JP7327102B2 - BATTERY MATERIAL, BATTERY AND BATTERY MANUFACTURING METHOD - Google Patents

BATTERY MATERIAL, BATTERY AND BATTERY MANUFACTURING METHOD Download PDF

Info

Publication number
JP7327102B2
JP7327102B2 JP2019208357A JP2019208357A JP7327102B2 JP 7327102 B2 JP7327102 B2 JP 7327102B2 JP 2019208357 A JP2019208357 A JP 2019208357A JP 2019208357 A JP2019208357 A JP 2019208357A JP 7327102 B2 JP7327102 B2 JP 7327102B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
electrode active
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208357A
Other languages
Japanese (ja)
Other versions
JP2021082458A (en
Inventor
勝春 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2019208357A priority Critical patent/JP7327102B2/en
Publication of JP2021082458A publication Critical patent/JP2021082458A/en
Application granted granted Critical
Publication of JP7327102B2 publication Critical patent/JP7327102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電池の材料、電池及び電池の製造方法に関する。 The present invention relates to battery materials, batteries, and methods of manufacturing batteries.

リチウムイオン二次電池のうち、電解質に液体を使用しない全固体型リチウム二次電池は、液漏れによる発火のおそれがなく安全性が高い。正極にLiCoO、電解質にLiPON、負極にLiを用いた構成の全固体型リチウム二次電池が実用化されている。しかし、LiCoOを正極活物質層として用いた電池はエネルギー密度が十分でない。エネルギー密度は、電極の電位と電池の平均充放電容量値とを乗算した値に相当する。 Among lithium-ion secondary batteries, all-solid-state lithium secondary batteries that do not use a liquid as an electrolyte are highly safe because there is no risk of ignition due to liquid leakage. An all-solid-state lithium secondary battery using LiCoO 2 as the positive electrode, LiPON as the electrolyte, and Li as the negative electrode has been put into practical use. However, batteries using LiCoO 2 as a positive electrode active material layer do not have sufficient energy density. The energy density corresponds to the value obtained by multiplying the potential of the electrodes by the average charge/discharge capacity value of the battery.

二次電池のエネルギー密度を向上させる方法は、例えば、高電位の材料を正極活物質層として用いることである。高電位の正極活物質層材料としてLiCoPが知られている。LiCoPのCoの一部をNiに置換した組成のLiCo1-xNi(0<x≦0.2)は、LiCoPよりも高電位であることが知られている。 A method for improving the energy density of a secondary battery is to use, for example, a high-potential material as the positive electrode active material layer. Li 2 CoP 2 O 7 is known as a high potential positive electrode active material layer material. Li 2 Co 1-x Ni x P 2 O 7 (0<x≦0.2) having a composition in which part of Co in Li 2 CoP 2 O 7 is replaced with Ni has a higher concentration than Li 2 CoP 2 O 7 . is known to be an electric potential.

国際公開第2018/003071号WO2018/003071 特開2008-204702号公報Japanese Unexamined Patent Application Publication No. 2008-204702 特開平6-275277号公報JP-A-6-275277

従来の、LiCo1-xNi(0<x≦0.2)の組成で結晶性を有する正極活物質層を用いた電池は、二次電池の性能を評価する際に標準的な、エネルギー密度が十分でなかった。 A conventional battery using a positive electrode active material layer having a composition of Li 2 Co 1-x Ni x P 2 O 7 (0<x≦0.2) and having crystallinity is standard, the energy density was not sufficient.

本発明は、電池のエネルギー密度を向上させる材料、当該材料を用いた電池及び電池の製造方法を提供することを目的とする。 An object of the present invention is to provide a material that improves the energy density of a battery, a battery using the material, and a method for manufacturing a battery.

1つの態様では、電池の材料は、組成式LiCo1-xNi(0<x<1)で表され、X線回折において、2θ=21.8°±0.5°の範囲に半値幅が0.46°以下の回折ピークを有しないことを特徴とする。 In one aspect, the material of the battery is represented by the composition formula Li 2 Co 1-x Ni x P 2 O 7 (0<x<1), and in X-ray diffraction, 2θ=21.8°±0.5 It is characterized by not having a diffraction peak with a half-value width of 0.46° or less in the range of °.

1つの側面として、電池のエネルギー密度を向上させる電池の材料を提供できる。 In one aspect, a battery material can be provided that improves the energy density of the battery.

