JP7330097B2 - 硬化監視システム及び方法 - Google Patents

硬化監視システム及び方法 Download PDF

Info

Publication number
JP7330097B2
JP7330097B2 JP2019504921A JP2019504921A JP7330097B2 JP 7330097 B2 JP7330097 B2 JP 7330097B2 JP 2019504921 A JP2019504921 A JP 2019504921A JP 2019504921 A JP2019504921 A JP 2019504921A JP 7330097 B2 JP7330097 B2 JP 7330097B2
Authority
JP
Japan
Prior art keywords
curing
light
electromagnetic radiation
monitoring
polymerizable material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019504921A
Other languages
English (en)
Other versions
JP2019525940A5 (ja
JP2019525940A (ja
Inventor
エル.エルモア ダグラス
ゲルラッハ コルビニアン
エー.コブッセン グレゴリー
ウィング レイ ジャック
ディー.オックスマン ジョエル
シュミット ルドルフ
カー.ベルカー シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2019525940A publication Critical patent/JP2019525940A/ja
Publication of JP2019525940A5 publication Critical patent/JP2019525940A5/ja
Application granted granted Critical
Publication of JP7330097B2 publication Critical patent/JP7330097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/003Apparatus for curing resins by radiation
    • A61C19/004Hand-held apparatus, e.g. guns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1738Optionally different kinds of measurements; Method being valid for different kinds of measurement
    • G01N2021/1742Optionally different kinds of measurements; Method being valid for different kinds of measurement either absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4735Solid samples, e.g. paper, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N2021/4764Special kinds of physical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/122Kinetic analysis; determining reaction rate
    • G01N2201/1224Polymerisation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Dental Preparations (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は概して、重合性材料の硬化を監視する硬化監視システム及び方法に関する。
選択重合性材料が、例えば、歯の修復のための歯科医術におけるものを含む、例えば、印刷、コーティング、接着剤、及びその他のものを含む種々の適用物において用いられる。
少なくともいくつかの重合性材料の使用における1つの課題は、重合性材料が、いつ硬化プロセスを完了したか、又はその完了に近づいているかを判定することである。電磁放射線を用いて重合性材料を硬化させることができるいくつかの例では、硬化プロセスを評価するために、時間及び電磁放射線強度が用いられ得る。これは、1以上の波長内の特定の強度の電磁放射線に、特定の時間量にわたって重合性材料を曝露することで、重合性材料の硬化を生じさせ、特定の時間により、十分な硬化度がもたらされることになることを前提としている。
本明細書においては、重合性材料の硬化度を判定するための重合性材料を監視するための硬化監視システム及びその方法が説明される。
本明細書に記載されるシステム及び/又は方法を用いて硬化について監視され得る「重合性材料」は、重合反応に関与する能力を有する任意のモノマー、オリゴマー、及び/若しくはポリマー、並びにこれらの組み合わせを含み得る。概して、このようなモノマー、オリゴマー、及び/又はポリマーは、重合反応に関与する(例えば、消費される)少なくとも1つの反応性化学基を含むことになる。このような反応性化学基の例としては、限定するものではないが、(メタ)アクリレート基、ビニル基(例えば、スチリル基及び他のα-オレフィン基を含む)、及びアクリルアミド基などのエチレン性不飽和基;オキシラン(即ち、エポキシド)基及びアジリジン基などの開環基;カルボン酸基(及び限定するものではないが、酸ハロゲン化物基、エステル基、活性化エステル基、ラクトン基などを含む、これらの誘導体)、アミン基、アルコール基、及び同様のものなどの縮合反応基;並びにイソシアネートなどの他の反応性化学基が挙げられる。重合反応の例としては、限定するものではないが、例えば、ポリエステル、ポリアミド、ポリアセタール等を形成するために用いられるものなどの、段階成長重合反応(縮合重合反応を含む)、並びに連鎖成長(即ち、付加)重合反応このような(メタ)アクリレート及びオレフィン重合反応が挙げられる。同様に挙げられるのは、ヒドロメタル化(例えば、ヒドロシリル化)、又はオレフィンメタセシス(例えば、開環メタセシス重合(ring opening metathesis polymerization、「ROMP」)などの他の方法を介して重合させることができる重合性材料である。重合反応から生じた重合材料はホモポリマー又はコポリマーであることができる。重合反応から生じた重合材料は架橋を含むことができる。
重合性材料は種々の1以上の条件下で硬化/重合することができ、これにより、重合性材料は、1以上の物理変化並びに/又は化学変化(例えば、硬さ、粘度、不透明度、色合い/色、粘着性、弾性率、可撓性、反応基(例えば、(メタ)アクリレート若しくはオキシラン)含有量など)を経験する。
重合性材料は、重合反応を促進するための開始剤を含み得る。開始剤の性質は、重合性材料の特定の構成要素に依存して変化し得、実際に変化することになる。例えば、重合性材料は、重合反応を促進するための、光開始剤(例えば、酸化ホスフィンなど)、熱開始剤(例えば、ペルオキシド、ヒドロペルオキシド、過酢酸塩、アゾ化合物など)、及び/又は他の開始剤(例えば、酸化剤及び還元剤などを含むレドックス開始剤系)を含み得る。(メタ)アクリレート系重合性材料においては、開始剤は通例、重合を開始するためのフリーラジカルの供給源を提供する役割を果たす。用いられる開始剤の特定の種類、又は用いられる開始剤の組み合わせに依存して、重合反応は、ラジカル種を発生するために、電磁放射(例えば、化学線)によって、加熱によって、及び/又は化学的に(例えば、2部分系における還元剤及び酸化剤の混合によって)開始され得る。いくつかのエポキシド系重合性材料の場合には、エポキシを硬化させるために様々な触媒が用いられ得る(例えば、アミン、酸、酸無水物、フェノール、アルコール、チオールなど)。
本明細書に記載されるシステム及び/又は方法を用いて硬化について監視され得る重合性歯科材料の形態の重合性材料の例としては、限定するものではないが、修復剤、複合材(例えば、充填材料)、接着剤、セメント(例えば、樹脂変成ガラスイオノマーセメント、合着用セメント)、シーラント、プライマー、窩洞裏層、クラウン・ブリッジ材料(永久的なもの若しくは一時的なもののいずれか)、コーティング、印象材、並びに同様のものが挙げられる。用語「重合性歯科材料」は、歯科矯正用プライマー、歯科矯正用接着剤、歯科矯正用セメント、歯科矯正用シーラントなどの、歯科矯正治療の一部として用いられ得る重合性材料、又は歯科矯正装置(例えば、ブラケット、バンドなど)を歯に接合するために用いられ得る他の重合性材料を更に含むことが理解される。
本明細書に記載されるシステム及び/又は方法は、可視監視光を用いて、重合性材料の選択された硬化度にいつ達したかを判定するように構成されている。本明細書で使用する時に、「硬化度」(及びその変形)は、硬化の結果としての重合性材料の1以上の物理特性並びに/又は化学特性(例えば、硬さ、粘度、不透明度、色合い/色、粘着性、弾性率、可撓性、反応基(例えば、(メタ)アクリレート若しくはオキシラン)含有量など)の変化量を意味する。本明細書において説明されるように、重合性材料の硬化度は、硬化の間、及び/又はその後に重合性材料から反射される可視監視光の強度の変化に基づいて判定することができる。
本明細書で使用する時に、「拡散反射率」(及びその変形)は、硬化光の入射角と等しくない反射角で重合性材料から反射されコリメート化された光、及び重合性材料の表面から正反射率のみを通した角度で可視光検出器へ返されないコリメート化されていない光を指すために広義に使用される。重合性材料へ送達された監視光は、重合性材料内で複数の散乱事象を経験した後に、本明細書に記載されるシステム及び/又は方法における可視光検出器へ拡散反射され得、これにより、反射された監視光は、様々な幾何形状、サイズ、及び複素屈折率の数多くの外部及び内部界面及び領域と相互作用する。1以上の実施形態では、硬化の前及び後に可視光検出器によって検出された反射監視光の強度の変化は、重合性材料の任意の構成要素における特定の化学官能性又は部分に関連付けられる電子共鳴、振動共鳴、若しくは回転共鳴、並びに屈折率の対応する異常分散に起因するものではない(即ち、C=C、エポキシ、N-H等などの、吸収発色団ではない)。
本明細書に記載されるシステム及び方法は、1以上の異なる可視波長における可視監視光を送出する監視光源と、硬化プロセスの間に重合性材料によって拡散反射された監視光を検出するように構成された可視光検出器とを含む。硬化の間に重合性材料から反射された監視光は、重合性材料において、いつ、選択された硬化度に達したかを判定するために用いられる。1以上の実施形態では、本明細書に記載されるシステムは、可視光検出器に動作可能に連結されたコントローラを含み得る。コントローラは、重合性材料が、選択された硬化度にいつ達するかを可視光検出器からの出力に少なくとも部分的に基づき、判定するように構成されている。1以上の実施形態では、本明細書に記載されるシステムは、重合性材料を硬化させるための硬化電磁放射線を放射するように構成された硬化電磁放射線源を含み得る。
本明細書に記載されるシステム及び/又は方法の1以上の実施形態では、監視光源は、重合性材料の重合(硬化)を実効的に誘導しない1以上の最大放射波長λmax-monを有する(例えば、400nm~800nmの範囲内の1以上の波長における)可視監視光を放射する。本明細書で使用する時に、「重合を実効的に誘導しない」とは、監視光の1以上の最大放射監視波長λmax-monが、監視光を照射されない同じ条件下における同じ重合性材料と比べて、監視光が60秒以下の期間にわたって入射する重合性材料の物理特性及び/又は化学特性の変化をさほど生じさせないことを意味する。
本明細書に記載されるシステム及び方法の1以上の実施形態では、監視光源によって放射される監視光における光の波長は、重合性材料におけるいかなる重合性化学部分(例えば、(メタ)アクリレート、エポキシ等などの、IR及び/又は近IR吸収発色団)によっても吸収されない。1以上の代替的な実施形態では、本明細書に記載されるようにシステム及び/又は方法に関連して用いられる任意の重合性材料の硬化を監視するために検出され、信頼される可視監視光の波長はいずれも、重合性材料におけるいかなる重合性化学部分によっても吸収されない波長である。その結果、本明細書に記載されるシステム及び/又は方法の1以上の実施形態の可視監視光を用いた重合性材料の硬化度は、可視監視光の1以上の波長の吸収度を検出することによって判定されない。むしろ、本明細書に記載されるシステム及び/又は方法は、1以上の波長における重合性材料によって反射された可視光の強度の変化に基づいて、重合性材料が、選択された硬化度にいつ達したかを判定する。
本明細書に記載されるシステム及び方法を用いて対処され得る問題は、十分な硬化度を確実にすることを含み得る。硬化度を判定することは、例えば、歯の窩洞などの内部に配置された歯科用修復材料内など、重合性材料が比較的厚い(例えば、1mm以上、2mm以上など)場合に、特に難しくなり得る。例えば、電磁放射線又は熱への曝露を通じて硬化する重合性材料とともに用いられるシステム及び方法における十分な硬化度を確実にするために、硬化電磁放射線及び/又は熱は、場合によっては、十分な硬化度に達するために必要とされるよりも長い時間にわたって、及び/又は高い強度で送出され得るが、その結果、処理が遅くなり、及び/又は無駄なエネルギーが生じる。更に他の場合には、例えば、硬化電磁放射線及び/又は熱が、必要とされるよりも短い時間にわたって、及び/又は低い強度で送出された場合には、重合性材料は十分に硬化し得ない。更に他の場合には、硬化電磁放射線及び/又は熱は誤って誘導される可能性があり、これにより、たとえ、硬化電磁放射線源を、必要とされる時間長にわたって活性化することができても、重合性材料に実際に入射する電磁放射線の強度は十分な硬化度のために足りない。
1以上の実施形態では、硬化レベルに応じて変化する重合性材料の屈折率のゆえに、反射監視光の強度は硬化度に応じて変化する。反射された可視監視光の強度を監視することは、例えば、監視光の透過率を測定するために可視監視光が入射する表面とは反対の重合性材料の側にアクセスすることが難しい、又は不可能である場合に、有用であり得る(例えば、歯の内部の歯科用複合材料、不透明基材上に配置された重合性材料など)。
1以上の実施形態では、本明細書に記載されるシステム及び方法は、硬化又は重合プロセスの間に生じる光散乱の変化を利用して重合性材料の硬化度を監視する能力を有し得る。光散乱の変化は、反射監視光の強度の検出可能な変化を生じさせる。例えば、硬化プロセスの間に化学構造の変化に起因する重合を経験するモノマーは、1以上の実施形態では、屈折率の変化を呈し得る。屈折率のその変化は、1以上の実施形態では、重合性材料中の反応組成物の重合の程度と直接相関し、更に、可視監視光を用いて、本明細書に記載されるように可視光検出器によって検出した時の反射監視光の強度の変化によって検出可能であり得る。
1以上の実施形態では、硬化プロセスの間に光学特性を比例的に変える重合性材料が、比較的一定の屈折率を維持する1種以上の材料(例えば、1種以上の充填材)と組み合わせられ得る。このような場合には、光散乱の量は、重合性材料中の重合するマトリクスの屈折率における増大又は減少変化に応じて増大又は減少し得る。同様に、硬化プロセスの間に、相分離が重合性材料中で生じた場合には、この時も、監視光の光散乱は硬化プロセスの間に変化し得る。散乱の変化の結果、可視光検出器によって検出された時の反射監視光の強度の変化が生じる。
本明細書に記載されるシステムとともに、及び/又は方法において用いられ得る重合性材料の1つの例示的な例は、例えば、およそ400~500nmの範囲内の青色光によって光重合させられる歯科用複合材である。1以上の実施形態では、通例、1種以上の充填材を含む、重合性歯科用複合材料は、硬化プロセスの間に、サンプルの上方の臨床的に意義のある短い距離において、硬化時間に応じた可視監視光の散乱の変化について探査又は監視されることになるであろう。
