JP7312538B2 - Three-dimensional wiring structure and method for manufacturing three-dimensional wiring structure - Google Patents

Three-dimensional wiring structure and method for manufacturing three-dimensional wiring structure Download PDF

Info

Publication number
JP7312538B2
JP7312538B2 JP2018198464A JP2018198464A JP7312538B2 JP 7312538 B2 JP7312538 B2 JP 7312538B2 JP 2018198464 A JP2018198464 A JP 2018198464A JP 2018198464 A JP2018198464 A JP 2018198464A JP 7312538 B2 JP7312538 B2 JP 7312538B2
Authority
JP
Japan
Prior art keywords
dimensional
stress
wiring structure
printed wiring
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018198464A
Other languages
Japanese (ja)
Other versions
JP2020068230A (en
Inventor
晋二 坂
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2018198464A priority Critical patent/JP7312538B2/en
Publication of JP2020068230A publication Critical patent/JP2020068230A/en
Application granted granted Critical
Publication of JP7312538B2 publication Critical patent/JP7312538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、立体配線構造および立体配線構造の製造方法に関する。 The present invention relates to a three-dimensional wiring structure and a three-dimensional wiring structure manufacturing method.

立体的な表面に印刷配線を形成する技術が知られている。例えば、特許文献1には、印刷基板上に形成された配線と、当該印刷基板上に搭載された電子部品の立体的形状部分とに導電性のインク材料を印刷して電気的に接続する印刷配線板が記載されている。特許文献1に記載の印刷配線は、インク材料をインク塗布モジュールの噴出口から噴出させながらその噴出口の部分をアクチュエータの駆動により移動させて連続的に形成される。 A technique for forming printed wiring on a three-dimensional surface is known. For example, Patent Document 1 describes a printed wiring board in which a conductive ink material is printed on a wiring formed on a printed board and a three-dimensional shape portion of an electronic component mounted on the printed board to electrically connect them. The printed wiring described in Patent Document 1 is continuously formed by ejecting an ink material from an ejection port of an ink application module and moving the ejection port portion by driving an actuator.

特開2003-289179号公報Japanese Patent Application Laid-Open No. 2003-289179

本発明者らは、建物用の設備・機器に内蔵される電気・電子機器の配線手段について以下の認識を得た。
建物用の設備・機器を高機能化するために、これらの設備・機器に電気・電子機器を内蔵するものが増えている。この場合、建物用の設備・機器のケースや筐体などの壁面には、プリント配線板が設けられる場合がある。このようなプリント配線板として予め印刷配線が形成された樹脂フィルムをケースや筐体などの裏側に貼る構成が考えられる。
The inventors of the present invention have recognized the following about the wiring means of the electric/electronic equipment built in the facility/equipment for building.
In order to improve the functionality of building facilities and equipment, there is an increasing number of these facilities and equipment that incorporate electric and electronic devices. In this case, a printed wiring board may be provided on the wall surface of the case or housing of the building equipment/equipment. As such a printed wiring board, a configuration is conceivable in which a resin film on which printed wiring is formed in advance is attached to the back side of a case, housing, or the like.

しかし、この構成では樹脂フィルムがボトルネックとなり、建物用の設備・機器の高機能化に十分に対応できない場合があることが発明者らの検討により判明した。このため、発明者らは、建物用の設備・機器のケースや筐体などの壁面に直接印刷配線を形成する構成を考案した。しかし、建物用の設備・機器のケースや筐体などは、使用者の使用の際に衝撃や荷重を受けることが多く、繰り返し使用されるとケースや筐体などの壁面に形成された印刷配線にクラックを生じる懸念があることが判明した。 However, the inventors' investigation revealed that the resin film becomes a bottleneck in this configuration, and it may not be possible to sufficiently cope with the high functionality of the facilities and equipment for buildings. For this reason, the inventors devised a configuration in which printed wiring is formed directly on the wall surfaces of the cases and housings of equipment and devices for buildings. However, the cases and housings of equipment and devices for buildings are often subjected to impacts and loads when used by users, and it was found that repeated use could cause cracks in the printed wiring formed on the walls of the cases and housings.

これらから、本発明者らは、基材に形成された印刷配線について、基材が衝撃や荷重を受けた際の応力の影響を小さくする観点から、特許文献1の開示技術に関して改良の余地があるとの認識を得た。 From these, the present inventors have recognized that there is room for improvement in the technique disclosed in Patent Document 1 from the viewpoint of reducing the influence of stress when the base material receives an impact or load regarding the printed wiring formed on the base material.

本発明のある態様は、このような課題に鑑みてなされたもので、その目的の1つは、基材が衝撃や荷重を受けた際の応力の影響を小さくすることが可能な立体配線構造を提供することにある。 One aspect of the present invention has been made in view of such problems, and one of its purposes is to provide a three-dimensional wiring structure that can reduce the influence of stress when a base material receives an impact or load.

上記課題を解決するために、本発明のある態様の立体配線構造は、基材の曲面部に沿って立体的に形成される立体領域を含む印刷配線を有する。立体領域には、基材から受ける応力を分散可能な応力分散部が設けられる。 In order to solve the above problems, a three-dimensional wiring structure according to one aspect of the present invention has printed wiring including a three-dimensional region that is three-dimensionally formed along a curved surface portion of a base material. The three-dimensional region is provided with a stress dispersion portion capable of dispersing the stress received from the base material.

本発明の別の態様は、立体配線構造の製造方法である。この方法は、基材の曲面部に沿って立体的に形成される立体領域を含む印刷配線を有し、立体領域には、基材から受ける応力を分散可能な応力分散部が設けられる立体配線構造を製造する方法であって、吐出部を基材の印刷配線が形成される領域に接近させ、この状態で吐出部を基材に対して相対移動させながら吐出部から導電性材料を吐出する吐出工程を含む。 Another aspect of the present invention is a method for manufacturing a three-dimensional wiring structure. This method is a method of manufacturing a three-dimensional wiring structure having printed wiring including a three-dimensional region formed three-dimensionally along a curved surface of a substrate, and a three-dimensional wiring structure in which a stress dispersion portion capable of dispersing stress received from the substrate is provided in the three-dimensional region.

なお、以上の構成要素の任意の組み合わせや、本発明の構成要素や表現を方法、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 Arbitrary combinations of the above constituent elements, and mutually replacing the constituent elements and expressions of the present invention in methods, systems, etc. are also effective as aspects of the present invention.

本発明によれば、基材が衝撃や荷重を受けた際の応力の影響を小さくすることが可能な立体配線構造を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the three-dimensional wiring structure which can reduce the influence of the stress when a base material receives an impact or a load can be provided.

実施の形態に係る立体配線構造を備えた便座を示す斜視図である。1 is a perspective view showing a toilet seat having a three-dimensional wiring structure according to an embodiment; FIG. 立体配線構造の基材と印刷配線とを模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a substrate having a three-dimensional wiring structure and printed wiring; 図2の立体配線構造の側断面図である。FIG. 3 is a side sectional view of the three-dimensional wiring structure of FIG. 2; 比較例の立体配線構造について基材と印刷配線とを模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a substrate and printed wiring in a three-dimensional wiring structure of a comparative example; 図4の立体配線構造の側断面図である。FIG. 5 is a side sectional view of the three-dimensional wiring structure of FIG. 4; 図2の立体配線構造の基材から応力を受けた場合の印刷配線の応力分布を示す。FIG. 3 shows the stress distribution of the printed wiring when stress is applied from the base material of the three-dimensional wiring structure of FIG. 2 ; 図4の立体配線構造の基材から応力を受けた場合の印刷配線の応力分布を示す。FIG. 5 shows the stress distribution of the printed wiring when it receives stress from the base material of the three-dimensional wiring structure of FIG. 4 ; 図2の立体配線構造の応力分散部の一例を説明する説明図である。FIG. 3 is an explanatory diagram illustrating an example of a stress distribution portion of the three-dimensional wiring structure of FIG. 2; 図2の立体配線構造の製造方法を説明する説明図である。3A and 3B are explanatory diagrams for explaining a method of manufacturing the three-dimensional wiring structure of FIG. 2; FIG. 第1変形例に係る立体配線構造の側断面図である。It is a sectional side view of the three-dimensional wiring structure which concerns on a 1st modification. 第2変形例に係る立体配線構造の側断面図である。FIG. 11 is a side cross-sectional view of a three-dimensional wiring structure according to a second modified example; 第3変形例に係る立体配線構造の側断面図である。FIG. 11 is a side cross-sectional view of a three-dimensional wiring structure according to a third modified example;

