JP7308874B2 - Optical signal waveform measuring device and optical signal waveform measuring method - Google Patents

Optical signal waveform measuring device and optical signal waveform measuring method Download PDF

Info

Publication number
JP7308874B2
JP7308874B2 JP2021063097A JP2021063097A JP7308874B2 JP 7308874 B2 JP7308874 B2 JP 7308874B2 JP 2021063097 A JP2021063097 A JP 2021063097A JP 2021063097 A JP2021063097 A JP 2021063097A JP 7308874 B2 JP7308874 B2 JP 7308874B2
Authority
JP
Japan
Prior art keywords
signal
optical signal
optical
wavelength
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021063097A
Other languages
Japanese (ja)
Other versions
JP2022158312A (en
Inventor
真樹 上野
崇 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2021063097A priority Critical patent/JP7308874B2/en
Publication of JP2022158312A publication Critical patent/JP2022158312A/en
Application granted granted Critical
Publication of JP7308874B2 publication Critical patent/JP7308874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本開示は、光信号を電気信号に変換し、光信号の波形を測定する技術に関する。 The present disclosure relates to technology for converting an optical signal into an electrical signal and measuring the waveform of the optical signal.

光信号を電気信号に変換し、光信号の波形を測定する技術が、特許文献1等に開示されている。特許文献1では、測定波長毎に信号変換部を選択している。 A technique for converting an optical signal into an electrical signal and measuring the waveform of the optical signal is disclosed in Japanese Unexamined Patent Application Publication No. 2002-200013 and the like. In Patent Document 1, a signal converter is selected for each measurement wavelength.

特開2018-124237号公報JP 2018-124237 A

ところで、光信号波形測定対象から出力された光信号の波長は、光信号波形測定対象毎に異なることがある。そこで、光信号波形測定装置に入力される光信号の波長を、手動のコマンド等で設定する必要がある。これは、光信号波形測定装置に入力される光信号の波長に応じて、光信号を電気信号に変換する信号変換部の変換効率が異なる値を有しているからである。そして、光信号波形測定装置に入力される光信号の波長に応じた信号変換部の変換効率に基づいて、光信号波形測定装置に入力される光信号の電力が測定される。 By the way, the wavelength of the optical signal output from the optical signal waveform measurement target may differ for each optical signal waveform measurement target. Therefore, it is necessary to manually set the wavelength of the optical signal input to the optical signal waveform measuring device by a manual command or the like. This is because the conversion efficiency of the signal converter for converting an optical signal into an electrical signal has a different value depending on the wavelength of the optical signal input to the optical signal waveform measuring device. Then, the power of the optical signal input to the optical signal waveform measuring device is measured based on the conversion efficiency of the signal conversion unit corresponding to the wavelength of the optical signal input to the optical signal waveform measuring device.

しかし、光信号波形測定装置に入力される光信号の波長を、手動のコマンド等で設定するため、光信号波形測定の自動化が妨げられる問題があった。さらに、光信号波形測定装置に入力される光信号の波長を、手動のコマンド等で誤設定してしまうと、誤設定された光信号の波長に応じて、誤設定された信号変換部の誤った変換効率に基づくため、光信号波形測定の精度が悪化する問題があった。 However, since the wavelength of the optical signal input to the optical signal waveform measurement device is set by a manual command or the like, there is a problem that automation of the optical signal waveform measurement is hindered. Furthermore, if the wavelength of the optical signal input to the optical signal waveform measurement device is erroneously set by a manual command or the like, an erroneous setting of the signal conversion unit may occur depending on the erroneously set wavelength of the optical signal. Since it is based on the conversion efficiency, there is a problem that the accuracy of optical signal waveform measurement deteriorates.