本明細書に記載されるシステム及び/又は方法において用いられる監視光源は、1以上の実施形態では、波長(単数又は複数)とは異なる、及び/又はそれよりも大きい1つ又はそれ以上の波長における光を送出し得、重合性材料を硬化させるために必要とする。硬化波長とは異なる、及び/又はそれらよりも長い波長における監視光を用いることについてのいくつかの潜在的利点が存在する。
潜在的利点のうちの1つは、入射硬化波長とは異なる波長における光散乱を検出する能力が検出感度の増大をもたらし得ることである。入射硬化波長における光散乱の小さな変化を検出する能力は、例えば、重合性材料が光硬化性であり、硬化光が高強度のものである場合には、難易度が高くなり得る。このような状況では、戻って来る散乱監視光は入射硬化光自体の背景雑音中に埋没し得る。監視光のための別個の異なる波長(単数又は複数)を(好適な検出器とともに)用いることは、監視光の散乱の小さなリアルタイムの変化の検出感度を高め得る。硬化光が400nm~500nmの範囲内の青色光である1以上の実施形態では、赤色光源(例えば、およそ650nmにおける光を放射するレーザ又はLED)が、例えば、明瞭で青色硬化光とは異なる有用な監視光になり得る。
硬化光の波長とは異なる波長における可視監視光を用いる第2の潜在的利点は監視光の可視化である。例えば、600nm~800nmの範囲内の監視光は、400nm~500nmの範囲内の青色硬化光によって生じるグレアから眼を保護する黄色/オレンジ色青色光フィルタの存在下において容易に肉眼で見ることができる。監視光を見ることができると、例えば、監視光が硬化電磁放射線と整列している場合には、ユーザが硬化電磁放射線の場所及び配置を見ることが可能になる。換言すれば、監視光は、硬化させるべき重合性材料への硬化電磁放射線の正確な送達を助けるための照準インジケータを提供し得る。1以上の波長の電磁放射線の照射を通じて硬化しない重合性材料(例えば、加熱、ラジカル種を発生するための(例えば、2部分系における)還元剤及び酸化剤の混合、触媒などによって硬化する重合性材料)と共に用いられる時には、ユーザは、可視監視光を用いて重合性材料のどの部分/部分群が硬化度について監視されているのかを判定することが可能であり得るため、可視監視光は依然として潜在的利点をもたらす。
例えば、任意の硬化波長の範囲内、又はその付近の波長における光を吸収する重合性材料についての第3の潜在的利点は、監視光が吸収されず、それゆえ、監視光を、例えば、反射率測定のために利用可能になるであろうということである。例えば、大抵の重合性歯科用複合材料は、歯牙構造と同様の光学特性を有する審美的修復をもたらすことが意図される。このため、重合性歯科用複合材料は、多くの場合、およそ400~550nmの間の波長における光を吸収する様々な量の黄色及び赤色の有色充填材/材料を含む。より長い(例えば、約550nmよりも大きい)波長における監視光を送出する監視源はこれらの顔料添加剤によって吸収されない、又は損なわれないであろう。
第4の潜在的利点は、例えば、硬化プロセスを開始する波長よりも大きい波長における監視光を用いると、監視光による硬化を誘導することがないということである。例えば、400~500nmの光を吸収する歯科用複合材は、多くの場合、約500nmを上回る光を吸収しない、通例、黄色の化合物である光開始剤を含む。このような状況では、可視光スペクトルの赤色から黄色の部分内の可視監視光は吸収されにくく、したがって、可視光検出器への反射のために利用可能であり得る。
一態様では、本明細書に記載されるように重合性材料の硬化度を監視するためのシステムの1以上の実施形態は、400nm~800nmの範囲内の1以上の波長における可視監視光を放射し、監視光が重合性材料の重合を実効的に誘導しない最大放射波長(λmax-mon)を有する、監視光源と、監視光が重合性材料によって拡散反射された後に400nm~800nmの範囲内の1以上の波長における監視光を検出するように構成された可視光検出器と、可視光検出器に動作可能に連結されたコントローラと、を備え、このコントローラは、重合性材料が、選択された硬化度にいつ達するかを可視光検出器によって検出された拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づき判定するように構成されている。
本明細書に記載されるシステムの1以上の実施形態では、システムは、重合性材料の硬化が誘導される最大放射硬化波長(λmax-cure)を有する硬化電磁放射線を放射するように構成された硬化電磁放射線源を更に備える。
本明細書に記載されるシステムの1以上の実施形態では、コントローラは硬化電磁放射線源に動作可能に接続されており、コントローラは、重合性材料が選択された硬化度に達したと判定した後に、硬化電磁放射線源が硬化電磁放射線を放射するのを停止するように構成されている。
本明細書に記載されるシステムの1以上の実施形態では、最大放射監視波長(λmax-mon)は、硬化電磁放射線源によって放射された硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも50nm異なる。
本明細書に記載されるシステムの1以上の実施形態では、最大放射監視波長(λmax-mon)は、硬化電磁放射線源によって放射された硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも100nm異なる。
本明細書に記載されるシステムの1以上の実施形態では、硬化電磁放射線は400nm~800nmの範囲内の1以上の波長における可視光を含む。
本明細書に記載されるシステムの1以上の実施形態では、硬化電磁放射線は400nm~500nmの範囲内の1以上の波長における可視光を含む。
本明細書に記載されるシステムの1以上の実施形態では、硬化電磁放射線は、赤外スペクトル及び紫外スペクトルのうちの少なくとも一方の内部の電磁放射線を含む。
本明細書に記載されるシステムの1以上の実施形態では、可視監視光は500nm~700nmの範囲内の1以上の波長における可視光を含む。
本明細書に記載されるシステムの1以上の実施形態では、硬化電磁放射線は、100nm以下の硬化電磁放射線の半値全幅放射を有する硬化波長半値範囲を規定する。
本明細書に記載されるシステムの1以上の実施形態では、監視光は、100nm以下の監視光の半値全幅放射を有する監視波長半値範囲を規定する。
本明細書に記載されるシステムの1以上の実施形態では、監視光源によって放射される監視光は、最大放射硬化波長(λmax-cure)において、最大放射硬化波長(λmax-cure)における硬化電磁放射線源によって放射される硬化電磁放射線の強度の0.1以下の強度を有する。
本明細書に記載されるシステムの1以上の実施形態では、監視光源は最大放射硬化波長(λmax-cure)における電磁放射線を放射しない。
本明細書に記載されるシステムの1以上の実施形態では、システムは、最大放射監視波長(λmax-mon)を有する光を透過させ、最大放射硬化波長(λmax-cure)を有する電磁放射線を透過させないフィルタを更に備え、可視光検出器に向けられた光及び電磁放射線は、可視光検出器に到達する前にフィルタに入射する。
本明細書に記載されるシステムの1以上の実施形態では、システムは、重合性材料の重合を実効的に誘導しない電磁放射線のみが可視光検出器に到達するのを可能にするように構成されたフィルタを備える。
本明細書に記載されるシステムの1以上の実施形態では、可視光検出器は、最大放射硬化波長(λmax-cure)を有する電磁放射線を検出しない。
本明細書に記載されるシステムの1以上の実施形態では、硬化電磁放射線源と監視光源とは同軸である。
本明細書に記載されるシステムの1以上の実施形態では、監視光源は、監視光が、重合性材料を通過した後に人間の肉眼で見えるような強度を有する監視光を放射する。
本明細書に記載されるシステムの1以上の実施形態では、システムは、硬化電磁放射線源及び監視光源に光学的に連結されたミキシングロッドを備え、硬化電磁放射線及び監視光は、重合性材料に到達する前にミキシングロッドを通過する。
本明細書に記載されるシステムの1以上の実施形態では、可視光検出器はミキシングロッドに光学的に連結されており、反射された監視光は、可視光検出器に到達する前にミキシングロッドを通過する。
本明細書に記載されるシステムの1以上の実施形態では、システムは、コントローラに動作可能に連結されたフィードバック発生器を更に備え、コントローラは、重合性材料が選択された硬化度に達したと判定した後に、フィードバック発生器に、感覚フィードバックをユーザに提供させるように構成されている。
本明細書に記載されるシステムの1以上の実施形態では、フィードバック発生器は視覚インジケータ及び可聴/触覚インジケータのうちの一方又は双方を含む。
本明細書に記載されるシステムの1以上の実施形態では、システムは、人間の口内への挿入のために構成されたプローブを含む手持ち式デバイスを備え、可視監視光はプローブから放射され、更に、可視光検出器によって検出される監視光は、可視光検出器に到達する前にプローブに入射する。
本明細書に記載されるシステムの1以上の実施形態では、システムは、人間の口内への挿入のために構成されたプローブを含む手持ち式デバイスを備え、可視監視光及び硬化電磁放射線はプローブから放射され、更に、可視光検出器によって検出される監視光は、可視光検出器に到達する前にプローブに入射する。
第2の態様では、本明細書に記載されるように重合性材料の硬化度を監視する方法の1以上の実施形態は、重合性材料に、400nm~800nmの範囲内の1以上の波長における可視監視光を照射することであって、監視光は、重合性材料の重合を実効的に誘導しない最大放射監視波長(λmax-mon)を有する、照射することと、400nm~800nmの範囲内の1以上の波長における、監視光が重合性材料によって拡散反射された後の監視光を検出することと、重合性材料が選択された硬化度にいつ達したかを検出された拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づき、判定することと、を含み得る。
本明細書に記載される方法の1以上の実施形態では、本方法は、重合性材料に硬化電磁放射線を照射することを更に含み、硬化電磁放射線は、重合性材料の硬化が誘導される最大放射硬化波長(λmax-cure)を有する。
本明細書に記載される方法の1以上の実施形態では、本方法は、重合性材料が選択された硬化度に達したと判定した後に、硬化電磁放射線による重合性材料の照射を停止することを更に含む。
本明細書に記載される方法の1以上の実施形態では、本方法は、可視光検出器を用いて、拡散反射された監視光を検出することと、可視光検出器からの出力に少なくとも部分的に基づいて硬化電磁放射線による重合性材料の照射を停止することと、を更に含む。
本明細書に記載される方法の1以上の実施形態では、可視光検出器からの出力は、可視光検出器によって検出されたときの拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づく。
本明細書に記載される方法の1以上の実施形態では、本方法は、重合性材料が選択された硬化度に達したと判定した後に、重合性材料が選択された硬化度に達したことを指示する感覚フィードバックをユーザに提供することを更に含む。
本明細書に記載される方法の1以上の実施形態では、感覚フィードバックは、可聴フィードバック、視覚フィードバック、及び触覚フィードバックのうちの1以上を含む。
本明細書に記載される方法の1以上の実施形態では、最大放射監視波長(λmax-mon)は硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも50nm異なる。
本明細書に記載される方法の1以上の実施形態では、最大放射監視波長(λmax-mon)は硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも100nm異なる。
本明細書に記載される方法の1以上の実施形態では、硬化電磁放射線は400nm~800nmの範囲内の1以上の波長における可視光を含む。
本明細書に記載される方法の1以上の実施形態では、硬化電磁放射線は400nm~500nmの範囲内の1以上の波長における可視光を含む。
本明細書に記載される方法の1以上の実施形態では、硬化電磁放射線は、赤外スペクトル及び紫外スペクトルのうちの少なくとも一方の内部の電磁放射線を含む。
本明細書に記載される方法の1以上の実施形態では、可視監視光は500nm~700nmの範囲内の1以上の波長における可視光を含む。
本明細書に記載される方法の1以上の実施形態では、硬化電磁放射線は100nm以下の半値全幅放射を有する。
本明細書に記載される方法の1以上の実施形態では、監視光は100nm以下の半値全幅放射を有する。
本明細書に記載される方法の1以上の実施形態では、重合性材料に照射する硬化電磁放射線と監視光とは同軸である。
本明細書に記載される方法の1以上の実施形態では、監視光は、硬化電磁放射線よりも重合性材料の表面の小さい領域を照射する。
本明細書に記載される方法の1以上の実施形態では、監視光によって照射される重合性材料の表面上の監視領域と、硬化電磁放射線によって照射される重合性材料の表面上の硬化領域とは同じである。
本明細書に記載される方法の1以上の実施形態では、重合性歯科材料に照射する可視監視光は、最大放射硬化波長(λmax-cure)において、最大放射硬化波長(λmax-cure)における硬化電磁放射線の強度の0.1以下の強度を有する。
本明細書に記載される方法の1以上の実施形態では、監視光は最大放射硬化波長(λmax-cure)における光を含まない。
本明細書に記載される方法の1以上の実施形態では、本方法は、監視光が重合性材料によって拡散反射された後の監視光を検出する可視光検出器に到達する光を、最大放射硬化波長(λmax-cure)を有する電磁放射線が可視光検出器に到達しないよう、フィルタリングすることを更に含む。
本明細書に記載される方法の1以上の実施形態では、本方法は、最大放射硬化波長(λmax-cure)を有する電磁放射線を検出しない可視光検出器を用いて、監視光が重合性材料によって拡散反射された後の監視光を検出することを更に含む。
本明細書に記載される方法の1以上の実施形態では、監視光は重合性材料の全厚さを貫通する。
本明細書に記載される方法の1以上の実施形態では、監視光は、重合性材料を通過した後に人間の肉眼で見える。
本明細書に記載される方法の1以上の実施形態では、監視光は重合性材料の少なくとも4mmを通過する。
本明細書に記載される方法の1以上の実施形態では、監視光は重合性材料の10mm以下を通過する。
本明細書に記載される方法の1以上の実施形態では、可視監視光は、人間の口腔内に挿入されたプローブから放射され、更に、可視光検出器によって検出される監視光は、可視光検出器に到達する前にプローブに入射する。
本明細書に記載される方法の1以上の実施形態では、可視監視光及び硬化電磁放射線は、人間の口腔内に挿入されたプローブから放射され、更に、可視光検出器によって検出される監視光は、可視光検出器に到達する前にプローブに入射する。
本明細書に記載される方法の1以上の実施形態では、重合性材料は歯科材料である。
本明細書に記載される方法の1以上の実施形態では、重合性材料は、光開始剤、熱開始剤、化学開始剤、及び触媒の群から選択される少なくとも1つを含む。
本明細書に記載される方法の1以上の実施形態では、重合性材料は充填材を含む。
本明細書に記載される方法の1以上の実施形態では、重合性材料は重合性化学部分を含み、この重合性化学部分は監視光を吸収しない。
上述の概要は、本明細書に記載されるシステム及び方法の各実施形態又は全ての実装形態を説明することを意図されていない。むしろ、本発明のより完全な理解は、添付図面の図を考慮して以下の詳細な説明及び添付の請求項を参照することによって明らかになり、認識されるであろう。
以下の本発明の種々の実施形態の詳細な説明を、添付図面と併せて考慮することで、本発明をより完全に理解し、認識することができる。