図1は実施形態にかかる電池の製造方法のうち、基板上に集電層を形成する工程を示す図である。FIG. 1 is a diagram showing a step of forming a collecting layer on a substrate in a method of manufacturing a battery according to an embodiment. 図2は、実施形態にかかる電池の製造方法のうち、集電層上に正極活物質層を形成する工程を示す図である。FIG. 2 is a diagram showing a step of forming a positive electrode active material layer on a current collecting layer in the battery manufacturing method according to the embodiment. 図3は、実施形態にかかる電池の製造方法のうち、正極活物質層上に電解質層及び負極を形成する工程を示す図である。FIG. 3 is a diagram showing a step of forming an electrolyte layer and a negative electrode on a positive electrode active material layer in the battery manufacturing method according to the embodiment. 図4は、第1サンプル及び第2サンプルの正極活物質層のX線回折スペクトルである。FIG. 4 shows X-ray diffraction spectra of the positive electrode active material layers of the first sample and the second sample. 図5は、第1サンプル及び第4サンプルの正極活物質層のFT-IRスペクトルである。FIG. 5 shows FT-IR spectra of the positive electrode active material layers of the first sample and the fourth sample. 図6は、第2サンプル及び第5サンプルの正極活物質層のFT-IRスペクトルである。FIG. 6 shows FT-IR spectra of the positive electrode active material layers of the second and fifth samples. 図7は、第1サンプル、第2サンプル及び第3サンプルの正極活物質層を含む電池の平均電位を示す図である。FIG. 7 is a graph showing average potentials of batteries including positive electrode active material layers of the first, second, and third samples.

実施形態にかかる電池の製造方法を図1~図3を用いて説明する。実施形態にかかる電池は、正極活物質層としてアモルファス状態のLiCo1-xNi(0<x<1)を有する。 A method for manufacturing a battery according to an embodiment will be described with reference to FIGS. 1 to 3. FIG. The battery according to the embodiment has amorphous Li 2 Co 1-x Ni x P 2 O 7 (0<x<1) as a positive electrode active material layer.

図1は、実施形態にかかる電池の製造方法のうち、基板上に集電層を形成する工程を示す図である。まず、基板1上に集電層2を形成する。基板1は、例えば、酸化膜付きシリコンウエハである。集電層2の形成は、例えば、スパッタリング法によって行われる。集電層2は、電池の層間の接触抵抗を低減するために、低抵抗の材料が好ましい。集電層2は、例えば、ステンレス鋼、アルミニウム、銅、Ni又はTi及びPtの2層である。 FIG. 1 is a diagram showing a step of forming a current collection layer on a substrate in a battery manufacturing method according to an embodiment. First, the collector layer 2 is formed on the substrate 1 . The substrate 1 is, for example, a silicon wafer with an oxide film. The current collection layer 2 is formed by, for example, a sputtering method. The current collection layer 2 is preferably made of a low resistance material in order to reduce the contact resistance between the layers of the battery. The current collecting layer 2 is, for example, stainless steel, aluminum, copper, Ni or two layers of Ti and Pt.

図2は、実施形態にかかる電池の製造方法のうち、集電層2上に正極活物質層を形成する工程を示す図である。基板1上に集電層2を形成した後に、集電層2上に正極活物質層3を形成する。正極活物質層3の形成は、例えば、ターゲット材料のLiCo1-xNi(0<x<1)を用いたスパッタリング法によって行われる。正極活物質層3の厚さは、例えば、10nm~100nmである。ここで、スパッタリング法で形成されたLiCo1-xNi(0<x<1)は、結晶性のないアモルファス状態となっている。 FIG. 2 is a diagram showing a step of forming a positive electrode active material layer on the current collecting layer 2 in the battery manufacturing method according to the embodiment. After forming the collector layer 2 on the substrate 1 , the positive electrode active material layer 3 is formed on the collector layer 2 . The cathode active material layer 3 is formed, for example, by a sputtering method using a target material Li 2 Co 1-x Ni x P 2 O 7 (0<x<1). The thickness of the positive electrode active material layer 3 is, for example, 10 nm to 100 nm. Here, Li 2 Co 1-x Ni x P 2 O 7 (0<x<1) formed by sputtering is in an amorphous state without crystallinity.

集電層2上に正極活物質層3を形成した後に、正極活物質層3に熱処理を施す。熱処理の時間は、例えば、10秒間~10分間である。熱処理は、酸素含有雰囲気下で行ってもよい。酸素含有雰囲気は、例えば、大気である。熱処理の温度は、アモルファス状態で形成された正極活物質層3の材料を完全に結晶化させない条件で行うことが、実施形態にかかる電池の充放電容量を増加させることでエネルギー密度を増加させる観点から好ましい。Liを含む正極活物質層3の材料を完全に結晶化させない熱処理の温度は、400℃以上600℃以下である。400℃以上の温度で熱処理を行うことによってアモルファス状態の材料が結晶化し始めることが知られている。また、600℃以下の温度で熱処理を行うことによってアモルファス状態の材料が完全に結晶化しないことが知られている。 After forming the positive electrode active material layer 3 on the current collecting layer 2, the positive electrode active material layer 3 is subjected to heat treatment. The heat treatment time is, for example, 10 seconds to 10 minutes. The heat treatment may be performed in an oxygen-containing atmosphere. The oxygen-containing atmosphere is, for example, air. From the viewpoint of increasing the energy density by increasing the charge/discharge capacity of the battery according to the embodiment, the temperature of the heat treatment should not completely crystallize the material of the positive electrode active material layer 3 formed in an amorphous state. preferred from The temperature of the heat treatment that does not completely crystallize the material of the positive electrode active material layer 3 containing Li is 400° C. or higher and 600° C. or lower. It is known that a heat treatment at a temperature of 400° C. or higher causes a material in an amorphous state to begin to crystallize. It is also known that a heat treatment at a temperature of 600° C. or lower does not completely crystallize the amorphous material.

