JP7341871B2 - Composite plating material and its manufacturing method - Google Patents

Composite plating material and its manufacturing method Download PDF

Info

Publication number
JP7341871B2
JP7341871B2 JP2019215356A JP2019215356A JP7341871B2 JP 7341871 B2 JP7341871 B2 JP 7341871B2 JP 2019215356 A JP2019215356 A JP 2019215356A JP 2019215356 A JP2019215356 A JP 2019215356A JP 7341871 B2 JP7341871 B2 JP 7341871B2
Authority
JP
Japan
Prior art keywords
composite
carbon particles
composite plating
plating film
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019215356A
Other languages
Japanese (ja)
Other versions
JP2021085077A (en
Inventor
浩隆 小谷
宏人 成枝
有紀也 加藤
龍大 土井
隆夫 冨谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2019215356A priority Critical patent/JP7341871B2/en
Publication of JP2021085077A publication Critical patent/JP2021085077A/en
Application granted granted Critical
Publication of JP7341871B2 publication Critical patent/JP7341871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、複合めっき材およびその製造方法に関し、特に、スイッチやコネクタなどの摺動接点部品などの材料として使用される複合めっき材およびその製造方法に関する。 The present invention relates to a composite plating material and a method for manufacturing the same, and particularly to a composite plating material used as a material for sliding contact parts such as switches and connectors, and a method for manufacturing the same.

従来、スイッチやコネクタなどの摺動接点部品などの材料として、摺動過程における加熱による銅や銅合金などの導体素材の酸化を防止するために、導体素材に銀めっきを施した銀めっき材が使用されている。 Conventionally, silver-plated materials have been used as materials for sliding contact parts such as switches and connectors to prevent oxidation of conductive materials such as copper and copper alloys due to heating during the sliding process. It is used.

しかし、銀めっきは、軟質で摩耗し易く、一般に摩擦係数が高いため、摺動により剥離し易いという問題がある。この問題を解消するため、耐熱性、摩耗性、潤滑性などに優れた黒鉛やカーボンブラックなどの炭素粒子のうち、黒鉛粒子を銀マトリクス中に分散させた複合材の皮膜を電気めっきにより導体素材上に形成して耐摩耗性を向上させる方法が提案されている(例えば、特許文献1参照)。また、黒鉛粒子の分散に適した湿潤剤が添加されためっき浴を使用することにより、黒鉛粒子を含む銀めっき皮膜を製造する方法が提案されている(例えば、特許文献2参照)。さらに、ゾル-ゲル法によって炭素粒子を金属酸化物などでコーティングして、銀と炭素粒子の複合めっき液中における炭素粒子の分散性を高め、めっき皮膜中に複合化する炭素粒子の量を増大する方法が提案されている(例えば、特許文献3参照)。 However, silver plating is soft and easily abraded, and generally has a high coefficient of friction, so there is a problem that it easily peels off due to sliding. To solve this problem, we electroplated a composite film of carbon particles such as graphite and carbon black, which have excellent heat resistance, abrasion resistance, and lubricity, and dispersed them in a silver matrix. A method has been proposed in which the wear resistance is improved by forming the adhesive layer on the surface (see, for example, Patent Document 1). Furthermore, a method has been proposed for producing a silver plating film containing graphite particles by using a plating bath to which a wetting agent suitable for dispersing graphite particles is added (see, for example, Patent Document 2). Furthermore, carbon particles are coated with metal oxides etc. using the sol-gel method to improve the dispersibility of carbon particles in the composite plating solution of silver and carbon particles, and increase the amount of carbon particles composited in the plating film. A method has been proposed (for example, see Patent Document 3).

しかし、特許文献1~3の方法により製造された複合めっき材は、摩擦係数が比較的高く、接点や端子の高寿命化に対応することができないという問題があり、特許文献1~3の方法により製造された複合めっき材よりも炭素粒子の含有量や表面の炭素粒子が占める割合を増大させて、さらに優れた耐摩耗性の複合めっき材を提供することが望まれている。 However, the composite plated materials manufactured by the methods of Patent Documents 1 to 3 have a relatively high coefficient of friction and cannot be used to extend the service life of contacts and terminals. It is desired to provide a composite plated material with even better wear resistance by increasing the content of carbon particles and the proportion occupied by carbon particles on the surface compared to the composite plated material manufactured by.

このような複合めっき材を製造する方法として、酸化処理を行った炭素粒子を添加したシアン系銀めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる皮膜を素材上に形成する方法(例えば、特許文献4参照)、電解処理を行った炭素粒子を添加したシアン系銀めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる皮膜を素材上に形成する方法(例えば、特許文献5参照)、シアン化アルカリ金属塩とシアン化銀と光沢剤と炭素繊維を混合しためっき液中で電気めっきを行うことにより、銀のマトリックス中に炭素繊維がランダムに分散した組織を有する銀複合材料を製造する方法(例えば、特許文献6参照)、金属イオン源およびカーボンブラックナノ粒子を含む組成物に基体を接触させて、電気めっきを行うことにより、金属とカーボンブラックナノ粒子との複合体を基体上に形成する方法などが提案されている。 As a method for manufacturing such composite plating materials, electroplating is performed using a cyanide-based silver plating solution to which oxidized carbon particles are added. A method of forming a film on a material (for example, see Patent Document 4), electroplating using a cyan silver plating solution to which electrolytically treated carbon particles are added creates carbon particles in the silver layer. A method of forming a film made of a composite material containing on a material (for example, see Patent Document 5), electroplating is carried out in a plating solution containing a mixture of an alkali metal cyanide salt, silver cyanide, a brightener, and carbon fiber. A method for producing a silver composite material having a structure in which carbon fibers are randomly dispersed in a silver matrix (see, for example, Patent Document 6), by contacting a substrate with a composition containing a metal ion source and carbon black nanoparticles. A method has been proposed in which a composite of metal and carbon black nanoparticles is formed on a substrate by electroplating.

特開平9-7445号公報(段落番号0005-0007)JP-A-9-7445 (paragraph number 0005-0007) 特表平5-505853号公報(第1-2頁)Special Publication No. 5-505853 (pages 1-2) 特開平3-253598号公報(第2頁)JP-A-3-253598 (page 2) 特開2006-37225号公報(段落番号0009)JP2006-37225A (paragraph number 0009) 特開2007-16251号公報(段落番号0009)JP 2007-16251 (paragraph number 0009) 特開2008-56950号公報(段落番号0009-0013)JP2008-56950A (paragraph number 0009-0013) 特開2013-216971号公報(段落番号0009-0010)JP 2013-216971 (paragraph number 0009-0010)

しかし、特許文献4~5の方法では、炭素粒子として鱗片状黒鉛粒子(天然黒鉛粒子)を使用しているが、炭素粒子の層が剥がれ易く、これらの方法により製造された複合めっき材を挿抜可能な接続端子の材料として使用した場合に、挿抜の繰り返しにより摩擦係数が上昇し易くなることがわかった。また、特許文献6~7の方法では、炭素粒子として平均直径200nm以下のカーボンナノチューブや5~500nmのサイズのカーボンブラックナノ粒子のような非常に小さい炭素粒子を使用しているため、これらの方法により製造された銀複合材料または複合体を挿抜可能な接続端子の材料として使用した場合に、挿抜の繰り返しにより、摺動痕に炭素粒子が広がるよりも、銀同士が凝着し易くなるので、摩擦係数が上昇し易くなる。 However, in the methods of Patent Documents 4 and 5, scaly graphite particles (natural graphite particles) are used as carbon particles, but the carbon particle layer easily peels off, and composite plated materials manufactured by these methods cannot be inserted or removed. It has been found that when used as a material for possible connection terminals, the coefficient of friction tends to increase due to repeated insertion and removal. Furthermore, in the methods of Patent Documents 6 and 7, very small carbon particles such as carbon nanotubes with an average diameter of 200 nm or less and carbon black nanoparticles with a size of 5 to 500 nm are used as carbon particles. When a silver composite material or composite manufactured by is used as a material for a connection terminal that can be inserted and removed, repeated insertion and removal will cause silver particles to adhere to each other more easily than to spread carbon particles in the sliding traces. The coefficient of friction tends to increase.

したがって、本発明は、このような従来の問題点に鑑み、挿抜可能な接続端子の材料として使用した場合に、挿抜の繰り返しにより摩擦係数が上昇し難い複合めっき材およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, it is an object of the present invention to provide a composite plating material whose coefficient of friction does not easily increase due to repeated insertion and removal when used as a material for connection terminals that can be inserted and removed, and a method for manufacturing the same. With the goal.