本明細書に記載される硬化監視システムの例示的な一実施形態の概略ブロック図である。 本明細書に記載される手持ち式硬化監視システムの例示的な一実施形態を示す。 本明細書に記載される硬化監視システムの例示的な別の実施形態を示す。 硬化電磁放射線及び可視監視光が表面に入射する相対的領域の例示的な一実施形 態を示す。 硬化電磁放射線及び可視監視光が表面に入射する相対的領域の例示的な別の実施 形態を示す。 x軸に沿った、選択された重合性材料についての硬化度、及び時間、並びにy軸 に沿った拡散反射率の1つの例示的な例を示す。 本明細書に記載される硬化監視システムの例示的な一実施形態における、硬化電磁放射線及び可視監視光を重合性材料へ送るための構造、並びに反射された監視光を検出器へ送るための構造の1つの例示的な配置を示す。 硬化電磁放射線及び可視監視光の双方を重合性材料へ送り、反射された監視光を検出器へ戻すように構成されたミキシングロッドを含む、本明細書に記載される硬化監視システムの例示的な別の実施形態を示す。 図8の硬化監視システムにおける硬化電磁放射線源及び可視監視光源の1つの例示的な配置を示す。 実施例1~4及び比較例において使用される硬化監視システムを示す。 光検出器によって測定された監視光の反射率、及び実施例1において説明される表1のB/T硬さデータのプロットである。 実施例1についてのB/T比対正規化反射率のプロットである。 実施例2についての、光検出器によって測定された監視光の反射率、及びB/T硬さデータのプロットである。 実施例2についてのB/T比対正規化反射率のプロットである。 実施例3についての、光検出器によって測定された監視光の反射率、及びB/T硬さデータのプロットである。 実施例3についてのB/T比対正規化反射率のプロットである。 実施例4において収集された正規化監視光反射率データ及びB/T硬さデータを示す。 光検出器によって測定された青色450nm硬化電磁放射線の反射率、及び比較例において収集されたときのB/T硬さデータのプロットである。 比較例についてのB/T比対正規化反射率のプロットである。
以下の説明では、本明細書の一部を形成し、特定の諸実施形態が例として示される添付図面の図を参照する。他の実施形態を利用することもでき、また、構造的な変更が、本発明の範囲から逸脱することなくなされ得ることを理解されたい。
図1に、重合性材料の硬化度を監視するためのシステムの例示的な一実施形態が示される。図示のシステム10は、硬化電磁放射線源20と、監視光源30と、可視光検出器40と、図示の実施形態では、硬化電磁放射線源20、監視光源30、及び可視光検出器40の各々に動作可能に接続されたコントローラ50とを含む。本明細書に記載されるシステムの1以上の実施形態では、硬化電磁放射線源20は任意選択的なものであってもよい。図示のシステム10はまた、可視光検出器40に到達するのを可能にされた光/電磁放射を制御するように構成された任意選択的なフィルタ60を含む。システム10のコントローラ50はまた、任意選択的な感覚フィードバック発生器70に動作可能に接続されている。
本明細書に記載されるシステムの1以上の実施形態において用いられる硬化電磁放射線源20は、選択された重合性材料の硬化が誘導される最大放射硬化波長λmax-cureを有する硬化電磁放射線を放射するように構成され得る。換言すれば、硬化電磁放射線源20によって放射される硬化電磁放射線は、そのλmax-cureにおいて、選択された重合性材料の重合を開始する。1以上の実施形態では、硬化電磁放射線による選択された重合性材料の重合開始は、最大放射硬化波長λmax-cureの一方又は双方の側の1以上の波長においても生じ得る。1以上の実施形態では、硬化電磁放射線源20は比較的狭い波長範囲内の電磁放射線を放射し得る。
1以上の実施形態では、硬化電磁放射線源20によって放射される硬化電磁放射線は、例えば、100nm以下、50nm以下、20nm以下、10nm以下、又は更に1nm以下の、半値全幅放射の波長を有し得る(ここで、半値全幅放射とは、最大放射硬化波長λmax-cureにおいて測定された時の強度の半分である)。その全幅は硬化波長半値範囲と呼ぶことができる。換言すれば、最大放射硬化波長(λmax-cure、例えば、450nm)が1の正規化強度を有する場合には、硬化電磁放射線源が、0.5以上の正規化強度を有する電磁放射線を放射する硬化波長半値範囲は、最大放射硬化波長(λmax-cure)を包含する100nm以下(又は50nm以下、20nm以下、10nm以下、若しくは更に1nm以下)の範囲を占有する。このような実施形態では、最大放射硬化波長(λmax-cure)は硬化波長半値範囲内に中心を有してもよく、又は有しなくてもよい。更に、硬化電磁放射線の最も広い波長範囲が、その最も外側の波長において、λmax-cureにおける硬化電磁放射線の強度の半分である強度を有する限り、硬化電磁放射線は硬化波長半値範囲内で0.5の強度を下回ってもよい。換言すれば、硬化電磁放射線の強度曲線は硬化波長半値範囲内に1以上の極小を包含してもよい。
1以上の実施形態では、硬化電磁放射線源20は、400nm~800nmの範囲に及ぶ1以上の波長における可視光を放射する可視光源であり得る。1以上の実施形態では、硬化電磁放射線源20はより狭い範囲内の可視光を放射し得る。例えば、1以上の実施形態では、本明細書に記載されるシステム及び/又は方法において用いられる硬化電磁放射線源20は、例えば、400nm~、例えば、500nmの範囲に及ぶ1以上の波長における可視光を放射し得る。
本明細書に記載されるシステム及び方法の1以上の代替的な実施形態では、硬化電磁放射線は、赤外スペクトル及び紫外スペクトルのうちの一方又は双方の内部の電磁放射線を含み得る。
本明細書に記載されるシステム及び方法の1以上の実施形態において用いられる硬化電磁放射線源20は任意の好適な形態を取ることができる。いくつかの潜在的に好適な硬化電磁放射線源としては、例えば、ハロゲンランプ、キセノンランプ、アークランプ、LED、LED発光器、LEDダイ、メタルハライドランプ、水銀蒸気ランプ、ナトリウムランプ、レーザなどを挙げることができる。硬化電磁放射線源20によって放射された電磁放射線の、重合性材料への送達は、任意の好適な仕方、例えば、光ガイド、導波路、光ファイバ、レンズなどを用いて達成され得る。
本明細書に記載されるシステム及び/又は方法の1以上の実施形態では、監視光源30は、例えば、400nm~、例えば、800nmの範囲内の1以上の波長における可視監視光を重合性材料に向けて放射し得る。監視光は、1以上の実施形態では、硬化電磁放射線の最大放射硬化波長(λmax-cure)とは異なる最大放射監視波長λmax-monを有し得る。
本明細書において説明されるように硬化電磁放射線源を含むシステム及び/又は方法の1以上の実施形態における監視光源によって放射される監視光は、最大放射硬化波長(λmax-cure)において、硬化電磁放射線源によって放射される最大放射硬化波長λmax-cureにおける硬化光の強度の0.1以下の強度を有し得る。1以上の代替的な実施形態では、監視光源は最大放射硬化波長λmax-cureにおける光を放射しない。
1以上の実施形態では、最大放射監視波長は任意の硬化電磁放射線の最大放射硬化波長と少なくとも50nm異なり得る。更なる1以上の代替的な実施形態では、監視光源30は、硬化電磁放射線の最大放射硬化波長と少なくとも100nm異なる最大放射監視波長を有する可視監視光を放射し得る。換言すれば、最大放射硬化波長が450nmにある場合には、最大放射監視波長は、1以上の実施形態では、50nmの差に対しては500nm以上、又は100nmの差に対しては550nm以上であり得る。
1以上の実施形態では、監視光源30は比較的狭い波長範囲内の可視光を放射し得る。1以上の実施形態では、監視光源30によって放射される監視光は、例えば、100nm以下、50nm以下、20nm以下、10nm以下、又は更に1nm以下の、半値全幅放射の波長を有し得る(ここで、半値放射とは、任意の最大放射監視波長λmax-monの強度の半分である)。その全幅は監視波長半値範囲と呼ぶことができる。換言すれば、最大放射監視波長(λmax-mon、例えば、650nm)が1の正規化強度を有する場合には、監視光源が、0.5以上の正規化強度を有する光を放射する監視波長半値範囲は、最大放射監視波長(λmax-mon)を包含する100nm以下(又は50nm以下、20nm以下、10nm以下、若しくは更に1nm以下)の範囲を占有する。このような実施形態では、最大放射監視波長(λmax-mon)は監視波長半値範囲内に中心を有してもよく、又は有しなくてもよい。更に、監視光の最も広い波長範囲が、その最も外側の波長において、λmax-monにおける監視光の強度の半分である強度を有する限り、監視光は監視波長半値範囲内で0.5の強度を下回ってもよい。換言すれば、監視光の強度曲線は監視波長半値範囲内に1以上の極小を包含してもよい。
本明細書に記載されるシステム及び方法の1以上の実施形態では、硬化電磁放射線のいずれの最大放射波長λmax-cureも監視波長半値範囲内に包含されない。
本明細書に記載されるシステム及び方法の1以上の実施形態において用いられる監視光源30は任意の好適な形態を取ることができる。いくつかの潜在的に好適な可視監視光源は、例えば、ハロゲンランプ、キセノンランプ、アークランプ、LED、LED発光器、LEDダイ、メタルハライドランプ、水銀蒸気ランプ、ナトリウムランプ、レーザ等、及び監視光源30によって重合性材料へ送出される光の波長を制御するために必要な、例えば、フィルタ等などの関連構成要素を含み得る。監視光源30によって放射された監視光の、重合性材料への送達は、任意の好適な仕方、例えば、光ガイド、導波路、光ファイバ、レンズなどを用いて達成され得る。
1以上の実施形態では、監視光源は、硬化について監視されている重合性材料の全厚さを貫通するために十分な強度(例えば、1mWなど)を有する監視光を放射する。監視光が重合性材料の全厚さを貫通することができない場合には、このとき、本明細書に記載されるシステム及び方法を用いて重合性材料の完全な厚さの硬化度の正確な判定を得ることができない。本明細書において説明されるように、種々の潜在的光源が適し得るが、例えば、レーザ、レーザLED等などの、コリメート光源及び/又は可干渉光源の使用が、最も望ましい結果をもたらす能力を有する強度を有する監視光を提供し得る。
本明細書に記載されるシステム及び/又は方法の1以上の実施形態では、監視光源は、監視光が、重合性材料を通過した後に人間の肉眼で見えるような強度を有する監視光を放射し得る。換言すれば、可視監視光が重合性材料の第1の表面に入射するシステム及び/又は方法において、その可視監視光は、重合性材料の厚さを通過した後に、重合性材料の反対側に位置する重合性材料の表面上において、照明されていない暗室内で人間の肉眼で見られ得る。
1以上の実施形態では、監視光の強度は、監視されている重合性材料の少なくとも4mmを通過するために十分であり得る(ここで、例えば、重合性材料は、歯の修復及び/又は形成のために用いられる歯科用重合性材料である)。1以上の代替的な実施形態では、監視光の強度は、監視されている重合性材料の少なくとも4.5mm、5mm、6mm、又は7mmを通過するために十分であり得る(ここで、例えば、重合性材料は、歯の修復及び/又は形成のために用いられる歯科用重合性材料である)。
監視光の強度はまた、1以上の実施形態では、選択された限度を超えないように制御され得る。特定の限度を上回る監視光強度が、例えば、口腔内の組織に悪影響を及ぼし、及び/又は他の安全性の懸念を呈し得る場合には、監視光の強度を制限することが有用であり得る。例えば、1以上の実施形態では、監視光の強度は、監視されている重合性材料の10mm以下を通過するために十分であり得る(ここで、例えば、重合性材料は、歯の修復/形成のために用いられる歯科用重合性材料である)。1以上の代替的な実施形態では、監視光の強度は、監視されている重合性材料の9mm、8mm、7mm、6mm、又は5mm以下を通過するために十分であり得る(ここで、例えば、重合性材料は、歯の修復/形成のために用いられる歯科用重合性材料である)。
硬化電磁放射線源及び監視光源の双方を含む本明細書に記載されるシステムの1以上の実施形態では、2つの発生源は同じ伝搬軸(例えば、図における伝搬軸111を参照)に沿って光又は電磁放射線を放射し得る。1以上の代替的な実施形態では、硬化電磁放射線源及び監視光源は2つの異なる伝搬軸に沿って放射し得る。1以上の実施形態では、硬化電磁放射線及び監視光のためのそれらの伝搬軸は、硬化電磁放射線源及び監視光源から、選択された距離において集束し得る。
本明細書において説明されるように、可視監視光は、1以上の実施形態では、硬化電磁放射線を重合性材料へ送出するユーザに、適切な硬化を支援するための視覚的補助を提供し得る。本明細書に記載されるシステム及び方法の1以上の実施形態では、監視光源によって送出される可視監視光は、重合性材料の表面上において、硬化電磁放射線が送達される硬化領域に対する選択された監視領域を覆う適用範囲を提供するようにコリメート化されるか、又は他の仕方で制御/合焦され得る。
及び図は、本明細書に記載されるシステム及び方法の1以上の実施形態における監視光及び/又は硬化電磁放射線が送達され得る重合性材料の表面上における監視領域と硬化領域との多くの可能な関係の2つの例を示す。例えば、図4において見られるように、監視光は、硬化電磁放射線が送達される硬化領域22よりも小さい監視領域32へ合焦されてもよく、その一方で、図5は、監視光が、硬化電磁放射線が入射する硬化領域22と同じである監視領域32へ送達される構成を示す(ここで、「同じ」とは、監視領域と硬化領域とがせいぜい5%だけ互いに異なることを意味する)。硬化電磁放射線によって画定される硬化領域22に対する、監視光によって占有される監視領域32のサイズは、1以上の実施形態では、例えば、合焦、脱焦、コリメート化、非コリメート化などによって選択的に調整可能であり得る。
本明細書に記載されるシステムの1以上の実施形態では、可視光検出器40は、監視光源によって放射された監視光を検出するように構成され得る。1以上の実施形態では、その反射監視光は重合性材料から拡散反射されてもよく、本明細書において説明されるように、その検出が、例えば、硬化電磁放射線による、重合性材料の硬化度を監視することを可能にし得る。1以上の実施形態では、重合性材料によって拡散反射された監視光は、硬化電磁放射線が重合性材料に入射する間に、可視光検出器40によって検出され得る。1以上の実施形態では、可視光検出器40は、400nm~800nmの範囲内の光を検出するように構成され得る。
可視光検出器による硬化電磁放射線の検出に関連付けられ得る課題を抑制するために、1以上の実施形態では、可視光検出器は、最大放射硬化波長λmax-cureを有する電磁放射線を検出しない検出器の形態のものであり得る。1以上の代替的な実施形態では、本明細書に記載されるシステム及び/又は方法において用いられる可視光検出器は、本明細書において定義されるように硬化波長半値範囲内に含まれる電磁放射線を検出しなくてもよい。
反射監視光を検出するために硬化電磁放射線を検出しない可視光検出器を用いる代わりに、及び/又はそれに加えて、本明細書に記載されるシステム及び/又は方法の1以上の実施形態は、可視光検出器に到達するのを可能にされた光及び/又は電磁放射線をフィルタリングするための1以上のフィルタ(例えば、図1におけるフィルタ60を参照)を含み得る。1以上の実施形態では、フィルタ60は、任意の最大放射硬化波長λmax-cureを有する電磁放射線が、可視光検出器40に到達するために通過することを可能にしなくてもよい。1以上の代替的な実施形態では、フィルタ60は、本明細書において定義されるように硬化波長半値範囲内に含まれる電磁放射線が、可視光検出器に到達するために通過することを可能にしなくてもよい。1以上の代替的な実施形態では、本明細書に記載されるシステム及び/又は方法において用いられるフィルタ又はフィルタリングは、重合性材料の重合を実効的に誘導しない光のみが可視光検出器に到達することを可能にしてもよい。
1以上の実施形態では、光検出器40及び/又はフィルタ60は、少なくとも、最大放射監視波長λmax-monを有する光を検出するように構成され得る。換言すれば、光検出器40及び/又はフィルタ60は、少なくとも最大放射監視波長λmax-monが光検出器によって検出されるよう、監視光源30と整合させられてもよい。