熱処理を施した正極活物質層3は、材料が結晶状態に近いアモルファス状態であることが、実施形態にかかる電池の充放電容量を増加させることでエネルギー密度を増加させる観点から好ましい。材料が結晶状態に近いアモルファス状態であることの定義と、正極活物質層3の特性を示すための材料測定結果は、後述する。 The heat-treated positive electrode active material layer 3 is preferably in an amorphous state close to a crystalline state from the viewpoint of increasing the energy density by increasing the charge/discharge capacity of the battery according to the embodiment. The definition of the material being in an amorphous state close to a crystalline state and the material measurement results for indicating the properties of the positive electrode active material layer 3 will be described later.

図3は、実施形態にかかる電池の製造方法のうち、正極活物質層3上に電解質層及び負極を形成する工程を示す図である。正極活物質層3に熱処理を施した後に、正極活物質層3上に電解質層4及び負極5を形成する。電解質層4の形成は、例えば、スパッタリング法で行われる。負極5の形成は、例えば、蒸着法で行われる。電解質は、例えば、LiPOである。 FIG. 3 is a diagram showing a step of forming an electrolyte layer and a negative electrode on the positive electrode active material layer 3 in the battery manufacturing method according to the embodiment. After heat-treating the positive electrode active material layer 3 , the electrolyte layer 4 and the negative electrode 5 are formed on the positive electrode active material layer 3 . Formation of the electrolyte layer 4 is performed by, for example, a sputtering method. Formation of the negative electrode 5 is performed, for example, by a vapor deposition method. The electrolyte is, for example , Li3PO4 .

電解質は、例えば、固体電解質又は非水電解液である。電解質として固体電解質を用いた電池は全固体電池となる。 The electrolyte is, for example, a solid electrolyte or a non-aqueous electrolyte. A battery using a solid electrolyte as an electrolyte is an all-solid battery.

固体電解質は、充放電反応を担うキャリアであるリチウムイオンの伝導性を有する固体の電解質であれば特に制限はなく、例えば、酸化物系固体電解質又は硫化物系固体電解質である。 The solid electrolyte is not particularly limited as long as it is a solid electrolyte having conductivity of lithium ions, which are carriers responsible for charge-discharge reactions, and is, for example, an oxide-based solid electrolyte or a sulfide-based solid electrolyte.

酸化物系固体電解質は、例えば、ペロブスカイト型酸化物、NASICON型酸化物、LISICON型酸化物又はガーネット型酸化物である。 The oxide-based solid electrolyte is, for example, a perovskite-type oxide, a NASICON-type oxide, a LISICON-type oxide, or a garnet-type oxide.

硫化物系固体電解質は、例えば、LiS-P、LiS-SiS、Li3.250.25Ge0.76、Li4-rGe1-r(0≦r≦1)、Li11又はLiS-SiS-LiPOである。硫化物系固体電解質は、結晶性硫化物、非晶性硫化物のいずれであってもよい。 Sulfide-based solid electrolytes include, for example, Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 3.25 P 0.25 Ge 0.76 S 4 , Li 4-r Ge 1-r P r S 4 (0≦r≦1), Li 7 P 3 S 11 or Li 2 S—SiS 2 —Li 3 PO 4 . The sulfide-based solid electrolyte may be either crystalline sulfide or amorphous sulfide.

なお、これらの固体電解質は、結晶構造が同等である限り、元素の一部が他の元素に置換されたものでもよく、元素組成比が異なるものでもよい。 These solid electrolytes may be those in which some of the elements are substituted with other elements, or may have different elemental composition ratios, as long as they have the same crystal structure.

また、これらの固体電解質は、一種を単独で選択されてもよく、二種以上を選択されてもよい。 One of these solid electrolytes may be selected alone, or two or more of them may be selected.

層状の固体電解質の平均厚さは、例えば、0.05μm~5.0μmである。 The average thickness of the layered solid electrolyte is, for example, 0.05 μm to 5.0 μm.

非水電解液は、例えば、リチウム塩と、有機溶媒とを含有する非水電解液である。 The nonaqueous electrolyte is, for example, a nonaqueous electrolyte containing a lithium salt and an organic solvent.

