JP7320889B2 - レーザ加工方法 - Google Patents

レーザ加工方法 Download PDF

Info

Publication number
JP7320889B2
JP7320889B2 JP2022575311A JP2022575311A JP7320889B2 JP 7320889 B2 JP7320889 B2 JP 7320889B2 JP 2022575311 A JP2022575311 A JP 2022575311A JP 2022575311 A JP2022575311 A JP 2022575311A JP 7320889 B2 JP7320889 B2 JP 7320889B2
Authority
JP
Japan
Prior art keywords
region
laser
processing
along
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022575311A
Other languages
English (en)
Other versions
JPWO2022180774A1 (ja
Inventor
文広 糸魚川
修 近田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Publication of JPWO2022180774A1 publication Critical patent/JPWO2022180774A1/ja
Application granted granted Critical
Publication of JP7320889B2 publication Critical patent/JP7320889B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、レーザによる加工を行うレーザ加工方法に関する。
近年、レーザの光軸方向に延びる円筒状の照射領域を、その光軸と交差する方向へ変位させることにより、この照射領域が通過する加工対象物の表面側に加工面を形成する技術が提案されている(特許文献1) 。この加工方法は、機械的な加工方法に比べて機械的損傷を減らし滑らかに加工面を形成できるという点で優れた加工方法である。
特許6562536号公報
この種の加工方法は、例えば、すくい面および逃げ面で形成された角部を有する切削工具のように、それぞれ隣接する2つの面で形成された角部を有する加工対象物における角部の再生、といった用途でも用いられている。具体的には、すくい面または逃げ面の拡がる方向に沿って光軸が延びるようにレーザを照射させ、このレーザを変位させることによって、角部に加工面として新たなすくい面または逃げ面を形成することができる。
ただ、この加工に際しては、レーザの照射に伴う熱が角部に集中してアブレーションを引き起こし、これにより角部における表面粗さが全体にわたって一様ではなくなり、部分的に表面粗さが大きく異なった状態になる懸念がある。そのため、レーザによる加工は、精密加工用の切削工具のように高い加工精度を求められる加工対象物の加工には必ずしも有効ではない、という課題があった。
本発明はこのような課題を解決するためになされたものであり、その目的は、高い加工精度を求められる加工対象物の加工に対しても有効に用いることのできるレーザ加工方法を提供することである。
上記課題を解決するため第1局面は、所定の面に沿って拡がる第1領域、および、前記第1領域のなす面と交差する面に沿って拡がる第2領域が隣接して形成された角部を有する加工対象物を準備する準備手順と、前記加工対象物に対し、前記第2領域の拡がる面方向に沿って光軸が延びるようにレーザを照射させる照射手順と、前記レーザの光軸を、前記第2領域のなす面と交差する方向、および、前記第2領域の拡がる面方向のいずれか一方または両方に沿って変位させることで、前記レーザにより前記角部に新たな前記第2領域となる加工面を形成する加工手順と、を備え、前記加工対象物として、前記加工対象物の1/20以上となる熱伝導率を有する材料により、少なくとも前記第1領域から前記第2領域に至る境界領域がマスキングされたものを用いる、レーザ加工方法である。
また、この局面においては、以下に示す第2局面のようにしてもよい。