重合性材料から反射された監視光は任意の好適な可視光検出器技術によって測定することができる。例えば、例として、フォトダイオード、光検出器、フォトトランジスタ、アナログ光センサ、デジタル光センサ、周波数光センサ等などの任意の種類の固体感知デバイスが用いられ得る。本明細書に記載されるシステム及び方法の1以上の実施形態において用いられる可視光検出器は、重合性材料から受光された反射光の強度に比例する(例えば、コントローラ50によって用いられるための)信号を発生し得る。反射監視光の収集、及び本明細書に記載されるシステム及び方法において用いられる可視光検出器への送達は、任意の1以上の屈折及び/又は反射光学デバイス、例えば、レンズ、ミラー、光ガイド、導波路、光ファイバなどを用いて達成され得る。
1以上の実施形態では、可視監視光源30及び可視光検出器40は、例えば、LEDが、駆動されると光源として機能し、無電流条件下で動作させられると光検出器として動作する、パルスモードで駆動されるLEDなどの、1つのデバイス内に組み合わせられ得る。
図1に示される例示的な実施形態では、システム10は、硬化電磁放射線源20、監視光源30、及び可視光検出器40に動作可能に接続されたコントローラ50を含む。コントローラ50はまた、1以上の実施形態では、本明細書に記載されるシステム及び/又は方法のユーザによって感知され得るフィードバックを発生するように構成された感覚フィードバック発生器70に動作可能に接続され得る。1以上の実施形態では、感覚フィードバック発生器は、例えば、図及び図に示される例示的なシステムに関連して説明されるように1以上の視覚インジケータ及び/又は1以上の可聴/触覚インジケータの形態のものであり得る。
コントローラ50が可視光検出器40に動作可能に連結されている1以上の実施形態では、コントローラ50は、可視光検出器40によって検出された拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づいて、監視光源30によって放射された監視光を用いて監視されている重合性材料が、選択された硬化度にいつ達したかを判定するように構成され得る。1以上の実施形態では、可視光検出器によって検出された拡散反射監視光の強度の選択された変化レートは、重合性材料の硬化度が増大するにつれて、減少することになる。換言すれば、十分に硬化した重合性材料から拡散反射監視光の強度の変化レートは、重合性材料がほとんど又は全く硬化していない硬化プロセスの開始時に見られるように拡散反射監視光の強度の変化レートよりも著しく低くなる。図に、x軸に沿った硬化度及び時間並びにy軸に沿った拡散反射率を示す一例が線26として示されており、拡散反射された監視光の強度の変化レートが、本明細書に記載されるように選択された重合性材料の選択された硬化度と相関関係を有し得る選択された変化レートに達する位置に、点28が位置付けられている。
コントローラ50が硬化電磁放射線源20及び可視光検出器40に動作可能に接続された1以上の実施形態では、コントローラは、可視光検出器40からの出力に少なくとも部分的に基づいて、後に、硬化電磁放射線源20が硬化電磁放射線を放射するのを停止するように構成され得る。可視光検出器40からのその出力は、1以上の実施形態では、重合性材料が、拡散反射された監視光の強度の選択された変化レートと相関関係を有するように選択された硬化度に達したと判定するように構成されたコントローラ50を用いることを要し得る。このような状況において、例えば、可視光検出器40は、拡散反射された監視光の強度を指示する信号をコントローラ50へ出力し得る。更に、可視光検出器40からのその信号は、拡散反射された監視光の強度が変化するにつれて変化し、コントローラ50が、本明細書において説明されるように、重合性材料の選択された硬化度と相関関係を有し得る、拡散反射された監視光の強度の変化レートを判定するためのデータを提供する。
本明細書において説明されるように、本明細書に記載されるシステムの1以上の実施形態は、コントローラに動作可能に接続された視覚インジケータの形態の感覚フィードバック発生器を含み得る。コントローラは、視覚インジケータを用いて、可視インジケータの形態の感覚フィードバックをシステムのユーザに提供するように構成されている。1以上の実施形態では、視覚インジケータは、コントローラ50の制御下で、以下のこと、点灯又は消灯、点滅、色の変更、強度の変更などのうちの1以上を行い、重合性材料の選択された硬化度に達したことの可視指示を提供するライトの形態のものであり得る。1以上の代替的な実施形態では、視覚インジケータの形態の感覚フィードバック発生器は、コントローラ50に動作可能に接続された表示デバイス上の視覚インジケータ(例えば、例として、LCD又は他のディスプレイのスクリーン上に見られるグラフィカルユーザインターフェース(graphical user interface、GUI)などの上の1以上のライト、アイコンなど)の形態で提供することができるであろう。
本明細書に記載されるシステムの1以上の実施形態におけるコントローラ50に動作可能に接続され得る他の感覚フィードバック発生器を、視覚フィードバック以外の感覚フィードバックをシステムのユーザに提供するために用いることもできる。感覚フィードバック発生器は、1以上の実施形態では、人間の耳によって聞こえる振動を発生するために通例用いられるスピーカ、ブザー、サイレンなどの形態のものであり得る。1以上の代替的な実施形態では、感覚フィードバック発生器は、人間のユーザ(例えば、歯科用硬化ライトを保持している人)によって通常触覚的に感知される振動を発生し得る。
1以上の実施形態では、コントローラ50は、硬化又は重合プロセスが進行していないか、又は要求され、及び/又は望まれているよりもゆっくり進行していることの指示をユーザに提供するために、感覚フィードバック発生器を用いるように構成され得る。このような状況では、感覚フィードバック発生器のうちの1以上は、期待どおり、及び/又は所望どおりに重合性材料の重合が進行している状況において提供されるものとは異なる感覚フィードバックを提供するために用いられ得る。このようなシステム及び/又は方法では、ユーザは、次に、硬化プロセスを修正する、硬化プロセスを停止するなどする機会を有し得る。
本明細書において説明されるように、フィルタリング、及び/又は最大放射硬化波長の電磁放射線を検出しない可視光検出器の使用の代わりに、又はそれに加えて、本明細書に記載されるシステム及び/又は方法の1以上の実施形態は監視光及び/又は任意の硬化電磁放射線のストロービング(strobing)を用い得る。例えば、コントローラは、1以上の実施形態では、監視光源のオン及びオフを繰り返し、適切な間隔の最中にのみ、反射された監視光を検出し得る。1つの代替例では、硬化電磁放射線源がオン及びオフを繰り返されてもよく、可視光検出器は、硬化電磁放射線が放射されない時にのみ反射光を検出されるために用いられる。更に他のシステム及び/又は方法では、監視光源及び硬化電磁放射線源の双方が、一方の発生源が光/電磁放射線を放射している時には、他方の発生源が光/電磁放射線を放射していないように、ストローブされ得る。ストローブされるシステム及び/又は方法では、検出器に到達する光/電磁放射線のフィルタリングは必要なくてもよい。
本明細書に記載されるシステムにおいて用いられるコントローラは任意の好適な形態で提供することができ、例えば、処理ユニット、及び任意選択的に、メモリを含み得る。1以上の実施形態では、コントローラの処理ユニットは、例えば、単一のハードウェア内に統合されるか、又は互いに動作可能に通信することができる複数のハードウェア内に分散され得る、1以上のマイクロプロセッサ、フィールドプログラマブルゲートアレイ(Field-Programmable Gate Array、FPGA)、デジタル信号プロセッサ(Digital Signal Processor、DSP)、マイクロコントローラ、特定用途向け集積回路(Application Specific Integrated Circuit、ASIC)状態機械、コンピューティングデバイスなどの形態のものであり得る。
本明細書に記載されるようにシステムは、1以上の実施形態では、可視監視光を放射する監視光源と、重合性材料によって反射された監視光を検出するように構成された可視光検出器と、硬化電磁放射線を放射するように構成された硬化電磁放射線源、並びに可視光検出器、及び、任意選択的に、硬化電磁放射線源に動作可能に連結されたコントローラのうちの一方又は双方とを含み得る。これらの様々な構成要素は種々のデバイス内に組み込まれ得る。1以上の実施形態では、監視光源、及び重合性材料によって反射された監視光を検出するように構成された可視光検出器は、例えば、例として、歯科用硬化ライトにおいて用いられるプローブなどの、一体構造体内に組み込まれ得る。1以上の実施形態では、任意のこのようなプローブはまた、硬化電磁放射線源からの硬化電磁放射線を送出するように設計された、同じシステムの一部分を同様に形成し得る構成要素も含み得る。
本明細書に記載され、及び/又は本明細書に記載される方法において用いられるシステムの形態は、本明細書に記載されるように可視光を用いて監視されるべき重合性材料の形態に基づき、変化し得る。例えば、1以上の実施形態では、重合性材料は、例えば、歯科用修復材料などの、個別の塊の形態のものであり得る。1以上の代替的な実施形態では、重合性材料は、例えば、コーティング、層、フィルムなどの形態のものであり得る。図及び図に、重合性材料の硬化を監視するためのシステムの2つの例示的な例が示される。
の例示的なシステム110は、1以上の実施形態では、例えば、例として、歯の修復などのために用いられる重合性材料を硬化させ、その硬化度を監視するために適し得る手持ち式デバイス内の、任意選択的な硬化光源、監視光源、可視光検出器、及びコントローラを内蔵し得るハウジング112を含む。図示されていないが、システム110は、電力を必要とする構成要素のうちの任意のものに動作可能に接続された電源を含み得る(電力源は、1以上の実施形態では、ハウジング112内に配置され得る)。
に示されるシステム110はまた、1以上の実施形態では、硬化電磁放射線(存在する場合)及び可視監視光を、選択された重合性材料180へ誘導し、送るために用いられる1以上の光ガイドを組み込み得るプローブ114を含む。1以上の実施形態では、硬化電磁放射線及び/又は監視光は伝搬軸111に沿って重合性材料180へ送られ得る。プローブ114はまた、反射された監視光を収集し、それを(例えば、ハウジング112内に配置され得る)システム110の可視光検出器へ送るように構成された光ガイドを含み得る。1以上の代替的な実施形態では、プローブ114自身が、硬化電磁放射線源、監視光源及び/又は可視光検出器などの構成要素のうちの1以上を保持してもよい。1以上の実施形態では、プローブ114は、例えば、重合性歯科材料を生体内で硬化させるために、被術者の口腔内に配置するようにサイズ設定され得る。
例示的なシステム110は、システム10のユーザによって感知され得るフィードバックを提供するための1以上の感覚フィードバック発生器を含み得る。図示の実施形態では、感覚フィードバック発生器は、1以上の視覚インジケータ170及び/又は1以上の可聴/触覚インジケータ(例えば、スピーカ、振動ユニットなどであり、図には示されていない)を含み得る。1以上の実施形態では、感覚フィードバックは、重合性材料の硬化度、及び/又は重合性材料の選択された硬化度に達したかどうかに関する指示を提供するべく、ユーザによって感知されるために送られる。
は、本明細書に記載されるように重合性材料の硬化を監視するためのシステムの例示的な別の実施形態を示す。1以上の実施形態では、硬化システムは、例えば、米国特許第7,250,611号(Aguirreら)に記載されるものと同様であり得る。図示の監視システム210は、例えば、重合性材料280が配置された基材282の上方に配置されたステーションの形態のものであり得る(例えば、基材が、接着剤、テープ、又はウェブベースの製造において用いられる移動ウェブであるプロセス)。基材282は、大量の材料のシート又は連続的硬化を提供するために、移動プラットフォーム又はコンベヤベルトなどの、プラットフォーム上に配置することができるか、あるいは基材282は、移動ローラ(図示されていない)の間に懸架することができる。
システム210のハウジング212は、1以上の監視光源を、それらの光源が重合性材料280上へ放射する可視監視光231を誘導するために必要とされる任意の必須の光学構成要素とともに含み得る。ハウジング212はまた、本明細書に記載されるように重合性材料から反射された可視監視光を検出するように構成された1以上の可視光検出器を内蔵又は保持し得る。
1以上の実施形態では、ハウジング212はまた、硬化電磁放射線を重合性材料へ送るために用いられる1以上の硬化電磁放射線源及び光学構成要素を含み得る。硬化電磁放射線を送るために用いられる硬化電磁放射線源及び光学構成要素は、1以上の実施形態では、可視監視光が入射する任意の表面が硬化電磁放射線も受けるように、硬化電磁放射線を可視監視光と混合し得る。このようなシステムでは、硬化電磁放射線自体が可視であるか否かにかかわらず、硬化電磁放射線の送達の視覚監視が可能であり得る。
加えて、システム210はまた、例えば、ハウジング212内の任意の可視監視光源、可視光検出器、及び硬化電磁放射線源に動作可能に連結され得るコントローラ250を含む。コントローラは、1以上の実施形態では、例えば、システム210によって判定されたときに重合性材料の硬化に関する感覚フィードバックをユーザへ提供するために用いられ得るディスプレイ270の形態の感覚フィードバック発生器を含み得る。
図7に、本明細書に記載されるようにシステムの1以上の実施形態において用いられ得るプローブ312の例示的な一実施形態が示される。プローブ312の図示の実施形態は、本明細書に記載されるように選択された重合性材料のための硬化電磁放射線を放射するように構成された硬化電磁放射線源の役割を果たすLED322に光学的に連結された光伝送器(例えば、光ミキシングロッド、全内部反射(total internally reflective、TIR)光ガイドなど)を含み得る。図示のLED322は、1つの選択された配列で配置されているが、本明細書に記載されるようにシステムのプローブ上に複数の硬化電磁放射線源を配置するために、更に多くの配列を用いることができるであろうことを理解されたい。更に、図7には5つのLED322が示されているが、本明細書に記載されるシステムの1以上の代替的な実施形態は、硬化電磁放射線源を1つだけ含むか、又は硬化電磁放射線を、所望の領域上に、選択された重合性材料を重合させるために必要とされる所望の強度で提供するために必要に応じて任意の他の選択された数の硬化電磁放射線源を含み得る。
プローブ312はまた、例えば、プローブ312が取り付けられたハウジング内に配置され得る可視監視光源によって生成された可視監視光を放射するように構成された可視監視光源伝送器342の遠位端を含む。伝送器342は、例えば、光ファイバケーブル、光ファイバケーブル束、光ガイド等などの、本明細書に記載されるように種々の異なる形態を取り得る。更に、伝送器342は、その遠位端において、可視監視光の分散を制御するためのレンズを含み得る。更に、図7の例示的な実施形態には、1つの可視光源伝送器342のみが示されているが、本明細書に記載されるようにシステムにおいて用いられるプローブ312の1以上の代替的な実施形態は、任意の好適な様式で配置された2以上の可視監視光源伝送器を含み得ることを理解されたい。更に、例えば、監視光源が、LED、又はプローブ312の遠位端上に包含される能力を有する他の構造の形態で提供される場合には、プローブ312自身が監視光源又は光源群を含み得る。
