JP7321834B2 - 照明装置、および、測距モジュール - Google Patents

照明装置、および、測距モジュール Download PDF

Info

Publication number
JP7321834B2
JP7321834B2 JP2019153489A JP2019153489A JP7321834B2 JP 7321834 B2 JP7321834 B2 JP 7321834B2 JP 2019153489 A JP2019153489 A JP 2019153489A JP 2019153489 A JP2019153489 A JP 2019153489A JP 7321834 B2 JP7321834 B2 JP 7321834B2
Authority
JP
Japan
Prior art keywords
light
lens
unit
predetermined
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019153489A
Other languages
English (en)
Other versions
JP2021034239A (ja
Inventor
平貴 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2019153489A priority Critical patent/JP7321834B2/ja
Priority to CN202021171385.5U priority patent/CN212719323U/zh
Priority to CN202010571809.5A priority patent/CN112432079A/zh
Priority to TW109121990A priority patent/TW202109080A/zh
Priority to KR1020227004100A priority patent/KR20220050133A/ko
Priority to US17/634,322 priority patent/US20220291346A1/en
Priority to PCT/JP2020/030645 priority patent/WO2021039388A1/en
Priority to EP20764797.5A priority patent/EP4022344A1/en
Priority to DE112020004009.7T priority patent/DE112020004009T5/de
Publication of JP2021034239A publication Critical patent/JP2021034239A/ja
Application granted granted Critical
Publication of JP7321834B2 publication Critical patent/JP7321834B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/06Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本技術は、照明装置、および、測距モジュールに関し、特に、スポット照明と面照明の両方を実現しつつ、小型化および低価格化に貢献できるようにした照明装置、および、測距モジュールに関する。
近年、半導体技術の進歩により、物体までの距離を測定する測距モジュールの小型化が進んでいる。これにより、例えば、測距モジュールが搭載されたスマートフォンなども販売されている。
ToF(Time of Flight)方式の測距モジュールでは、光を物体に向かって照射して物体の表面で反射してくる光を検出し、その光の飛行時間を測定した測定値に基づいて物体までの距離が算出される。
物体に向かって照射する照射光として、スポット光を照射する場合、光パワーの密度を高くできるため、距離測定の精度を向上できるという利点がある。しかし、スポット光が照射されていない箇所の距離の測定ができないため、解像度が低くなるという問題があった。
この問題に対して、特許文献1では、スポット光と平面光の2つのパターン光源を使用して低マルチパスと高解像度の両方の利点を得ることが提案されている。
米国特許出願公開第2013/0148102号明細書
しかしながら、スポット照明と面照明の2つの照射モジュールが必要になり、モジュールサイズの大型化、コストの増大が懸念される。
本技術は、このような状況に鑑みてなされたものであり、スポット照明と面照明の両方を実現しつつ、小型化および低価格化に貢献できるようにするものである。
本技術の第1の側面の照明装置は、発光部と、前記発光部から出射される光を投射する投射レンズと、焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部とを備え
前記発光部は、所定の開口サイズで光を出射する光源を所定の光源間距離で複数配列した光源アレイで構成され、
前記切り替え部は、前記投射レンズまたは前記発光部の位置を制御する駆動部であり、
前記駆動部は、スポット照射時の第1の位置から面照射時の第2の位置までの移動量が、前記所定の光源間距離に応じた所定の下限値以上、かつ、所定の上限値以下となるように、前記投射レンズまたは前記発光部の位置を制御し、
前記所定の下限値をy min 、前記所定の上限値をy max 、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が45%となる拡がり角をθ h1 、ピーク強度に対するレーザ強度が70%となる拡がり角をθ h2 とすると、
Figure 0007321834000001
Figure 0007321834000002
である
本技術の第2の側面の照明装置は、
発光部と、
前記発光部から出射される光を投射する投射レンズと、
焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部と
を備え、
前記発光部は、所定の開口サイズで光を出射する光源を所定の光源間距離で複数配列した光源アレイで構成され、
前記切り替え部は、焦点可変レンズであり、
前記焦点可変レンズは、レンズの屈折力を変更することで、スポット照射と面照射とを切り替え、
前記焦点可変レンズは、面照射時に、レンズの屈折力が前記所定の光源間距離に応じた所定の下限値以上、かつ、所定の上限値以下となるように、レンズの形状または屈折率を変更し、
前記所定の下限値をY pmin 、前記所定の上限値をY pmax 、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が45%となる拡がり角をθ h=45% 、ピーク強度に対するレーザ強度が70%となる拡がり角をθ h=70% 、所定の定数をAとすると、
Figure 0007321834000003
である。
本技術の第の側面の測距モジュールは、上記第1の側面または第2の側面の照明装置と、前記照明装置からの光が物体で反射されてきた反射光を受光する受光部と、前記受光部から供給される画素データに基づいてデプスマップを生成する信号処理部とを備え、前記信号処理部は、スポット照射における第1のデプスマップと、面照射における第2のデプスマップとを生成し、前記第1のデプスマップと前記第2のデプスマップの2つのデプスマップから、出力用のデプスマップを生成して出力する。
本技術の第1ないし第3の側面においては、焦点距離を変更することで、スポット照射と面照射とが切り替えられる。第1の側面では、スポット照射時の第1の位置から面照射時の第2の位置までの移動量の上限値と下限値が、ピーク強度に対するレーザ強度が45%となる拡がり角と、ピーク強度に対するレーザ強度が70%となる拡がり角とを用いて決定される。第2の側面では、面照射時にレンズの形状または屈折率が変更され、レンズの屈折力の上限値と下限値が、ピーク強度に対するレーザ強度が45%となる拡がり角と、ピーク強度に対するレーザ強度が70%となる拡がり角とを用いて決定される。
照明装置及び測距モジュールは、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
本技術を適用した測距モジュールの一実施の形態の構成例を示すブロック図である。 スポット照射と面照射の照射イメージを示す図である。 Indirect ToF方式による距離の測定方法を説明する図である。 照明装置の第1の構成例を示す断面図である。 スポット照射と面照射とで切り替えを行う場合の投射レンズの移動を説明する断面図である。 各パラメータを説明する図である。 下限値におけるスポット光の重ね合わせを説明する図である。 上限値におけるスポット光の重ね合わせを説明する図である。 投射レンズの移動量の下限値および上限値をプロットしたグラフである。 照明装置の第2の構成例を示す断面図である。 照明装置の第3の構成例を示す断面図である。 焦点可変レンズの屈折力の下限値および上限値をプロットしたグラフである。 測距モジュールによる物体までの距離を測定する測定処理について説明するフローチャートである。 本技術を適用した電子機器の構成例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