リチウム塩は、例えば、六フルオロリン酸リチウム、四フルオロホウ酸リチウム、過塩素酸リチウム、リチウムビス(ペンタフルオロエタンスルホン)イミド又はリチウムビス(トリフルオロメタンスルホン)イミドである。これらのリチウム塩は、一種を単独で選択されてもよく、二種以上を選択されてもよい。 Lithium salts are, for example, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium bis(pentafluoroethanesulfone)imide or lithium bis(trifluoromethanesulfone)imide. One of these lithium salts may be selected alone, or two or more thereof may be selected.

リチウム塩の濃度は、特に制限はないが、有機溶媒中に0.5mol/L~3mol/Lであることがイオン伝導度の点で好ましい。 Although the concentration of the lithium salt is not particularly limited, it is preferably 0.5 mol/L to 3 mol/L in the organic solvent in terms of ionic conductivity.

有機溶媒は、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネート又はエチルメチルカーボネートである。これらの有機溶媒は、一種を単独で選択されてもよく、二種以上を選択されてもよい。 Organic solvents are, for example, ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate or ethyl methyl carbonate. One of these organic solvents may be selected alone, or two or more thereof may be selected.

有機溶媒の非水電解液中の含有量は、特に制限はないが、75質量%~95質量%が好ましく、80質量%~90質量%がより好ましい。 The content of the organic solvent in the non-aqueous electrolyte is not particularly limited, but is preferably 75% by mass to 95% by mass, more preferably 80% by mass to 90% by mass.

有機溶媒の含有量が、75質量%未満であると、非水電解液の粘度が増加し、電極への濡れ性が低下するため、電池の内部抵抗の上昇を招くことがあり、95質量%を超えると、イオン伝導度が低下し、電池の出力の低下を招くことがある。一方、有機溶媒の含有量が80質量%~90質量%であると、高いイオン伝導度を維持することができ、非水電解液の粘度を抑えることで電池への濡れ性を維持する点で有利である。 If the content of the organic solvent is less than 75% by mass, the viscosity of the non-aqueous electrolyte increases and the wettability to the electrode decreases, which may lead to an increase in the internal resistance of the battery. If it exceeds , the ionic conductivity may decrease, which may lead to a decrease in battery output. On the other hand, when the content of the organic solvent is 80% by mass to 90% by mass, high ionic conductivity can be maintained, and the viscosity of the non-aqueous electrolyte is suppressed to maintain wettability to the battery. Advantageous.

電池における電解質の含有量は、特に制限はない。 The electrolyte content in the battery is not particularly limited.

負極5は、例えば、少なくとも負極活物質層を有し、更に必要に応じて、集電層を有する。負極5の大きさ、形状に特に制限はない。負極5の形状は、例えば、棒状、円板状又は薄膜状である。負極5は、例えば、リチウム、リチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金、リチウムチタン酸化物、リチウムコバルト窒化物、リチウム鉄窒化物又はリチウムマンガン窒化物である。負極5の平均厚さは、例えば、0.05μm~5μmである。 The negative electrode 5 has, for example, at least a negative electrode active material layer and, if necessary, a current collecting layer. The size and shape of the negative electrode 5 are not particularly limited. The shape of the negative electrode 5 is, for example, rod-like, disc-like, or thin film-like. The negative electrode 5 is, for example, lithium, lithium aluminum alloy, lithium tin alloy, lithium lead alloy, lithium silicon alloy, lithium titanium oxide, lithium cobalt nitride, lithium iron nitride or lithium manganese nitride. The average thickness of the negative electrode 5 is, for example, 0.05 μm to 5 μm.

実施形態にかかる電池は、LiCo1-xNi(0<x≦0.2)を正極活物質層に用いた電池よりも充放電容量が高い。これは、電池の正極活物質層3が組成式LiCo1-xNi(0<x<1)で表され、X線回折において、2θ=21.8°±0.5°の範囲に半値幅が0.46°以下の回折ピークを有しないことに起因する。LiCoPのCoの一部をNiに置換された材料はエネルギー準位が上がりLiCoPよりも電位が向上する。X線回折において結晶性を示すピークを有しない材料はアモルファス状態であり、結晶状態よりも充放電によって移動するリチウムイオンの出入りがしやすく容量が向上する。 The battery according to the embodiment has higher charge/discharge capacity than the battery using Li 2 Co 1-x Ni x P 2 O 7 (0<x≦0.2) for the positive electrode active material layer. This is because the positive electrode active material layer 3 of the battery is represented by the composition formula Li 2 Co 1-x Ni x P 2 O 7 (0<x<1), and X-ray diffraction shows that 2θ=21.8°±0. This is because there is no diffraction peak with a half width of 0.46° or less in the range of 5°. A material in which part of Co in Li 2 CoP 2 O 7 is replaced with Ni has a higher energy level and a higher potential than Li 2 CoP 2 O 7 . A material that does not have a peak indicating crystallinity in X-ray diffraction is in an amorphous state, and lithium ions that move due to charging and discharging are more likely to enter and exit than in a crystalline state, and the capacity is improved.