第2局面においては、前記加工対象物として、前記加工対象物の1/11以上となる熱伝導率を有する材料により、少なくとも前記第1領域から前記第2領域に至る境界領域がマスキングされたものを用いる。
また、上記各局面においては、以下に示す第3局面のようにしてもよい。
第3局面において、前記照射手順では、前記第2領域の拡がる面方向に沿い、かつ、前記第1領域から第2領域に至る方向または前記第2領域から前記第1領域に至る方向に光軸が延びるようにレーザを照射させる。
また、この局面においては、以下に示す第4局面のようにしてもよい。
第4局面において、前記加工手順では、前記レーザの光軸を、前記第2領域の拡がる面方向に沿って変位させる際、前記第1領域と前記第2領域とで形成される稜線に沿って変位させる。
本願出願人は、それぞれ隣接する2つの面で形成された角部を有する加工対象物をレーザで加工する場合に、レーザの照射に伴う熱が角部に集中することを抑制する方法として、角部をマスキングすることに着想し、後述のように、どのような材料によりマスキングすることが効果的であるか、評価試験を実施している。その結果、加工対象物の1/20(より望ましくは1/11)以上という熱伝導率を有する材料によりマスキングすることが、レーザの照射に起因するアブレーションの発生を効果的に抑制できることを見出した。
そのため、上記各局面のような加工対象物を用いる加工方法であれば、レーザの照射に起因するアブレーションの発生が抑制され、角部の表面粗さを一様なものとすることができる結果、精密加工用の切削工具のように高い加工精度を求められる加工対象物の加工にも有効に用いることができる。
レーザ加工装置の全体構成を示すブロック図 照射部の構成を示すブロック図 加工対象物の要部拡大図 加工処理の処理手順を示すフローチャート レーザにおけるエネルギー分布を示す図 評価試験におけるサンプルの顕微鏡画像 別の実施形態における加工対象物を示す図
本発明を実施するための形態を、図面を参照して詳細に説明する。
(1)装置構成
レーザ加工装置1は、図1に示すように、所定方向にレーザを照射させる照射部10と、加工対象物100を保持するための保持部20と、加工対象物100に対して照射部10を相対的に変位させるための変位機構30と、レーザ加工装置1全体の動作を制御する制御部40と、を備えている。
照射部10は、図2に示すように、パルスレーザを出力する発振器11、レーザの振動数の次数を調整する振動調整器13、レーザの出力を調整するアッテネータ(ATT)15、レーザの径を調整するためのビームエキスパンダー(EXP)17などを備え、これらを経たレーザが光学レンズ19を介して出力されるように構成されており、所定の方向(本実施形態ではZ軸方向)に光軸を向けてレーザを照射させる。これらのうち、発振器11には、Nd:YAGパルスレーザが用いられている。
なお、ここでは、単一の光学レンズ19からなる構成となっているが、所定間隔を空けて配置された一組の光学レンズと、この光学レンズの間隔を調整するための機構を備えた構成としてもよい。
保持部20は、レーザの光軸と交差する方向(本実施形態ではY軸方向)に延びる棒状の部材であり、その先端に加工対象物100を保持可能に構成されている。この加工対象物100は、その端部が保持部20の先端から突出する位置関係で保持される。
変位機構30は、照射部10の変位を行う機構本体31と、外部からの指令に基づいて機構本体31を動作させる駆動部33と、を備えている。本実施形態において、機構本体31は、照射部10をレーザの光軸とそれぞれ交差する2方向(本実施形態ではX軸方向およびY軸方向)に変位させるように構成されている。なお、機構本体31は、照射部10に対して保持部20を変位させるように構成してもよい。
制御部40は、各部への制御指令により、照射部10によるレーザの照射、変位機構30による照射部10の相対的な変位などを制御するコンピュータである。
加工対象物100は、所定の面(本実施形態ではX-Y平面)に沿って拡がる第1領域111、および、第1領域111と交差する面(本実施形態ではY-Z平面)に沿って拡がる第2領域113が隣接して形成された角部110を有している。本実施形態において、加工対象物100は、第1領域111および第2領域113のいずれか一方がすくい面、他方が逃げ面として形成された切削工具であり、超硬合金をその材料とするものである。