以下、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.測距モジュールの構成例
2.Indirect ToF方式による測距方法
3.照明装置の第1の構成例
4.照明装置の第2の構成例
5.照明装置の第3の構成例
6.測距モジュールの測定処理
7.電子機器の構成例
8.移動体への応用例
<1.測距モジュールの構成例>
図1は、本技術を適用した測距モジュールの一実施の形態の構成例を示すブロック図である。
図1に示される測距モジュール11は、例えば、Indirect ToF方式による測距を行う測距モジュールであり、照明装置12、発光制御部13、および、測距センサ14を有する。測距モジュール11は、物体に対して光を照射し、その光(照射光)が物体で反射されてきた光(反射光)を受光することにより、物体までの距離情報としてのデプスマップを生成して出力する。測距センサ14は、反射光を受光する受光装置であり、受光部15と、信号処理部16とで構成される。
照明装置12は、例えば、光源としてVCSELアレイを備える装置であり、発光制御部13から供給される発光タイミング信号に応じたタイミングで変調しながら発光し、物体に対して照射光を照射する。
また、照明装置12は、発光制御部13から供給されるスポット切替信号に応じて、スポット照射と、面照射とを切り替える。
図2は、スポット照射と面照射の照射イメージを示す図である。
スポット照射は、円状または楕円状の複数のスポットが所定の規則で規則的に配列された光を照射する照射方法である。面照射は、略矩形状の所定のエリア全体を、所定の輝度範囲内の均一輝度で照射する照射方法である。以下では、スポット照射により出力される光をスポット光、面照射により出力される光を均一光とも称する。
発光制御部13は、所定の周波数(例えば、20MHzなど)の発光タイミング信号を照明装置12に供給することにより、照明装置12の発光を制御する。また、照明装置12における発光のタイミングに合わせて受光部15を駆動させるために、発光制御部13は、発光タイミング信号を受光部15にも供給する。
さらに、発光制御部13は、スポット照射と面照射の切り替えも制御する。具体的には、発光制御部13は、スポット照射または面照射を表すスポット切替信号を、照明装置12に供給する。また、発光制御部13は、照射方法に応じて信号処理を切り替えるために、スポット切替信号を、信号処理部16にも供給する。
受光部15には、受光した光量に応じた電荷を生成し、その電荷に応じた信号を出力する画素21が行方向および列方向の行列状に2次元配置された画素アレイ部22が設けられており、画素アレイ部22の周辺領域に駆動制御回路23が配置されている。
受光部15は、複数の画素21が2次元配置された画素アレイ部22で、物体からの反射光を受光する。そして、受光部15は、画素アレイ部22の各画素21が受光した反射光の受光量に応じた検出信号で構成される画素データを信号処理部16に供給する。
駆動制御回路23は、例えば、発光制御部13から供給される発光タイミング信号に基づいて、画素21の駆動を制御するための制御信号を生成し、各画素21へ供給する。駆動制御回路23は、各画素21が反射光を受光する受光期間を制御する。
信号処理部16は、画素アレイ部22の画素21ごとに、受光部15から供給される画素データに基づいて、測距モジュール11から物体までの距離であるデプス値を算出し、各画素21の画素値としてデプス値が格納されたデプスマップを生成して、モジュール外へ出力する。
より具体的には、信号処理部16は、スポット照射における第1のデプスマップと、面照射における第2のデプスマップとを生成し、第1のデプスマップと第2のデプスマップの2つのデプスマップから、出力用のデプスマップを生成して、出力する。スポット照射における第1のデプスマップでは、マルチパスの影響を抑えたデプスマップを生成することができるが、光が照射される領域が少ない為、平面方向の解像度が低い。一方、面照射では、広い領域に光を照射することができるため、平面方向の解像度を上げることができるが、マルチパスの影響が、スポット光と比較して大きくなる。そのため、スポット照射における第1のデプスマップと、面照射における第2のデプスマップの2つのデプスマップから、最終的なデプスマップを生成することにより、マルチパスの影響を抑えつつ、解像度の高いデプスマップを生成することができる。スポット照射と面照射とで、デプスマップを生成する際の補正処理を変更するため、スポット照射または面照射を表すスポット切替信号が、信号処理部16に供給されている。
<2.Indirect ToF方式による測距方法>
図3を参照して、Indirect ToF方式による距離の測定方法について簡単に説明する。
照明装置12は、図3に示されるように、照射時間Tで照射のオン/オフを繰り返すように変調(1周期=2T)されたスポット光または均一光を出力する。受光部15には、照明装置12から出力されたスポット光または均一光が、物体までの距離に応じた遅延時間ΔTだけ遅れて、反射光として受光される。
ここで、画素アレイ部22の各画素21は、反射光を光電変換するフォトダイオードと、フォトダイオードで光電変換された電荷を蓄積する2つの電荷蓄積部とを有する。フォトダイオードで光電変換された電荷は、振り分け信号DIMIX_AおよびDIMIX_Bによって、2つの電荷蓄積部へ振り分けられる。振り分け信号DIMIX_Aと振り分け信号DIMIX_Bとは、位相が反転した信号となっている。
画素21は、フォトダイオードにより生成された電荷を、遅延時間ΔTに応じて2つの電荷蓄積部に振り分けて、蓄積電荷に応じた検出信号Aおよび検出信号Bを出力する。この検出信号Aと検出信号Bとの比は、遅延時間ΔTに応じたもの、換言すれば、物体までの距離に応じたものである。従って、測距モジュール11は、検出信号Aおよび検出信号Bに基づき、物体までの距離(デプス値)を求めることができる。
Indirect ToF方式において、物体までの距離に相当するデプス値dは、次式(1)で求めることができる。
Figure 0007321834000004
式(1)のcは光速であり、ΔTは遅延時間であり、fは光の変調周波数を表す。また、式(1)のφは、反射光の位相ずれ量[rad]を表し、検出信号Aと検出信号Bとの比から求めることができる。
以上が、測距モジュール11における測距の概要であるが、測距モジュール11は、照明装置12が、簡単な構成でありながらも、スポット切替信号に応じて、スポット照射と面照射とを切り替えできることを特徴としている。
そこで、以下では、照明装置12の構成について詳しく説明する。照明装置12の構成としては、以下で説明する第1ないし第3の構成例のいずれかを取り得る。
<3.照明装置の第1の構成例>
図4は、照明装置12の第1の構成例を示す断面図である。
照明装置12は、内部が空洞に形成された四角形の筒状の筐体41の内周面の所定の一面に固定された発光部42と、発光部42と対向する一面に固定された回折光学素子43とを備える。
また、照明装置12は、投射レンズ44と、レンズ駆動部45Aおよび45Bとを備える。レンズ駆動部45Aおよび45Bは、筐体41の内周面のうち、発光部42と回折光学素子43とを結ぶ光軸方向と垂直な方向の対向する2面に固定され、投射レンズ44を光軸方向に移動させる。
図4は、発光部42から出射される光の光軸に対して垂直な方向から見た断面図となっている。
発光部42は、例えば、光源としてのVCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器面発光レーザ)を平面状に複数配列したVCSELアレイ(光源アレイ)で構成され、発光制御部13からの発光タイミング信号に応じて、所定の周期で発光のオンオフを繰り返す。
回折光学素子43は、発光部42から出射され、投射レンズ44を通過した所定領域の発光パターン(発光面)を、光軸方向と垂直な方向に複製することにより照射エリアを拡大する。なお、回折光学素子43は、省略される場合もある。例えば、発光部42としてのVCSELアレイのサイズが大きい場合には、回折光学素子43は省略される。
投射レンズ44は、発光部42から出射される光を、測定対象の物体へ投射する。レンズ駆動部45Aおよび45Bには、投射レンズ44が固定されており、レンズ駆動部45Aおよび45Bは、投射レンズ44の光軸方向の位置を制御する。