プローブ312の図示の例示的な実施形態はまた、本明細書に記載されるように重合性材料によって反射された監視光を検出するように構成された可視光集光器332を含む。可視光集光器332は、例えば、プローブ312が取り付けられたハウジング内に配置され得る1以上の可視光検出器に光学的に連結され得る。可視光集光器332は、例えば、光ファイバケーブル、光ガイド等などの、本明細書に記載されるように種々の異なる形態を取り得る。更に、本明細書に記載されるようにシステムにおいて用いられる可視光集光器332の数は、1つのみの集光器から、本明細書に記載されるようにシステム及び方法における重合性材料から反射された監視光を収集し、伝送するために適した任意の選択された数の集光器まで変化し得る。
本明細書に記載されるように硬化監視システムの例示的な別の実施形態が、図8及び図9に関連して示される。図8に見られるように硬化監視システム410はハウジング414とミキシングロッド416とを含む。1以上の実施形態では、ミキシングロッド416は、1以上の硬化電磁放射線源によって放射された電磁放射線と、1以上の可視監視光源によって放射された可視光とを混合して送るように構成されており、硬化電磁放射線源及び可視監視光源はハウジング414内に配置されている。1以上の実施形態では、ミキシングロッド416はハウジング414内の硬化電磁放射線源及び監視光源に光学的に連結され得、これにより、硬化電磁放射線及び監視光は、重合性材料に到達する前にミキシングロッド416を通過する。1以上の実施形態では、ハウジング414内の可視光検出器もまた、ミキシングロッド416に光学的に連結されており、これにより、反射された監視光は、ハウジング414内の可視光検出器に到達する前にミキシングロッド416を通過する。
1以上の実施形態では、ミキシングロッド416は、例えば、ガラス、ポリマー(例えば、ポリカーボネート等)等などの任意の好適な光透過材料で構築され得る。更に、硬化電磁放射線及び可視監視光は伝搬軸411に沿ってミキシングロッド416内を進み、端面417においてミキシングロッド416を出ることができる。
ミキシングロッドを用いて硬化電磁放射線及び可視監視光の双方を送る1つの潜在的恩恵は、監視光及び硬化電磁放射線が、それらが誘導された表面、例えば、重合性材料上の同じ領域を占有するような仕方で、監視光を送ることが可能になり得ることである。このような例では、硬化電磁放射線及び監視光によって占有される領域は、例えば、(上述された)図に見られるものと同様になり得る。
図9に、図8の硬化監視システム410が、伝搬軸411に沿って眺めた図で見られる。この図では、硬化電磁放射線源422が可視監視光源434とともにミキシングロッド416の端面417を通して見えている。硬化電磁放射線源422及び可視監視光源434の双方は、図示の実施形態では、LEDの形態のものであり得る。具体的には、可視監視光源434のうちの1以上は、パルスモードで駆動されるLEDであり得る。その結果、可視監視光源434の役割を果たすパルスモードLEDのうちの1以上はまた、本明細書に記載されるように重合性材料によって反射された監視光を検出するための可視光検出器としても機能し得る。1以上の実施形態では、硬化電磁放射線源422及び可視監視光源434は、硬化電磁放射線源と監視光源と光検出器414との間の潜在的干渉を低減するために、監視光源434が可視監視光を放射しない間に硬化電磁放射線が硬化電磁放射線源422によって放射されるように、パルス運転されてもよい。
例示的な実施形態
本明細書に記載されるシステム及び方法は、以下の例示的な非限定的実施形態のうちの1以上に記載され得る。
実施形態1.重合性材料の硬化度を監視するためのシステムであって、このシステムは、
400nm~800nmの範囲内の1以上の波長における可視監視光を放射し、監視光は、重合性材料の重合を実効的に誘導しない最大放射波長(λmax-mon)を有する、監視光源と、
監視光が重合性材料によって拡散反射された後に400nm~800nmの範囲内の1以上の波長における監視光を検出するように構成された可視光検出器と、
可視光検出器に動作可能に連結されたコントローラと、を備え、このコントローラは、重合性材料が、選択された硬化度にいつ達するかを可視光検出器によって検出された拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づき、判定するように構成されている、システム。
実施形態2.システムが、重合性材料の硬化が誘導される最大放射硬化波長(λmax-cure)を有する硬化電磁放射線を放射するように構成された硬化電磁放射線源を更に備える、実施形態1に記載のシステム。
実施形態3.コントローラが硬化電磁放射線源に動作可能に接続されており、コントローラが、重合性材料が選択された硬化度に達したと判定した後に、硬化電磁放射線源が硬化電磁放射線を放射するのを停止するように構成されている、実施形態2に記載のシステム。
実施形態4.最大放射監視波長(λmax-mon)が、硬化電磁放射線源によって放射された硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも50nm異なる、実施形態2又は3に記載のシステム。
実施形態5.最大放射監視波長(λmax-mon)が、硬化電磁放射線源によって放射された硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも100nm異なる、実施形態2~4のいずれか1つに記載のシステム。
実施形態6.硬化電磁放射線が400nm~800nmの範囲内の1以上の波長における可視光を含む、実施形態2~5のいずれか1つに記載のシステム。
実施形態7.硬化電磁放射線が400nm~500nmの範囲内の1以上の波長の可視光を含む、実施形態2~6のいずれか1つに記載のシステム。
実施形態8.硬化電磁放射線が、赤外スペクトル及び紫外スペクトルのうちの少なくとも一方の電磁放射線を含む、実施形態2~5のいずれか1つに記載のシステム。
実施形態9.可視監視光が500nm~700nmの範囲内の1以上の波長における可視光を含む、実施形態1~8のいずれか1つに記載のシステム。
実施形態10.硬化電磁放射線が、100nm以下の硬化電磁放射線の半値放射全幅を有する硬化波長半値範囲を規定する、実施形態2~9のいずれか1つに記載のシステム。
実施形態11.監視光が、100nm以下の監視光の半値放射全幅を有する監視波長半値範囲を規定する、実施形態1~10のいずれか1つに記載のシステム。
実施形態12.監視光源によって放射される監視光が、最大放射硬化波長(λmax-cure)において、最大放射硬化波長(λmax-cure)における硬化電磁放射線源によって放射される硬化電磁放射線の強度の0.1以下の強度を有する、実施形態2~11のいずれか1つに記載のシステム。
実施形態13.監視光源が最大放射硬化波長(λmax-cure)の電磁放射線を放射しない、実施形態2~11のいずれか1つに記載のシステム。
実施形態14.システムが、最大放射監視波長(λmax-mon)を有する光を透過し、最大放射硬化波長(λmax-cure)を有する電磁放射線を透過しないフィルタを更に備え、可視光検出器に向けられた光及び電磁放射線が、可視光検出器に到達する前にフィルタに入射する、実施形態2~13のいずれか1つに記載のシステム。
実施形態15.システムが、重合性材料の重合を実効的に誘導しない電磁放射線のみが可視光検出器に到達するのを可能にするように構成されたフィルタを備える、実施形態1~14のいずれか1つに記載のシステム。
実施形態16.可視光検出器が、最大放射硬化波長(λmax-cure)を有する電磁放射線を検出しない、実施形態2~15のいずれか1つに記載のシステム。
実施形態17.硬化電磁放射線源と監視光源とが同軸である、実施形態2~16のいずれか1つに記載のシステム。
実施形態18.監視光源が、監視光が、重合性材料を通過した後に人間の肉眼で見えるような強度を有する監視光を放射する、実施形態1~17のいずれか1つに記載のシステム。
実施形態19.システムが、硬化電磁放射線源及び監視光源に光学的に連結されたミキシングロッドを備え、硬化電磁放射線及び監視光が、重合性材料に到達する前にミキシングロッドを通過する、実施形態2~18のいずれか1つに記載のシステム。
実施形態20.可視光検出器がミキシングロッドに光学的に連結されており、反射された監視光が、可視光検出器に到達する前にミキシングロッドを通過する、実施形態19に記載のシステム。
実施形態21.システムが、コントローラに動作可能に連結されたフィードバック発生器を更に備え、コントローラが、重合性材料が選択された硬化度に達したと判定した後に、フィードバック発生器に、感覚フィードバックをユーザに提供させるように構成されている、実施形態1~20のいずれか1つに記載のシステム。
実施形態22.フィードバック発生器が視覚インジケータ及び可聴/触覚インジケータのうちの一方又は双方を含む、実施形態21に記載のシステム。
実施形態23.システムが、人間の口内へ挿入するように構成されたプローブを含む手持ち式デバイスを備え、可視監視光がプローブから放射され、更に、可視光検出器によって検出される監視光が、可視光検出器に到達する前にプローブに入射する、実施形態1~22のいずれか1つに記載のシステム。
実施形態24.システムが、人間の口内へ挿入するように構成されたプローブを含む手持ち式デバイスを備え、可視監視光及び硬化電磁放射線がプローブから放射され、更に、可視光検出器によって検出される監視光が、可視光検出器に到達する前にプローブに入射する、実施形態2~22のいずれか1つに記載のシステム。
実施形態25.
重合性材料に、400nm~800nmの範囲内の1以上の波長の可視監視光を照射し、監視光が重合性材料の重合を実効的に誘導しない最大放射監視波長(λmax-mon)を有し、
400nm~800nmの範囲内の1以上の波長における、監視光が重合性材料によって拡散反射された後の監視光を検出すると共に、
重合性材料が、選択された硬化度にいつ達するかを検出された拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づき判定すること、
を含む、重合性材料の硬化度を監視する方法。
実施形態26.本方法が、重合性材料に硬化電磁放射線を照射することを更に含み、硬化電磁放射線は、重合性材料の硬化が誘導される最大放射硬化波長(λmax-cure)を有する、実施形態25に記載の方法。
実施形態27.本方法が、重合性材料が選択された硬化度に達したと判定した後に、硬化電磁放射線による重合性材料の照射を停止することを更に含む、実施形態26に記載の方法。
実施形態28.本方法が、
可視光検出器を用いて、拡散反射された監視光を検出すると共に、
可視光検出器からの出力に少なくとも部分的に基づいて硬化電磁放射線による重合性材料の照射を停止することと、
を更に含む、実施形態26又は27に記載の方法。
実施形態29.可視光検出器からの出力が、可視光検出器によって検出されたときの拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づく、実施形態28に記載の方法。
実施形態30.本方法が、重合性材料が選択された硬化度に達したと判定した後に、重合性材料が選択された硬化度に達したことを指示する感覚フィードバックをユーザに提供することを更に含む、実施形態25~29のいずれか1つに記載の方法。
実施形態31.感覚フィードバックが、可聴フィードバック、視覚フィードバック、及び触覚フィードバックのうちの1以上を含む、実施形態30に記載の方法。
実施形態32.最大放射監視波長(λmax-mon)が硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも50nm異なる、実施形態26~31のいずれか1つに記載の方法。
実施形態33.最大放射監視波長(λmax-mon)が硬化電磁放射線の最大放射硬化波長(λmax-cure)と少なくとも100nm異なる、実施形態26~31のいずれか1つに記載の方法。
実施形態34.硬化電磁放射線が400nm~800nmの範囲内の1以上の波長の可視光を含む、実施形態26~33のいずれか1つに記載の方法。
実施形態35.硬化電磁放射線が400nm~500nmの範囲内の1以上の波長の可視光を含む、実施形態26~34のいずれか1つに記載の方法。
実施形態36.硬化電磁放射線が、赤外スペクトル及び紫外スペクトルのうちの少なくとも一方の内部の電磁放射線を含む、実施形態26~33のいずれか1つに記載の方法。
実施形態37.可視監視光が500nm~700nmの1以上の範囲内の波長の可視光を含む、実施形態25~36のいずれか1つに記載の方法。
実施形態38.硬化電磁放射線が100nm以下の半値放射全幅を有する、実施形態26~37のいずれか1つに記載の方法。
実施形態39.監視光が100nm以下の半値放射全幅を有する、実施形態25~38のいずれか1つに記載の方法。
実施形態40.重合性材料に照射する硬化電磁放射線と監視光とが同軸である、実施形態26~39のいずれか1つに記載の方法。
実施形態41.監視光が、硬化電磁放射線よりも重合性材料の表面の小さい領域を照射する、実施形態26~40のいずれか1つに記載の方法。
実施形態42.監視光によって照射される重合性材料の表面上の監視領域と、硬化電磁放射線によって照射される重合性材料の表面上の硬化領域とが同じである、実施形態26~40のいずれか1つに記載の方法。
実施形態43.重合性歯科材料に照射する可視監視光が、最大放射硬化波長(λmax-cure)において、最大放射硬化波長(λmax-cure)における硬化電磁放射線の強度の0.1以下の強度を有する、実施形態26~42のいずれか1つに記載の方法。
実施形態44.監視光が最大放射硬化波長(λmax-cure)における光を含まない、実施形態26~42のいずれか1つに記載の方法。
実施形態45.本方法が、最大放射硬化波長(λmax-cure)を有する電磁放射線が可視光検出器に到達しないように、監視光が重合性材料によって拡散反射された後の監視光を検出する可視光検出器に到達する光をフィルタリングすることを更に含む、実施形態26~44のいずれか1つに記載の方法。
実施形態46.本方法が、最大放射硬化波長(λmax-cure)を有する電磁放射線を検出しない可視光検出器を用いて、監視光が重合性材料によって拡散反射された後の監視光を検出することを更に含む、実施形態26~45のいずれか1つに記載の方法。
実施形態47.監視光が重合性材料の全厚さを貫通する、実施形態25~46のいずれか1つに記載の方法。
実施形態48.監視光が、重合性材料を通過した後に人間の肉眼で見える、実施形態47に記載の方法。
実施形態49.監視光が重合性材料の少なくとも4mmを通過する、実施形態47又は48に記載の方法。
実施形態50.監視光が重合性材料の10mm以下を通過する、実施形態47~49のいずれか1つに記載の方法。
実施形態51.可視監視光が、人間の口腔内に挿入されたプローブから放射され、更に、可視光検出器によって検出される監視光が、可視光検出器に到達する前にプローブに入射する、実施形態25~50のいずれか1つに記載の方法。
実施形態52.可視監視光及び硬化電磁放射線が、人間の口腔内に挿入されたプローブから放射され、更に、可視光検出器によって検出される監視光が、可視光検出器に到達する前にプローブに入射する、実施形態26~50のいずれか1つに記載の方法。
実施形態53.重合性材料が歯科材料である、実施形態25~52のいずれか1つに記載の方法。
実施形態54.重合性材料が、光開始剤、熱開始剤、化学開始剤、及び触媒の群から選択される少なくとも1つを含む、実施形態25~53のいずれか1つに記載の方法。
実施形態55.重合性材料が充填材を含む、実施形態25~54のいずれか1つに記載の方法。
実施形態56.重合性材料が重合性化学部分を含み、重合性化学部分は監視光を吸収しない、実施形態25~55のいずれか1つに記載の方法。
本発明を以下の実施例によって更に説明する。実施例は、けっして、本発明の範囲に限定を課するものと解釈されてはならない。むしろ、本明細書中の説明を読むことによって当業者に示唆され得る様々な他の実施形態、変更形態、及びそれらの等価物を、本発明及び/又は添付の特許請求の範囲を逸脱することなく用いることができることが明確に理解されるべきである。
硬化監視システム
図10は、以下において説明されるデータを収集するために用いられる硬化監視システムを示す。別途指定のない限り、選択された重合性材料の円盤形のサンプル580を、金型として用いるブラックワッシャ582内に収容した。サンプル580の上部及び下部を平らにプレスした。