まず、建物用の設備・機器の一つである暖房便座を例に本発明に至った過程を説明する。トイレを快適に使用するために、便座には座面の裏側に加熱用のヒータが設けられる。このようなヒータとしては、予め印刷配線が形成された樹脂フィルムを座面の裏側に貼る構成が考えられる。しかし、昨今の省エネニーズから待機電力を低減し、使用直前に急速加熱することが求められているところ、上述の構成では樹脂フィルムの熱抵抗がボトルネックとなり十分に対応できるとはいえない。 First, the process leading to the present invention will be described with an example of a heated toilet seat, which is one of the facilities and equipment for buildings. In order to use the toilet comfortably, the toilet seat is provided with a heater for heating on the back side of the seat surface. As such a heater, a structure in which a resin film having printed wiring formed in advance is attached to the back side of the seat surface is conceivable. However, in recent years, there has been a demand for reduced standby power consumption and for rapid heating immediately before use.

これらから、本発明者らは、座面の裏側に直接印刷配線を形成して速熱性を改善する技術を発案した。しかし、座面は、使用者の荷重を受けて、着座時に潰れて脱座時に復元する変形を繰り返す。座面が繰り返し変形する際、印刷配線にも繰り返し応力が付与される。このとき、座面の曲面部に形成された印刷配線の屈曲領域には特に大きな応力が付与され、クラックが発生しやすいことが判明した。この場合、クラックの周辺で抵抗が増加し局所的に発熱量が増え、座面の温度分布が不均一になり、使用者が不快に感じる懸念がある。また、クラックが進行すると配線が断線するおそれもある。 Based on these findings, the present inventors have devised a technique for improving rapid heating by forming printed wiring directly on the back side of the seat surface. However, the seat surface repeatedly deforms under the load of the user, being crushed when the user sits on the seat and restored when the user leaves the seat. When the seat surface is repeatedly deformed, the printed wiring is also repeatedly stressed. At this time, it has been found that a particularly large stress is applied to the bent region of the printed wiring formed on the curved surface of the seat, and cracks are likely to occur. In this case, the resistance increases around the crack, the amount of heat generated locally increases, the temperature distribution on the seat surface becomes uneven, and there is a concern that the user may feel uncomfortable. Moreover, if the crack progresses, the wiring may be disconnected.

このように、座面などの基材が受けた応力により基材に形成された印刷配線にクラックが発生する現象は、便座に限らず基材に形成された印刷配線を有する他の種類の建物用の設備・機器についても生じうる。 In this way, the phenomenon of cracks occurring in printed wiring formed on a base material due to stress received by a base material such as a seat surface is not limited to toilet seats.

本発明者らは、これらの知見に基づいて、印刷配線の立体領域に、座面の曲面部が変形したときに受ける応力を分散可能な応力分散部を設けることにより、その応力の影響を軽減する構成を創案した。以下、本発明が適用された実施形態を例に詳細に説明する。 Based on these findings, the present inventors have created a structure that reduces the influence of stress by providing a stress distribution section that can disperse the stress received when the curved surface of the seat is deformed in the three-dimensional region of the printed wiring. Hereinafter, an embodiment to which the present invention is applied will be described in detail as an example.

以下、本発明を好適な実施の形態をもとに各図面を参照しながら説明する。実施の形態および変形例では、同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on preferred embodiments with reference to the drawings. In the embodiment and modified examples, the same or equivalent constituent elements and members are denoted by the same reference numerals, and redundant explanations are omitted as appropriate. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Also, in each drawing, some of the members that are not important for explaining the embodiments are omitted.

なお、第1、第2などの序数を含む用語は多様な構成要素を説明するために用いられるが、この用語は一つの構成要素を他の構成要素から区別する目的でのみ用いられ、この用語によって構成要素が限定されるものではない。 In addition, terms including ordinal numbers such as first and second are used to describe various components, but these terms are used only for the purpose of distinguishing one component from other components, and the components are not limited by these terms.

[実施の形態]
図1~図6を参照して、本発明の実施の形態に係る立体配線構造1について説明する。図1は、実施の形態の立体配線構造1を備えた便座12を示す斜視図である。この図は、便座12から裏板部(不図示)を外した状態で座面部材を斜め裏側から視た図である。立体配線構造1は、基材10に形成された印刷配線20を含むところ、本実施形態で基材10は便座12の座面部材であり、印刷配線20は電気ヒータである。
[Embodiment]
A three-dimensional wiring structure 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG. FIG. 1 is a perspective view showing a toilet seat 12 having a three-dimensional wiring structure 1 according to an embodiment. This figure is a view of the seat surface member viewed obliquely from the back side with the back plate (not shown) removed from the toilet seat 12 . The three-dimensional wiring structure 1 includes a printed wiring 20 formed on a base material 10. In this embodiment, the base material 10 is a seat surface member of a toilet seat 12, and the printed wiring 20 is an electric heater.

基材10は、着座者の大腿部が載置される部分で、中孔部10mを囲む環状または一部が欠けた環状を有する。基材10は、上面部10aと、内側面部10bと、外側面部10cとを有する。上面部10aは、略水平または中孔部10m側が下がる傾斜に沿って延在し、主に大腿部の中央領域が接する部分である。内側面部10bは、上面部10aの内縁から下方に延びて中孔部10mを囲み、着座者の大腿部の内側領域が接する部分である。外側面部10cは、上面部10aの外縁から下方に延び、上面部10aの外側を囲む部分である。 The base material 10 is a portion on which the thighs of the seated person are placed, and has an annular shape surrounding the central hole portion 10m or a partially cut annular shape. The base material 10 has an upper surface portion 10a, an inner side surface portion 10b, and an outer side surface portion 10c. The upper surface portion 10a is a portion that extends substantially horizontally or along an inclination downward on the side of the central hole portion 10m, and is mainly in contact with the central region of the thigh. The inner side surface portion 10b extends downward from the inner edge of the upper surface portion 10a, surrounds the hollow portion 10m, and is a portion with which the inner regions of the thighs of the seated person come into contact. The outer side surface portion 10c is a portion that extends downward from the outer edge of the upper surface portion 10a and surrounds the outer side of the upper surface portion 10a.

図1に示すように、基材10の裏面10fには印刷配線20が設けられる。印刷配線20は、基材10を加温する電気ヒータとして機能する。本実施形態の印刷配線20は、矩形の繰り返しパターンを有し、基材10の裏面10fに印刷により形成される。着座者の大腿部の内側が内側面部10bに触れたときに温感を与えることが望ましい。このため、印刷配線20は、上面部10aから内側面部10bにわたる領域に設けられている。図1の破線円Aに示すように、上面部10aと内側面部10bとは曲面部10dによって繋がれている。曲面部10dは、上面部10aと内側面部10bとを接続する曲面であり、湾曲面や屈曲面など様々な曲面を含んでもよい。 As shown in FIG. 1, a printed wiring 20 is provided on the rear surface 10f of the substrate 10. As shown in FIG. The printed wiring 20 functions as an electric heater that heats the substrate 10 . The printed wiring 20 of this embodiment has a rectangular repeating pattern and is formed on the back surface 10f of the base material 10 by printing. It is desirable to give a warm feeling when the inside of the thigh of the seated person touches the inner side surface portion 10b. Therefore, the printed wiring 20 is provided in a region extending from the upper surface portion 10a to the inner side surface portion 10b. As indicated by a dashed circle A in FIG. 1, the upper surface portion 10a and the inner side surface portion 10b are connected by a curved surface portion 10d. The curved surface portion 10d is a curved surface that connects the upper surface portion 10a and the inner side surface portion 10b, and may include various curved surfaces such as a curved surface and a curved surface.