本発明者らは、上記課題を解決するために鋭意研究した結果、炭素粒子を添加した銀めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜を素材上に形成して複合めっき材を製造する方法において、炭素粒子として人造黒鉛粒子を使用することにより、挿抜可能な接続端子の材料として使用した場合に、挿抜の繰り返しにより摩擦係数が上昇し難い複合めっき材を製造することができることを見出し、本発明を完成するに至った。 As a result of intensive research in order to solve the above problems, the present inventors have discovered that by performing electroplating using a silver plating solution containing carbon particles, a composite material containing carbon particles in the silver layer can be formed. In the method of manufacturing composite plating materials by forming a composite plating film on the material, by using artificial graphite particles as carbon particles, when used as a material for connection terminals that can be inserted and removed, the coefficient of friction decreases due to repeated insertion and removal. The present inventors have discovered that it is possible to produce a composite plated material that is difficult to increase, and have completed the present invention.

すなわち、本発明による複合めっき材の製造方法は、炭素粒子を添加した銀めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜を素材上に形成して複合めっき材を製造する方法において、炭素粒子として人造黒鉛粒子を使用することを特徴とする。 In other words, the method for producing a composite plating material according to the present invention is to electroplating using a silver plating solution containing carbon particles to produce a composite plating film made of a composite material containing carbon particles in the silver layer. The method for producing a composite plating material is characterized in that artificial graphite particles are used as carbon particles.

この複合めっき材の製造方法において、炭素粒子が菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合が40%以下であるのが好ましい。また、銀めっき液がスルホン酸系銀めっき液であるのが好ましく、炭素粒子が、酸化処理を行った炭素粒子であるのが好ましい。また、素材が銅または銅合金からなるのが好ましく、複合めっき皮膜を形成する前に素材上に下地めっき皮膜を形成してもよい。 In this method for producing a composite plating material, the carbon particles contain rhombohedral and hexagonal graphite structures, and the (101) planes of the rhombohedral and hexagonal It is preferable that the ratio of the sum of the integrated intensities of the diffraction peaks of the (101) plane and the (102) plane of the rhombohedral crystal system to the sum of the integrated intensities of the diffraction peaks of the (102) plane is 40% or less. Further, the silver plating solution is preferably a sulfonic acid silver plating solution, and the carbon particles are preferably oxidized carbon particles. Further, the material is preferably made of copper or a copper alloy, and a base plating film may be formed on the material before forming the composite plating film.

また、本発明による複合めっき材は、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜が素材上に形成された複合めっき材において、炭素粒子が人造黒鉛粒子であることを特徴とする。 Further, the composite plating material according to the present invention is a composite plating material in which a composite plating film made of a composite material containing carbon particles in a silver layer is formed on a material, and the carbon particles are artificial graphite particles. do.

この複合めっき材において、炭素粒子が菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合が40%以下であるのが好ましい。また、複合めっき皮膜中の炭素含有量が0.5~5質量%であるのが好ましい。また、複合めっき皮膜の厚さが0.5~15μmであるのが好ましく、複合めっき皮膜の表面のビッカース硬さHVが100以下であるのが好ましい。また、素材が銅または銅合金からなるのが好ましく、複合めっき皮膜と素材との間に下地めっき皮膜が形成してもよい。また、複合めっき材から切り出した試験片を平板状試験片とするとともに、インデント加工として内側R=1.0mmの半球状の打ち出し加工をした素材に厚さ5μmのAgSbめっき皮膜が形成されたビッカース硬さHV180のAgSbめっき材をインデント付き試験片とし、摺動摩耗試験機により、平板状試験片にインデント付き試験片を一定の加重2Nで押し当てながら、摺動距離10mm、摺動速度3mm/sで往復摺動動作を行ったときの300回目の往復摺動動作の往路の摩擦係数が0.4以下であるのが好ましい。 In this composite plating material, the carbon particles include rhombohedral and hexagonal graphite structures, and X-ray diffraction measurements of the carbon particles show that the (101) and (102) planes of the rhombohedral and hexagonal systems are respectively It is preferable that the ratio of the sum of the integrated intensities of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system to the sum of the integrated intensities of the diffraction peaks of the planes is 40% or less. Further, it is preferable that the carbon content in the composite plating film is 0.5 to 5% by mass. Further, the thickness of the composite plating film is preferably 0.5 to 15 μm, and the Vickers hardness HV of the surface of the composite plating film is preferably 100 or less. Further, the material is preferably made of copper or a copper alloy, and a base plating film may be formed between the composite plating film and the material. In addition, a test piece cut out from a composite plated material was used as a flat test piece, and a 5 μm thick AgSb plating film was formed on the material, which was punched out into a hemispherical shape with an inner radius of 1.0 mm as an indentation process. An AgSb plated material with a hardness of HV180 was used as an indented test piece. Using a sliding abrasion tester, the indented test piece was pressed against a flat test piece with a constant load of 2 N, while sliding distance was 10 mm and sliding speed was 3 mm/ It is preferable that the coefficient of friction on the outward path of the 300th reciprocating sliding operation when the reciprocating sliding operation is performed at s is 0.4 or less.

本発明によれば、挿抜可能な接続端子の材料として使用した場合に、挿抜の繰り返しにより摩擦係数が上昇し難い複合めっき材およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a composite plating material whose friction coefficient does not easily increase due to repeated insertion and removal when used as a material for an insertable and removable connection terminal, and a method for manufacturing the same.

本発明による複合めっき材の製造方法の実施の形態では、炭素粒子として(好ましくは平均粒径1~15μmの)人造黒鉛粒子を添加した銀めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜を(好ましくは銅または銅合金からなる)素材上に形成して複合めっき材を製造する。 In an embodiment of the method for producing a composite plated material according to the present invention, electroplating is performed using a silver plating solution to which artificial graphite particles (preferably with an average particle size of 1 to 15 μm) are added as carbon particles. A composite plating film made of a composite material containing carbon particles in the layer is formed on a material (preferably made of copper or a copper alloy) to produce a composite plating material.

炭素粒子は、菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合が40%以下であるのが好ましく、35%以下であるのがさらに好ましく、30%以下であるのが最も好ましい。また、この割合は、5%以上であるのが好ましく、10%以上であるのがさらに好ましい。なお、炭素粒子は、電気めっき後も殆ど変質しないので、複合めっき皮膜中の炭素粒子も菱面体晶系と六方晶系の黒鉛構造を含み、上記の割合も殆ど変化しない。 The carbon particles include rhombohedral and hexagonal graphite structures, and the diffraction peaks of the (101) and (102) planes of the rhombohedral and hexagonal systems, respectively, are determined by X-ray diffraction measurements of the carbon particles. The ratio of the total integrated intensity of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system to the total integrated intensity is preferably 40% or less, more preferably 35% or less, and 30% or less. % or less is most preferable. Moreover, this ratio is preferably 5% or more, and more preferably 10% or more. In addition, since the carbon particles hardly change in quality even after electroplating, the carbon particles in the composite plating film also include rhombohedral and hexagonal graphite structures, and the above ratio also hardly changes.

炭素粒子を銀めっき液に添加する前に、炭素粒子を酸化処理するのが好ましく、この酸化処理により炭素粒子の表面に吸着している親油性有機物を除去することができる。このような親油性有機物として、(ノナンやデカンなどの)アルカンや、(メチルヘプテンなどの)アルケンのような脂肪酸炭化水素や、(キシレンなどの)アルキルベンゼンのような芳香族炭化水素が含まれる。炭素粒子の酸化処理として、湿式酸化処理の他、Oガスなどによる乾式酸化処理を使用することができるが、量産性の観点から湿式酸化処理を使用するのが好ましく、湿式酸化処理によって表面積が大きい炭素粒子を均一に処理することができる。 It is preferable to oxidize the carbon particles before adding them to the silver plating solution, and this oxidation treatment can remove lipophilic organic substances adsorbed on the surface of the carbon particles. Such lipophilic organics include fatty acid hydrocarbons such as alkanes (such as nonane and decane), alkenes (such as methylheptene), and aromatic hydrocarbons such as alkylbenzenes (such as xylene). In addition to wet oxidation treatment, dry oxidation treatment using O2 gas can be used as the oxidation treatment for carbon particles. However, from the viewpoint of mass production, it is preferable to use wet oxidation treatment. Large carbon particles can be treated uniformly.