以下、正極活物質層3の組成が互いに異なる第1サンプル、第2サンプル及び第3サンプル、並びに第1サンプル及び第2サンプルと製造方法の異なる第4サンプル及び第5サンプルの電池の正極活物質層3の特性と、第1サンプル及び第2サンプル、第3サンプルの電池の性能について、測定結果を説明する。 Hereinafter, positive electrode active materials of batteries of first, second, and third samples in which the composition of the positive electrode active material layer 3 is different from each other, and fourth and fifth samples, in which the manufacturing method is different from that of the first and second samples. Measurement results for the properties of Layer 3 and the performance of the first, second, and third samples will be described.

第1サンプル、第2サンプル及び第3サンプルの電池の構成は、基板1は酸化膜付きシリコンウエハ、集電層2は膜厚30nmのチタンと膜厚170nmの白金との2層、正極活物質層3は100nmのLiCo1-xNi(0≦x≦0.5)、電解質層4は2μmのLiPO、負極5は2μmのLiを成膜した点で同じである。第1サンプル、第2サンプル及び第3サンプルの電池の製造方法は、集電層2、電解質層4及び正極活物質層3をスパッタリング法で形成し、負極5は蒸着法で形成した点、正極活物質層3の熱処理を大気下で525℃、2分で行った点で同じである。第1サンプル、第2サンプル及び第3サンプルの電池の構成は、正極活物質層3の材料組成のみ互いに異なり、以下の通りである。
(第1サンプル)
正極活物質層3:LiCo0.5Ni0.5
(第2サンプル)
正極活物質層3:LiCo0.9Ni0.1
(第3サンプル)
正極活物質層3:LiCoP
The batteries of the first, second, and third samples are configured as follows: The substrate 1 is a silicon wafer with an oxide film; The layer 3 is made of Li 2 Co 1-x Ni x P 2 O 7 (0≦x≦0.5) with a thickness of 100 nm, the electrolyte layer 4 is made of Li 3 PO 4 with a thickness of 2 μm, and the negative electrode 5 is made of Li with a thickness of 2 μm. are the same. In the method of manufacturing the batteries of the first, second and third samples, the collector layer 2, the electrolyte layer 4, and the positive electrode active material layer 3 were formed by a sputtering method, and the negative electrode 5 was formed by a vapor deposition method. It is the same in that the heat treatment of the active material layer 3 was performed in the atmosphere at 525° C. for 2 minutes. The configurations of the batteries of the first sample, the second sample, and the third sample differ from each other only in the material composition of the positive electrode active material layer 3, and are as follows.
(first sample)
Positive electrode active material layer 3: Li2Co0.5Ni0.5P2O7
(Second sample)
Positive electrode active material layer 3 : Li2Co0.9Ni0.1P2O7
(Third sample)
Positive electrode active material layer 3: Li2CoP2O7

図4は、第1サンプル及び第2サンプルの正極活物質層3のX線回折スペクトルである。図4の上側のプロットは、第1サンプルの正極活物質層3について測定した結果を示す。図4の下側のプロットは、第2サンプルの正極活物質層3について測定した結果を示す。第1サンプル及び第2サンプルの正極活物質層3は、X線回折において、2θ=21.8°±0.5°の範囲に、半値幅が0.46°以下の回折ピークを有しない。X線回折における2θ=21.8°±0.5°の範囲はリチウムコバルトリン酸化合物に由来するピークが現れ、半値幅が0.46°以下の回折ピークを有することは材料の結晶性を示すものである。このことから、第1サンプル及び第2サンプルの正極活物質層3は、結晶性を有しないことがわかる。 FIG. 4 shows X-ray diffraction spectra of the positive electrode active material layers 3 of the first and second samples. The plots on the upper side of FIG. 4 show the results of measurements of the positive electrode active material layer 3 of the first sample. The plots on the lower side of FIG. 4 show the results of measurements of the positive electrode active material layer 3 of the second sample. The positive electrode active material layer 3 of the first sample and the second sample does not have a diffraction peak with a half width of 0.46° or less in the range of 2θ=21.8°±0.5° in X-ray diffraction. In the range of 2θ = 21.8 ° ± 0.5 ° in X-ray diffraction, a peak derived from the lithium cobalt phosphate compound appears, and having a diffraction peak with a half width of 0.46 ° or less indicates the crystallinity of the material. is shown. From this, it can be seen that the positive electrode active material layers 3 of the first sample and the second sample do not have crystallinity.