具体的には、レンズ駆動部45Aおよび45Bは、発光制御部13から供給されるスポット切替信号がスポット照射である場合に、投射レンズ44の光軸方向の位置が第1のレンズ位置51Aとなるように制御し、スポット切替信号が面照射である場合に、投射レンズ44の光軸方向の位置が第2のレンズ位置51Bとなるように制御する。レンズ駆動部45Aおよび45Bは、例えば、ボイスコイルモータを含み、スポット切替信号に応じてボイスコイルに流れる電流がオンオフされることにより、投射レンズ44の位置が第1のレンズ位置51Aまたは第2のレンズ位置51Bになる。なお、レンズ駆動部45Aおよび45Bは、ボイスコイルモータの代わりに、ピエゾ素子を用いて、投射レンズ44の位置を光軸方向に移動させるようにしてもよい。
図5は、スポット照射と面照射とで切り替えを行う場合の投射レンズ44の移動を説明する断面図である。
照明装置12は、発光部42と投射レンズ44との距離が、投射レンズ44の有効焦点距離EFL[mm]である場合に、スポット照射を行う。
具体的には、図5のAに示されるように、投射レンズ44の光軸方向の位置がy0である場合に、VCSELアレイで構成される発光部42から投射レンズ44までの距離が、投射レンズ44の有効焦点距離EFLとなり、照明装置12は、物体に対してスポット照射を行う。この場合、投射レンズ44は、コリメータレンズとして機能し、発光部42から拡がり角θhで出射されてきた光を、直径Dの平行光(光束)に変換して出力する。
一方、照明装置12は、図5のBに示されるように、発光部42と投射レンズ44との距離が、投射レンズ44の有効焦点距離EFL[mm]の位置y0よりも、発光部42側にΔyだけ近い位置y1である場合に、面照射を行う。換言すれば、照明装置12は、投射レンズ44をデフォーカスする位置に移動させることにより、面照射を行う。投射レンズ44がデフォーカスされた状態において、投射レンズ44から出射される光は、直径Dの平行光(光束)から角度θ1だけ外側に拡がる。この角度θ1をデフォーカス拡がり角度θ1と称する。
投射レンズ44の位置y0は、図4の第1のレンズ位置51Aに対応し、位置y1は、図4の第2のレンズ位置51Bに対応する。
第1の構成例において、レンズ駆動部45Aおよび45Bは、焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部に相当し、投射レンズ44の位置を変更することで、スポット照射と面照射とを切り替える。
発光制御部13から供給されるスポット切替信号がスポット照射である場合、レンズ駆動部45Aおよび45Bに流れる電流がゼロになり、投射レンズ44が位置y0に制御される。反対に、発光制御部13から供給されるスポット切替信号が面照射である場合には、レンズ駆動部45Aおよび45Bに流れる電流が正の値になり、投射レンズ44が位置y1に制御される。
なお、制御の論理は逆とすることもできる。すなわち、スポット切替信号がスポット照射である場合に、レンズ駆動部45Aおよび45Bに流れる電流が正の値になって、投射レンズ44が位置y0に制御され、スポット切替信号が面照射である場合に、レンズ駆動部45Aおよび45Bに流れる電流がゼロになって、投射レンズ44が位置y1に配置されるように制御してもよい。
レンズ駆動部45Aおよび45Bは、面照射時に、照明の均一性を担保するため、位置y0から位置y1までの移動量Δyが下限値yminから上限値ymaxまでの範囲(ymin≦Δy≦ymax)となるように制御する。
ここで、下限値yminおよび上限値ymaxは、それぞれ、式(2)および式(3)で表す値となる。
Figure 0007321834000005
図6は、式(2)および式(3)の計算に必要となる、As、Ap、θh1、および、θh2の各パラメータを説明する図である。
図6のAは、VCSELアレイで構成される発光部42の一部を光軸方向からみた平面図である。図6のBは、発光部42の各VCSELから出射される光束を、光軸方向と垂直な方向から見た平面図である。
図6のAに示されるように、Asは、VCSELアレイで構成される発光部42の、各VCSELの開口サイズ[mm]を表し、Apは、平面方向に複数配列されているVCSELの中心間の距離(光源間距離)[mm]を表す。したがって、発光部42は、開口サイズAsで光を出射する光源(VCSEL)を、光源間距離Apで複数配列したVCSELアレイである。
図6のBに示されるように、スポット照射において、隣接するスポットどうしのなす角度[rad]をS1で表し、1つのVCSELが形成するスポット自体がもつ角度[rad]をS2で表す。
式(2)のθh1は、VCSELの遠視野像(FFP:Far Field Pattern)のレーザ強度が、ピーク強度に対して45%となる拡がり角θh[rad]を表し、式(3)のθh2は、VCSELの遠視野像のレーザ強度が、ピーク強度に対して70%となる拡がり角θh[rad]を表す。
次に、式(2)および式(3)で表される下限値yminおよび上限値ymaxの算出方法について説明する。
スポット照射から面照射に切り替える場合、隣接するスポット光どうしを重ねることで、面照射にすることが可能になる。
具体的には、以下の式(4)で表されるように、面照射時のデフォーカス拡がり角度θ1が、隣接するスポットどうしのなす角度S1の半分(S1/2)と、スポット自体がもつ角度S2の半分(S2/2)を加算した角度よりも大きい角度に切り替えることで、平面領域で輝度が均一な面照射にすることが可能になる。
Figure 0007321834000006
ここで、式(4)のS1/2は、VCSELアレイの光源間距離Apと、投射レンズ44の有効焦点距離EFLとから、近似的に式(5)で表すことができる。
Figure 0007321834000007
また、式(4)のS2/2は、VCSELの開口サイズAsと、投射レンズ44の有効焦点距離EFLとから、近似的に式(6)で表すことができる。
Figure 0007321834000008
一方、面照射時のデフォーカス拡がり角度θ1は、投射レンズ44の移動量Δy、投射レンズ44の有効焦点距離EFL、VCSELの遠視野像のレーザ強度がピーク強度に対して所定の比率[%]となる拡がり角をθh[rad]、および、平行光の直径Dを用いて、式(7)で表すことができる。
Figure 0007321834000009
式(7)のDは、投射レンズ44でコリメートされた光束の直径であり、式(8)で表すことができる。
Figure 0007321834000010
式(4)から式(8)までの関係から、対物レンズの移動量ΔyとVCSELアレイの光源間距離Apとの関係をもとめると、式(9)が得られる。
Figure 0007321834000011
以上のように得られた式(9)に対して、式(2)の下限値yminは、VCSELの拡がり角θhを、ピーク強度に対するレーザ強度(の比率)が45%となる拡がり角θh1とした場合の値である。
VCSELの拡がり角θhを、VCSELの遠視野像のレーザ強度がピーク強度に対して45%となる拡がり角θh1とした場合、図7のAのように、隣接する各VCSELのスポット光が45%のレーザ強度で重なるイメージとなり、各VCSELのスポット光を重ね合わせた後の光量分布は、図7のBで示されるように、各VCSELのピーク強度に対して略80ないし100%のレーザ強度で均一となる。
一方、式(3)の上限値ymaxは、式(9)に対して、VCSELの拡がり角θhを、VCSELの遠視野像のレーザ強度がピーク強度に対して70%となる拡がり角θh2とした場合の値である。
VCSELの拡がり角θhを、VCSELの遠視野像のレーザ強度がピーク強度に対して70%となる拡がり角θh2とした場合、図8のAのように、隣接する各VCSELのスポット光が70%のレーザ強度で重なるイメージとなり、各VCSELのスポット光を重ね合わせた後の光量分布は、図8のBで示されるように、各VCSELのピーク強度に対して略100%のレーザ強度で均一となる。
したがって、投射レンズ44の移動量Δyを、式(2)の下限値yminと式(3)の上限値ymaxとの間に設定すれば、レーザ強度のバラツキがピーク強度に対して20%以内で均一な均一光を照射することができる。これにより、レーザ強度の部分的な低下が発生せず、面照射時の各測距位置における測定距離の誤差を小さくすることができる。
投射レンズ44の移動量Δyが式(2)の下限値yminよりも小さい場合には、スポット光の重なり部分が小さく、重なり部分の光量が低い箇所が発生し、略均一な輝度にならず、光量が低い箇所では、距離の誤差が大きくなる
投射レンズ44の移動量Δyが式(3)の上限値ymaxよりも大きい場合には、面照射時のレーザ強度のバラツキがピーク強度に対して20%以内で均一にできる条件もあるが、投射レンズ44の移動量Δyが大きくなる。