湿式酸化処理の方法としては、導電塩を含む水中に炭素粒子を懸濁させた後に陰極や陽極となる白金電極などを挿入して電気分解を行う方法や、炭素粒子を水中に懸濁させた後に適量の酸化剤を添加する方法などを使用することができるが、生産性を考慮すると後者の方法を使用するのが好ましい。酸化剤としては、硝酸、過酸化水素、過マンガン酸カリウム、過硫酸カリウム、過硫酸ナトリウム、過塩素酸ナトリウムなどの酸化剤を使用することができる。炭素粒子に付着している親油性有機物は、添加された酸化剤により酸化されて水に溶けやすい形態になり、炭素粒子の表面から適宜除去されると考えられる。また、湿式酸化処理を行った後、ろ過を行い、さらに炭素粒子を水洗することにより、炭素粒子の表面から親油性有機物を除去する効果をさらに高めることができる。 Wet oxidation treatment methods include suspending carbon particles in water containing conductive salts and then inserting platinum electrodes that serve as cathodes and anodes for electrolysis; Although a method of adding an appropriate amount of oxidizing agent afterwards can be used, it is preferable to use the latter method in consideration of productivity. As the oxidizing agent, oxidizing agents such as nitric acid, hydrogen peroxide, potassium permanganate, potassium persulfate, sodium persulfate, and sodium perchlorate can be used. It is thought that the lipophilic organic matter adhering to the carbon particles is oxidized by the added oxidizing agent, becomes easily soluble in water, and is appropriately removed from the surface of the carbon particles. Furthermore, by performing filtration after wet oxidation treatment and further washing the carbon particles with water, the effect of removing lipophilic organic substances from the surface of the carbon particles can be further enhanced.

上記の酸化処理により炭素粒子の表面から脂肪族炭化水素や芳香族炭化水素などの親油性有機物を除去することができ、300℃加熱ガスによる分析によれば、酸化処理後の炭素粒子を300℃で加熱して発生したガス中には、アルカンやアルケンなどの親油性脂肪族炭化水素や、アルキルベンゼンなどの親油性芳香族炭化水素が殆ど含まれてない。酸化処理後の炭素粒子中に脂肪族炭化水素や芳香族炭化水素が若干含まれていても、炭素粒子を銀めっき液に分散させることができるが、炭素粒子中に分子量160以上の炭化水素が含まれず且つ炭素粒子中の分子量160未満の炭化水素の300℃加熱発生ガス強度(パージ・アンド・ガスクロマトグラフ質量分析強度)が5,000,000以下になるのが好ましい。炭素粒子中に分子量の大きな炭化水素が含まれると、炭素粒子の表面が強い親油性の炭化水素で被覆され、水溶液である銀めっき溶液中で炭素粒子が互い凝集し、めっき皮膜中に炭素粒子が複合化しなくなると考えられる。 The above oxidation treatment can remove lipophilic organic substances such as aliphatic hydrocarbons and aromatic hydrocarbons from the surface of carbon particles.According to analysis using gas heated at 300℃, carbon particles after oxidation treatment can be The gas generated by heating contains almost no lipophilic aliphatic hydrocarbons such as alkanes and alkenes, and lipophilic aromatic hydrocarbons such as alkylbenzene. Even if the carbon particles after oxidation treatment contain a small amount of aliphatic hydrocarbons or aromatic hydrocarbons, the carbon particles can be dispersed in the silver plating solution, but if the carbon particles contain hydrocarbons with a molecular weight of 160 or more, It is preferable that the intensity of gas generated by heating at 300° C. (purge and gas chromatography mass spectrometry intensity) of hydrocarbons not contained and having a molecular weight of less than 160 in the carbon particles is 5,000,000 or less. When carbon particles contain hydrocarbons with a large molecular weight, the surface of the carbon particles is coated with a strongly lipophilic hydrocarbon, and the carbon particles aggregate with each other in the aqueous silver plating solution, causing carbon particles to form in the plating film. It is thought that this will prevent the formation of complexes.

このような酸化処理により脂肪酸炭化水素と芳香族炭化水素を除去した炭素粒子を銀めっき液に懸濁させて電気めっきを行う際に、銀めっき液としてスルホン酸系銀めっき液を使用するのが好ましい。このスルホン酸銀として、メタンスルホン酸銀、アルカノールスルホン酸銀、フェノールスルホン酸銀などを使用することができる。また、スルホン酸系銀めっき液は、Agイオン源としてのスルホン酸銀と、錯化剤としてのスルホン酸を含み、光沢剤などの添加剤を含んでもよい。この銀めっき液中のAg濃度は、5~150g/Lであるのが好ましく、10~120g/Lであるのがさらに好ましく、20~100g/Lであるのが最も好ましい。 When performing electroplating by suspending carbon particles from which fatty acid hydrocarbons and aromatic hydrocarbons have been removed in a silver plating solution through such oxidation treatment, it is recommended to use a sulfonic acid silver plating solution as the silver plating solution. preferable. As the silver sulfonate, silver methanesulfonate, silver alkanolsulfonate, silver phenolsulfonate, etc. can be used. Further, the sulfonic acid silver plating solution contains silver sulfonate as an Ag ion source, sulfonic acid as a complexing agent, and may also contain additives such as brighteners. The Ag concentration in this silver plating solution is preferably 5 to 150 g/L, more preferably 10 to 120 g/L, and most preferably 20 to 100 g/L.

また、銀めっき液中の炭素粒子の量は、10~100g/Lであるのが好ましく、20~50g/Lであるのがさらに好ましい。銀めっき液中の炭素粒子の量が10g/L未満であると、複合めっき層中の炭素粒子の含有量を十分に多くすることができないおそれがあり、100g/Lより多くしても、複合めっき層中の炭素粒子の含有量を多くすることはできない。 Further, the amount of carbon particles in the silver plating solution is preferably 10 to 100 g/L, more preferably 20 to 50 g/L. If the amount of carbon particles in the silver plating solution is less than 10 g/L, there is a risk that the content of carbon particles in the composite plating layer cannot be sufficiently increased. It is not possible to increase the content of carbon particles in the plating layer.

また、電気めっきの際の電流密度は、1~15A/dmであるのが好ましく、2~7A/dmであるのがさらに好ましい。Ag濃度や電流密度が低過ぎると、複合めっき皮膜の形成が遅くなって効率的でなく、Ag濃度や電流密度が高過ぎると、複合めっき皮膜の外観にムラが生じ易い。 Further, the current density during electroplating is preferably 1 to 15 A/dm 2 , more preferably 2 to 7 A/dm 2 . If the Ag concentration or current density is too low, the formation of the composite plating film becomes slow and inefficient, and if the Ag concentration or current density is too high, the appearance of the composite plating film tends to be uneven.

また、複合めっき皮膜を形成する前に、素材上にニッケルめっき皮膜や銅めっき皮膜などの下地めっき皮膜(好ましくはニッケルめっき皮膜)を形成してもよい。 Furthermore, before forming the composite plating film, a base plating film (preferably a nickel plating film) such as a nickel plating film or a copper plating film may be formed on the material.

また、本発明による複合めっき材の実施の形態は、銀層中に炭素粒子として(レーザー回折・散乱式粒度分布測定装置により測定した平均粒径が好ましくは1~15μmの)人造黒鉛粒子を含有する複合材からなる(好ましくは炭素含有量0.5~5質量%、ビッカース硬さHV100以下の)複合めっき皮膜が(好ましくは銅または銅合金からなる)素材上に形成されている。 Further, in an embodiment of the composite plating material according to the present invention, the silver layer contains artificial graphite particles as carbon particles (preferably having an average particle diameter of 1 to 15 μm as measured by a laser diffraction/scattering particle size distribution analyzer). A composite plating film made of a composite material (preferably having a carbon content of 0.5 to 5% by mass and a Vickers hardness of HV100 or less) is formed on a material (preferably made of copper or a copper alloy).

炭素粒子は、菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合が40%以下であるのが好ましく、35%以下であるのがさらに好ましく、30%以下であるのが最も好ましい。 The carbon particles include rhombohedral and hexagonal graphite structures, and the diffraction peaks of the (101) and (102) planes of the rhombohedral and hexagonal systems, respectively, are determined by X-ray diffraction measurements of the carbon particles. The ratio of the total integrated intensity of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system to the total integrated intensity is preferably 40% or less, more preferably 35% or less, and 30% or less. % or less is most preferable.

複合めっき皮膜の厚さは0.5~15μmであるのが好ましく、1~13μmであるのがさらに好ましく、3~12μmであるのが最も好ましい。複合めっき皮膜の厚さが0.5μm未満であると、複合めっき材の耐摩耗性が十分でなく、15μmを超えると、銀の量が多くなり、複合めっき材の製造コストが高くなる。 The thickness of the composite plating film is preferably 0.5 to 15 μm, more preferably 1 to 13 μm, and most preferably 3 to 12 μm. If the thickness of the composite plating film is less than 0.5 μm, the wear resistance of the composite plated material will not be sufficient, and if it exceeds 15 μm, the amount of silver will increase and the manufacturing cost of the composite plated material will increase.

また、複合めっき皮膜と素材との間にニッケルめっき皮膜や銅めっき皮膜などの下地めっき皮膜(好ましくはニッケルめっき皮膜)が形成してもよい。 Further, a base plating film (preferably a nickel plating film) such as a nickel plating film or a copper plating film may be formed between the composite plating film and the material.