そこで、前記課題を解決するために、本開示は、光信号波形測定対象から出力された光信号の波長が、光信号波形測定対象毎に異なるときでも、光信号波形測定装置に入力される光信号の波長を、手動のコマンド等で設定することなく、光信号波形測定装置に入力される光信号の電力を、高精度に測定することができ、また測定の自動化を容易にすることを目的とする。 Therefore, in order to solve the above-mentioned problems, the present disclosure provides a method for optical signal input to an optical signal waveform measurement apparatus even when the wavelength of the optical signal output from the optical signal waveform measurement target differs for each optical signal waveform measurement target. The purpose is to enable highly accurate measurement of the power of the optical signal input to the optical signal waveform measurement device without manually setting the wavelength of the signal, and to facilitate automation of the measurement. and

前記課題を解決するために、請求項1に係る発明は、光信号の波形を測定する光信号波形測定装置であって、自装置に入力された光信号の波長を識別する波長識別部と、前記自装置に入力された光信号を電気信号に変換するに際し、前記波長識別部で識別された光信号の波長に応じた変換効率を有する信号変換部と、前記信号変換部から出力された電気信号の波形を測定するに際し、前記信号変換部の変換効率に基づいて、前記自装置に入力された光信号の電力を測定する波形測定部と、を前記自装置の筐体内に備えることを特徴とする光信号波形測定装置である。 In order to solve the above-mentioned problems, the invention according to claim 1 is an optical signal waveform measuring device for measuring the waveform of an optical signal, comprising: a wavelength identification unit for identifying the wavelength of the optical signal input to the device; When converting an optical signal input to the device into an electrical signal, a signal conversion unit having a conversion efficiency corresponding to the wavelength of the optical signal identified by the wavelength identification unit, and an electrical signal output from the signal conversion unit. A waveform measuring unit for measuring the power of the optical signal input to the device based on the conversion efficiency of the signal conversion unit when measuring the waveform of the signal is provided in the housing of the device. It is an optical signal waveform measuring device.

請求項1に係る発明において、請求項2に係る発明は、前記波長識別部は、前記自装置に入力された光信号を分配する信号分配部と、前記信号分配部で分配された一部の光信号が特定波長を有するかどうかを識別する特定波長識別部と、前記信号変換部の変換効率として、前記特定波長識別部で識別された前記一部の光信号の前記特定波長に応じた変換効率を適用する波長切替制御部と、を備え、前記信号変換部は、前記信号分配部で分配された前記一部の光信号を除く残りの光信号を電気信号に変換し、前記波形測定部は、前記信号変換部の変換効率及び前記信号分配部の分配比率に基づいて、前記自装置に入力された光信号の電力を測定することを特徴とする光信号波形測定装置である。 In the invention according to claim 1, the invention according to claim 2 is characterized in that the wavelength identification unit includes a signal distribution unit that distributes an optical signal input to the own device, and a part of the signal distributed by the signal distribution unit. a specific wavelength identification unit for identifying whether or not an optical signal has a specific wavelength; and a conversion efficiency of the signal conversion unit according to the specific wavelength of the part of the optical signals identified by the specific wavelength identification unit. a wavelength switching control unit that applies efficiency, wherein the signal conversion unit converts remaining optical signals, excluding the partial optical signals distributed by the signal distribution unit, into electrical signals, and the waveform measurement unit is an optical signal waveform measuring device that measures power of an optical signal input to the device based on the conversion efficiency of the signal converting section and the distribution ratio of the signal distributing section.

請求項1に係る発明において、請求項3に係る発明は、前記波長識別部は、前記自装置に入力された光信号を分光する信号分光部を備え、複数の前記信号変換部は、前記信号分光部で分光された各々の波長の光信号を電気信号に変換するに際し、前記信号分光部で分光された光信号の各々の波長に応じた各々の変換効率を有し、前記波形測定部は、複数の前記信号変換部の各々の変換効率に基づいて、前記自装置に入力された各々の波長の光信号の電力を測定することを特徴とする光信号波形測定装置である。 In the invention according to claim 1, the invention according to claim 3 is characterized in that the wavelength discrimination unit includes a signal spectroscopy unit that spectroscopy the optical signal input to the device itself, and the plurality of signal conversion units are configured to disperse the signal When converting optical signals of respective wavelengths separated by the spectroscopic section into electrical signals, the waveform measurement section has respective conversion efficiencies according to the respective wavelengths of the optical signals separated by the signal spectroscopic section. 1. An optical signal waveform measuring apparatus characterized by measuring the power of the optical signal of each wavelength input to said own apparatus based on the conversion efficiency of each of said plurality of signal converters.