図9は、VCSELアレイの光源間距離Apを、0.03mmから0.06mmまで変化させたときの、投射レンズ44の移動量Δyの下限値yminおよび上限値ymaxをプロットしたグラフである。
図9の横軸は、VCSELアレイの光源間距離Apを表し、縦軸は、投射レンズ44の移動量Δyを表す。
図9では、ピーク強度の45%となるVCSELの拡がり角θh1を0.314rad、ピーク強度の70%となるVCSELの拡がり角θh2を0.209rad、投射レンズ44の有効焦点距離EFLを2.5mm、VCSELから出射された光が投射レンズ44でコリメートされた光束の直径Dを0.012mmとして、下限値yminおよび上限値ymaxが計算されている。
図9に示される計算例では、例えば、VCSELアレイの光源間距離Apを45μmとした場合、投射レンズ44の移動量Δyを、約0.1mm以上、0.15mm以下の範囲(0.1mm≦Δy≦0.15mm)にすれば、80%以上の均一性を有する面照射で発光することができる。
以上のように、第1の構成例においては、レンズ駆動部45Aおよび45Bが、面照射時に、投射レンズ44を移動量Δyだけ移動させる。その際、レンズ駆動部45Aおよび45Bは、スポット照射時のレンズ位置(第1のレンズ位置)y0から、面照射時のレンズ位置(第2のレンズ位置)y1までの移動量Δyが、VCSELアレイの光源間距離Apに応じた下限値yminから上限値ymaxまでの範囲(ymin≦Δy≦ymax)となるように制御する。
<4.照明装置の第2の構成例>
図10は、照明装置12の第2の構成例を示す断面図である。
図10の断面図は、第1の構成例における図4と同様に、光軸に対して垂直な方向から見た断面図である。
図10においては、図4に示した第1の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
図4に示した第1の構成例は、スポット照射と面照射とを切り替える際、投射レンズ44を光軸方向に移動させ、発光部42であるVCSELアレイと、投射レンズ44との距離を変更する構成とされていた。
これに対して、図10に示される第2の構成例は、発光部42であるVCSELアレイを光軸方向に移動させることで、発光部42であるVCSELアレイと、投射レンズ44との距離を変更する構成とされている。
具体的には、投射レンズ44は、レンズ固定部材71に固定されており、レンズ固定部材71は筐体41と固定されている。これにより、投射レンズ44は、移動不可とされている。
一方、発光部42は、光源駆動部72Aおよび72Bに固定されており、光源駆動部72Aおよび72Bは、発光部42の光軸方向の位置を制御する。
具体的には、光源駆動部72Aおよび72Bは、発光制御部13から供給されるスポット切替信号がスポット照射である場合に、発光部42の光軸方向の位置が第1の光源位置81Aとなるように制御し、スポット切替信号が面照射である場合に、発光部42の光軸方向の位置が第2の光源位置81Bとなるように制御する。光源駆動部72Aおよび72Bは、例えば、ボイスコイルモータを含み、スポット切替信号に応じてボイスコイルに流れる電流がオンオフされることにより、発光部42の位置が第1の光源位置81Aまたは第2の光源位置81Bになる。なお、レンズ駆動部45Aおよび45Bは、ボイスコイルモータの代わりに、ピエゾ素子を用いて、発光部42の位置を光軸方向に移動させるようにしてもよい。
第2の構成例において、光源駆動部72Aおよび72Bは、焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部に相当し、発光部42の位置を変更することで、スポット照射と面照射とを切り替える。
発光制御部13から供給されるスポット切替信号がスポット照射である場合、光源駆動部72Aおよび72Bに流れる電流がゼロになり、発光部42の光軸方向の位置が第1の光源位置81Aに制御される。反対に、発光制御部13から供給されるスポット切替信号が面照射である場合には、光源駆動部72Aおよび72Bに流れる電流が正の値になり、発光部42の光軸方向の位置が第2の光源位置81Bに制御される。
なお、制御の論理は逆とすることもできる。すなわち、スポット切替信号がスポット照射である場合に、光源駆動部72Aおよび72Bに流れる電流が正の値になって、発光部42の光軸方向の位置が第1の光源位置81Aに制御され、スポット切替信号が面照射である場合に、光源駆動部72Aおよび72Bに流れる電流がゼロになって、発光部42の光軸方向の位置が第2の光源位置81Bに配置されるように制御してもよい。
発光部42の光軸方向の位置が第1の光源位置81Aである場合、投射レンズ44と発光部42との距離は、投射レンズ44の有効焦点距離EFLとなる。発光部42の光軸方向の位置が第2の光源位置81Bである場合、投射レンズ44と発光部42との距離は、投射レンズ44の有効焦点距離EFLから、移動量Δyだけ、投射レンズ44側に近づいた距離となる。光源駆動部72Aおよび72Bは、面照射時に、照明の均一性を担保するため、移動量Δyが下限値yminから上限値ymaxまでの範囲(ymin≦Δy≦ymax)となるように制御する。下限値yminおよび上限値ymaxは、第1の構成例と同様に、式(2)および式(3)で表される。
以上のように、第2の構成例においては、光源駆動部72Aおよび72Bが、面照射時に、発光部42を移動量Δyだけ移動させる。その際、光源駆動部72Aおよび72Bは、スポット照射時の第1の光源位置81Aから、面照射時の第2の光源位置81Bまでの移動量Δyが、VCSELアレイの光源間距離Apに応じた下限値yminから上限値ymaxまでの範囲(ymin≦Δy≦ymax)となるように制御する。
<5.照明装置の第3の構成例>
図11は、照明装置12の第3の構成例を示す断面図である。
図11の断面図は、第1の構成例における図4と同様に、光軸に対して垂直な方向から見た断面図である。
図11においては、上述した第1および第2の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
第1および第2の構成例では、発光部42または投射レンズ44のいずれか一方を光軸方向に移動させ、焦点距離を変更することで、スポット照射と面照射とを切り替える構成とされていた。なお、第1および第2の構成例の変形例として、発光部42および投射レンズ44の両方を光軸方向に移動させて、移動量Δyを制御してもよい。
これに対して、図11に示される第3の構成例では、発光部42は、筐体41に直接固定され、投射レンズ44は、レンズ固定部材71を介して筐体41に固定されており、発光部42と投射レンズ44は、いずれも、移動不可とされている。
そして、第3の構成例では、焦点可変レンズ91が取り付けられたレンズ固定部92が、回折光学素子43の前面(光の出射側)に、さらに設けられている。発光部42から出射された光は、投射レンズ44および回折光学素子43を通過した後、焦点可変レンズ91を通過して、物体へ照射される。
焦点可変レンズ91は、例えば、シリコンオイル、水等の流体で満たされた弾性膜のレンズに対して、ボイスコイルモータで圧力を加えて変形させることで、レンズの形状を変更できるレンズである。あるいはまた、焦点可変レンズ91は、レンズ材に高電圧を印加したり、圧電材料に電圧を印加することで、レンズ材の形状を変更できる。レンズ材の形状を変更することにより、焦点距離を変えることができる。あるいはまた、焦点可変レンズ91は、レンズ材に封入された液晶に電圧を印加することで、液晶層の屈折率を変化させることにより、焦点距離を変えることができる。
より具体的には、焦点可変レンズ91は、発光制御部13から供給されるスポット切替信号がスポット照射である場合に、レンズ形状が第1の形状101Aとなるように制御し、スポット切替信号が面照射である場合に、レンズ形状が第2の形状101Bとなるように制御する。
焦点可変レンズ91のレンズ形状が第1の形状101Aである場合、レンズの屈折力(パワー)が0または負となる。一方、焦点可変レンズ91のレンズ形状が第2の形状101Bである場合、レンズの屈折力(パワー)が正となる。
焦点可変レンズ91は、レンズの形状(曲率)または屈折率を変更することでレンズの屈折力を制御し、スポット照射と面照射とを切り替える切り替え部に相当する。
発光制御部13から供給されるスポット切替信号がスポット照射である場合、焦点可変レンズ91に流れる電流がゼロになり、焦点可変レンズ91が、屈折力が0の状態である第1の形状101Aに制御される。反対に、発光制御部13から供給されるスポット切替信号が面照射である場合には、焦点可変レンズ91に流れる電流が正の値になり、焦点可変レンズ91が、屈折力が0より大きい正の状態である第2の形状101Bに制御される。