また、複合めっき材から切り出した試験片を平板状試験片とするとともに、インデント加工として内側R=1.0mmの半球状の打ち出し加工をした素材に厚さ5μmのAgSbめっき皮膜が形成されたビッカース硬さHV180のAgSbめっき材をインデント付き試験片とし、摺動摩耗試験機により、平板状試験片にインデント付き試験片を一定の加重2Nで押し当てながら、摺動距離10mm、摺動速度3mm/sで往復摺動動作を行ったときの300回目の往復摺動動作の往路の摩擦係数が0.4以下であるのが好ましい。また、上記の往復摺動動作を500回行っても、素材の露出が確認されないのが好ましい。 In addition, a test piece cut out from a composite plated material was used as a flat test piece, and a 5 μm thick AgSb plating film was formed on the material, which was punched out into a hemispherical shape with an inner radius of 1.0 mm as an indentation process. An AgSb plated material with a hardness of HV180 was used as an indented test piece. Using a sliding abrasion tester, the indented test piece was pressed against a flat test piece with a constant load of 2 N, while sliding distance was 10 mm and sliding speed was 3 mm/ It is preferable that the coefficient of friction on the outward path of the 300th reciprocating sliding operation when the reciprocating sliding operation is performed at s is 0.4 or less. Further, it is preferable that no material is exposed even after the above-mentioned reciprocating sliding operation is performed 500 times.

以下、本発明による複合めっき材およびその製造方法の実施例について詳細に説明する。 Examples of the composite plating material and the manufacturing method thereof according to the present invention will be described in detail below.

[実施例1]
まず、炭素粒子として平均粒径5μmの人造黒鉛粒子(日本黒鉛工業株式会社製の塊状黒鉛PAG-3000)を用意した。この炭素粒子の平均粒径は、レーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製のMT3000II)により測定した。この炭素粒子について、卓上型X線回折装置(BRUKER社製のD2 PHASER)により、CuKα管球を用いて、管電圧を30kV、管電流10mAとして、X線回折(XRD)測定を行った。このX線回折測定により得られたX線回折パターンから、この炭素粒子は、菱面体晶系と六方晶系の黒鉛構造を含んでいることがわかった。また、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合(%)を算出したところ、炭素粒子の菱面体晶系の(101)面および(102)面の回折ピークの積分強度をそれぞれr(101)およびr(102)とし、六方晶系の回折ピークの積分強度をそれぞれh(101)およびh(102)とすると、[r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)]=26%であった。
[Example 1]
First, artificial graphite particles (massive graphite PAG-3000 manufactured by Nippon Graphite Industries Co., Ltd.) having an average particle diameter of 5 μm were prepared as carbon particles. The average particle size of the carbon particles was measured using a laser diffraction/scattering particle size distribution analyzer (MT3000II manufactured by Microtrac Bell Co., Ltd.). The carbon particles were subjected to X-ray diffraction (XRD) measurement using a desktop X-ray diffractometer (D2 PHASER manufactured by BRUKER) using a CuKα tube at a tube voltage of 30 kV and a tube current of 10 mA. From the X-ray diffraction pattern obtained by this X-ray diffraction measurement, it was found that this carbon particle contained a rhombohedral graphite structure and a hexagonal graphite structure. In addition, the (101) plane and (102) plane of the rhombohedral system and the ( The ratio (%) of the total integrated intensity of the diffraction peaks of the (102) plane was calculated, and it was found that the integrated intensities of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system of carbon particles were calculated as r(101), respectively. and r(102), and the integrated intensities of the hexagonal diffraction peaks are h(101) and h(102), respectively. Then, [r(101)+r(102)]×100/[r(101)+r( 102)+h(101)+h(102)]=26%.

この炭素粒子(人造黒鉛粒子)6重量%を3Lの純水中に添加し、この混合溶液を攪拌しながら50℃に昇温させた。次に、この混合溶液に酸化剤として0.1モル/Lの過硫酸カリウム水溶液1.2Lを徐々に滴下した後、2時間攪拌して酸化処理を行い、その後、ろ紙によりろ別を行ない、水洗を行った。 6% by weight of these carbon particles (artificial graphite particles) were added to 3 L of pure water, and the temperature of this mixed solution was raised to 50° C. while stirring. Next, 1.2 L of a 0.1 mol/L potassium persulfate aqueous solution was gradually added dropwise to this mixed solution as an oxidizing agent, and the mixture was stirred for 2 hours for oxidation treatment, and then filtered through filter paper. I washed it with water.

この酸化処理の前後の炭素粒子について、パージ・アンド・トラップ・ガスクロマトグラフ質量分析装置(日本分析工業JHS-100)(島津製作所製のGCMAS QP-5050A)を使用して、300℃加熱発生ガスの分析を行ったところ、上記の酸化処理により、炭素粒子に付着していた(ノナン、デカン、3-メチル-2-ヘプテンなどの)親油性脂肪族炭化水素や、(キシレンなどの)親油性芳香族炭化水素が除去されているのがわかった。 The carbon particles before and after this oxidation treatment were heated at 300°C using a purge-and-trap gas chromatograph mass spectrometer (Japan Analysis Industry JHS-100) (GCMAS QP-5050A manufactured by Shimadzu Corporation) to analyze the generated gas. Analysis revealed that lipophilic aliphatic hydrocarbons (such as nonane, decane, and 3-methyl-2-heptene) and lipophilic aromatics (such as xylene) attached to carbon particles were removed by the above oxidation treatment. It was found that group hydrocarbons were removed.

また、素材として50mm×50mm×0.2mmのCu-Ni-Sn-P合金からなる板材(1.0質量%のNiと0.9質量%のSnと0.05質量%のPを含み、残部がCuである銅合金の板材)(DOWAメタルテック株式会社製のNB109EH)を用意し、この素材と(チタンのメッシュ素材を白金めっきした)チタン白金メッシュ電極板を1.5Lのビーカーに入れて、それぞれカソードおよびアノードとして使用し、錯化剤としてスルホン酸を含むスルホン酸系Agストライクめっき液(大和化成株式会社製のダインシルバーGPE-ST)1L中において、電流密度5A/dmで30秒間電気めっき(Agストライクめっき)を行った。 In addition, as a material, a plate made of a Cu-Ni-Sn-P alloy of 50 mm x 50 mm x 0.2 mm (containing 1.0 mass% Ni, 0.9 mass% Sn, and 0.05 mass% P, Prepare a copper alloy plate material with the remainder being Cu (NB109EH manufactured by DOWA Metal Tech Co., Ltd.), and put this material and a titanium platinum mesh electrode plate (titanium mesh material plated with platinum) into a 1.5 L beaker. were used as a cathode and an anode, respectively, in 1 L of a sulfonic acid-based Ag strike plating solution (Dyne Silver GPE-ST manufactured by Daiwa Kasei Co., Ltd.) containing sulfonic acid as a complexing agent, at a current density of 5 A/dm 2 and 30 Second electroplating (Ag strike plating) was performed.

また、錯化剤としてスルホン酸を含むAg濃度30g/Lのスルホン酸系銀めっき液(大和化成株式会社製のダインシルバーGPE-PL(無光沢))に、上記の酸化処理を行った炭素粒子(人造黒鉛粒子)を添加して、30g/Lの炭素粒子と30g/LのAgを含むスルホン酸系銀めっき液を用意した。 In addition, carbon particles were subjected to the above oxidation treatment in a sulfonic acid silver plating solution (Dyne Silver GPE-PL (matte) manufactured by Daiwa Kasei Co., Ltd.) with an Ag concentration of 30 g/L containing sulfonic acid as a complexing agent. (artificial graphite particles) to prepare a sulfonic acid silver plating solution containing 30 g/L of carbon particles and 30 g/L of Ag.

次に、上記のAgストライクめっきした素材をカソード、Ag電極板をアノードとして使用して、上記の炭素粒子を添加したスルホン酸系銀めっき液1L中において、スターラにより500rpmで撹拌しながら、温度25℃、電流密度3A/dmで250秒間電気めっき(電流効率95%)を行い、銀めっき層中に炭素粒子を含有する複合めっき皮膜(Ag-Cめっき皮膜)が素材上に形成された複合めっき材を作製した。 Next, using the Ag strike-plated material as a cathode and the Ag electrode plate as an anode, the material was placed in 1 L of a sulfonic acid silver plating solution containing the carbon particles at a temperature of 25°C while stirring at 500 rpm with a stirrer. ℃, and a current density of 3 A/dm 2 for 250 seconds (current efficiency 95%) to form a composite plating film (Ag-C plating film) containing carbon particles in the silver plating layer on the material. A plating material was prepared.