サンプル580を反射プローブ526(Avantes,Apeldoorn,Netherlands,FCR-7UVIR200-2-1.5X100)のおよそ1mm下方に配置した。反射プローブ526は、実施例の各々に記載されるように異なる波長の監視光を放射するLEDの形態の種々の異なる監視光源530に光学的に連結された6本(6)の光ファイバを包含した。各実施例において、監視用LEDはThorLabs M4100 LED Driver(ThorLabs,Newton,NJ,USA)によって駆動した。
反射プローブ526の中心読み取り光ファイバを用いて、反射された監視光を収集し、光検出器540(Optoelectronics,Hawthorne,CA,USA,PIN10DP)へ送った。反射された監視は、(光検出器に到達する前に)以下において説明されるように各実施例における監視波長に対応するバンドパスフィルタ560を通過した。光検出器の信号を増幅し(Stanford Research Systems,Sunnyvale,CA,USA,SR570増幅器)、データ収集コンピュータ550へ送信した。各実施例において、光検出器540のデータを毎秒10(10)サンプルの測度で収集し、全てのデータを、データ点を最大mV読み値で除算することによって正規化した。
反射プローブ526はアクリル光ガイドの中心孔内に配置された。光ガイドには、反射プローブ526を包囲して光ガイド524を通して硬化光をサンプル580へ送るための6つの450nm青色発光ダイオード520(LXZ1-PR01 Lumileds,San Jose,CA,USA,LED-450mAを適用)が光学的に連結された。実施例において用いられる重合性材料の硬化の波長は電磁放射線スペクトルの可視域内にあるため、実施例では硬化「光」が用いられることに留意されたい。
硬化の定義
バーコル硬さの下部対上部(bottom to top)(B/T)比を用いてサンプルの硬化度を定義した。反射プローブ526及び光ガイド524から見て外方に面したサンプル580の表面において、下部のバーコル硬さを測定した。反射プローブ526及び光ガイド524に面したサンプル580の表面において、上部のバーコル硬さを測定した。
以下の手順に従ってバーコル硬さを判定した。各実施例において説明されるように硬化光の照射後に、圧子を備えるBarber-Colemanインプレッサー(手持ち式ポータブル硬さ試験機、Model GYZJ934-1;Barber-Coleman Company,Industrial Instruments Division,Lovas Park,IN,USA)を用いて、金型の上部及び下部の両方におけるサンプルの硬さを測定した。硬化光露光の終了の1分以内に上部及び下部のバーコル硬さの値を測定した。所与の硬化光露光時間に対して、次式に記述されるように、下部の硬さ値をその硬化光露光時間における全ての上部の硬さ値の算術平均で除算したものを用いて、(少しでも硬化する前のB/T比は完全な硬化後と同じであろうということに留意して、サンプルの少なくともいくらかの硬化後に)下部対上部の比(B/T)を算出した:
(下部の硬さ値)/(上部の硬さ値の算術平均)X100=B/T比
実施例における重合性材料のサンプルは、所与の露光時間に対してB/T比が0.8以上に達すると、十分に硬化したと見なした。
実施例1-赤色625nm監視光
Filtek Supreme Ultra shade A2B(3M Oral Care,St.Paul,MN,USA)の形態の重合性材料のサンプルを、金型として用いるブラックワッシャ(McMaster-Carr,Elmhurst,IL、USA,part#98029A029)内に収容し、厚さ3mm及び直径7mmである円盤形のサンプルを準備した。サンプル及びワッシャを黒色プラスチック片上に配置した。最初は、硬化光(450nm)の露光時間を1秒に設定した。硬化光への露光後に、サンプルごとに上部及び下部のバーコル硬さを収集した。後続の時点に対してこの手順を繰り返し、露光時間ごとに新たなサンプルを調製した。
本実施例では、監視光源530は625nm赤色LED(ThorLabs,part#M625F1)であった。光検出器540と接続して用いたバンドパスフィルタ560は630nmバンドパスフィルタ(ThorLabs,part#FB630-10)であった。光検出器のためのベースラインを確立するために、硬化光LEDを点灯する前に625nm赤色LED監視光をおよそ5秒間点灯した。次に、サンプルを450nm青色硬化光に15秒間露光し、その一方で、監視光LEDを同時に用いて硬化を監視した。15秒後に硬化光を消灯し、監視光を用いたおよそ5秒の引き続きの露光を収集し、硬化後のベースラインを確立した。データを光検出器540からミリボルト(mV)信号として収集した。データを最大mV読み値に対して正規化し、正規化反射率として報告した。
表1に結果の概略を示す。各時点は複数回反復された。上述したように下部対上部の比を算出した。表1は、平均B/T比、及び各時点において収集されたデータ点の標準偏差をまとめたものである。4秒以上の露光時間は、以上において定義されたように十分に硬化したものになった(即ち、このようなサンプルは0.8以上のB/T比を有した)。
Figure 0007330097000001
図11のグラフは、光検出器によって測定された監視光の反射率のプロットである(硬化光の露光前に収集された5秒の反射率データは1秒に切り捨てた)。このグラフ上に重ね合わせられているのは、表1のB/T硬さデータである。図11のグラフは、監視光の反射率の変化が減速及び/又は停止する時間と相関関係を有する(十分な硬化の点における)約4秒において、B/T硬さが変化を減速及び/又は停止することを実証している。
図12は、本実施例のB/T比対正規化反射率のプロットである。直線関係が、B/T比と、光検出器によって検出されたときの監視光の反射率との相関を実証しており(これは、点を通って単純線形回帰直線を引き、その結果、0.9のR2乗値を得たことによって確認される)-反射監視光とサンプルの十分な硬化との予測相関を実証している。
実施例2-緑色530nm監視光
実施例2では、実施例1の625nm監視光LEDの代わりに530nm監視光LED(ThorLabs M530F1)を用いたことを除いて、実施例1において用いた同じプロセス、装置、及び材料を用いた。加えて、光検出器とともに用いるバンドパスフィルタを530nmバンドパスフィルタ(Thorlabs FB530-10バンドパス)に変更した。
図13のグラフは、光検出器によって測定された監視光の反射率のプロットである(硬化光の露光前に収集された5秒の反射率データは1秒に切り捨てた)。このグラフ上に重ね合わせられているのは、実施例2について収集されたB/T硬さデータである。図13のグラフは、監視光の反射率の変化が減速及び/又は停止する時間と相関関係を有する(十分な硬化の点における)約4秒において、B/T硬さが変化を減速及び/又は停止することを実証している。
図14は、本実施例のB/T比対正規化反射率のプロットである。直線関係が、B/T比と、光検出器によって検出されたときの監視光の反射率との相関を実証しており(これは、点を通って単純線形回帰直線を引き、その結果、0.9のR2乗値を得たことによって確認される)-この場合も先と同様に、反射監視光とサンプルの十分な硬化との予測相関を実証している。
実施例3-赤色740nm監視光
実施例2では、実施例1の625nm監視光LEDの代わりに740nm監視光LED(ThorLabs M740F1)を用いたことを除いて、実施例1において用いた同じプロセス、装置、及び材料を用いた。加えて、光検出器とともに用いるバンドパスフィルタを740nmバンドパスフィルタ(Thorlabs FB740-10バンドパス)に変更した。
図15のグラフは、光検出器によって測定された監視光の反射率のプロットである(硬化光の露光前に収集された5秒の反射率データは1秒に切り捨てた)。このグラフ上に重ね合わせられているのは、実施例3について収集されたB/T硬さデータである。図15のグラフは、監視光の反射率の変化が減速及び/又は停止する時間と相関関係を有する(十分な硬化の点における)約4秒において、B/T硬さが変化を減速及び/又は停止することを実証している。
図16は、本実施例のB/T比対正規化反射率のプロットである。直線関係が、B/T比と、光検出器によって検出されたときの監視光の反射率との相関を実証しており(これは、点を通って単純線形回帰直線を引き、その結果、0.9のR2乗値を得たことによって確認される)。この場合も先と同様に、反射監視光とサンプルの十分な硬化との予測相関を実証している。
実施例4-監視光貫通の深さ
図10において説明された装置を実施例3の740nm赤色監視LED及び740nmバンドパスフィルタとともに用いた。サンプルの厚さが5mmであったことを除いて、実施例1~3の場合と同様に、Filtek Bulk Fill Posterior A2 shade(3M Oral Care,St.Paul,MN,USA)の形態の重合性材料の厚さ5mmのサンプルをブラックワッシャ(McMaster-Carr,Elmhurst,IL,USA,part#98099A029)内で調製した。サンプル及びワッシャを監視光の下で白色プラスチック片上に配置した。光検出器からの反射率のベースライン読み値を確立するために、監視光をおよそ5秒間点灯した。次に、実施例1~3の場合と同様にサンプルを450nm青色硬化光に様々な硬化時間にわたって露光した。同時に、監視光(740nm赤色)を用いてサンプルの硬化を監視した。450nm青色硬化光を消灯した後に、監視光によるおよそ5秒の引き続きの露光を用いて、光検出器からの硬化後のベースラインを確立した。試験ごとに3回測定を行い、3回の試験からのデータを平均した。
表2は、露光時間の関数としての下部対上部(B/T)硬さ比を示す。10秒以上の期間にわたる硬化光への露光に対するB/T比が、十分に硬化したものであった(即ち、0.8以上のB/T比を有した)。
Figure 0007330097000002
図17に示されるグラフは、6、10及び16秒間にわたる硬化光への露光後における実施例4のサンプルの正規化反射率データを示す。5秒の硬化前のベースラインデータは1秒に切り捨て、硬化後のベースラインデータは示していない。B/T比は、10秒以上の硬化光露光時間が、十分に硬化した厚さ5mmのサンプルを生じさせたことを示す。反射率曲線は各々、B/T硬さ比によって判定されたときにサンプルが十分に硬化するのと同時に定常状態に達する。
比較してみると、6秒のみの硬化光露光について収集されたB/T比データは、サンプルが十分に硬化していないことを示し、これは、図17のグラフにおいて見られるように、反射率曲線が定常状態に達しなかったことと相関関係を有する。
このデータはまた、B/T比及び正規化反射率が両方とも、十分に硬化したサンプルを指示する定常状態に達しているため、監視光がサンプルの5mmの厚さを貫通していることを実証している。
実施例5-赤色625nm監視光(2部分レドックス硬化系)
Concise Composite Universal Shade(3M Oral Care,St.Paul,MN,USAからの重合性歯科材料)の形態の2部分レドックス硬化型重合性材料のサンプルを等分に完全に混合し、得られた混合物を、金型として用いるブラックワッシャ(McMaster-Carr,Elmhurst,IL,USA,part#98029A029)内に収容し、厚さ3mm及び直径7mmである円盤形のサンプルを準備した。
本実施例では、監視光源530は625nm赤色LED(ThorLabs,part#M625F1)であり、硬化光を用いなかった。円盤形のサンプルを、形成されてから10秒以内に監視光の下に配置した。光検出器540と接続して用いたバンドパスフィルタ560は630nmバンドパスフィルタ(ThorLabs,part#FB630-10)であった。サンプルデータを光検出器540からミリボルト(mV)信号として収集した。時間の関数としての光検出器によって測定された監視光の反射率のプロットは、実施例1の図11のものと同様のプロファイルを示し、検出された反射監視光の強度の変化レートは6分以内に無視できるようになった。それゆえ、レドックス硬化型重合性材料の硬化もまた、可視監視光の強度の変化を検出することによって監視することができるであろう。
比較例
監視光を用いず、光検出器に到達する光の波長を制限するためのバンドパスフィルタを用いなかったことを除いて、実施例1において用いたのと同じ装置及びサンプル材料を用いた。その結果、硬化プロセスの間に光検出器によって反射硬化光を検出した。
図18は、15秒の露光期間にわたって光検出器によって検出されたときの青色硬化光の反射率を示すグラフである。このグラフは、B/T比硬さ曲線は約5秒において変化を停止するが(実施例1と一貫している)、その一方で、反射率曲線は15秒の期間の残りの部分にわたって変化し続けることを実証している。実施例1~3とは異なり、反射率曲線のどの特徴的部分も、サンプルの完全な硬化を定義するB/T比と対応しない。
図19は、この比較例についてのB/T比対正規化反射率のプロットである。点を通って単純線形回帰を引くと、得られたR2乗値は0.5である-これは、反射監視光とサンプルの硬化との相関性が乏しいことを示す。
本明細書で使用する時に、用語「~を備える(comprisesn」、「~を備える(comprising)」、「~を含む(includes)」、「~を含む(including)」、「~を有する(has)」、「~を有する(having)」、「~を包含する(contains)」、「~を包含する(containing)」、「~によって特徴付けられる(characterized by)」又はこれらの任意の他の変形は、列挙されている構成要素の、別途明示的に指示される任意の限定を受ける、非排他的包含を含むことが意図される。例えば、要素(例えば、構成要素若しくは特徴若しくはステップ)のリストを「備える」システム及び/若しくは方法は、必ずしもそれらの要素(又は構成要素若しくは特徴若しくはステップ)のみに限定されるわけではなく、明確に挙げられていない、又はシステム及び/若しくは方法に固有の他の要素(又は構成要素若しくは特徴若しくはステップ)を含み得る。
本明細書で使用する時に、単数形「a」、「an」及び「the」は、文脈が特に明確に指示しない限り、複数の指示対象を含む。したがって、例えば、「a」又は「the」が付いた構成要素への言及は、1以上の構成要素及び当業者に公知のその等価物を含み得る。更に、用語「及び/又は」は、列挙された構成要素のうちの1つ若しくは全て、又は列挙された構成要素のうちの任意の2以上の組み合わせを意味する。
本明細書で使用する時に、移行句「~からなる(consists of)」及び「~からなる(consisting of)」は、指定されていないあらゆる要素、ステップ、又は構成要素を除外する。例えば、請求項のプリアンブルにおいて用いられる「~からなる(consists of)」又は「~からなる(consisting of)」は、請求項を、請求項において具体的に列挙された構成要素又はステップに限定するであろう。句「~からなる(consists of)」又は「~からなる(consisting of)」が、プリアンブルの直後ではなく、請求項の本文の節内に現れる時には、句「~からなる(consists of)又は「~からなる(consisting of)は、その節に記載されている構成要素又はステップのみを限定し、他の構成要素又はステップは請求項全体から除外されない。
本明細書において特定した特許、特許文献、及び刊行物の完全な開示は、それぞれが個別に組み込まれたかのごとく、それらの全体が参照により組み込まれる。本明細書と、こうした組み込まれたいずれかの文献における開示との間に矛盾又は食い違いが存在する場合には、本明細書が優先するものとする。
本発明の一般的原理、先の詳細な説明、及び実施例の上述の開示から、当業者は、本発明が受け得る様々な変更、再構成及び置換、並びに本発明がもたらし得る様々な利点及び恩恵を容易に理解するであろう。したがって、本発明の範囲は、添付の請求項及びそれらの均等物によってのみ限定されるべきである。