なお、制御の論理は逆とすることもできる。すなわち、スポット切替信号がスポット照射である場合に、焦点可変レンズ91に流れる電流が正の値になって、焦点可変レンズ91が第1の形状101Aに制御され、スポット切替信号が面照射である場合に、焦点可変レンズ91に流れる電流がゼロになって、焦点可変レンズ91が第2の形状101Bに制御されてもよい。
焦点可変レンズ91は、面照射時に、照明の均一性を担保するため、レンズの屈折力(パワー)Ypが下限値Ypminから上限値Ypmaxまでの範囲(Ypmin≦Yp≦Ypmax)となるように制御する。
ここで、下限値Ypminおよび上限値Ypmaxは、それぞれ、式(10)および式(11)で表す値となる。
Figure 0007321834000012
式(10)および式(11)におけるθh=45%は、VCSELの遠視野像のレーザ強度が、ピーク強度に対して45%となる拡がり角θh[rad]を表し、θh=70%は、VCSELの遠視野像のレーザ強度が、ピーク強度に対して70%となる拡がり角θh[rad]を表す。また、A/EFL2は、レンズの屈折力(パワー)に変換する係数であり、Aは、所定の定数である。
図12は、VCSELアレイの光源間距離Apを、0.03mmから0.06mmまで変化させたときの、焦点可変レンズ91の屈折力Ypの下限値Ypminおよび上限値Ypmaxをプロットしたグラフである。
図12の横軸は、VCSELアレイの光源間距離Apを表し、縦軸は、焦点可変レンズ91の屈折力Ypを表す。
図12では、ピーク強度の45%となるVCSELの拡がり角θh=45%を0.314rad、ピーク強度の70%となるVCSELの拡がり角θh=70%を0.209rad、投射レンズ44の有効焦点距離EFLを2.5mm、VCSELから出射された光が投射レンズ44でコリメートされた光束の直径Dを0.012mm、定数A=1093.3として、下限値Ypminおよび上限値Ypmaxが計算されている。
図12に示される計算例では、例えば、VCSELアレイの光源間距離Apを45μmとした場合、焦点可変レンズ91の屈折力Ypを、約17.5diopter以上、26diopter以下の範囲(0.1mm≦Δy≦0.15mm)にすれば、80%以上の均一性を有する面照射で発光することができる。
以上のように、第3の構成例においては、焦点可変レンズ91が、面照射時に、レンズの形状(曲率)または屈折率を変更する。その際、焦点可変レンズ91は、レンズの屈折力Ypが下限値Ypminから上限値Ypmaxまでの範囲(Ypmin≦Yp≦Ypmax)となるように、レンズの形状(曲率)または屈折率を制御する。
<6.測距モジュールの測定処理>
図13のフローチャートを参照して、測距モジュール11による、物体までの距離を測定する測定処理について説明する。
この処理は、例えば、測距モジュール11が組み込まれている上位の装置の制御部から、測定開始が指示されたとき開始される。
初めに、ステップS1において、発光制御部13は、スポット照射を表すスポット切替信号を、照明装置12と信号処理部16に供給する。
ステップS2において、発光制御部13は、所定の周波数(例えば、20MHzなど)の発光タイミング信号を、照明装置12と受光部15に供給する。
ステップS3において、照明装置12は、発光制御部13からの、スポット照射を表すスポット切替信号に基づいて、発光部42、投射レンズ44、または、焦点可変レンズ91を制御する。すなわち、照明装置12が図4に示した第1の構成例で構成される場合、投射レンズ44のレンズ位置が第1のレンズ位置51Aとなるように制御される。照明装置12が図10に示した第2の構成例で構成される場合、発光部42の光源位置が第1の光源位置81Aとなるように制御される。照明装置12が図11に示した第3の構成例で構成される場合、焦点可変レンズ91のレンズ形状が、屈折力が0の状態である第1の形状101Aに制御される。
ステップS4において、照明装置12は、発光制御部13からの発光タイミング信号に基づいて発光部42を発光させ、物体に対して照射光を照射する。これにより、照明装置12は、スポット照射による発光を行う。
ステップS5において、測距センサ14は、スポット照射による照射光が物体で反射されて返ってきた反射光を受光し、スポット照射における第1のデプスマップを生成する。
より具体的には、受光部15の各画素21が、駆動制御回路23の制御に基づいて、物体からの反射光を受光する。各画素21は、フォトダイオードにより生成された電荷を、遅延時間ΔTに応じて2つの電荷蓄積部に振り分けることで得られた検出信号Aおよび検出信号Bを、画素データとして信号処理部16に出力する。信号処理部16は、画素アレイ部22の画素21ごとに、受光部15から供給される画素データに基づいて、測距モジュール11から物体までの距離であるデプス値を算出し、各画素21の画素値としてデプス値が格納されたデプスマップを生成する。信号処理部16には、スポット照射を表すスポット切替信号が、ステップS3の処理で供給されている。したがって、信号処理部16は、スポット照射に対応したデプスマップ生成処理を実行し、第1のデプスマップを生成する。
ステップS6において、発光制御部13は、面照射を表すスポット切替信号を、照明装置12と信号処理部16に供給する。
ステップS7において、発光制御部13は、所定の周波数の発光タイミング信号を、照明装置12と受光部15に供給する。ステップS2の処理以降、発光タイミング信号が、継続的に供給されている場合には、ステップS7の処理は省略される。
ステップS8において、照明装置12は、発光制御部13からの、面照射を表すスポット切替信号に基づいて、発光部42、投射レンズ44、または、焦点可変レンズ91を制御する。すなわち、照明装置12が図4に示した第1の構成例で構成される場合、投射レンズ44のレンズ位置が第2のレンズ位置51Bとなるように制御される。照明装置12が図10に示した第2の構成例で構成される場合、発光部42の光源位置が第2の光源位置81Bとなるように制御される。照明装置12が図11に示した第3の構成例で構成される場合、焦点可変レンズ91のレンズ形状が、屈折力が0より大きい正の状態である第2の形状101Bに制御される。
ステップS9において、照明装置12は、発光制御部13からの発光タイミング信号に基づいて発光部42を発光させ、物体に対して照射光を照射する。これにより、照明装置12は、面照射による発光を行う。
ステップS10において、測距センサ14は、面照射による照射光が物体で反射されて返ってきた反射光を受光し、面照射における第2のデプスマップを生成する。信号処理部16には、面照射を表すスポット切替信号が、ステップS6の処理で供給されている。したがって、信号処理部16は、面照射に対応したデプスマップ生成処理を実行し、第2のデプスマップを生成する。
ステップS11において、信号処理部16は、スポット照射における第1のデプスマップと、面照射における第2のデプスマップの2つのデプスマップから、出力用のデプスマップを生成して、出力する。
ステップS12において、測距モジュール11は、測定を中止するかを判定する。例えば、測距モジュール11は、測定を中止する命令が上位の装置から供給された場合、測定を中止すると判定する。
ステップS12で、まだ測定を中止しない(測定を継続する)と判定された場合、処理はステップS1へ戻り、上述したステップS1乃至S12の処理が繰り返される。一方、ステップS12で、測定を中止すると判定された場合、図13の測定処理が終了される。
なお、上述した処理では、スポット照射によるデプスマップ生成を先に実行し、面照射によるデプスマップ生成を、その後に実行したが、この順番は逆でもよい。すなわち、面照射によるデプスマップ生成を先に実行し、スポット照射によるデプスマップ生成を、その後に実行してもよい。
以上の測定処理によれば、測距モジュール11は、スポット照射と面照射とを切り替えて、スポット照射における第1のデプスマップと、面照射における第2のデプスマップの2つのデプスマップを生成する。そして、測距モジュール11は、第1のデプスマップと第2のデプスマップの2つのデプスマップから、最終的な出力用のデプスマップを生成する。これにより、マルチパスの影響を抑えつつ、解像度の高いデプスマップを生成することができる。
測距モジュール11は、スポット照射(スポット照明)と面照射(面照明)の両方を1つの照明ユニットで実現することができる。すなわち、1つの照明装置12の発光部42、投射レンズ44、または、焦点可変レンズ91の制御によって、スポット照射と面照射の両方を実現することができる。これにより、照明装置12の小型化および低価格化に貢献することができる。
<7.電子機器の構成例>
上述した測距モジュール11は、例えば、スマートフォン、タブレット型端末、携帯電話機、パーソナルコンピュータ、ゲーム機、テレビ受像機、ウェアラブル端末、デジタルスチルカメラ、デジタルビデオカメラなどの電子機器に搭載することができる。