第4サンプル及び第5サンプルの電池は、製造方法のみ互いに異なり、以下の通りである。
(第4サンプル)
第4サンプルは、第1サンプルと同様の構成で、正極活物質層3を形成した後に熱処理を施さない製造方法で製造した。
(第5サンプル)
第5サンプルは、第2サンプルと同様の構成で、正極活物質層3を形成した後に熱処理を施さない製造方法で製造した。
The batteries of the fourth sample and the fifth sample differ from each other only in the manufacturing method as follows.
(4th sample)
A fourth sample had the same structure as the first sample, and was manufactured by a manufacturing method in which heat treatment was not performed after forming the positive electrode active material layer 3 .
(5th sample)
A fifth sample had the same structure as the second sample, and was manufactured by a manufacturing method in which heat treatment was not performed after forming the positive electrode active material layer 3 .

図5は、第1サンプル及び第4サンプルの正極活物質層3のFT-IRスペクトルである。図5の上側のプロットは、第1サンプルの正極活物質層3について測定した結果を示す。図5の下側のプロットは、第4サンプルの正極活物質層3について測定した結果を示す。図6は、第2サンプル及び第5サンプルの正極活物質層3のFT-IRスペクトルである。図6の上側のプロットは、第2サンプルの正極活物質層3について測定した結果を示す。図6の下側のプロットは、第5サンプルの正極活物質層3について測定した結果を示す。図5、図6は、上下のプロットのFT-IRスペクトルの形状を両者間で比較するため上下に並べているものであり、上側のプロットが下側のプロットよりもFT-IRスペクトルの強度が高いことを示すものではない。 FIG. 5 shows FT-IR spectra of the positive electrode active material layers 3 of the first and fourth samples. The plots on the upper side of FIG. 5 show the results of measurement of the positive electrode active material layer 3 of the first sample. The plots on the lower side of FIG. 5 show the results of measurements of the positive electrode active material layer 3 of the fourth sample. FIG. 6 shows FT-IR spectra of the positive electrode active material layers 3 of the second and fifth samples. The plots on the upper side of FIG. 6 show the results of measurements of the positive electrode active material layer 3 of the second sample. The plots on the lower side of FIG. 6 show the results of measurements of the positive electrode active material layer 3 of the fifth sample. 5 and 6 are arranged vertically in order to compare the shapes of the FT-IR spectra of the upper and lower plots, and the upper plot has a higher FT-IR spectrum intensity than the lower plot. It does not indicate that

第1サンプル及び第2サンプルの正極活物質層3は、FT-IR測定において、700cm-1~800cm-1の範囲にPに由来する半値幅が73cm-1以下のピークが観察される。第1サンプル及び第2サンプルの正極活物質層3のFT-IR測定結果における700cm-1~800cm-1の範囲にて観察されるピークの半値幅は、少なくとも73cm-1以下であり、X線回折において2θ=21.8°±0.5°の範囲に半値幅が0.46°以下の回折ピークを有しない限り70cm-1以下であってもよいし、60cm-1以下であってもよいし、50cm-1以下であってもよい。 In the positive electrode active material layer 3 of the first sample and the second sample, a peak with a half width of 73 cm −1 or less derived from P 2 O 7 was observed in the range of 700 cm −1 to 800 cm −1 in the FT-IR measurement. be. The half width of the peak observed in the range of 700 cm −1 to 800 cm −1 in the FT-IR measurement results of the positive electrode active material layers 3 of the first sample and the second sample is at least 73 cm −1 or less, and the X-ray As long as it does not have a diffraction peak with a half-value width of 0.46° or less in the range of 2θ = 21.8° ± 0.5° in diffraction, it may be 70 cm -1 or less, or 60 cm -1 or less. It may be 50 cm −1 or less.

第1サンプル及び第2サンプルの正極活物質層3のFT-IR測定結果に現れる700cm-1~800cm-1のピークは、熱処理を行っていない第4サンプル及び第5サンプルに比べて、明瞭に観察されることがわかる。正極活物質層3のFT-IR測定において700cm-1~800cm-1の範囲にピークが観察されることは、材料が結晶状態に近いことを示す。 The peaks at 700 cm −1 to 800 cm −1 appearing in the FT-IR measurement results of the positive electrode active material layers 3 of the first and second samples are clearly compared to the fourth and fifth samples that are not heat-treated. be observed. Observation of a peak in the range of 700 cm −1 to 800 cm −1 in the FT-IR measurement of the positive electrode active material layer 3 indicates that the material is close to a crystalline state.

正極活物質層3のX線回折測定において半値幅が0.46°以下の回折ピークが観測されず、かつ、正極活物質層3のFT-IR測定において700cm-1~800cm-1の範囲に半値幅が73cm-1以下のピークが観察される状態を、結晶状態に近いアモルファス状態と定義する。 In the X-ray diffraction measurement of the positive electrode active material layer 3, no diffraction peak with a half-value width of 0.46° or less is observed, and in the FT-IR measurement of the positive electrode active material layer 3, it is in the range of 700 cm -1 to 800 cm -1 A state in which a peak with a half-value width of 73 cm −1 or less is observed is defined as an amorphous state close to a crystalline state.