図2は、立体配線構造1について基材10と印刷配線20とを模式的に示す斜視図である。図3は、立体配線構造1を矢印Bから視た側断面図である。これらの図では印刷配線20の重要でない部分の記載を省略している。図2、図3に示すように、印刷配線20は、立体領域20dと、立体領域20dに隣接して設けられる第1領域20aおよび第2領域20bとを含む。立体領域20dは、基材10の曲面部10dの表面に沿って立体的に形成される。第1領域20aは、上面部10aに形成される。第2領域20bは、内側面部10bに形成される。図3に示すように、立体領域20dには、基材10から受ける応力を分散可能な応力分散部20eが設けられる。応力分散部20eは、基材10から応力を受けたときに、その応力を分散して狭い領域への応力集中を緩和する形状を有する。 FIG. 2 is a perspective view schematically showing the substrate 10 and the printed wiring 20 of the three-dimensional wiring structure 1. As shown in FIG. FIG. 3 is a side cross-sectional view of the three-dimensional wiring structure 1 viewed from an arrow B. FIG. These figures omit the depiction of unimportant portions of the printed wiring 20 . As shown in FIGS. 2 and 3, the printed wiring 20 includes a three-dimensional region 20d, and a first region 20a and a second region 20b provided adjacent to the three-dimensional region 20d. The three-dimensional region 20 d is three-dimensionally formed along the surface of the curved surface portion 10 d of the base material 10 . The first region 20a is formed in the upper surface portion 10a. The second region 20b is formed on the inner side surface portion 10b. As shown in FIG. 3, the three-dimensional region 20d is provided with a stress dispersion portion 20e capable of dispersing the stress received from the substrate 10. As shown in FIG. The stress dispersion portion 20e has a shape that, when receiving stress from the base material 10, disperses the stress and relieves stress concentration in a narrow region.

(比較例)
ここで、図4、図5、図7を参照して、先に比較例に係る立体配線構造8を説明する。図4は、立体配線構造8について基材10と印刷配線20とを模式的に示す斜視図であり、図2に対応する。図5は、立体配線構造8を矢印Bから視た断面図であり、図3に対応する。比較例に係る立体配線構造8は、発明者らが立体配線構造1を創作する過程で、比較のために創作したものである。立体配線構造8は、立体配線構造1に対して応力分散部20eを有しない点で相違し、その他の構成は同様である。したがって、重複する説明を省く。
(Comparative example)
Here, with reference to FIGS. 4, 5, and 7, the three-dimensional wiring structure 8 according to the comparative example will be described first. FIG. 4 is a perspective view schematically showing the substrate 10 and the printed wiring 20 of the three-dimensional wiring structure 8, and corresponds to FIG. FIG. 5 is a cross-sectional view of the three-dimensional wiring structure 8 as viewed from the arrow B, and corresponds to FIG. The three-dimensional wiring structure 8 according to the comparative example was created for comparison during the process of creating the three-dimensional wiring structure 1 by the inventors. The three-dimensional wiring structure 8 differs from the three-dimensional wiring structure 1 in that it does not have the stress dispersing portion 20e, and other configurations are the same. Therefore, redundant description is omitted.

比較例では、図5の破線円Cに示すように、上面部10aに対して内側面部10bに内向き(図5の矢印の方向)の変形応力を受けた場合、印刷配線20に加わる応力は立体領域20dの曲率変化が最大の領域(曲率半径が最少の領域)に集中する。 In the comparative example, as shown by the dashed circle C in FIG. 5, when the inner side surface portion 10b is subjected to an inward deformation stress (in the direction of the arrow in FIG. 5) with respect to the upper surface portion 10a, the stress applied to the printed wiring 20 is concentrated in the region of the three-dimensional region 20d where the curvature change is the largest (the curvature radius is the smallest).

図7は、比較例について、上面部10aを固定して内側面部10bに5N/mの等分布荷重を加えたときの立体領域20d近傍の応力分布のシミュレーション結果である。この試料の第1領域20a、第2領域20bおよび立体領域20dは膜厚1mmの配線であり、立体領域20dの表面の曲率半径は0.5mmである。この結果が示すように、第1領域20aおよび第2領域20bの応力はあまり大きくないが、立体領域20dには応力が集中し、その部分で応力は200Mpaを超えている。曲率半径が最少の領域で応力が限界を超えると、その部分に図5の破線円Cに示すようにクラックが発生する。 FIG. 7 shows simulation results of stress distribution in the vicinity of the three-dimensional region 20d when the upper surface portion 10a is fixed and a uniformly distributed load of 5 N/m is applied to the inner side surface portion 10b in the comparative example. The first region 20a, the second region 20b, and the three-dimensional region 20d of this sample are wiring with a film thickness of 1 mm, and the radius of curvature of the surface of the three-dimensional region 20d is 0.5 mm. As shown by this result, the stress in the first region 20a and the second region 20b is not so large, but the stress concentrates in the three-dimensional region 20d, and the stress exceeds 200 Mpa in that portion. When the stress exceeds the limit in the region with the smallest radius of curvature, cracks are generated in that portion as indicated by the dashed circle C in FIG.

比較例の結果を踏まえて本実施形態の立体配線構造1の応力分布を説明する。図6は、本実施形態について、上面部10aを固定して内側面部10bに5N/mの等分布荷重を加えたときの立体領域20d近傍の応力分布のシミュレーション結果である。この試料の第1領域20a、第2領域20bおよび立体領域20dは膜厚1mmの配線であり、立体領域20dには表面の曲率半径が5.0mmの応力分散部20eが設けられている。本実施形態では、応力分散部20eを有することにより、立体領域20dへの応力集中が緩和され応力が分散され、比較例と比べて立体領域20dの応力は大幅に低下する。 The stress distribution of the three-dimensional wiring structure 1 of this embodiment will be described based on the results of the comparative example. FIG. 6 shows simulation results of stress distribution in the vicinity of the three-dimensional region 20d when the upper surface portion 10a is fixed and a uniformly distributed load of 5 N/m is applied to the inner side surface portion 10b in this embodiment. The first region 20a, the second region 20b, and the three-dimensional region 20d of this sample are wiring with a film thickness of 1 mm, and the three-dimensional region 20d is provided with a stress dispersing portion 20e having a surface curvature radius of 5.0 mm. In the present embodiment, the presence of the stress dispersion portion 20e relaxes the stress concentration on the three-dimensional region 20d, disperses the stress, and significantly reduces the stress on the three-dimensional region 20d compared to the comparative example.

図8を参照して、応力分散部20eを説明する。図8は、本実施形態の立体配線構造1の応力分散部20eの一例を説明する説明図である。この図は、図3と同様に立体配線構造1を側面から視た側断面を示している。応力分散部20eは、印刷配線20の延在方向における前後(以下、単に「前後」という)の部分より厚く形成された厚肉部20nを有する。つまり、厚肉部20nは局所的に厚く形成された部分であってもよい。応力分散効果を有意に得る観点でなされたシミュレーションによれば、厚肉部20nの膜厚は、印刷配線20の厚肉部20nに隣接する部分の膜厚の1.5倍以上が好ましく、3倍以上はより好ましく、5倍以上はさらに好ましい。厚肉部20nの膜厚は、製造経済上の観点から10mm以下が実用的である。本実施形態では、図8に示すように、第1、第2領域20a、20bの膜厚Da、Dbは1mmで、厚肉部20nの最大膜厚Deは3.3mmで、膜厚Deの膜厚Da、Dbに対する比率は3.3倍である。 The stress dispersion portion 20e will be described with reference to FIG. FIG. 8 is an explanatory diagram illustrating an example of the stress dispersion portion 20e of the three-dimensional wiring structure 1 of this embodiment. Like FIG. 3, this figure shows a side cross-section of the three-dimensional wiring structure 1 viewed from the side. The stress dispersion portion 20e has a thick portion 20n formed thicker than the front and rear portions (hereinafter simply referred to as "front and rear") in the extending direction of the printed wiring 20. As shown in FIG. In other words, the thick portion 20n may be a locally thick portion. According to a simulation conducted from the viewpoint of obtaining a significant stress dispersion effect, the film thickness of the thick portion 20n is preferably 1.5 times or more, more preferably 3 times or more, and further preferably 5 times or more that of the portion adjacent to the thick portion 20n of the printed wiring 20. The thickness of the thick portion 20n is practically 10 mm or less from the viewpoint of manufacturing economy. In this embodiment, as shown in FIG. 8, the film thicknesses Da and Db of the first and second regions 20a and 20b are 1 mm, the maximum film thickness De of the thick portion 20n is 3.3 mm, and the ratio of the film thickness De to the film thicknesses Da and Db is 3.3 times.