図14は、測距モジュールを搭載した電子機器としてのスマートフォンの構成例を示すブロック図である。
図14に示すように、スマートフォン201は、測距モジュール202、撮像装置203、ディスプレイ204、スピーカ205、マイクロフォン206、通信モジュール207、センサユニット208、タッチパネル209、および制御ユニット210が、バス211を介して接続されて構成される。また、制御ユニット210では、CPUがプログラムを実行することによって、アプリケーション処理部221およびオペレーションシステム処理部222としての機能を備える。
測距モジュール202には、図1の測距モジュール11が適用される。例えば、測距モジュール202は、スマートフォン201の前面に配置され、スマートフォン201のユーザを対象とした測距を行うことにより、そのユーザの顔や手、指などの表面形状のデプス値を測距結果として出力することができる。
撮像装置203は、スマートフォン201の前面に配置され、スマートフォン201のユーザを被写体とした撮像を行うことにより、そのユーザが写された画像を取得する。なお、図示しないが、スマートフォン201の背面にも撮像装置203が配置された構成としてもよい。
ディスプレイ204は、アプリケーション処理部221およびオペレーションシステム処理部222による処理を行うための操作画面や、撮像装置203が撮像した画像などを表示する。スピーカ205およびマイクロフォン206は、例えば、スマートフォン201により通話を行う際に、相手側の音声の出力、および、ユーザの音声の収音を行う。
通信モジュール207は、通信ネットワークを介した通信を行う。センサユニット208は、速度や加速度、近接などをセンシングし、タッチパネル209は、ディスプレイ204に表示されている操作画面に対するユーザによるタッチ操作を取得する。
アプリケーション処理部221は、スマートフォン201によって様々なサービスを提供するための処理を行う。例えば、アプリケーション処理部221は、測距モジュール202から供給されるデプスマップに基づいて、ユーザの表情をバーチャルに再現したコンピュータグラフィックスによる顔を作成し、ディスプレイ204に表示する処理を行うことができる。また、アプリケーション処理部221は、測距モジュール202から供給されるデプスマップに基づいて、例えば、任意の立体的な物体の三次元形状データを作成する処理を行うことができる。
オペレーションシステム処理部222は、スマートフォン201の基本的な機能および動作を実現するための処理を行う。例えば、オペレーションシステム処理部222は、測距モジュール202から供給されるデプスマップに基づいて、ユーザの顔を認証し、スマートフォン201のロックを解除する処理を行うことができる。また、オペレーションシステム処理部222は、測距モジュール202から供給されるデプスマップに基づいて、例えば、ユーザのジェスチャを認識する処理を行い、そのジェスチャに従った各種の操作を入力する処理を行うことができる。
このように構成されているスマートフォン201では、照明装置12の小型化および低価格化が実現された測距モジュール11を適用することで、例えば、測距モジュール11の搭載面積を小さくしつつ、測距情報をより正確に検出することができる。
<8.移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図15の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図16は、撮像部12031の設置位置の例を示す図である。
図16では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図16には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。
マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、車外情報検出ユニット12030や車内情報検出ユニット12040に適用され得る。具体的には、車外情報検出ユニット12030や車内情報検出ユニット12040として測距モジュール11による測距を利用することで、運転者のジェスチャを認識する処理を行い、そのジェスチャに従った各種(例えば、オーディオシステム、ナビゲーションシステム、エアーコンディショニングシステム)の操作を実行したり、より正確に運転者の状態を検出することができる。また、測距モジュール11による測距を利用して、路面の凹凸を認識して、サスペンションの制御に反映させたりすることができる。照明装置12の小型化および低価格化が実現された測距モジュール11を適用することで、測距モジュール11の搭載面積を小さくしつつ、測距情報をより正確に検出することができる。
なお、本開示に係る技術は、Indirect ToF方式の測距モジュールに限らず、direct ToF方式の測距モジュールや、Structured Light方式の測距モジュールに適用してもよい。その他、本開示に係る技術は、スポット照射と面照射とを切り替える照明装置全般に適用することができる。
本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
なお、本技術は、以下の構成を取ることができる。
(1)
発光部と、
前記発光部から出射される光を投射する投射レンズと、
焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部と
を備える照明装置。
(2)
前記切り替え部は、前記投射レンズをデフォーカスする位置に移動させることにより、面照射を行う
前記(1)に記載の照明装置。
(3)
前記切り替え部は、前記投射レンズの位置を制御するレンズ駆動部であり、
前記レンズ駆動部は、前記投射レンズの位置を変更することで、スポット照射と面照射とを切り替える
前記(1)または(2)に記載の照明装置。
(4)
前記発光部は、所定の開口サイズで光を出射する光源を所定の光源間距離で複数配列した光源アレイで構成される
前記(3)に記載の照明装置。
(5)
前記レンズ駆動部は、スポット照射時の第1のレンズ位置から、面照射時の第2のレンズ位置までの移動量が、前記所定の光源間距離に応じた所定の下限値以上となるように、前記投射レンズの位置を制御する
前記(4)に記載の照明装置。
(6)
前記所定の下限値をymin、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が45%となる拡がり角をθh1とすると、
Figure 0007321834000013
である
前記(5)に記載の照明装置。
(7)
前記レンズ駆動部は、スポット照射時の前記第1のレンズ位置から、面照射時の前記第2のレンズ位置までの移動量が、前記所定の光源間距離に応じた所定の上限値以下となるように、前記投射レンズの位置を制御する
前記(5)または(6)に記載の照明装置。
(8)
前記所定の上限値をymax、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が70%となる拡がり角をθh2とすると、
Figure 0007321834000014
である
前記(7)に記載の照明装置。
(9)
前記光源アレイから出射される所定領域の発光パターンを、光軸方向と垂直な方向に複製することにより照射エリアを拡大する回折光学素子をさらに備える
前記(4)乃至(8)のいずれかに記載の照明装置。
(10)
前記レンズ駆動部に流れる電流は、面照射の場合にゼロとなり、スポット照射の場合に正の値となる
前記(1)乃至(9)のいずれかに記載の照明装置。
(11)
前記レンズ駆動部は、ボイスコイルモータまたはピエゾ素子を含む
前記(3)乃至(10)のいずれかに記載の照明装置。
(12)
前記切り替え部は、前記発光部の位置を制御する光源駆動部であり、
前記光源駆動部は、前記発光部の位置を変更することで、スポット照射と面照射とを切り替える
前記(1)に記載の照明装置。
(13)
前記発光部は、所定の開口サイズで光を出射する光源を所定の光源間距離で複数配列した光源アレイで構成され、
前記光源駆動部は、スポット照射時の第1の光源位置から、面照射時の第2の光源位置までの移動量が、前記所定の光源間距離に応じた所定の下限値以上となるように、前記発光部の位置を変更する
前記(12)に記載の照明装置。
(14)
前記光源駆動部は、スポット照射時の第1の光源位置から、面照射時の第2の光源位置までの移動量が、前記所定の光源間距離に応じた所定の上限値以下となるように、前記発光部の位置を変更する
前記(13)に記載の照明装置。
(15)