図7は、第1サンプル、第2サンプル及び第3サンプルの正極活物質層3を含む電池の平均電位を示す図である。図7の縦軸は平均電位を示し、横軸は正極活物質層3のLiCo1-xNiのxの値を示す。LiCo1-xNiのxの値は、LiCoPのCoをNiに置換した割合に対応する。 FIG. 7 is a graph showing average potentials of batteries including positive electrode active material layers 3 of the first, second and third samples. The vertical axis in FIG. 7 indicates the average potential, and the horizontal axis indicates the x value of Li 2 Co 1-x Ni x P 2 O 7 of the positive electrode active material layer 3 . The value of x in Li 2 Co 1-x Ni x P 2 O 7 corresponds to the ratio of Co to Ni in Li 2 CoP 2 O 7 .

電池の充放電評価は、充電:CC-CV、0.5mA、5.4V終止、放電:CC、0.5mA、2V終止の条件で室温にて行った。 The charging and discharging evaluation of the battery was performed at room temperature under the following conditions: charging: CC-CV, 0.5 mA, 5.4 V termination; discharging: CC, 0.5 mA, 2 V termination.

第3サンプル、第2サンプル、第1サンプルの順でNi置換割合が上がるにつれ、平均電位が向上することがわかる。
符号の説明
It can be seen that as the Ni substitution ratio increases in the order of the 3rd sample, the 2nd sample, and the 1st sample, the average potential improves.
Code explanation

1 基板
2 集電層
3 正極活物質層
4 電解質層
5 負極
Reference Signs List 1 substrate 2 collector layer 3 positive electrode active material layer 4 electrolyte layer 5 negative electrode

Claims (10)

組成式LiCo1-xNi(0<x<1)で表され、X線回折において、2θ=21.8°±0.5°の範囲に半値幅が0.46°以下の回折ピークを有しない
ことを特徴とする電池の材料。
It is represented by the composition formula Li 2 Co 1-x Ni x P 2 O 7 (0<x<1), and has a half width of 0.46 in the range of 2θ = 21.8° ± 0.5° in X-ray diffraction. A battery material characterized by not having a diffraction peak of less than °C.
FT-IR測定において、700cm-1~800cm-1の範囲に半値幅が73cm-1以下のピークを有する
ことを特徴とする請求項1に記載の電池の材料。
2. The battery material according to claim 1, which has a peak with a half width of 73 cm −1 or less in the range of 700 cm −1 to 800 cm −1 in FT-IR measurement.
前記xは、更に、0.1≦x≦0.5の範囲である
ことを特徴とする請求項1又は2に記載の電池の材料。
3. The battery material according to claim 1 or 2, wherein said x is further in the range of 0.1≤x≤0.5.
組成式LiCo1-xNi(0<x<1)で表され、X線回折において、2θ=21.8°±0.5°の範囲に半値幅が0.46°以下の回折ピークを有しない材料を有する正極と、
前記正極とイオン交換可能な状態の負極と、
前記正極と前記負極との間に配置され、前記正極及び前記負極とイオン交換可能な状態の電解質と、
を備えることを特徴とする電池。
It is represented by the composition formula Li 2 Co 1-x Ni x P 2 O 7 (0<x<1), and has a half width of 0.46 in the range of 2θ = 21.8° ± 0.5° in X-ray diffraction. A positive electrode having a material that does not have a diffraction peak of ° or less;
a negative electrode in a state capable of ion exchange with the positive electrode;
an electrolyte disposed between the positive electrode and the negative electrode and capable of ion exchange with the positive electrode and the negative electrode;
A battery comprising:
前記正極は、FT-IR測定において、700cm-1~800cm-1の範囲に半値幅が73cm-1以下のピークを有する
ことを特徴とする請求項4に記載の電池。
5. The battery according to claim 4, wherein the positive electrode has a peak with a half width of 73 cm −1 or less in the range of 700 cm −1 to 800 cm −1 in FT-IR measurement.
前記xは、更に、0.1≦x≦0.5の範囲で規定される
ことを特徴とする請求項4又は5に記載の電池。
6. The battery according to claim 4, wherein said x is further defined within a range of 0.1≤x≤0.5.
前記電解質は、リチウムを含有する酸化物系固体電解質、リチウムを含有する硫化物系固体電解質、リチウム塩の少なくともいずれかを含む
ことを特徴とする請求項4~6いずれか一項に記載の電池。
The battery according to any one of claims 4 to 6, wherein the electrolyte includes at least one of a lithium-containing oxide solid electrolyte, a lithium-containing sulfide solid electrolyte, and a lithium salt. .
基板上に、組成式LiCo1-xNi(0<x<1)で表される材料を有する正極を形成し、
前記正極がX線回折において、2θ=21.8°±0.5°の範囲に半値幅が0.46°以下の回折ピークを有しないようになるよう熱処理を施し、
前記正極上に電解質を形成し、
前記電解質上に負極を形成する
ことを含むことを特徴とする電池の製造方法。
forming a positive electrode having a material represented by a composition formula Li 2 Co 1-x Ni x P 2 O 7 (0<x<1) on a substrate;
subjecting the positive electrode to heat treatment so that it does not have a diffraction peak with a half width of 0.46° or less in the range of 2θ=21.8°±0.5° in X-ray diffraction;
forming an electrolyte on the positive electrode;
A method of manufacturing a battery, comprising: forming a negative electrode on the electrolyte.
前記xは、更に、0.1≦x≦0.5の範囲で規定される
ことを特徴とする請求項8に記載の電池の製造方法。
9. The method of manufacturing a battery according to claim 8, wherein said x is further defined within a range of 0.1≤x≤0.5.
前記正極に525℃の温度で熱処理を施す
ことを特徴とする請求項8又は9に記載の電池の製造方法。
10. The method of manufacturing a battery according to claim 8, wherein the positive electrode is heat-treated at a temperature of 525[deg.]C.
JP2019208357A 2019-11-19 2019-11-19 BATTERY MATERIAL, BATTERY AND BATTERY MANUFACTURING METHOD Active JP7327102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208357A JP7327102B2 (en) 2019-11-19 2019-11-19 BATTERY MATERIAL, BATTERY AND BATTERY MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208357A JP7327102B2 (en) 2019-11-19 2019-11-19 BATTERY MATERIAL, BATTERY AND BATTERY MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2021082458A JP2021082458A (en) 2021-05-27
JP7327102B2 true JP7327102B2 (en) 2023-08-16