この加工対象物100は、図3に示すように、第1領域111から第2領域113との境界領域120に至る領域が、加工対象物100の1/20(望ましくは1/11)以上となる熱伝導率を有する材料でマスキングされている。本実施形態において、このマスキングによるマスク層130は、第1領域111に沿って拡がり、後述する加工面となる新たな第2領域113’を超えて境界領域120全体にわたっているが、少なくとも新たな第2領域113’(つまり境界領域120の一端側)に到達するまでの範囲をマスキングできていればよい。なお、このマスク層130は、レーザにおける照射領域200の直径に相当する厚さ(本実施形態では、10μm~20μm)の層として形成されている。
そして、この加工対象物100は、角部110の第1領域111がレーザの光軸と交差する平面(本実施形態ではX-Y平面)に沿って拡がり、第2領域113がレーザの光軸方向に沿って拡がる位置関係で設置される。
このような構成のレーザ加工装置1では、第2領域113の拡がる面方向に沿い、かつ、第1領域111から第2領域113に至る方向または第2領域113から第1領域111に至る方向(本実施形態では、Z軸と平行に第1領域111から第2領域113へと至る方向)に沿って光軸が延びるようにレーザを照射させ、このレーザを変位させることによって、角部110に加工面として新たな第2領域113’を形成することができる。
(2)制御部40による処理手順
以下に、制御部40が内蔵メモリ41に格納されたプログラムにより実行する「加工処理」の手順を図4に基づいて説明する。この加工処理は、保持部20に加工対象物100を保持させて位置決めした後に実行させるものであり、図示されないインタフェース(操作装置または通信装置)からの起動指令を受けた際に起動される。
この加工処理が起動されると、まず、内蔵メモリ41にあらかじめ格納されている設定情報が読み出される(s110)。この設定情報は、事前にユーザが設定した情報であって、照射部10により照射されるレーザの出力P0[w]と、保持部20に設置された加工対象物100の材料特性に応じた加工しきい値Pth[w]と、加工対象物100に形成すべき1以上の加工面それぞれを規定した座標情報と、からなる。
この座標情報は、加工対象物100における加工面が、角部110の第2領域113に沿った位置関係として定められたものである。なお、この加工しきい値Pthは、使用するパルスレーザを用いた事前の実験や文献情報から得られるものであり、レーザの出力P0は、この加工しきい値Pthとレンズのf値、レーザ波長入力ビーム径に基づいて決定されるものである。
また、レーザの出力レベルは、照射領域200の加工可能領域における光軸方向に沿った距離が、少なくとも加工対象物100における加工面の光軸方向に沿った距離よりも長くなるよう、上記座標情報との関係も踏まえて設定されたものである。具体的には、出力レベルP0として、加工しきい値Pthより大きくなるような値(P0>Pth)が設定されている。
続いて、上記s110にて読み出された設定情報に基づいて加工可能領域が規定される(s120)。この加工可能領域とは、照射部10の照射するレーザにおいて筒状に延びる照射領域200において、加工対象物100の材料特性に応じた加工しきい値Pth[w]以上のエネルギー分布となっている領域のことであり、この領域でもって加工対象物100を加工することができる。
このs120では、上記s110にて読み出された設定情報のうち、レーザの出力P0[w]および加工しきい値Pth[w]に基づき、レーザの光軸上における各位置でのエネルギー分布P(r)が算出された後、加工しきい値Pth以上のエネルギー分布となる所定半径rthの面状領域を光軸に沿ってつないでなる筒状の領域が特定される(図5参照)。そして、この領域における半径rthが加工可能領域を規定するパラメータとして特定される。
なお、この加工可能領域は、レーザの出力P0が大きくなるほど、直線的な筒状から、焦点位置に向けて直径が小さくなるくびれた筒状へと変化していくことが実験により確認されている。つまり、レーザの出力P0が大きくなるほど、加工可能領域の外周が直線的だったところから、曲線的な形状へと変化していくことになるため、レーザの出力P0は、加工面として求められる形状に応じた値が選択的に上述した設定情報に含められることとなる。