このようにして得られた複合めっき材の複合めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを蛍光X線膜厚計(株式会社日立ハイテクサイエンス製のFT9450)で測定したところ、5μmであった。 The thickness of the composite plating film (within a diameter of 1.0 mm at the center) of the composite plating material thus obtained was measured using a fluorescent X-ray film thickness meter (FT9450 manufactured by Hitachi High-Tech Science Co., Ltd.). , 5 μm.

また、この複合めっき材(素材を含む)から切り出した(5mm×5mmの大きさで約5gの重量の)試料をAgおよびCの分析用にそれぞれ用意し、一方の試料を溶解して試料中のAgの含有量(X重量%)を誘導結合プラズマ発光分光分析装置(ICP-OES)(株式会社日立ハイテクサイエンス製のSPS5100)によって求めるとともに、他方の試料中のCの含有量(Y重量%)を微量炭素・硫黄分析装置(株式会社堀場製作所製のEMIA-810W)を用いて赤外線吸収法によって求め、複合めっき皮膜中のCの含有量をY/(X+Y)として算出したところ、複合めっき皮膜中のCの含有量は1.8重量%であった。 In addition, samples (5 mm x 5 mm in size and approximately 5 g in weight) cut out from this composite plating material (including the raw material) were prepared for Ag and C analysis, and one sample was dissolved and the sample was The content of Ag (X weight %) in the other sample was determined by an inductively coupled plasma optical emission spectrometer (ICP-OES) (SPS5100 manufactured by Hitachi High-Tech Science Co., Ltd.), and the content of C (Y weight %) in the other sample was determined by ) was determined by infrared absorption method using a trace carbon/sulfur analyzer (EMIA-810W manufactured by Horiba, Ltd.), and the C content in the composite plating film was calculated as Y/(X+Y). The C content in the film was 1.8% by weight.

また、この複合めっき材の表面のビッカース硬さHVを、マイクロビッカース硬度計(株式会社ミツトヨ製のHM-221)を使用して、測定荷重を0.1Nとして測定したところ、HV70であった。 Further, the Vickers hardness HV of the surface of this composite plated material was measured using a micro Vickers hardness meter (HM-221 manufactured by Mitutoyo Co., Ltd.) at a measurement load of 0.1N, and it was found to be HV70.

また、この複合めっき材から切り出した試験片を平板状試験片(評価試料)とするとともに、40mm×10mm×0.2mmのCu-Ni-Sn-P合金からなる板材(1.0質量%のNiと0.9質量%のSnと0.05質量%のPを含み、残部がCuである銅合金の板材)(DOWAメタルテック株式会社製のNB109EH)にインデント加工として内側R=1.0mmの半球状の打ち出し加工をした素材に(後述する比較例2と同様の方法により)厚さ5μmのAgSbめっき皮膜が形成されたビッカース硬さHV180のAgSbめっき材をインデント付き試験片(圧子)とし、摺動摩耗試験機(株式会社山崎精機研究所製)により、平板状試験片にインデント付き試験片を一定の加重2Nで押し当てながら、素材が露出するまで往復摺動動作(摺動距離10mm、摺動速度3mm/s)を継続して、平板状試験片の摩耗状態を確認する摩耗試験を行うことにより、耐摩耗性の評価を行った。その結果、500回の往復摺動動作後に、マイクロスコープ(株式会社キーエンス製のVHX-1000)により平板状試験片の摺動痕の中心部を倍率200倍で観察したところ、(茶色の)素材が露出していないことが確認され、耐摩耗性に優れていることがわかった。また、上記の往復摺動動作のうちの300回目の往復摺動動作の往路において水平方向にかかる力を測定してその平均値Fを算出し、平板状試験片とインデント付き試験片との間の動摩擦係数(μ)をμ=F/N(Nは垂直抗力)から算出したところ、動摩擦係数は0.29であり、上記の往復摺動動作のうちの最初の往復摺動動作の往路において水平方向にかかる力を測定してその平均値Fを算出し、平板状試験片とインデント付き試験片との間の動摩擦係数(μ)をμ=F/N(Nは垂直抗力)から算出したところ、動摩擦係数は0.18であった。 In addition, a test piece cut out from this composite plated material was used as a flat test piece (evaluation sample), and a plate material made of Cu-Ni-Sn-P alloy (1.0 mass% A copper alloy plate containing Ni, 0.9 mass% Sn, and 0.05 mass% P, with the remainder being Cu (NB109EH manufactured by DOWA Metaltech Co., Ltd.) was indented with an inner radius of 1.0 mm. An AgSb plated material with a Vickers hardness of HV180, in which a 5 μm thick AgSb plating film was formed on a hemispherically punched material (by the same method as Comparative Example 2 described later), was used as an indented test piece (indenter). Using a sliding abrasion tester (manufactured by Yamazaki Seiki Research Institute Co., Ltd.), an indented test piece was pressed against a flat test piece under a constant load of 2 N, while reciprocating sliding motion was performed (sliding distance of 10 mm) until the material was exposed. , a sliding speed of 3 mm/s) was continued, and the wear resistance was evaluated by conducting a wear test to confirm the wear state of the flat test piece. As a result, after 500 reciprocating sliding movements, the central part of the sliding marks on the flat specimen was observed using a microscope (VHX-1000 manufactured by Keyence Corporation) at a magnification of 200 times. It was confirmed that no surface was exposed, and it was found that the material had excellent wear resistance. In addition, the force applied in the horizontal direction on the outward path of the 300th reciprocating sliding operation among the above reciprocating sliding operations was measured, the average value F was calculated, and the force between the flat test piece and the indented test piece was calculated. The coefficient of kinetic friction (μ) was calculated from μ=F/N (N is normal force), and the coefficient of kinetic friction was 0.29. The force applied in the horizontal direction was measured and its average value F was calculated, and the coefficient of dynamic friction (μ) between the flat test piece and the indented test piece was calculated from μ = F / N (N is vertical force). However, the coefficient of dynamic friction was 0.18.

[実施例2]
炭素粒子としてX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合[r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)]が21%である以外は、実施例1と同様の人造黒鉛粒子を用意し、実施例1と同様の方法により、この炭素粒子の酸化処理を行うとともに、Agストライクめっきを行った後に、電気めっき時間を50秒間とした以外は、実施例1と同様の方法により、複合めっき皮膜(Ag-Cめっき皮膜)が素材上に形成された複合めっき材を作製した。
[Example 2]
(101) plane and (102) plane of the rhombohedral system relative to the sum of integrated intensities of diffraction peaks of the (101) plane and (102) plane of the rhombohedral system and hexagonal system, respectively, measured by X-ray diffraction as carbon particles. Except that the ratio of the total integrated intensity of the surface diffraction peaks [r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)] is 21%. The same artificial graphite particles as in Example 1 were prepared, and the carbon particles were oxidized in the same manner as in Example 1, and after performing Ag strike plating, the electroplating time was changed to 50 seconds. A composite plating material in which a composite plating film (Ag--C plating film) was formed on a material was prepared by the same method as in Example 1.

このようにして得られた複合めっき材の複合めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを、実施例1と同様の方法により測定したところ、1μmであった。 The thickness of the composite plating film (in the diameter range of 1.0 mm at the central portion) of the composite plating material thus obtained was measured by the same method as in Example 1, and was found to be 1 μm.

また、この複合めっき材の複合めっき皮膜中のCの含有量を、実施例1と同様の方法により算出したところ、2.7重量%であった。 Further, the content of C in the composite plating film of this composite plating material was calculated by the same method as in Example 1, and was found to be 2.7% by weight.

また、この複合めっき材の表面のビッカース硬さHVを、実施例1と同様の方法により測定したところ、HV75であった。 Further, the Vickers hardness HV of the surface of this composite plated material was measured by the same method as in Example 1, and was found to be HV75.

また、この複合めっき材の耐摩耗性の評価を、実施例1と同様の方法により行ったところ、500回の往復摺動動作後に、素材が露出していないことが確認され、耐摩耗性に優れていることがわかった。また、300回目の往復摺動動作の往路と最初の往復摺動動作の往路における摩擦係数を、実施例1と同様の方法により算出したところ、動摩擦係数はそれぞれ0.25および0.18であった。 In addition, when the wear resistance of this composite plated material was evaluated using the same method as in Example 1, it was confirmed that no material was exposed after 500 reciprocating sliding operations, and the wear resistance was I found it to be excellent. Furthermore, when the friction coefficients in the outward path of the 300th reciprocating sliding motion and the outward path of the first reciprocating sliding motion were calculated using the same method as in Example 1, the dynamic friction coefficients were 0.25 and 0.18, respectively. Ta.