図8を参照して、応力分散部20eの曲率半径H20eを説明する。曲率半径H20eは、立体配線構造1を側面から視た側断面の表面の曲率半径である。なお、この側断面は印刷配線20を、その延在方向および膜厚方向に直行する方向から視た断面であってもよい。応力集中を回避する観点でなされたシミュレーションによれば、曲率半径H20eは、曲面部10dの表面の曲率半径H10dの2倍以上が好ましく、5倍以上はより好ましく、10倍以上はさらに好ましい。本実施形態では、図8に示すように、曲面部10dの曲率半径H10dは0.5mmで、曲率半径H20eは5mmで、曲率半径H20eの曲率半径H10dに対する比率は10倍である。 The curvature radius H20e of the stress dispersion portion 20e will be described with reference to FIG. The radius of curvature H20e is the radius of curvature of the surface of the side cross section of the three-dimensional wiring structure 1 viewed from the side. Note that this side cross section may be a cross section of the printed wiring 20 viewed from a direction orthogonal to its extending direction and film thickness direction. According to a simulation conducted from the viewpoint of avoiding stress concentration, the curvature radius H20e is preferably twice or more, more preferably five times or more, and still more preferably ten times or more the curvature radius H10d of the surface of the curved surface portion 10d. In this embodiment, as shown in FIG. 8, the curvature radius H10d of the curved surface portion 10d is 0.5 mm, the curvature radius H20e is 5 mm, and the ratio of the curvature radius H20e to the curvature radius H10d is ten times.

(製造方法)
図9を参照して、応力分散部20eを有する立体配線構造1の製造方法を説明する。図9は、立体配線構造1の製造方法を説明する説明図である。立体配線構造1は、基材10に導電性材料を所望の膜厚に印刷することにより製造することができる。この印刷方法は、印刷配線20を所望の形状に形成可能な方法であれば特に限定されない。印刷方法は、例えば、ディスペンサ印刷、インクジェット印刷、パッド印刷等であってもよい。本実施形態の印刷方法では、導電性材料52を吐出する吐出部50を印刷配線20が形成される領域に接近させ、この状態で吐出部50を基材10に対して相対移動させながら導電性材料52を吐出して印刷する。
(Production method)
A method of manufacturing the three-dimensional wiring structure 1 having the stress dispersion portion 20e will be described with reference to FIG. 9A and 9B are explanatory diagrams for explaining the manufacturing method of the three-dimensional wiring structure 1. FIG. The three-dimensional wiring structure 1 can be manufactured by printing a conductive material on the substrate 10 in a desired film thickness. This printing method is not particularly limited as long as it is a method capable of forming the printed wiring 20 into a desired shape. The printing method may be, for example, dispenser printing, inkjet printing, pad printing, or the like. In the printing method of the present embodiment, the ejection unit 50 for ejecting the conductive material 52 is brought close to the area where the printed wiring 20 is formed, and in this state, the ejection unit 50 is moved relative to the substrate 10 to eject the conductive material 52 for printing.

導電性材料52は銅ペーストや銀ペーストなどの導電性ペーストであってもよい。導電性材料52の粘度は、所望の特性を実現可能な範囲で任意に選択できる。本実施形態では比較的高粘度(例えば、6Pa・s)の導電性材料52を用いている。吐出部50は、導電性材料52を吐出するディスペンサであってもよい。図9の例では、基材10を固定し、例えば、吐出部50を破線で示す位置から実線で示す位置に向かって、印刷配線20の延在方向に沿って移動させる。吐出部50を移動させながら所定の位置で吐出部50の吐出口から所定量の導電性材料52を吐出することにより印刷配線20を形成する。この印刷は、片道印刷でもよいし、往復印刷でもよいし、往復印刷を複数回繰り返してもよい。片道印刷によれば早く印刷でき、往復印刷によればより多くの導電性材料52を塗布でき、また塗布ムラを低減できる。 Conductive material 52 may be a conductive paste such as copper paste or silver paste. The viscosity of the conductive material 52 can be arbitrarily selected as long as desired characteristics can be achieved. In this embodiment, a conductive material 52 with a relatively high viscosity (eg, 6 Pa·s) is used. The ejector 50 may be a dispenser that ejects the conductive material 52 . In the example of FIG. 9 , the base material 10 is fixed, and the ejection section 50 is moved along the extending direction of the printed wiring 20 from the position indicated by the dashed line toward the position indicated by the solid line. The printed wiring 20 is formed by ejecting a predetermined amount of the conductive material 52 from the ejection port of the ejection section 50 at a predetermined position while moving the ejection section 50 . This printing may be one-way printing, reciprocating printing, or reciprocating printing may be repeated multiple times. One-way printing enables faster printing, and reciprocating printing allows more conductive material 52 to be applied and reduces unevenness in application.

片道印刷によれば単層の印刷層を形成でき、往復印刷によれば複数層の印刷層を形成できる。印刷位置によって印刷層の層数を変化させてもよい。 A single printed layer can be formed by one-way printing, and a multiple printed layer can be formed by reciprocating printing. The number of printing layers may be changed depending on the printing position.

片道印刷するときは、一回で所望量の導電性材料52を吐出し、往復印刷するときは吐出量を略半分にしてもよい。また、往復印刷を複数回繰り返すときはその回数に応じて導電性材料52の単位時間当りの吐出量(以下、単に「吐出量」ということがある)を減らしてもよい。なお、往復印刷するとき、それぞれの往路と復路とで吐出量を変化させてもよいし、経路を変化させてもよい。 A desired amount of the conductive material 52 may be ejected at one time for one-way printing, and the ejection amount may be approximately halved for two-way printing. Further, when reciprocating printing is repeated a plurality of times, the ejection amount per unit time of the conductive material 52 (hereinafter sometimes simply referred to as "ejection amount") may be reduced according to the number of times. It should be noted that, when reciprocating printing is performed, the discharge amount may be changed between the forward pass and the return pass, or the path may be changed.

また、吐出部50を移動させるとき、印刷配線20の延在方向に交差する方向(例えば、直交方向)に往復運動させながら吐出部50を延在方向に移動させてもよい。つまり、吐出部50をジグザグ運動させながら主方向に移動させてもよい。この場合、交差方向に幅広な配線を印刷でき、塗布ムラを低減できる。また、往復運動印刷と片道・往復印刷を組み合わせてもよい。また、印刷位置によって往復運動の振幅を変化させてもよい。この場合、多様な形状の配線を印刷できる。 Further, when moving the ejection section 50 , the ejection section 50 may be moved in the extension direction while reciprocating in a direction intersecting (for example, a direction perpendicular to) the extension direction of the printed wiring 20 . In other words, the ejection part 50 may be moved in the main direction while performing a zigzag motion. In this case, a wide wiring can be printed in the cross direction, and coating unevenness can be reduced. Also, reciprocating printing and one-way/reciprocating printing may be combined. Also, the amplitude of the reciprocating motion may be changed depending on the printing position. In this case, wiring of various shapes can be printed.