前記所定の下限値をymin、前記所定の上限値をymax、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が45%となる拡がり角をθh1、ピーク強度に対するレーザ強度が70%となる拡がり角をθh2とすると、
Figure 0007321834000015
である
前記(14)に記載の照明装置。
(16)
前記切り替え部は、焦点可変レンズであり、
前記焦点可変レンズは、レンズの屈折力を変更することで、スポット照射と面照射とを切り替える
前記(1)に記載の照明装置。
(17)
前記発光部は、所定の開口サイズで光を出射する光源を所定の光源間距離で複数配列した光源アレイで構成され、
前記焦点可変レンズは、面照射時に、レンズの屈折力が前記所定の光源間距離に応じた所定の下限値以上となるように、レンズの形状または屈折率を変更する
前記(16)に記載の照明装置。
(18)
前記焦点可変レンズは、面照射時に、レンズの屈折力が前記所定の光源間距離に応じた所定の上限値以下となるように、レンズの形状または屈折率を変更する
前記(17)に記載の照明装置。
(19)
前記所定の下限値をYpmin、前記所定の上限値をYpmax、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が45%となる拡がり角をθ h=45% 、ピーク強度に対するレーザ強度が70%となる拡がり角をθ h=70% 、所定の定数をAとすると、
Figure 0007321834000016
である
前記(18)に記載の照明装置。
(20)
照明装置と、
前記照明装置からの光が物体で反射されてきた反射光を受光する受光部と
を備え、
前記照明装置は、
発光部と、
前記発光部から出射される光を投射する投射レンズと、
焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部と
を備える
測距モジュール。
11 測距モジュール, 12 照明装置, 13 発光制御部, 14 測距センサ, 15 受光部, 16 信号処理部, 42 発光部, 43 回折光学素子, 44 投射レンズ, 45A,45B レンズ駆動部, 72A,72B 光源駆動部, 91 焦点可変レンズ, 201 スマートフォン, 202 測距モジュール

Claims (6)

  1. 発光部と、
    前記発光部から出射される光を投射する投射レンズと、
    焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部と
    を備え
    前記発光部は、所定の開口サイズで光を出射する光源を所定の光源間距離で複数配列した光源アレイで構成され、
    前記切り替え部は、前記投射レンズまたは前記発光部の位置を制御する駆動部であり、
    前記駆動部は、スポット照射時の第1の位置から面照射時の第2の位置までの移動量が、前記所定の光源間距離に応じた所定の下限値以上、かつ、所定の上限値以下となるように、前記投射レンズまたは前記発光部の位置を制御し、
    前記所定の下限値をy min 、前記所定の上限値をy max 、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が45%となる拡がり角をθ h1 、ピーク強度に対するレーザ強度が70%となる拡がり角をθ h2 とすると、
    Figure 0007321834000017
    Figure 0007321834000018
    である
    照明装置。
  2. 前記光源アレイから出射される所定領域の発光パターンを、光軸方向と垂直な方向に複製することにより照射エリアを拡大する回折光学素子をさらに備える
    請求項に記載の照明装置。
  3. 前記切り替え部は、前記投射レンズの位置を制御するレンズ駆動部であり、
    前記レンズ駆動部に流れる電流は、面照射の場合にゼロとなり、スポット照射の場合に正の値となる
    請求項に記載の照明装置。
  4. 前記レンズ駆動部は、ボイスコイルモータまたはピエゾ素子を含む
    請求項3に記載の照明装置。
  5. 発光部と、
    前記発光部から出射される光を投射する投射レンズと、
    焦点距離を変更することで、スポット照射と面照射とを切り替える切り替え部と
    を備え、
    前記発光部は、所定の開口サイズで光を出射する光源を所定の光源間距離で複数配列した光源アレイで構成され、
    前記切り替え部は、焦点可変レンズであり、
    前記焦点可変レンズは、レンズの屈折力を変更することで、スポット照射と面照射とを切り替え
    前記焦点可変レンズは、面照射時に、レンズの屈折力が前記所定の光源間距離に応じた所定の下限値以上、かつ、所定の上限値以下となるように、レンズの形状または屈折率を変更し、
    前記所定の下限値をY pmin 、前記所定の上限値をY pmax 、前記投射レンズの有効焦点距離をEFL、前記所定の光源間距離をAp、前記所定の開口サイズをAs、ピーク強度に対するレーザ強度が45%となる拡がり角をθ h=45% 、ピーク強度に対するレーザ強度が70%となる拡がり角をθ h=70% 、所定の定数をAとすると、
    Figure 0007321834000019
    である
    照明装置
  6. 請求項1または5に記載の照明装置と、
    前記照明装置からの光が物体で反射されてきた反射光を受光する受光部と
    前記受光部から供給される画素データに基づいてデプスマップを生成する信号処理部と
    を備え、
    前記信号処理部は、スポット照射における第1のデプスマップと、面照射における第2のデプスマップとを生成し、前記第1のデプスマップと前記第2のデプスマップの2つのデプスマップから、出力用のデプスマップを生成して出力する
    測距モジュール。
JP2019153489A 2019-08-26 2019-08-26 照明装置、および、測距モジュール Active JP7321834B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019153489A JP7321834B2 (ja) 2019-08-26 2019-08-26 照明装置、および、測距モジュール
CN202021171385.5U CN212719323U (zh) 2019-08-26 2020-06-22 照明装置和测距模块
CN202010571809.5A CN112432079A (zh) 2019-08-26 2020-06-22 照明装置、其驱动方法和测距模块
TW109121990A TW202109080A (zh) 2019-08-26 2020-06-30 照明裝置及測距模組
KR1020227004100A KR20220050133A (ko) 2019-08-26 2020-08-12 조명 장치 및 거리 측정 모듈
US17/634,322 US20220291346A1 (en) 2019-08-26 2020-08-12 Illumination device and ranging module
PCT/JP2020/030645 WO2021039388A1 (en) 2019-08-26 2020-08-12 Illumination device and ranging module
EP20764797.5A EP4022344A1 (en) 2019-08-26 2020-08-12 Illumination device and ranging module
DE112020004009.7T DE112020004009T5 (de) 2019-08-26 2020-08-12 Beleuchtungsvorrichtung und entfernungsbestimmungsmodul

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019153489A JP7321834B2 (ja) 2019-08-26 2019-08-26 照明装置、および、測距モジュール

Publications (2)

Publication Number Publication Date
JP2021034239A JP2021034239A (ja) 2021-03-01
JP7321834B2 true JP7321834B2 (ja) 2023-08-07

Family

ID=72292596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153489A Active JP7321834B2 (ja) 2019-08-26 2019-08-26 照明装置、および、測距モジュール

Country Status (8)

Country Link
US (1) US20220291346A1 (ja)