[実施例3]
炭素粒子としてX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合[r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)]が24%である以外は、実施例1と同様の人造黒鉛粒子を用意し、実施例1と同様の方法により、この炭素粒子の酸化処理を行うとともに、Agストライクめっきを行った後に、電気めっき時間を500秒間とした以外は、実施例1と同様の方法により、複合めっき皮膜(Ag-Cめっき皮膜)が素材上に形成された複合めっき材を作製した。
[Example 3]
(101) plane and (102) plane of the rhombohedral system relative to the sum of integrated intensities of diffraction peaks of the (101) plane and (102) plane of the rhombohedral system and hexagonal system, respectively, measured by X-ray diffraction as carbon particles. Except that the ratio of the total integrated intensity of the surface diffraction peaks [r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)] is 24%. The same artificial graphite particles as in Example 1 were prepared, and the carbon particles were oxidized in the same manner as in Example 1, and after Ag strike plating was performed, the electroplating time was changed to 500 seconds. A composite plating material in which a composite plating film (Ag--C plating film) was formed on a material was prepared by the same method as in Example 1.

このようにして得られた複合めっき材の複合めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを、実施例1と同様の方法により測定したところ、10μmであった。 The thickness of the composite plating film (within a diameter of 1.0 mm at the central portion) of the composite plating material thus obtained was measured in the same manner as in Example 1 and found to be 10 μm.

また、この複合めっき材の複合めっき皮膜中のCの含有量を、実施例1と同様の方法により算出したところ、0.7重量%であった。 Further, the content of C in the composite plating film of this composite plating material was calculated by the same method as in Example 1, and was found to be 0.7% by weight.

また、この複合めっき材の表面のビッカース硬さHVを、実施例1と同様の方法により測定したところ、HV70であった。 Further, the Vickers hardness HV of the surface of this composite plated material was measured by the same method as in Example 1, and was found to be HV70.

また、この複合めっき材の耐摩耗性の評価を、実施例1と同様の方法により行ったところ、500回の往復摺動動作後に、素材が露出していないことが確認され、耐摩耗性に優れていることがわかった。また、300回目の往復摺動動作の往路と最初の往復摺動動作の往路における摩擦係数を、実施例1と同様の方法により算出したところ、動摩擦係数はそれぞれ0.27および0.18であった。 In addition, when the wear resistance of this composite plated material was evaluated using the same method as in Example 1, it was confirmed that no material was exposed after 500 reciprocating sliding operations, and the wear resistance was I found it to be excellent. Furthermore, when the coefficient of friction in the outward path of the 300th reciprocating sliding motion and the outward path of the first reciprocating sliding motion was calculated using the same method as in Example 1, the dynamic friction coefficients were 0.27 and 0.18, respectively. Ta.

[実施例4]
炭素粒子としてX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合[r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)]が26%である以外は、実施例1と同様の人造黒鉛粒子を用意し、実施例1と同様の方法により、この炭素粒子の酸化処理を行った。また、素材をカソード、Ni電極板をアノードとして使用して、80g/Lのスルファミン酸ニッケルと45g/Lのホウ酸からなるニッケルめっき浴中において、液温45℃、電流密度4A/dmで攪拌しながら30秒間電気めっき(Niめっき)を行って、素材上に厚さ0.3μmのNiめっき皮膜を形成した。次に、実施例1と同様の方法により、Agストライクめっきを行った後、複合めっき皮膜(Ag-Cめっき皮膜)が素材上に形成された複合めっき材を作製した。
[Example 4]
(101) plane and (102) plane of the rhombohedral system relative to the sum of integrated intensities of diffraction peaks of the (101) plane and (102) plane of the rhombohedral system and hexagonal system, respectively, measured by X-ray diffraction as carbon particles. Except that the ratio of the total integrated intensity of the surface diffraction peaks [r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)] is 26%. The same artificial graphite particles as in Example 1 were prepared, and the carbon particles were oxidized in the same manner as in Example 1. In addition, using the material as a cathode and the Ni electrode plate as an anode, the liquid temperature was 45°C and the current density was 4A/ dm2 in a nickel plating bath consisting of 80g/L nickel sulfamate and 45g/L boric acid. Electroplating (Ni plating) was performed for 30 seconds while stirring to form a Ni plating film with a thickness of 0.3 μm on the material. Next, by the same method as in Example 1, Ag strike plating was performed, and then a composite plating material was produced in which a composite plating film (Ag--C plating film) was formed on the material.

このようにして得られた複合めっき材の複合めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを、実施例1と同様の方法により測定したところ、5μmであった。 The thickness of the composite plating film (within a diameter of 1.0 mm at the central portion) of the composite plating material thus obtained was measured by the same method as in Example 1, and was found to be 5 μm.

また、この複合めっき材の複合めっき皮膜中のCの含有量を、実施例1と同様の方法により算出したところ、1.8重量%であった。 Further, the content of C in the composite plating film of this composite plating material was calculated by the same method as in Example 1, and was found to be 1.8% by weight.

また、この複合めっき材の表面のビッカース硬さHVを、実施例1と同様の方法により測定したところ、HV70であった。 Further, the Vickers hardness HV of the surface of this composite plated material was measured by the same method as in Example 1, and was found to be HV70.

また、この複合めっき材の耐摩耗性の評価を、実施例1と同様の方法により行ったところ、500回の往復摺動動作後に、素材が露出していないことが確認され、耐摩耗性に優れていることがわかった。また、300回目の往復摺動動作の往路と最初の往復摺動動作の往路における摩擦係数を、実施例1と同様の方法により算出したところ、動摩擦係数はそれぞれ0.29および0.18であった。 In addition, when the wear resistance of this composite plated material was evaluated using the same method as in Example 1, it was confirmed that no material was exposed after 500 reciprocating sliding operations, and the wear resistance was I found it to be excellent. Furthermore, when the friction coefficients in the outward path of the 300th reciprocating sliding motion and the outward path of the first reciprocating sliding motion were calculated using the same method as in Example 1, the dynamic friction coefficients were 0.29 and 0.18, respectively. Ta.

[比較例1]
実施例1と同様の方法により、Agストライクめっきを行った後に、炭素粒子を添加しない銀めっき液を使用した以外は、実施例1と同様の方法により、Agめっき皮膜が素材上に形成された銀めっき材を作製した。
[Comparative example 1]
After performing Ag strike plating in the same manner as in Example 1, an Ag plating film was formed on the material in the same manner as in Example 1, except that a silver plating solution to which no carbon particles were added was used. A silver-plated material was produced.

このようにして得られた銀めっき材の銀めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを、実施例1と同様の方法により測定したところ、5μmであった。 The thickness of the silver plating film (within a diameter of 1.0 mm at the central portion) of the silver-plated material thus obtained was measured in the same manner as in Example 1 and found to be 5 μm.

また、この銀めっき材の表面のビッカース硬さHVを、実施例1と同様の方法により測定したところ、HV70であった。 Further, the Vickers hardness HV of the surface of this silver-plated material was measured by the same method as in Example 1, and was found to be HV70.

また、この銀めっき材の耐摩耗性の評価を、実施例1と同様の方法により行ったところ、57回の往復摺動動作後に、素材が露出していることが確認され、耐摩耗性が良好でないことがわかった。また、最初の往復摺動動作の往路における摩擦係数を、実施例1と同様の方法により算出したところ、動摩擦係数は1.85であった。 Furthermore, when the abrasion resistance of this silver-plated material was evaluated using the same method as in Example 1, it was confirmed that the material was exposed after 57 reciprocating sliding operations, and the abrasion resistance was It turned out that it wasn't good. Further, when the coefficient of friction in the outward path of the first reciprocating sliding motion was calculated using the same method as in Example 1, the coefficient of dynamic friction was 1.85.

[比較例2]
3g/Lのシアン化銀カリウムと90g/Lのシアン化カリウムを含むシアン系Agストライクめっき液を使用して、電流密度3A/dmで10秒間電気めっきを行った以外は、実施例1と同様の方法により、Agストライクめっきを行い、シアン化銀とシアン化ナトリウムとアンチモンと60g/LのAgを含むシアン系AgSbめっき液(日進化成株式会社製)を使用して、このシアン系AgSbめっき液に炭素粒子を添加しないで、電流密度1A/dmで450秒間電気めっきを行った以外は、実施例1と同様の方法により、AgSbめっき皮膜が素材上に形成されたAgSbめっき材を作製した。
[Comparative example 2]
The same procedure as in Example 1 was carried out, except that electroplating was performed for 10 seconds at a current density of 3 A/dm 2 using a cyanide-based Ag strike plating solution containing 3 g/L potassium silver cyanide and 90 g/L potassium cyanide. According to the method, Ag strike plating is performed and a cyan-based AgSb plating solution (manufactured by Nichicha Seizo Co., Ltd.) containing silver cyanide, sodium cyanide, antimony, and 60 g/L of Ag is used to produce this cyan-based AgSb plating solution. An AgSb plating material with an AgSb plating film formed on the material was prepared in the same manner as in Example 1, except that electroplating was performed for 450 seconds at a current density of 1 A/dm 2 without adding carbon particles to the material. .