吐出部50の吐出方向は一定であってもよいが、本実施形態では変化させている。図9に示すように、吐出部50の吐出方向は基材10の印刷面に直交する方向としており、印刷面の角度が異なる箇所では、吐出方向は印刷面の角度に合せて変化させている。つまり、応力分散部20eを印刷する際には、応力分散部20eの前後を印刷する場合と比べて、吐出部50の吐出方向を変化させている。このように吐出方向を変化させることにより、印刷配線20の形状精度を向上できる。なお、重力による影響を考慮してこの吐出方向を調整してもよい。 The ejection direction of the ejection portion 50 may be constant, but is changed in this embodiment. As shown in FIG. 9, the ejection direction of the ejection section 50 is perpendicular to the printing surface of the base material 10, and the ejection direction is changed in accordance with the angle of the printing surface at different angles of the printing surface. That is, when printing the stress dispersion portion 20e, the ejection direction of the ejection portion 50 is changed compared to the case of printing before and after the stress dispersion portion 20e. By changing the ejection direction in this manner, the shape accuracy of the printed wiring 20 can be improved. Note that the ejection direction may be adjusted in consideration of the influence of gravity.

応力分散部20eの厚肉部20nを形成する方法の幾つかの例を説明する。 Several examples of methods for forming the thick portion 20n of the stress dispersion portion 20e will be described.

(第1の例)
この例では、吐出部50の移動速度(以下、単に「移動速度」ということがある)を一定にして応力分散部20eで目標とする膜厚に合せて吐出量を増減することにより応力分散部20eを形成する。一例として、この吐出量を目標とする膜厚に比例して変化させてもよい。図8の例では、第1、第2領域20a、20bの膜厚Da、Dbは1mmで、厚肉部20nの最大膜厚Deは3.3mmであるので、最大膜厚Deを印刷する際の吐出量Ea2は、膜厚Da、Dbを印刷する際の吐出量Ea1の3.3倍に設定してもよい。
(first example)
In this example, the stress dispersion portion 20e is formed by increasing or decreasing the ejection amount according to the target film thickness of the stress dispersion portion 20e while keeping the moving speed of the ejection portion 50 constant (hereinafter sometimes simply referred to as “moving speed”). As an example, the discharge amount may be changed in proportion to the target film thickness. In the example of FIG. 8, the film thicknesses Da and Db of the first and second regions 20a and 20b are 1 mm, and the maximum film thickness De of the thick portion 20n is 3.3 mm.

(第2の例)
この例では、吐出部50の吐出量を一定にして応力分散部20eで目標とする膜厚に合せて移動速度を加減することにより応力分散部20eを形成する。一例として、この移動速度を目標とする膜厚に反比例して変化させてもよい。図8の例では、最大膜厚Deを印刷する際の移動速度Vm2は、膜厚Da、Dbを印刷する際の移動速度Vm1の1/3.3に設定してもよい。
(Second example)
In this example, the stress dispersing portion 20e is formed by adjusting the moving speed in accordance with the target film thickness of the stress dispersing portion 20e while keeping the ejection amount of the ejecting portion 50 constant. As an example, this moving speed may be changed in inverse proportion to the target film thickness. In the example of FIG. 8, the moving speed Vm2 for printing the maximum film thickness De may be set to 1/3.3 of the moving speed Vm1 for printing the film thicknesses Da and Db.

(第3の例)
この例では、移動速度および吐出量を一定にして応力分散部20eで目標とする膜厚に合せて吐出部50の印刷を重ねて印刷層数を増やすことにより応力分散部20eを形成する。一例として、この印刷層数を目標とする膜厚に比例して変化させてもよい。図8の例では、最大膜厚Deの印刷層数は、膜厚Da、Dbの印刷層数の3倍または4倍に設定してもよい。本実施形態では、膜厚Da、Dbの印刷層数は1とし、最大膜厚Deの印刷層数は、3または4に設定している。
(Third example)
In this example, the stress dispersion portion 20e is formed by increasing the number of printed layers by repeating the printing of the ejection portion 50 in accordance with the target film thickness of the stress dispersion portion 20e while keeping the moving speed and the ejection amount constant. As an example, the number of printed layers may be changed in proportion to the target film thickness. In the example of FIG. 8, the number of printed layers with the maximum thickness De may be set to three or four times the number of printed layers with the thicknesses Da and Db. In this embodiment, the number of printed layers for the film thicknesses Da and Db is set to one, and the number of printed layers for the maximum film thickness De is set to three or four.

(第4の例)
例えば、印刷配線20の全体または一部の領域を一定の膜厚で導電性材料52を印刷した後、膜厚を厚くしたい部分に吐出部50を移動させてその部分に導電性材料52を重ねて印刷してもよい。一例として、その部分で吐出部50を前後に往復運動させながら導電性材料52を吐出してもよい。
(Fourth example)
For example, after printing the conductive material 52 with a certain thickness on the whole or a part of the printed wiring 20, the ejection part 50 is moved to the part where the thickness is desired to be thickened, and the conductive material 52 is overlaid on that part and printed. As an example, the conductive material 52 may be discharged while reciprocating the discharge part 50 back and forth at that portion.

(その他の例)
上述の第1~第4の例に係る方法の少なくとも2つを組み合わせてもよい。この場合、より細かく膜厚を可変できる。
(Other examples)
At least two of the methods according to the above first to fourth examples may be combined. In this case, the film thickness can be varied more finely.

以上のように構成された立体配線構造1の特徴を説明する。本実施形態の立体配線構造1は、基材10の曲面部10dに沿って立体的に形成される立体領域20dを含む印刷配線20を有し、立体領域20dには、基材10から受ける応力を分散可能な応力分散部20eが設けられる。 Features of the three-dimensional wiring structure 1 configured as described above will be described. The three-dimensional wiring structure 1 of the present embodiment has a printed wiring 20 including a three-dimensional region 20d that is three-dimensionally formed along the curved surface portion 10d of the substrate 10, and the three-dimensional region 20d is provided with a stress dispersion portion 20e capable of dispersing the stress received from the substrate 10.

この構成によれば、基材10が衝撃や変形荷重を受けた場合に、印刷配線20の立体領域20dへの応力の影響を低減し、立体領域20dにおけるクラック発生や局所的な温度上昇を抑制できる。 According to this configuration, when the base material 10 receives an impact or a deformation load, the effect of stress on the three-dimensional region 20d of the printed wiring 20 can be reduced, and the occurrence of cracks and local temperature rise in the three-dimensional region 20d can be suppressed.

応力分散部20eは、厚肉部20nを有し、印刷配線20において、厚肉部20nの最大膜厚は、当該厚肉部20nに隣接する部分の膜厚の1.5倍以上であってもよい。この場合、厚肉部20nの膜厚を隣接部分より厚くして立体領域20dにおける応力を分散できる。 The stress dispersion portion 20e has a thick portion 20n, and in the printed wiring 20, the maximum thickness of the thick portion 20n may be 1.5 times or more the thickness of the portion adjacent to the thick portion 20n. In this case, the thickness of the thick portion 20n can be made thicker than that of the adjacent portion to disperse the stress in the three-dimensional region 20d.

側断面の曲率半径において、応力分散部20eの曲面部10dとは反対側の曲率半径は、曲面部10dの応力分散部20e側の曲率半径の2倍以上であってもよい。この場合、厚肉部20nと隣接部分の曲率半径の変化を緩やかにして立体領域20dへの応力の集中を抑制できる。 Regarding the radius of curvature of the side cross section, the radius of curvature of the stress dispersion portion 20e on the side opposite to the curved surface portion 10d may be twice or more the radius of curvature of the curved surface portion 10d on the side of the stress dispersion portion 20e. In this case, the change in the radius of curvature of the portion adjacent to the thick portion 20n can be moderated to suppress stress concentration on the three-dimensional region 20d.