EP (1) EP4022344A1 (ja)
JP (1) JP7321834B2 (ja)
KR (1) KR20220050133A (ja)
CN (2) CN212719323U (ja)
DE (1) DE112020004009T5 (ja)
TW (1) TW202109080A (ja)
WO (1) WO2021039388A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209375A1 (ja) * 2021-03-31 2022-10-06 ソニーセミコンダクタソリューションズ株式会社 発光素子、照明装置、および、測距装置
KR20220152679A (ko) * 2021-05-10 2022-11-17 엘지이노텍 주식회사 거리 측정 카메라 모듈
DE102021117333A1 (de) * 2021-07-05 2023-01-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Signallaufzeitselektives flash-lidar-system und verfahren für dessen betrieb
JP7413426B2 (ja) * 2022-03-18 2024-01-15 維沃移動通信有限公司 投光装置、測距装置及び電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160182788A1 (en) 2014-12-22 2016-06-23 Google Inc. Time-of-flight camera system with scanning illuminator
JP2016534343A (ja) 2013-08-14 2016-11-04 フーフ・ヒュルスベック・ウント・フュルスト・ゲーエムベーハー・ウント・コンパニー・カーゲーHuf Hulsbeck & Furst Gmbh & Co. Kg 自動車の操作ジェスチャを認識するためのセンサ構成
WO2019106033A1 (en) 2017-11-28 2019-06-06 Sony Semiconductor Solutions Corporation Illumination device, time of flight system and method
JP2019113530A (ja) 2017-12-22 2019-07-11 株式会社デンソー 距離測定装置、認識装置、及び距離測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9329035B2 (en) 2011-12-12 2016-05-03 Heptagon Micro Optics Pte. Ltd. Method to compensate for errors in time-of-flight range cameras caused by multiple reflections
US11662433B2 (en) * 2017-12-22 2023-05-30 Denso Corporation Distance measuring apparatus, recognizing apparatus, and distance measuring method
JP6919598B2 (ja) 2018-03-05 2021-08-18 住友電装株式会社 コネクタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534343A (ja) 2013-08-14 2016-11-04 フーフ・ヒュルスベック・ウント・フュルスト・ゲーエムベーハー・ウント・コンパニー・カーゲーHuf Hulsbeck & Furst Gmbh & Co. Kg 自動車の操作ジェスチャを認識するためのセンサ構成
US20160182788A1 (en) 2014-12-22 2016-06-23 Google Inc. Time-of-flight camera system with scanning illuminator
WO2019106033A1 (en) 2017-11-28 2019-06-06 Sony Semiconductor Solutions Corporation Illumination device, time of flight system and method
JP2019113530A (ja) 2017-12-22 2019-07-11 株式会社デンソー 距離測定装置、認識装置、及び距離測定方法

Also Published As

Publication number Publication date
KR20220050133A (ko) 2022-04-22
CN112432079A (zh) 2021-03-02
WO2021039388A1 (en) 2021-03-04
TW202109080A (zh) 2021-03-01
US20220291346A1 (en) 2022-09-15
EP4022344A1 (en) 2022-07-06
DE112020004009T5 (de) 2022-05-12
JP2021034239A (ja) 2021-03-01
CN212719323U (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP7321834B2 (ja) 照明装置、および、測距モジュール
CN110869901B (zh) 车辆用的用户界面装置和车辆
CN107380056A (zh) 车辆用照明装置以及车辆
WO2021085128A1 (ja) 測距装置、測定方法、および、測距システム
KR20170101112A (ko) 차량용 헤드 업 디스플레이 장치
JPWO2018101262A1 (ja) 測距装置及び測距方法
CN110786004A (zh) 显示控制装置、显示控制方法及程序
US10771711B2 (en) Imaging apparatus and imaging method for control of exposure amounts of images to calculate a characteristic amount of a subject
US20200385012A1 (en) Recognition device, recognition method, and storage medium
WO2018110002A1 (ja) 撮像装置、および、撮像装置の制御方法
WO2021065494A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
US20220381917A1 (en) Lighting device, method for controlling lighting device, and distance measurement module
WO2020246264A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2021065495A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2021065500A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
US20220413109A1 (en) Distance measurement sensor, distance measurement system, and electronic apparatus
US20220357455A1 (en) Distance measuring sensor, distance measuring system, and electronic equipment
WO2021145212A1 (ja) 測距センサ、測距システム、および、電子機器
WO2021131684A1 (ja) 測距装置およびその制御方法、並びに、電子機器
WO2022269995A1 (ja) 測距装置および方法、並びにプログラム
WO2023181662A1 (ja) 測距装置および測距方法
WO2023281810A1 (ja) 測距装置及び測距方法
JP2021109555A (ja) 表示制御装置、システム、表示システム、情報表示方法
JP2021104803A (ja) 表示装置、表示方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7321834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150