of the processing inlet and processing outlet to the center of the VOC-adsorbing honeycomb rotor in the thickness direction. 3. The method for determining deterioration of an organic solvent concentrator according to claim 1 or 2, wherein the method is to remove 20 to 100 mm toward the organic solvent concentrator. 請求項1から3のいずれか一項に記載の劣化判定方法により少なくとも一回以上判定し、その判定結果、およびロータ交換推奨値または性能回復措置推奨値から前記有機溶剤濃縮装置のVOC吸着ハニカムロータ交換時期あるいは性能回復措置の時期を予測する有機溶剤濃縮装置の劣化判定方法。 The VOC adsorption honeycomb rotor of the organic solvent concentrator is determined by the deterioration determination method according to any one of claims 1 to 3 at least once, and based on the determination result and the recommended value for rotor replacement or the recommended value for performance recovery measures. A method for determining deterioration of an organic solvent concentrator to predict the time for replacement or performance recovery measures. 請求項1から4のいずれか一項に記載の劣化判定方法により前記VOC吸着ハニカムロータの劣化の進行度を判定することを特徴とする有機溶剤濃縮装置。 An organic solvent concentration device characterized in that the degree of deterioration of the VOC adsorption honeycomb rotor is determined by the deterioration determination method according to any one of claims 1 to 4. 前記VOC吸着ハニカムロータにおいて、くり貫き素子をカートリッジ式に配置し、前記くり貫き素子を脱着交換可能なようにしたことを特徴とする請求項5に記載の有機溶剤濃縮装置。 6. The organic solvent concentration device according to claim 5, wherein in the VOC adsorption honeycomb rotor, hollowing elements are arranged in a cartridge manner, and the hollowing elements are detachable and replaceable.
JP2019226067A 2019-12-16 2019-12-16 Organic solvent concentrator and method for determining deterioration of organic solvent concentrator Active JP7347795B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019226067A JP7347795B2 (en) 2019-12-16 2019-12-16 Organic solvent concentrator and method for determining deterioration of organic solvent concentrator
TW109104963A TW202124888A (en) 2019-12-16 2020-02-17 Organic solvent concentration device and method for determining deterioration of organic solvent concentration device which can shorten the time until the deterioration determination and also reduce the labor of the drawing work
KR1020200033695A KR20210076806A (en) 2019-12-16 2020-03-19 Organic solvent concentration device and method for judging deterioration of organic solvent concentration device
CN202010453586.2A CN112973371B (en) 2019-12-16 2020-05-26 Organic solvent concentration device and degradation determination method for organic solvent concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226067A JP7347795B2 (en) 2019-12-16 2019-12-16 Organic solvent concentrator and method for determining deterioration of organic solvent concentrator

Publications (2)

Publication Number Publication Date
JP2021096096A JP2021096096A (en) 2021-06-24
JP7347795B2 true JP7347795B2 (en) 2023-09-20

Family

ID=76344243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226067A Active JP7347795B2 (en) 2019-12-16 2019-12-16 Organic solvent concentrator and method for determining deterioration of organic solvent concentrator

Country Status (3)

Country Link
JP (1) JP7347795B2 (en)
KR (1) KR20210076806A (en)
TW (1) TW202124888A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102645A (en) 2000-10-04 2002-04-09 Seibu Giken Co Ltd Organic gas concentration apparatus
JP2006247595A (en) 2005-03-14 2006-09-21 Matsushita Electric Ind Co Ltd Apparatus for adsorption and concentration
US20060258017A1 (en) 2005-05-16 2006-11-16 Gullett Brian K Apparatus and methods for use in concentration of gas and particle-laden gas flows
JP2010001184A (en) 2008-06-20 2010-01-07 Nippon Soken Inc Method for manufacturing exhaust gas filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753752B2 (en) 1994-12-08 2006-03-08 高砂熱学工業株式会社 Rotor deterioration diagnosis method and rotor replacement time prediction method in dry dehumidifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102645A (en) 2000-10-04 2002-04-09 Seibu Giken Co Ltd Organic gas concentration apparatus
JP2006247595A (en) 2005-03-14 2006-09-21 Matsushita Electric Ind Co Ltd Apparatus for adsorption and concentration
US20060258017A1 (en) 2005-05-16 2006-11-16 Gullett Brian K Apparatus and methods for use in concentration of gas and particle-laden gas flows
JP2010001184A (en) 2008-06-20 2010-01-07 Nippon Soken Inc Method for manufacturing exhaust gas filter

Also Published As

Publication number Publication date
CN112973371A (en) 2021-06-18
JP2021096096A (en) 2021-06-24
TW202124888A (en) 2021-07-01
KR20210076806A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
Xu et al. Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon
Groves et al. Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: Selection and characterization of the preconcentrator adsorbent
US8584505B2 (en) Measuring instrument and method for detecting the content of oil, hydrocarbons and oxidizable gases in air or compressed air
Seo et al. Performance test for evaluating the reduction of VOCs in rooms and evaluating the lifetime of sorptive building materials
Lodewyckx et al. The Wheeler–Jonas equation: A versatile tool for the prediction of carbon bed breakthrough times
Shiue et al. Validation and application of adsorption breakthrough models for the chemical filters used in the make-up air unit (MAU) of a cleanroom
JP2010515040A (en) Apparatus and method for combined measurement for comprehensive and continuous tracking of trace amounts of tar present in a gas stream
EP1466167B1 (en) Method and detector for detecting gases
JP7347795B2 (en) Organic solvent concentrator and method for determining deterioration of organic solvent concentrator
McClenny et al. 24 h diffusive sampling of toxic VOCs in air onto Carbopack X solid adsorbent followed by thermal desorption/GC/MS analysis—laboratory studies
Na et al. An efficient tool for the continuous monitoring on adsorption of sub-ppm level gaseous benzene using an automated analytical system based on thermal desorption-gas chromatography/mass spectrometry approach
Yoon et al. A theoretical interpretation of the service life of respirator cartridges for the binary acetone/m-xylene system
Emamipour et al. Novel activated carbon fiber cloth filter with functionalized silica nanoparticles for adsorption of toxic industrial chemicals
CN112973371B (en) Organic solvent concentration device and degradation determination method for organic solvent concentration device
Favard et al. Humidity impact reduction on WO3 Gas microsensor response using new filters based on ionic liquid
JP2013007636A (en) Combustible gas measurement method and device
Richards et al. An Automated Test Bed for Rapid Characterization of Sorbent Materials for Siloxane Removal in Contaminated Airstreams
Favard et al. Ionic liquids filter for humidity effect reduction on metal oxide gas sensor response
Lee et al. Development of a parallel test system for the evaluation of UV-PCO systems
Wolfrum et al. The volatile organic compound (VOC) removal performance of desiccant-based dehumidification systems: Testing at sub-ppm VOC concentrations
Palluau et al. Influence of relative humidity and ozone on the sampling of volatile organic compounds on Carbotrap/Carbosieve adsorbents
KR102425175B1 (en) Low concentration air pollutants selective detection device
Bagreev et al. Predictions of H 2 S Breakthrough Capacity of Activated Carbons at Low Concentrations of Hydrogen Sulfide
KR102568572B1 (en) Method for quantitative analysis of volatile organic compounds in adsorbent
Favard et al. Sensors & transducers humidity impact reduction on WO 3 gas microsensor response using new filters based on ionic liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230831

R150 Certificate of patent or registration of utility model

Ref document number: 7347795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150