Claims (3)

  1. 重合性材料の硬化度を監視するためのシステムであって、
    550nmよりも大きい1以上の波長における可視監視光を放射し、前記可視監視光が前記重合性材料の重合を誘導しない最大放射波長(λmax-mon)を有する、監視光源と、
    前記可視監視光が前記重合性材料によって拡散反射された後に400nm~800nmの範囲内の1以上の波長における拡散反射監視光を検出するように構成された可視光検出器と、
    前記可視光検出器に動作可能に連結されたコントローラと、を備え、前記コントローラは、前記重合性材料が、選択された硬化度にいつ達するかを前記可視光検出器によって検出された前記拡散反射監視光の強度の選択された変化レートに少なくとも部分的に基づき判定するように構成されている、システム。
  2. 前記システムは、前記重合性材料の硬化が誘導される最大放射硬化波長(λmax-cure)を有する硬化電磁放射線を放射するように構成された硬化電磁放射線源を更に備える、請求項1に記載のシステム。
  3. 前記コントローラが前記硬化電磁放射線源に動作可能に接続されており、前記コントローラは、前記重合性材料が前記選択された硬化度に達したと判定した後に、前記硬化電磁放射線源が前記硬化電磁放射線を放射するのを停止するように構成されている、請求項2に記載のシステム。
JP2019504921A 2016-07-29 2017-07-24 硬化監視システム及び方法 Active JP7330097B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662368348P 2016-07-29 2016-07-29
US62/368,348 2016-07-29
PCT/IB2017/054475 WO2018020398A1 (en) 2016-07-29 2017-07-24 Cure monitoring systems and methods