次に、未形成の加工面が存在しているか否かがチェックされる(s130)。ここでは、上記s110にて読み出された設定情報のうちの座標情報の中に、本加工処理の今回の起動以降、参照していない座標情報が残されている場合に、未形成の加工面が存在していると判定される。
このs130にて未加工の加工面が存在していると判定された場合(s130:YES)、以降の処理にて参照していないいずれかの座標情報が抽出され、この座標情報で規定される加工面が、以降の処理にて形成すべき対象の加工面として設定される(s140)。
次に、照射部10によるレーザの照射が開始される(s150)。ここでは、制御部40からの指示を受けた照射部10によるレーザの照射が開始される。
こうして、加工対象物100に対し、第2領域113の拡がる面方向に沿い、かつ、第1領域111から第2領域113に至る方向または第2領域113から第1領域111に至る方向(本実施形態では、Z軸と平行に第1領域111から第2領域113へと至る方向)に光軸が延びるようにレーザが照射される。
次に、変位機構30により、照射部10の照射するレーザにおける照射領域200が加工対象物100に接近させられる(s160)。ここでは、照射部10が保持部20側へと相対的に変位するよう変位機構30への制御指令がなされ、これを受けた変位機構30が、加工対象物100と加工可能領域とが重なるまで、照射部10の相対的な変位を行う。
この加工対象物100と加工可能領域との重なりは、上記s120で規定された半径rthと上記s140にて設定された加工面の座標情報に基づき、レーザの光軸と加工対象物100における加工面との間隔(本実施形態ではY軸方向に沿った間隔)が、照射領域200の加工可能領域を規定する半径rthに相当する距離となるまで、照射領域200を加工対象物100に接近させることにより実現される。
次に、変位機構30により、照射部10の照射するレーザにおける照射領域200が加工対象物100の第2領域113に沿って走査させられる(s170)。ここでは、照射部10が第2領域113に沿って相対的に変位するよう変位機構30への制御指令がなされ、これを受けた変位機構30が、加工面の全体を照射領域200が通過するまで、照射部10の相対的な変位を行う。なお、ここで、レーザの光軸は、第2領域113の拡がる面方向に沿って変位するに際し、第1領域111と第2領域113とで形成される稜線に沿って変位する。
こうして、上記s160~s170を経て、加工対象物100の角部110が加工可能領域に加工され、加工面として新たな第2領域113’が形成される。このs170の後、上記s150で開始された照射部10によるレーザの照射が終了する(s180)。ここでは、制御部40からの指示を受けた照射部10がレーザの照射を終了させる。
こうして、s180を終えた後、プロセスが上記s130へ戻り、以降、未加工の加工面が存在しなくなるまで、s130~s180が実施される。その後、上記s130で未加工の加工面が存在していないと判定された場合(s130:NO)、本加工処理が終了する。
こうして加工された加工対象物100は、角部110からマスク層130を除去した状態で使用される。
なお、上述したs150が本発明における照射手順であり、s160~170が本発明における加工手順である。また、加工処理に先立って行われる保持部20への加工対象物100の保持および位置決めが本願発明における準備手順である。
(3)評価試験
上述した加工対象物100のように、それぞれ隣接する2つの面で形成された角部を有する加工対象物をレーザで加工する場合には、レーザの照射に伴う熱が角部に集中してアブレーションを引き起こし、これにより角部における表面粗さが全体にわたって一様ではなくなり、部分的に表面粗さが大きく異なった状態になる懸念がある。
例えば、精密加工用の切削工具のように、工具としての高い加工精度を求められるものを加工対象物として加工するにあたり、角部における表面粗さが一様でないことは、工具としての加工精度に悪影響を及ぼすため望ましいことではない。