このようにして得られたAgSbめっき材のAgSbめっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを、実施例1と同様の方法により測定したところ、5μmであった。 The thickness of the AgSb plating film (within a diameter of 1.0 mm at the center) of the AgSb plating material thus obtained was measured by the same method as in Example 1, and was found to be 5 μm.

また、このAgSbめっき材の表面のビッカース硬さHVを、実施例1と同様の方法により測定したところ、HV180であった。 Further, the Vickers hardness HV of the surface of this AgSb plated material was measured by the same method as in Example 1, and was found to be HV180.

また、このAgSbめっき材の耐摩耗性の評価を、実施例1と同様の方法により行ったところ、370回の往復摺動動作後に、素材が露出していることが確認され、耐摩耗性が良好でないことがわかった。また、300回目の往復摺動動作の往路と最初の往復摺動動作の往路における摩擦係数を、実施例1と同様の方法により算出したところ、動摩擦係数はそれぞれ1.48および0.82であった。 In addition, when the wear resistance of this AgSb plated material was evaluated using the same method as in Example 1, it was confirmed that the material was exposed after 370 reciprocating sliding operations, and the wear resistance was It turned out that it wasn't good. In addition, when the coefficient of friction in the outward path of the 300th reciprocating sliding motion and the outward path of the first reciprocating sliding motion was calculated using the same method as in Example 1, the dynamic friction coefficients were 1.48 and 0.82, respectively. Ta.

[比較例3]
まず、炭素粒子として平均粒径5μmの鱗片状黒鉛粒子(SEC社製のSN-5)を用意した。この炭素粒子について、実施例1と同様の方法により、X線回折(XRD)測定を行い、このX線回折測定により得られたX線回折パターンから、この炭素粒子は、菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合(%)を算出したところ、[r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)]=45%であることがわかった。
[Comparative example 3]
First, scaly graphite particles (SN-5 manufactured by SEC Corporation) with an average particle diameter of 5 μm were prepared as carbon particles. This carbon particle was subjected to X-ray diffraction (XRD) measurement in the same manner as in Example 1, and from the X-ray diffraction pattern obtained by this X-ray diffraction measurement, this carbon particle was found to have a rhombohedral crystal system and a hexagonal crystal system. The ratio of the rhombohedral crystal system to the sum of the integrated intensities of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system and hexagonal crystal system, respectively, based on X-ray diffraction measurements of carbon particles. When the ratio (%) of the total integrated intensity of the diffraction peaks of the (101) plane and (102) plane was calculated, it was found that [r(101)+r(102)]×100/[r(101)+r(102)+h (101)+h(102)]=45%.

この炭素粒子を使用して、実施例1と同様の方法により、この炭素粒子の酸化処理を行うとともに、比較例2と同様の方法により、Agストライクめっきを行った。 Using these carbon particles, the carbon particles were oxidized in the same manner as in Example 1, and Ag strike plating was performed in the same manner as in Comparative Example 2.

また、シアン化銀カリウム(KAg(CN))とシアン化カリウム(KCN)とセレノシアン酸カリウム(KSeCN)とを含む水溶液からなるシアン系銀めっき液に、上記の酸化処理を行った炭素粒子(鱗片状黒鉛粒子)を添加して、80g/Lの炭素粒子と80g/LのAgを含むシアン系銀めっき液を用意した。このシアン系銀めっき液を使用し、電気めっき時間を200秒間とした以外は、実施例1と同様の方法により、複合めっき皮膜(Ag-Cめっき皮膜)が素材上に形成された複合めっき材を作製した。 In addition, carbon particles (scale-shaped Graphite particles) were added to prepare a cyan silver plating solution containing 80 g/L of carbon particles and 80 g/L of Ag. A composite plated material in which a composite plating film (Ag-C plating film) was formed on a material in the same manner as in Example 1 except that this cyan silver plating solution was used and the electroplating time was 200 seconds. was created.

このようにして得られた複合めっき材の複合めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを、実施例1と同様の方法により測定したところ、5μmであった。 The thickness of the composite plating film (within a diameter of 1.0 mm at the central portion) of the composite plating material thus obtained was measured by the same method as in Example 1, and was found to be 5 μm.

また、この複合めっき材の複合めっき皮膜中のCの含有量を、実施例1と同様の方法により算出したところ、2.0重量%であった。 Further, the content of C in the composite plating film of this composite plating material was calculated by the same method as in Example 1, and was found to be 2.0% by weight.

また、この複合めっき材の表面のビッカース硬さHVを、実施例1と同様の方法により測定したところ、HV90であった。 Further, the Vickers hardness HV of the surface of this composite plated material was measured by the same method as in Example 1, and was found to be HV90.

また、この複合めっき材の耐摩耗性の評価を、実施例1と同様の方法により行ったところ、500回の往復摺動動作後に、素材が露出していないことが確認され、耐摩耗性に優れていることがわかった。また、300回目の往復摺動動作の往路と最初の往復摺動動作の往路における摩擦係数を、実施例1と同様の方法により算出したところ、動摩擦係数はそれぞれ0.50および0.19であった。 In addition, when the wear resistance of this composite plated material was evaluated using the same method as in Example 1, it was confirmed that no material was exposed after 500 reciprocating sliding operations, and the wear resistance was I found it to be excellent. Furthermore, when the coefficient of friction in the outward path of the 300th reciprocating sliding motion and the outward path of the first reciprocating sliding motion was calculated using the same method as in Example 1, the dynamic friction coefficients were 0.50 and 0.19, respectively. Ta.

[比較例4]
まず、炭素粒子として平均粒径5μmの鱗片状黒鉛粒子(日本黒鉛工業株式会社製のJ-CPB)を用意した。この炭素粒子について、実施例1と同様の方法により、X線回折(XRD)測定を行い、このX線回折測定により得られたX線回折パターンから、この炭素粒子は、菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合(%)を算出したところ、[r(101)+r(102)]×100/[r(101)+r(102)+h(101)+h(102)]=51%であることがわかった。
[Comparative example 4]
First, scaly graphite particles (J-CPB manufactured by Nippon Graphite Industries Co., Ltd.) having an average particle diameter of 5 μm were prepared as carbon particles. This carbon particle was subjected to X-ray diffraction (XRD) measurement in the same manner as in Example 1, and from the X-ray diffraction pattern obtained by this X-ray diffraction measurement, this carbon particle was found to have a rhombohedral crystal system and a hexagonal crystal system. The ratio of the rhombohedral crystal system to the sum of the integrated intensities of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system and hexagonal crystal system, respectively, based on X-ray diffraction measurements of carbon particles. When the ratio (%) of the total integrated intensity of the diffraction peaks of the (101) plane and (102) plane was calculated, it was found that [r(101)+r(102)]×100/[r(101)+r(102)+h (101)+h(102)]=51%.

この炭素粒子を使用して、実施例1と同様の方法により、この炭素粒子の酸化処理を行うとともに、Agストライクめっきを行った後に、複合めっき皮膜(Ag-Cめっき皮膜)が素材上に形成された複合めっき材を作製した。 Using this carbon particle, a composite plating film (Ag-C plating film) is formed on the material after oxidizing the carbon particle and performing Ag strike plating in the same manner as in Example 1. A composite plated material was fabricated.

このようにして得られた複合めっき材の複合めっき皮膜(の中央部分の直径1.0mmの範囲)の厚さを、実施例1と同様の方法により測定したところ、5μmであった。 The thickness of the composite plating film (within a diameter of 1.0 mm at the central portion) of the composite plating material thus obtained was measured by the same method as in Example 1, and was found to be 5 μm.

また、この複合めっき材の複合めっき皮膜中のCの含有量を、実施例1と同様の方法により算出したところ、1.5重量%であった。 Further, the content of C in the composite plating film of this composite plating material was calculated by the same method as in Example 1, and was found to be 1.5% by weight.

また、この複合めっき材の表面のビッカース硬さHVを、実施例1と同様の方法により測定したところ、HV70であった。 Further, the Vickers hardness HV of the surface of this composite plated material was measured by the same method as in Example 1, and was found to be HV70.

また、この複合めっき材の耐摩耗性の評価を、実施例1と同様の方法により行ったところ、500回の往復摺動動作後に、素材が露出していないことが確認され、耐摩耗性に優れていることがわかった。また、300回目の往復摺動動作の往路と最初の往復摺動動作の往路における摩擦係数を、実施例1と同様の方法により算出したところ、動摩擦係数はそれぞれ0.41および0.19であった。 In addition, when the wear resistance of this composite plated material was evaluated using the same method as in Example 1, it was confirmed that no material was exposed after 500 reciprocating sliding operations, and the wear resistance was I found it to be excellent. Furthermore, when the friction coefficients in the outward path of the 300th reciprocating sliding operation and the outward path of the first reciprocating sliding operation were calculated using the same method as in Example 1, the dynamic friction coefficients were 0.41 and 0.19, respectively. Ta.