Publications (3)

Publication Number Publication Date
JP2019525940A JP2019525940A (ja) 2019-09-12
JP2019525940A5 JP2019525940A5 (ja) 2020-09-03
JP7330097B2 true JP7330097B2 (ja) 2023-08-21

Family

ID=61016390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019504921A Active JP7330097B2 (ja) 2016-07-29 2017-07-24 硬化監視システム及び方法

Country Status (6)

Country Link
US (1) US10746660B2 (ja)
EP (1) EP3491049A4 (ja)
JP (1) JP7330097B2 (ja)
CN (1) CN109642033B (ja)
BR (1) BR112019001703A2 (ja)
WO (1) WO2018020398A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106270A (zh) 2014-09-17 2017-08-29 格里森牙科治疗有限责任公司 牙科固化灯
KR102245127B1 (ko) * 2018-01-08 2021-04-28 주식회사 엘지화학 전극기재의 건조 상태를 모니터링하는 방법 및 장치
CN110376144B (zh) * 2019-07-19 2021-11-26 业成科技(成都)有限公司 固化率检测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259309A1 (en) 2006-05-08 2007-11-08 Den-Mat Corporation Dental curing device and method with real-time cure indication
US20100003021A1 (en) 2008-07-01 2010-01-07 Weyerhaeuser Co. Systems and methods for curing deposited material using feedback control

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6922600A (en) 1999-08-23 2001-03-19 Bausch & Lomb Incorporated Method of and system for controlled curing of polymers used in contact lens manufacture
AU2001256673A1 (en) 2000-05-09 2001-11-20 Hamamatsu Photonics K.K. Method and device for detecting end point of curing of resin, assembly, apparatus and method for producing assembly
JP2002202294A (ja) 2000-12-28 2002-07-19 Dental Systems Kk 光硬化性材料の硬化検知装置
AU2002340203A1 (en) 2001-10-16 2003-04-28 Valspar Sourcing, Inc. Method of monitoring extent of cure of a coating
JP3839703B2 (ja) 2001-11-05 2006-11-01 浜松ホトニクス株式会社 樹脂硬化度測定装置
US7250611B2 (en) 2003-12-02 2007-07-31 3M Innovative Properties Company LED curing apparatus and method
JP2005208046A (ja) * 2003-12-25 2005-08-04 Canon Inc 反応性硬化樹脂の硬化状態測定装置及び方法
DE102005019386B4 (de) 2005-04-26 2010-07-29 Ivoclar Vivadent Ag Gerät zum Polymerisieren von polymerisierbarem Dentalmaterial sowie Verfahren zur Bestimmung des Polymerisationsgrades
FR2909276A1 (fr) 2006-12-04 2008-06-06 Satelec Sa Dispositif de photopolymerisation automatique
DE102008031094A1 (de) 2008-07-01 2010-01-07 Ivoclar Vivadent Ag Gerät zum Lichthärten eines Dentalobjekts
US8189189B1 (en) * 2008-10-08 2012-05-29 Herendeen Robert O LED sensor for process control
US9242411B2 (en) 2009-01-06 2016-01-26 Stratasys Ltd. Method and apparatus for monitoring electro-magnetic radiation power in solid freeform fabrication systems
DE102010061767A1 (de) 2010-11-23 2012-05-24 Ist Metz Gmbh Verfahren und System zur Härtungsprüfung
US9211695B2 (en) 2012-05-15 2015-12-15 Palo Alto Research Center Incorporated Low-cost measurement system for photopolymer film polymerization monitoring
JP5991215B2 (ja) 2013-01-31 2016-09-14 富士通株式会社 光硬化性樹脂の硬化モニター方法及び光部品接続方法
ES2802819T3 (es) 2014-05-12 2021-01-21 Ivoclar Vivadent Ag Dispositivo de fotocurado, en particular dispositivo de fotocurado dental
CN107106270A (zh) 2014-09-17 2017-08-29 格里森牙科治疗有限责任公司 牙科固化灯
US20190336259A1 (en) 2016-07-29 2019-11-07 3M Innovative Properties Company Dental curing light systems and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259309A1 (en) 2006-05-08 2007-11-08 Den-Mat Corporation Dental curing device and method with real-time cure indication
US20100003021A1 (en) 2008-07-01 2010-01-07 Weyerhaeuser Co. Systems and methods for curing deposited material using feedback control

Also Published As

Publication number Publication date
EP3491049A1 (en) 2019-06-05
JP2019525940A (ja) 2019-09-12
US20190265167A1 (en) 2019-08-29
CN109642033B (zh) 2021-09-10
WO2018020398A1 (en) 2018-02-01
US10746660B2 (en) 2020-08-18
CN109642033A (zh) 2019-04-16
EP3491049A4 (en) 2020-03-18
BR112019001703A2 (pt) 2019-05-07

Similar Documents

Publication Publication Date Title
Price et al. Correlation between the beam profile from a curing light and the microhardness of four resins
Price et al. Effect of delivering light in specific narrow bandwidths from 394 to 515 nm on the micro-hardness of resin composites
Rueggeberg et al. Light curing in dentistry and clinical implications: a literature review
JP7330097B2 (ja) 硬化監視システム及び方法
Michaud et al. Localised irradiance distribution found in dental light curing units
Gan et al. Bulk-fill composites: effectiveness of cure with poly-and monowave curing lights and modes
Tarle et al. Comparison of composite curing parameters: effects of light source and curing mode on conversion, temperature rise and polymerization shrinkage
CA2403154C (en) Reducing polymerization stress by controlled segmental curing
US20190336259A1 (en) Dental curing light systems and methods
Pires et al. Effects of curing tip distance on light intensity and composite resin microhardness.
Koch et al. Influence of ceramic translucency on curing efficacy of different light-curing units.
US20070259309A1 (en) Dental curing device and method with real-time cure indication
Pirmoradian et al. Degree of conversion and microhardness of bulk-fill dental composites polymerized by LED and QTH light curing units
Sampaio et al. Effect of blue and violet light on polymerization shrinkage vectors of a CQ/TPO-containing composite
Pazin et al. Effects of ceramic thickness and curing unit on light transmission through leucite-reinforced material and polymerization of dual-cured luting agent
Albino et al. Knoop microhardness and FT-Raman evaluation of composite resins: influence of opacity and photoactivation source
Quance et al. Effect of exposure intensity and post-cure temperature storage on hardness of contemporary photo-activated composites
Cook Curing efficiency and ocular hazards of dental photopolymerization sources
Malhotra et al. Light-curing considerations for resin-based composite materials: a review. Part II.
US5073402A (en) Method of making an optical device
Rocha et al. Light transmittance and depth of cure of a bulk fill composite based on the exposure reciprocity law
Barcelos et al. Effect of using manufacturer-recommended exposure times to photo-activate bulk-fill and conventional resin-based composites
Watts Light-curing dental resin-based composites: How it works and how you can make it work
CN107205801B (zh) 牙科光固化机
Altaie et al. An evaluation of the efficacy of LED light curing units in primary and secondary dental settings in the United Kingdom

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220301

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7330097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111