印刷配線20は、1以上の印刷層を含み、応力分散部20eの印刷層数は、印刷配線20の応力分散部20eに隣接する部分の印刷層数より多くしてもよい。この場合、応力分散部20eの印刷層数を増加させることにより、所望の断面形状を有する応力分散部20eを容易に形成できる。 The printed wiring 20 may include one or more printed layers, and the number of printed layers in the stress dispersion portion 20e may be greater than the number of printed layers in the portion of the printed wiring 20 adjacent to the stress dispersion portion 20e. In this case, by increasing the number of printed layers of the stress dispersion portion 20e, the stress dispersion portion 20e having a desired cross-sectional shape can be easily formed.

印刷配線20は、便座12の座面部材の上面部10aから内側面部10bにわたる領域に印刷された電気ヒータであってもよい。この場合、便座12の急速加熱特性を向上して使用者の快適性を改善できる。また、着座・脱座が繰り返された際に、印刷配線20の立体領域20dでのクラック発生や局所的な温度上昇を抑制できる。また、上面部10aと内側面部10bとの間にもヒータを設けて大腿部の内側にも温感を付与し使用者の快適性を一層改善できる。 The printed wiring 20 may be an electric heater printed on a region extending from the upper surface portion 10a to the inner side surface portion 10b of the seat surface member of the toilet seat 12 . In this case, the rapid heating characteristics of the toilet seat 12 can be improved to improve the user's comfort. In addition, it is possible to suppress the generation of cracks in the three-dimensional region 20d of the printed wiring 20 and the local temperature rise when the seating and unseating are repeated. A heater is also provided between the upper surface portion 10a and the inner side surface portion 10b to give a warm feeling to the inner side of the thigh, thereby further improving the user's comfort.

本実施形態の立体配線構造1を製造する方法は、基材10の曲面部10dに沿って立体的に形成される立体領域20dを含む印刷配線20を有し、立体領域20dには、基材10から受ける応力を分散可能な応力分散部20eが設けられる立体配線構造を製造する方法であって、吐出部50を基材10の印刷配線20が形成される領域に接近させた状態で吐出部50を基材10に対して相対移動させながら吐出部50から導電性材料52を吐出する吐出工程S80を含む。 The method of manufacturing the three-dimensional wiring structure 1 of this embodiment is a method of manufacturing a three-dimensional wiring structure in which the printed wiring 20 including the three-dimensional region 20d that is three-dimensionally formed along the curved surface portion 10d of the substrate 10 is provided, and the three-dimensional region 20d is provided with the stress dispersion portion 20e that can disperse the stress received from the substrate 10. The ejection portion 50 is moved relatively to the substrate 10 while the ejection portion 50 is moved relative to the substrate 10 in a state where the stress received from the substrate 10 is dispersed. An ejection step S80 of ejecting the elastic material 52 is included.

この方法によれば、吐出部50を移動させながら導電性材料52を吐出することにより、この移動方向に沿って所望形状の応力分散部20eを容易に形成できる。例えば、めっき形成する場合と比べて、膜厚の厚い配線を短時間で形成可能であり、領域ごとに膜厚を変化させ、所望の断面形状を有する応力分散部20eを容易に形成できる。 According to this method, by ejecting the conductive material 52 while moving the ejection part 50, the stress dispersion part 20e having a desired shape can be easily formed along the moving direction. For example, it is possible to form a thick wiring in a short time as compared with the case of forming by plating, and it is possible to easily form the stress dispersion part 20e having a desired cross-sectional shape by changing the film thickness for each region.

吐出工程S80は、応力分散部20eを形成する際に、印刷配線20の応力分散部20eに隣接する部分を形成する場合より、基材10に対する吐出部50の相対移動速度Vmを遅くしてもよい。この場合、移動速度Vmを遅くすることによりその領域に膜厚の厚い配線を形成可能であり、領域ごとに膜厚を簡単に変えることができる。 In the ejection step S80, when forming the stress dispersion portion 20e, the relative movement speed Vm of the ejection portion 50 with respect to the base material 10 may be slower than in the case of forming the portion of the printed wiring 20 adjacent to the stress dispersion portion 20e. In this case, by slowing down the movement speed Vm, a thick wiring can be formed in that region, and the film thickness can be easily changed for each region.

吐出工程S80は、応力分散部20eを形成する際に、印刷配線20の応力分散部20eに隣接する部分を形成する場合より、導電性材料52の単位時間当りの吐出量Eaを増加させてもよい。この場合、単位時間当りの吐出量Eaを増加させることによりその領域に膜厚の厚い配線を形成可能であり、領域ごとに膜厚を簡単に変えることができる。 In the ejection step S80, when forming the stress dispersion portion 20e, the ejection amount Ea of the conductive material 52 per unit time may be increased from the case of forming the portion of the printed wiring 20 adjacent to the stress dispersion portion 20e. In this case, by increasing the ejection amount Ea per unit time, it is possible to form a thick wiring in that region, and the film thickness can be easily changed for each region.

吐出工程S80は、応力分散部20eを形成する箇所に、導電性材料52を重ねて吐出してもよい。この場合、応力分散部20eに導電性材料52を重ねて吐出することにより、その部分の膜厚を変化させて所望の断面形状を有する応力分散部20eを形成できる。 In the ejection step S80, the conductive material 52 may be ejected so as to be overlapped on the portion where the stress dispersion portion 20e is to be formed. In this case, by ejecting the conductive material 52 overlapping the stress dispersion portion 20e, the stress dispersion portion 20e having a desired cross-sectional shape can be formed by changing the film thickness of that portion.

以上、本発明の実施形態をもとに説明した。これらの実施形態は例示であり、いろいろな変形および変更が本発明の特許請求の範囲内で可能なこと、またそうした変形例および変更も本発明の特許請求の範囲にあることは当業者に理解されるところである。従って、本明細書での記述および図面は限定的ではなく例証的に扱われるべきものである。 The above has been described based on the embodiments of the present invention. Those skilled in the art will appreciate that these embodiments are exemplary, and that various variations and modifications are possible within the scope of the claims of the present invention, and that such variations and modifications also fall within the scope of the claims of the present invention. Accordingly, the description and drawings herein are to be regarded in an illustrative rather than a restrictive sense.

以下、変形例について説明する。変形例の図面および説明では、実施形態と同一または同等の構成要素、部材には、同一の符号を付する。実施形態と重複する説明を適宜省略し、実施形態と相違する構成について重点的に説明する。 Modifications will be described below. In the drawings and description of the modified example, the same reference numerals are given to the same or equivalent components and members as the embodiment. Explanations that overlap with the embodiment will be omitted as appropriate, and the explanation will focus on the configuration that is different from the embodiment.

[第1変形例]
実施の形態の説明では、応力分散部20eが基材10の曲面部10dに向かって窪むR形状を有する例を示したが、本発明はこれに限定されない。応力分散部20eの形状は、応力を分散可能な形状であれば特に限定されない。図10は、第1変形例に係る立体配線構造2の側断面図である。この図に示すように、第1変形例の応力分散部20eは、傾斜した直線状のC形状を有する。
[First modification]
In the description of the embodiment, an example in which the stress dispersion portion 20e has an R shape recessed toward the curved surface portion 10d of the base material 10 is shown, but the present invention is not limited to this. The shape of the stress dispersion portion 20e is not particularly limited as long as it is a shape capable of dispersing stress. FIG. 10 is a side cross-sectional view of a three-dimensional wiring structure 2 according to a first modified example. As shown in this figure, the stress dispersion portion 20e of the first modified example has an inclined linear C shape.

[第2変形例]
図11は、第2変形例に係る立体配線構造3の側断面図である。この図に示すように、第2変形例の応力分散部20eは、曲面部10dから離れる方向に突出した凸R形状を有する。この凸R形状は、導電性材料52を重ねて盛り上げて形成してもよい。
[Second modification]
FIG. 11 is a side cross-sectional view of a three-dimensional wiring structure 3 according to a second modification. As shown in this figure, the stress dispersion portion 20e of the second modified example has a convex R shape projecting in a direction away from the curved surface portion 10d. This convex R shape may be formed by piling up the conductive material 52 .