これらの実施例および比較例のめっき材の製造条件および特性を表1~表3に示す。 The manufacturing conditions and characteristics of the plating materials of these Examples and Comparative Examples are shown in Tables 1 to 3.

Figure 0007341871000001
Figure 0007341871000001

Figure 0007341871000002
Figure 0007341871000002

Figure 0007341871000003
Figure 0007341871000003

Claims (12)

炭素粒子を添加した銀めっき液を使用して電気めっきを行うことにより、銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜を素材上に形成して複合めっき材を製造する方法において、炭素粒子として人造黒鉛粒子を使用し、炭素粒子が菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合が40%以下であることを特徴とする、複合めっき材の製造方法。 In a method of manufacturing a composite plated material by forming a composite plating film made of a composite material containing carbon particles in the silver layer on a material by performing electroplating using a silver plating solution containing carbon particles. , artificial graphite particles were used as carbon particles, the carbon particles contained rhombohedral and hexagonal graphite structures, and (101) of the rhombohedral and hexagonal graphite structures were determined by X-ray diffraction measurements of the carbon particles. characterized in that the ratio of the sum of the integrated intensities of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system to the sum of the integrated intensities of the diffraction peaks of the plane and (102) plane is 40% or less. A manufacturing method for composite plating materials. 前記銀めっき液がスルホン酸系銀めっき液であることを特徴とする、請求項に記載の複合めっき材の製造方法。 2. The method for manufacturing a composite plating material according to claim 1 , wherein the silver plating solution is a sulfonic acid silver plating solution. 前記炭素粒子が、酸化処理を行った炭素粒子であることを特徴とする、請求項1または2に記載の複合めっき材の製造方法。 The method for manufacturing a composite plating material according to claim 1 or 2 , wherein the carbon particles are carbon particles that have been subjected to an oxidation treatment. 前記素材が銅または銅合金からなることを特徴とする、請求項1乃至のいずれかに記載の複合めっき材の製造方法。 4. The method for manufacturing a composite plated material according to claim 1 , wherein the material is made of copper or a copper alloy. 前記複合めっき皮膜を形成する前に、前記素材上に下地めっき皮膜を形成することを特徴とする、請求項1乃至のいずれかに記載の複合めっき材の製造方法。 5. The method for manufacturing a composite plating material according to claim 1, further comprising forming a base plating film on the material before forming the composite plating film. 銀層中に炭素粒子を含有する複合材からなる複合めっき皮膜が素材上に形成された複合めっき材において、炭素粒子が人造黒鉛粒子であり、炭素粒子が菱面体晶系と六方晶系の黒鉛構造を含み、炭素粒子のX線回折測定による菱面体晶系および六方晶系のそれぞれの(101)面および(102)面の回折ピークの積分強度の合計に対する菱面体晶系の(101)面および(102)面の回折ピークの積分強度の合計の割合が40%以下であることを特徴とする、複合めっき材。 In a composite plating material in which a composite plating film made of a composite material containing carbon particles in a silver layer is formed on a material, the carbon particles are artificial graphite particles, and the carbon particles are rhombohedral graphite and hexagonal graphite. (101) plane of the rhombohedral crystal system relative to the sum of the integrated intensities of the diffraction peaks of the (101) plane and (102) plane of the rhombohedral crystal system and hexagonal crystal system, respectively, based on X-ray diffraction measurements of carbon particles. and (102) plane, the ratio of the total integrated intensity of the diffraction peaks of the (102) plane is 40% or less . 前記複合めっき皮膜中の炭素含有量が0.5~5質量%であることを特徴とする、請求項に記載の複合めっき材。 The composite plating material according to claim 6 , wherein the carbon content in the composite plating film is 0.5 to 5% by mass. 前記複合めっき皮膜の厚さが0.5~15μmであることを特徴とする、請求項6または7に記載の複合めっき材。 The composite plating material according to claim 6 or 7 , wherein the composite plating film has a thickness of 0.5 to 15 μm. 前記複合めっき皮膜の表面のビッカース硬さHVが100以下であることを特徴とする、請求項乃至のいずれかに記載の複合めっき材。 The composite plating material according to any one of claims 6 to 8 , wherein the surface of the composite plating film has a Vickers hardness HV of 100 or less. 前記素材が銅または銅合金からなることを特徴とする、請求項乃至のいずれかに記載の複合めっき材。 The composite plating material according to any one of claims 6 to 9 , wherein the material is made of copper or a copper alloy. 前記複合めっき皮膜と前記素材との間に下地めっき皮膜が形成されていることを特徴とする、請求項乃至10のいずれかに記載の複合めっき材。 The composite plating material according to any one of claims 6 to 10 , characterized in that a base plating film is formed between the composite plating film and the material. 前記複合めっき材から切り出した試験片を平板状試験片とするとともに、インデント加工として内側R=1.0mmの半球状の打ち出し加工をした素材に厚さ5μmのAgSbめっき皮膜が形成されたビッカース硬さHV180のAgSbめっき材をインデント付き試験片とし、摺動摩耗試験機により、平板状試験片にインデント付き試験片を一定の加重2Nで押し当てながら、摺動距離10mm、摺動速度3mm/sで往復摺動動作を行ったときの300回目の往復摺動動作の往路の摩擦係数が0.4以下であることを特徴とする、請求項乃至11のいずれかに記載の複合めっき材。 A test piece cut out from the composite plated material was used as a flat test piece, and a Vickers hard plate was formed with a 5 μm thick AgSb plating film on the material, which was punched out into a hemispherical shape with an inner radius of 1.0 mm as an indentation process. An AgSb plated material of HV180 was used as an indented test piece. Using a sliding abrasion tester, the indented test piece was pressed against a flat test piece with a constant load of 2 N, while sliding distance was 10 mm and sliding speed was 3 mm/s. The composite plated material according to any one of claims 6 to 11 , characterized in that the coefficient of friction on the outward path of the 300th reciprocating sliding operation when performing the reciprocating sliding operation is 0.4 or less.
JP2019215356A 2019-11-28 2019-11-28 Composite plating material and its manufacturing method Active JP7341871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019215356A JP7341871B2 (en) 2019-11-28 2019-11-28 Composite plating material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215356A JP7341871B2 (en) 2019-11-28 2019-11-28 Composite plating material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021085077A JP2021085077A (en) 2021-06-03
JP7341871B2 true JP7341871B2 (en) 2023-09-11

Family

ID=76085802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215356A Active JP7341871B2 (en) 2019-11-28 2019-11-28 Composite plating material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7341871B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169609A (en) 2004-12-20 2006-06-29 Erugu:Kk Plating solution, method for preparing plating solution, surface treatment method and contact member
JP2007327127A (en) 2006-06-09 2007-12-20 Daiwa Fine Chemicals Co Ltd (Laboratory) Silver plating method
JP2008056950A (en) 2006-08-29 2008-03-13 Shinshu Univ Silver composite material and producing method thereof
JP2008127641A (en) 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169609A (en) 2004-12-20 2006-06-29 Erugu:Kk Plating solution, method for preparing plating solution, surface treatment method and contact member
JP2007327127A (en) 2006-06-09 2007-12-20 Daiwa Fine Chemicals Co Ltd (Laboratory) Silver plating method
JP2008056950A (en) 2006-08-29 2008-03-13 Shinshu Univ Silver composite material and producing method thereof
JP2008127641A (en) 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material

Also Published As

Publication number Publication date
JP2021085077A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP4806808B2 (en) Composite plating material and method for producing the same
JP4862192B2 (en) Manufacturing method of composite plating material
JP4783954B2 (en) Composite plating material and method for producing the same
JP2007254876A (en) Composite plating material and method of manufacturing the same
JP2021109981A (en) Composite plated material, and method of producing the same
JP2008127641A (en) Method for producing composite plated material
JP6804574B2 (en) Composite plating material and its manufacturing method
JP5625166B2 (en) Composite plating material and method for producing the same
JP6978568B2 (en) Composite plating material and its manufacturing method
JP7341871B2 (en) Composite plating material and its manufacturing method
KR20230028211A (en) Composites, manufacturing methods and terminals for composites
JP2007016251A (en) Method for producing composite plated material
JP6911164B2 (en) Composite plating material
JP6963079B2 (en) Composite plating material and its manufacturing method
WO2023218810A1 (en) Composite material, method for producing composite material, and terminal
JP7233991B2 (en) Composite plated material and its manufacturing method
JP6804597B1 (en) Composite plating material and its manufacturing method
JP2022076573A (en) Composite plated material, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7341871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150