本願出願人は、このようにレーザの照射に伴う熱が角部に集中することを抑制する方法として、角部のマスキングに着想し、どのような材料によりマスキングすることが効果的であるか、複数の材料を用いた評価試験を実施した。
まず、加工対象物となるサンプルには、円柱形状にした住友電工株式会社製の超硬合金K種G10E(熱伝導率105W/m・℃)を採用し、円柱形状の端面を第1の材料でマスキングしたサンプルA、円柱形状の端面を第2の材料でマスキングしたサンプルB、を用意した。ここでサンプルAは、第1の材料として株式会社アサヒメタル工場製のUアロイ78(熱伝導率9.6W/m・℃)を用い、サンプルBは、第2の材料としてフェノール樹脂(熱伝導率0.13~0.25W/m・℃)を用いている。そして、各サンプルについて、それぞれ円柱形状の端面を第1領域111、外周面を第2領域113とみなして上記加工処理により同じ加工面を形成させた。
こうして加工面を形成させた各サンプルにつき、洗浄のうえ円柱形状の端面を顕微鏡により観察したところ、サンプルAは、図6Aに示すように、全体的に表面粗さの大きな変化はなく、アブレーションが発生していないことが見て取れる。その一方、サンプルBは、図6Bに示すように、角部の部分的な溶融や脱落、溶融後に再凝固した形跡がみられるなど、角部としての表面粗さが一様ではなくなっているばかりか、部分的に表面粗さが大きく異なっている可能性が高い。
この結果からは、加工対象物よりも熱伝導率の低い材料であっても、上記サンプルを含む材料のように加工対象物の数十分の1(例えば1/20)以上の熱伝導率を有する材料で角部をマスキングしてレーザ加工を実施すればアブレーションの発生を効果的に抑制できることが示唆されている。一方、加工対象物の1/100を下回るような熱伝導率を有する材料では、マスキングによりアブレーションの発生を抑制できないといえる。つまり、加工対象物の1/20(より望ましくは1/11)以上という熱伝導率を有する材料により角部をマスキングすれば、レーザの照射に起因するアブレーションの発生を効果的に抑制できるということがわかる。
(4)変形例
以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
例えば、上記実施形態では、第2領域113の拡がる面方向に沿い、かつ、Z軸と平行に第1領域111から第2領域113へと至る方向に光軸が延びるようにレーザを照射させる構成を例示した。しかし、レーザは、第2領域113の拡がる面方向に沿って光軸が延びるように照射されていればよく、光軸がZ軸に対して傾斜していてもよく、また、第1領域111および第2領域113のいずれか一方から他方へと至る方向に沿っていなくてもよい。
また、上記実施形態においては、加工対象物100の第1領域111が平面(X-Y平面)状に拡がっており、この平面に沿ってレーザを走査させるように構成されたものを例示した。しかし、加工対象部100の第1領域111は平面状のものに限られず、図7に示すように、例えば、加工対象物100として、円筒形状の端面が第1領域111であり、外周面が第2領域113であるものを採用することもできる。この場合、第2領域113の拡がる面方向に沿い、かつ、第1領域111から第2領域113へと至る方向に光軸が延びるようにレーザを照射させたうえで、レーザの光軸を、第2領域113の拡がる面方向に沿い、かつ、第1領域111と第2領域113とで形成される稜線に沿って変位させるようにすればよい。
(5)作用効果
上記実施形態の加工方法であれば、レーザの照射に起因するアブレーションの発生が抑制され、角部の表面粗さを一様なものとすることができる結果、精密加工用の切削工具のように高い加工精度を求められる加工対象物の加工にも有効に用いることができる。
本発明の加工方法は、精密加工用の切削工具のように高い加工精度を求められる加工対象物の加工にも有効に用いることができる。
1…レーザ加工装置、10…照射部、11…発振器、13…振動調整器、15…アッテネータ(ATT)、17…ビームエキスパンダー(EXP)、19…光学レンズ、20…保持部、30…変位機構、31…機構本体、33…駆動部、40…制御部、41…内蔵メモリ、100…加工対象物、110…角部、111…第1領域、113…第2領域、120…境界領域、130…マスク層、200…照射領域。