[第3変形例]
実施の形態の説明では、応力分散部20eが基材10の曲面部10dの内側(凹側)に形成される例を示したが、本発明はこれに限定されない。応力分散部20eは曲面部10dの外側(凸側)に形成されてもよい。図12は、第5変形例に係る立体配線構造4の側断面図である。この図に示すように、第3変形例の応力分散部20eは、曲面部10dの外側において、曲面部10dから離れる方向に突出した凸R形状を有する。この凸R形状は、導電性材料52を外側に重ねて盛り上げて形成してもよい。
[Third Modification]
In the description of the embodiment, an example in which the stress dispersion portion 20e is formed inside (concave side) of the curved surface portion 10d of the base material 10 is shown, but the present invention is not limited to this. The stress dispersion portion 20e may be formed on the outer side (convex side) of the curved surface portion 10d. FIG. 12 is a side cross-sectional view of a three-dimensional wiring structure 4 according to a fifth modification. As shown in this figure, the stress dispersing portion 20e of the third modification has a convex R shape projecting in the direction away from the curved surface portion 10d on the outer side of the curved surface portion 10d. This convex R shape may be formed by stacking the conductive material 52 on the outside and raising it.

[その他の変形例]
実施の形態の説明では、本発明の立体配線構造1が便座に適用される例を示したが、立体配線構造1は様々な建物用の設備・機器に適用できる。建物用の設備・機器に設けた立体配線には、使用時の基材の変形や衝撃あるいは地震・台風等での家屋の揺動による変形や衝撃を受けて大きな応力が付与されるところ、本発明の立体配線構造を適用することで応力の影響を軽減できる。
[Other Modifications]
Although the three-dimensional wiring structure 1 of the present invention is applied to a toilet seat in the description of the embodiments, the three-dimensional wiring structure 1 can be applied to various building facilities and equipment. Three-dimensional wiring installed in facilities and equipment for buildings is subjected to a large amount of stress due to deformation and impact of the base material during use, or deformation and impact due to shaking of the house during earthquakes and typhoons.

例えば、本発明の立体配線構造は、床暖房や壁暖房など建材の暖房用のヒータや電気・電子配線に適用できる。例えば、床暖房用建材の曲面部にヒータを設けた場合、歩行者の体重を受けて立体配線に繰り返し応力が加わりクラックが発生するおそれがあるところ、本発明の立体配線構造を適用することで応力の影響を軽減できる。この作用・効果は他の種類の建材やキッチン・風呂・洗面所周りの暖房用のヒータや電気・電子配線についても果たしうる。 For example, the three-dimensional wiring structure of the present invention can be applied to heaters for heating building materials such as floor heating and wall heating, and electric/electronic wiring. For example, when a heater is provided on the curved surface of a building material for floor heating, the three-dimensional wiring structure may be subjected to repeated stress due to the weight of pedestrians, causing cracks to occur. This action and effect can also be achieved with other types of building materials, heaters for heating around kitchens, baths, and washrooms, and electrical and electronic wiring.

また、本発明の立体配線構造は、玄関ドア等の扉、サッシ等の引戸あるいはシャッタなど開閉時に衝撃を受ける建具に内蔵される電気錠や電気・電子機器に適用できる。例えば、建具に内蔵したボックスの曲面部に立体配線を形成した場合、急な開閉、家屋の揺動あるいは風圧変動による変形や衝撃を受けて立体配線に応力が加わりクラックが発生するおそれがあるところ、本発明の立体配線構造を適用することで応力の影響を軽減できる。また、本発明の立体配線構造は、ドアハンドルに内蔵される電気・電子機器にも適用できる。 Further, the three-dimensional wiring structure of the present invention can be applied to electric locks and electrical/electronic devices incorporated in doors such as entrance doors, sliding doors such as sashes, and fittings such as shutters that receive shocks when opened and closed. For example, when three-dimensional wiring is formed on the curved surface of a box built into fittings, stress may be applied to the three-dimensional wiring due to deformation or impact due to sudden opening and closing, house swings, or wind pressure fluctuations, and cracks may occur. By applying the three-dimensional wiring structure of the present invention, the effect of stress can be reduced. Moreover, the three-dimensional wiring structure of the present invention can also be applied to electric/electronic equipment incorporated in a door handle.

実施の形態の説明では、単一の基材10に印刷配線20を形成する例を示したが、印刷配線20は、複数の基材にわたって形成されるものであってもよい。この場合、応力分散部20eは、複数の基材にわたって形成されてもよい。 In the description of the embodiment, an example of forming the printed wiring 20 on the single base material 10 was shown, but the printed wiring 20 may be formed over a plurality of base materials. In this case, the stress distribution part 20e may be formed over a plurality of base materials.

実施の形態の説明では、印刷配線20が単一の方法により形成される例を示したが、印刷配線20は異なる方法により形成されてもよい。例えば、印刷配線20の一部の領域はめっきで形成され、別の一部の領域は印刷で形成されてもよい。また、応力分散部20eは、めっきで形成された配線上に導電性材料52を重ねて塗布することによって形成されてもよい。また、印刷で形成された応力分散部20eの表面にめっき等の別の表面層が積層されてもよい。 Although the printed wiring 20 is formed by a single method in the description of the embodiment, the printed wiring 20 may be formed by different methods. For example, some regions of the printed wiring 20 may be formed by plating and other regions may be formed by printing. Alternatively, the stress dispersion portion 20e may be formed by coating the conductive material 52 over the wiring formed by plating. Further, another surface layer such as plating may be laminated on the surface of the stress dispersion portion 20e formed by printing.

実施の形態の説明では、印刷配線20が吐出部50から導電性材料52を吐出して形成される例を示したが、印刷配線20は、少なくとも一部が3Dプリンタによって形成されてもよい。この場合、例えば、金属を吐出しながらレーザを照射するようにしてもよい。 In the description of the embodiment, an example in which the printed wiring 20 is formed by ejecting the conductive material 52 from the ejection unit 50 is shown, but at least a part of the printed wiring 20 may be formed by a 3D printer. In this case, for example, the laser may be irradiated while discharging the metal.

上述の各変形例は実施形態と同様の作用・効果を奏する。 Each of the modifications described above has the same actions and effects as the embodiment.

上述した実施形態と変形例の任意の組み合わせもまた本発明の実施形態として有用である。組み合わせによって生じる新たな実施形態は、組み合わされる実施形態および変形例それぞれの効果をあわせもつ。 Any combination of the above-described embodiments and modifications is also useful as embodiments of the present invention. A new embodiment resulting from the combination has the effects of each of the combined embodiments and modifications.

なお、図面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The hatching in the drawings does not limit the material of the hatched object.

1、2、3、4・・立体配線構造、 10・・基材、 10a・・上面部、 10b・・内側面部、 10d・・曲面部、 10m・・中孔部、 12・・便座、 20・・印刷配線、 20a・・第1領域、 20b・・第2領域、 20d・・立体領域、 20e・・応力分散部、 20n・・厚肉部、 50・・吐出部、 52・・導電性材料。 1, 2, 3, 4 Three-dimensional wiring structure 10 Base material 10a Upper surface portion 10b Inner side surface portion 10d Curved surface portion 10m Hollow portion 12 Toilet seat 20 Printed wiring 20a First region 20b Second region 20d Three-dimensional region 20e Stress dispersion portion 20n Thick portion 50 Ejection portion 52 . Conductive materials.