Family

ID=75965871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208357A Active JP7327102B2 (en) 2019-11-19 2019-11-19 BATTERY MATERIAL, BATTERY AND BATTERY MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP7327102B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523930A (en) 2003-04-08 2006-10-19 ヴァレンス テクノロジー インコーポレーテッド Electroactive material based on oligophosphate and method for producing the same
WO2018003071A1 (en) 2016-06-30 2018-01-04 富士通株式会社 Positive electrode material for secondary batteries, method for producing same, and lithium ion secondary battery
CN108511715A (en) 2018-03-27 2018-09-07 中南大学 A kind of lithium ion battery ternary material, preparation and its application of surface cladding pyrophosphoric acid lithium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523930A (en) 2003-04-08 2006-10-19 ヴァレンス テクノロジー インコーポレーテッド Electroactive material based on oligophosphate and method for producing the same
WO2018003071A1 (en) 2016-06-30 2018-01-04 富士通株式会社 Positive electrode material for secondary batteries, method for producing same, and lithium ion secondary battery
CN108511715A (en) 2018-03-27 2018-09-07 中南大学 A kind of lithium ion battery ternary material, preparation and its application of surface cladding pyrophosphoric acid lithium

Also Published As

Publication number Publication date
JP2021082458A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US11121367B2 (en) Modified positive electrode active material, method for preparing the same and electrochemical energy storage device
US9455472B2 (en) Lithium-ion electrochemical cells including fluorocarbon electrolyte additives
US6365300B1 (en) Lithium secondary battery
US7674557B2 (en) Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
JP5515665B2 (en) Solid electrolyte battery, positive electrode active material and battery
KR102268441B1 (en) Electrolyte formulations
KR102606317B1 (en) Negative electrode active material for lithium secondary battery, negative electrode, and lithium secondary battery comprising the same
CN110581303B (en) Solid state electrochemical assembly, solid state electrochemical device and method of making the same
JP2013534027A (en) Lithium-ion battery with amorphous electrode material
WO2013028508A1 (en) High capacity lithium ion battery formation protocol and corresponding batteries
KR102460008B1 (en) Method of pre-lithiating anode and Anode obtained therefrom
WO2020108014A1 (en) Lithium ion secondary battery
US20140272551A1 (en) Nonaqueous electrolyte battery and battery pack
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP7327102B2 (en) BATTERY MATERIAL, BATTERY AND BATTERY MANUFACTURING METHOD
US20150056521A1 (en) Lithium ion battery electrolytes and electrochemical cells
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP2018045790A (en) Nonaqueous electrolyte battery
JP5930312B2 (en) Non-aqueous electrolyte secondary battery
US20040091781A1 (en) Lithium secondary battery and method for producing the same
JP5666561B2 (en) Nonaqueous electrolyte secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
US20240170642A1 (en) Electrode for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
US20230335726A1 (en) Negative electrode active material for secondary batteries, and secondary battery
JP6974099B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7327102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150