Claims (4)

  1. 所定の面に沿って拡がる第1領域、および、前記第1領域のなす面と交差する面に沿って拡がる第2領域が隣接して形成された角部を有する加工対象物を準備する準備手順と、
    前記加工対象物に対し、前記第2領域の拡がる面方向に沿って光軸が延びるようにレーザを照射させる照射手順と、
    前記レーザの光軸を、前記第2領域と交差する方向、および、前記第2領域のなす面に沿った方向のいずれか一方または両方に沿って変位させることで、前記レーザにより前記角部に新たな前記第2領域となる加工面を形成する加工手順と、を備え、
    前記加工対象物として、前記加工対象物の1/20以上となる熱伝導率を有する材料により、少なくとも前記第1領域から前記第2領域との境界領域に至る領域がマスキングされたものを用いる、
    レーザ加工方法。

  2. 前記加工対象物として、前記加工対象物の1/11以上となる熱伝導率を有する材料により、少なくとも前記第1領域から前記第2領域に至る境界領域がマスキングされたものを用いる、
    請求項1に記載のレーザ加工方法。
  3. 前記照射手順では、前記第2領域の拡がる面方向に沿い、かつ、前記第1領域から第2領域に至る方向または前記第2領域から前記第1領域に至る方向に光軸が延びるようにレーザを照射させる、
    請求項1または請求項2に記載のレーザ加工方法。
  4. 前記加工手順では、前記レーザの光軸を、前記第2領域の拡がる面方向に沿って変位させる際、前記第1領域と前記第2領域とで形成される稜線に沿って変位させる、
    請求項3に記載のレーザ加工方法。
JP2022575311A 2021-02-26 2021-02-26 レーザ加工方法 Active JP7320889B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007287 WO2022180774A1 (ja) 2021-02-26 2021-02-26 レーザ加工方法

Publications (2)

Publication Number Publication Date
JPWO2022180774A1 JPWO2022180774A1 (ja) 2022-09-01
JP7320889B2 true JP7320889B2 (ja) 2023-08-04

Family

ID=83048942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022575311A Active JP7320889B2 (ja) 2021-02-26 2021-02-26 レーザ加工方法

Country Status (2)

Country Link
JP (1) JP7320889B2 (ja)
WO (1) WO2022180774A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253654A (ja) 2009-04-28 2010-11-11 Japan Atomic Energy Agency 刃付け方法及び刃付け装置
JP2018047503A (ja) 2016-09-19 2018-03-29 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. レーザアブレーションによって微細機械加工されるワークピースの製造のための方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189885A (ja) * 1985-02-18 1986-08-23 ジエロ−ム、エツチ、レメルソン 切刃を形成する方法および切刃の改良法ならびにそのための装置
JP2009066627A (ja) * 2007-09-13 2009-04-02 Aisin Seiki Co Ltd レーザ加工による研磨方法、研磨装置及び研磨された切削工具
JP7033867B2 (ja) * 2017-08-31 2022-03-11 イムラ アメリカ インコーポレイテッド 人工ダイヤモンドコーティング領域を処理する方法及びシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253654A (ja) 2009-04-28 2010-11-11 Japan Atomic Energy Agency 刃付け方法及び刃付け装置
JP2018047503A (ja) 2016-09-19 2018-03-29 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. レーザアブレーションによって微細機械加工されるワークピースの製造のための方法

Also Published As

Publication number Publication date
WO2022180774A1 (ja) 2022-09-01
JPWO2022180774A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
JP4976576B2 (ja) 切削工具とその製造方法および製造装置
US11420288B2 (en) Laser machining systems and methods
WO2010122866A1 (ja) レーザ加工方法
JPH0390237A (ja) アイレス縫合針の加工方法
JPH07284974A (ja) レーザ加工方法及びその装置
CN110625401B (zh) 一种激光诱导材料耦合反应下的加工装置及方法
JP5861494B2 (ja) レーザ加工装置およびレーザ加工方法
US20220152744A1 (en) Beam machining plate-like or tubular workpieces
JP2718795B2 (ja) レーザビームを用いてワーク表面を微細加工する方法
JP6562536B2 (ja) レーザー加工装置、制御装置および加工面形成方法
JP7320889B2 (ja) レーザ加工方法
JP2000334594A (ja) レーザー加工装置及びレーザー加工方法
JPWO2020174528A1 (ja) 切削工具製造方法
JP5804716B2 (ja) レーザー加工装置
JP6277986B2 (ja) レーザ溶接装置及びレーザ溶接方法
WO2000060582A1 (fr) Procede de correction de la forme superficielle d'un coulisseau de tete magnetique, et coulisseau de tete magnetique
JP2008119735A (ja) 高硬度材料加工方法
KR102349328B1 (ko) 레이저 보조 미세가공 시스템 및 이를 이용한 미세가공 방법
WO2021199222A1 (ja) 加工装置、相対位置関係特定方法およびレーザ光量特定方法
CN111940930A (zh) 一种微孔激光加工方法及设备
JP2020116599A (ja) レーザ加工装置およびレーザ加工方法
JP7144110B1 (ja) レーザ加工装置および関係判定方法
WO2023047560A1 (ja) 加工装置および加工終了検出方法
WO2024099117A1 (zh) 激光切割物料的加工方法和应用
JP2018039101A (ja) 切削工具の製造方法及びホーニング面形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230718

R150 Certificate of patent or registration of utility model

Ref document number: 7320889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150