Claims (5)

基材の曲面部に沿って立体的に形成される立体領域を含む印刷配線を有し、
前記立体領域には、前記基材から受ける応力を分散可能な応力分散部が設けられ、
前記印刷配線は、1以上の印刷層を含み、前記応力分散部の印刷層数は、前記印刷配線の前記応力分散部に隣接する部分の印刷層数より多いことを特徴とする立体配線構造。
Having a printed wiring including a three-dimensional region three-dimensionally formed along the curved surface of the base material,
The three-dimensional region is provided with a stress dispersion part capable of dispersing the stress received from the base material,
The three-dimensional wiring structure, wherein the printed wiring includes one or more printed layers, and the number of printed layers in the stress dispersion portion is larger than the number of printed layers in a portion of the printed wiring adjacent to the stress dispersion portion.
前記応力分散部は、厚肉部を有し、
前記印刷配線において、前記厚肉部の最大膜厚は、当該厚肉部に隣接する部分の膜厚の1.5倍以上であることを特徴とする請求項1に記載の立体配線構造。
The stress dispersion portion has a thick portion,
2. The three-dimensional wiring structure according to claim 1, wherein, in said printed wiring, the maximum film thickness of said thick portion is 1.5 times or more the film thickness of a portion adjacent to said thick portion.
側断面の曲率半径において、前記応力分散部の前記曲面部とは反対側の曲率半径は、前記曲面部の前記応力分散部側の曲率半径の2倍以上であることを特徴とする請求項1または2に記載の立体配線構造。 3. The three-dimensional wiring structure according to claim 1 or 2, wherein, in the radius of curvature of the side cross section, the radius of curvature of the stress dispersing portion on the side opposite to the curved surface portion is at least twice the radius of curvature of the curved surface portion on the stress dispersing portion side. 前記印刷配線は、便座の座面部材の裏側の上面部から内側面部にわたる領域に印刷された電気ヒータであることを特徴とする請求項1から3のいずれかに記載の立体配線構造。 The three-dimensional wiring structure according to any one of claims 1 to 3, wherein the printed wiring is an electric heater printed on a region extending from the upper surface portion to the inner side surface portion on the back side of the seat surface member of the toilet seat. 基材の曲面部に沿って立体的に形成される立体領域を含む印刷配線を有し、前記立体領域に、前記基材から受ける応力を分散可能な応力分散部が設けられる立体配線構造を製造する方法であって、
吐出部を基材の印刷配線が形成される領域に接近させ、この状態で前記吐出部を前記基材に対して相対移動させながら前記吐出部から導電性材料を吐出する吐出工程を含み、
前記吐出工程は、前記応力分散部を形成する箇所に、導電性材料を重ねて吐出することを特徴とする立体配線構造の製造方法。
A method for manufacturing a three-dimensional wiring structure having a printed wiring including a three-dimensional region that is three-dimensionally formed along a curved surface of a base material, wherein the three-dimensional region is provided with a stress dispersion part capable of dispersing stress received from the base material,
A discharging step of bringing the discharging part closer to a region of a base material where the printed wiring is formed, and discharging the conductive material from the discharging part while moving the discharging part relative to the base material in this state,
The method for manufacturing a three-dimensional wiring structure, wherein the discharging step includes discharging a conductive material in a layered manner onto the portion where the stress dispersion portion is to be formed.
JP2018198464A 2018-10-22 2018-10-22 Three-dimensional wiring structure and method for manufacturing three-dimensional wiring structure Active JP7312538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018198464A JP7312538B2 (en) 2018-10-22 2018-10-22 Three-dimensional wiring structure and method for manufacturing three-dimensional wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018198464A JP7312538B2 (en) 2018-10-22 2018-10-22 Three-dimensional wiring structure and method for manufacturing three-dimensional wiring structure

Publications (2)

Publication Number Publication Date
JP2020068230A JP2020068230A (en) 2020-04-30
JP7312538B2 true JP7312538B2 (en) 2023-07-21

Family

ID=70388590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198464A Active JP7312538B2 (en) 2018-10-22 2018-10-22 Three-dimensional wiring structure and method for manufacturing three-dimensional wiring structure

Country Status (1)

Country Link
JP (1) JP7312538B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112401725A (en) * 2020-12-07 2021-02-26 安徽信息工程学院 Automatic cleaning toilet lid and cleaning method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173212A (en) 2004-12-13 2006-06-29 Canon Inc Device and method for forming pattern
JP2006196791A (en) 2005-01-14 2006-07-27 Ricoh Co Ltd Wiring body and manufacturing method thereof
WO2006076609A3 (en) 2005-01-14 2006-11-30 Cabot Corp Printable electronic features on non-uniform substrate and processes for making same
JP2007061690A (en) 2005-08-29 2007-03-15 Ulvac Japan Ltd Method of applying ink
JP2010075533A (en) 2008-09-26 2010-04-08 Aisin Seiki Co Ltd Warm toilet seat
JP2011062589A (en) 2009-09-15 2011-03-31 Olympus Corp Attaching structure of ink jet head
JP2012084657A (en) 2010-10-08 2012-04-26 Olympus Corp Base material for wiring, wiring member and method for manufacturing wiring member
JP2014003107A (en) 2012-06-18 2014-01-09 Sumitomo Electric Printed Circuit Inc Three dimensional wiring structure and manufacturing method of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137590A (en) * 1990-09-27 1992-05-12 Toshiba Lighting & Technol Corp Multilayer circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173212A (en) 2004-12-13 2006-06-29 Canon Inc Device and method for forming pattern
JP2006196791A (en) 2005-01-14 2006-07-27 Ricoh Co Ltd Wiring body and manufacturing method thereof
WO2006076609A3 (en) 2005-01-14 2006-11-30 Cabot Corp Printable electronic features on non-uniform substrate and processes for making same
JP2007061690A (en) 2005-08-29 2007-03-15 Ulvac Japan Ltd Method of applying ink
JP2010075533A (en) 2008-09-26 2010-04-08 Aisin Seiki Co Ltd Warm toilet seat
JP2011062589A (en) 2009-09-15 2011-03-31 Olympus Corp Attaching structure of ink jet head
JP2012084657A (en) 2010-10-08 2012-04-26 Olympus Corp Base material for wiring, wiring member and method for manufacturing wiring member
JP2014003107A (en) 2012-06-18 2014-01-09 Sumitomo Electric Printed Circuit Inc Three dimensional wiring structure and manufacturing method of the same

Also Published As

Publication number Publication date
JP2020068230A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
DE112014003822T5 (en) Foil heating z. B. for a hot plate
DE112005000939T5 (en) Heating element for a vehicle and method of molding the same
JP7312538B2 (en) Three-dimensional wiring structure and method for manufacturing three-dimensional wiring structure
EP3245076B1 (en) Component with surface structure generated by embossing and method for the production thereof
US20180281649A1 (en) Deformable armrest having a patterned array of channels
DE102008062701A1 (en) Aircraft cabin panel with core pockets for sound absorption
EP4235972A3 (en) Low profile antenna apparatus
DE102010015638B4 (en) Aircraft cabin plate absorber
DE112016006301B4 (en) Heating device
DE202019005902U1 (en) Patterned materials and foils as well as systems
DE112016003035T5 (en) RADIATION HEATING FOR VEHICLES
DE202014010162U1 (en) Flexible electrical conductor device
EP1692018A1 (en) Combined sensor and heating element
DE102013200192A1 (en) System for selectively modifying texture of e.g. dashboard surface of vehicle, has active material element that carries out reversible change in fundamental property when coupled to foldable structure, to modify surface texture
DE102020123092A1 (en) AN ARTICLE OF COVERING HAVING AN INTEGRATED STRUCTURAL COMPOSITION WITH VARIATED DENSITY AND METHOD OF MANUFACTURING THE SAME
DE102013212831A1 (en) Vehicle with a surface heating
DE69708523T3 (en) Sound absorbing structures and walls made therefrom
KR200375271Y1 (en) Far infrared ray heating panel
DE102016206381B4 (en) Infrared light source
CN112638641B (en) Sandwich plate with homodromous curvature deformation characteristic and manufacturing method thereof
DE102020123238A1 (en) CLADDING ELEMENT WITH AN INTEGRATED STRUCTURAL COMPOSITION WITH VARIATED DENSITY AND METHOD OF MANUFACTURING THESE
DE102013010410A1 (en) Motor vehicle with temperature-controlled upholstered part
US20190342995A1 (en) Selective dielectric resin application on circuitized core layers
DE102004011030B4 (en) Cover with integrated polymer actuator for deformation of the same
EP2072930B1 (en) Heatable bath or shower tray

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7312538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150