前記課題を解決するために、請求項4に係る発明は、光信号の波形を測定する光信号波形測定装置を用いる光信号波形測定方法であって、自装置に入力された光信号の波長を識別する波長識別手順と、前記自装置に入力された光信号を電気信号に変換するに際し、前記波長識別手順で識別された光信号の波長に応じた変換効率を有する信号変換手順と、前記信号変換手順で出力された電気信号の波形を測定するに際し、前記信号変換手順の変換効率に基づいて、前記自装置に入力された光信号の電力を測定する波形測定手順と、を前記自装置の筐体内で行うことを特徴とする光信号波形測定方法である。 In order to solve the above-mentioned problems, the invention according to claim 4 is an optical signal waveform measuring method using an optical signal waveform measuring device for measuring the waveform of an optical signal, wherein the wavelength of the optical signal input to the device is measured by a wavelength identification procedure for identifying, a signal conversion procedure having a conversion efficiency corresponding to the wavelength of the optical signal identified by the wavelength identification procedure when converting the optical signal input to the self-device into an electrical signal, and the signal a waveform measurement procedure for measuring the power of the optical signal input to the own device based on the conversion efficiency of the signal conversion procedure when measuring the waveform of the electrical signal output in the conversion procedure; An optical signal waveform measuring method characterized by being performed within a housing.

請求項4に係る発明において、請求項5に係る発明は、前記波長識別手順は、前記自装置に入力された光信号を分配する信号分配手順と、前記信号分配手順で分配された一部の光信号が特定波長を有するかどうかを識別する特定波長識別手順と、前記信号変換手順の変換効率として、前記特定波長識別手順で識別された前記一部の光信号の前記特定波長に応じた変換効率を適用する波長切替制御手順と、を備え、前記信号変換手順は、前記信号分配手順で分配された前記一部の光信号を除く残りの光信号を電気信号に変換し、前記波形測定手順は、前記信号変換手順の変換効率及び前記信号分配手順の分配比率に基づいて、前記自装置に入力された光信号の電力を測定することを特徴とする光信号波形測定方法である。 In the invention according to claim 4, the invention according to claim 5 is characterized in that the wavelength identification procedure includes a signal distribution procedure for distributing an optical signal input to the own device, and a part of the signal distributed by the signal distribution procedure. a specific wavelength identification procedure for identifying whether or not an optical signal has a specific wavelength; and converting the part of the optical signals identified by the specific wavelength identification procedure according to the specific wavelength as conversion efficiency of the signal conversion procedure. and a wavelength switching control procedure applying efficiency, wherein the signal conversion procedure converts remaining optical signals, excluding the partial optical signals distributed in the signal distribution procedure, into electrical signals, and the waveform measurement procedure. is an optical signal waveform measuring method characterized by measuring the power of an optical signal input to said own device based on the conversion efficiency of said signal conversion procedure and the distribution ratio of said signal distribution procedure.

請求項4に係る発明において、請求項6に係る発明は、前記波長識別手順は、前記自装置に入力された光信号を分光する信号分光手順を備え、複数の前記信号変換手順は、前記信号分光手順で分光された各々の波長の光信号を電気信号に変換するに際し、前記信号分光手順で分光された光信号の各々の波長に応じた各々の変換効率を有し、前記波形測定手順は、複数の前記信号変換手順の各々の変換効率に基づいて、前記自装置に入力された各々の波長の光信号の電力を測定することを特徴とする光信号波形測定方法である。 In the invention according to claim 4, the invention according to claim 6 is characterized in that the wavelength identification procedure comprises a signal spectroscopy procedure for spectroscopy the optical signal input to the self-device, and the plurality of signal conversion procedures comprise the signal When converting optical signals of respective wavelengths separated by the spectroscopy procedure into electrical signals, each conversion efficiency corresponding to each wavelength of the optical signals separated by the signal spectroscopy procedure is provided, and the waveform measurement procedure is 1. An optical signal waveform measuring method characterized by measuring the power of the optical signal of each wavelength input to said own device based on the conversion efficiency of each of said plurality of said signal conversion procedures.

このように、本開示は、光信号波形測定対象から出力された光信号の波長が、光信号波形測定対象毎に異なるときでも、光信号波形測定装置に入力される光信号の波長を、手動のコマンド等で設定することなく、また外付けの分光器等で分光することなく、光信号波形測定装置に入力される光信号の電力を、高精度に測定することができ、また測定の自動化を容易にすることができる。 In this way, the present disclosure can manually adjust the wavelength of the optical signal input to the optical signal waveform measurement apparatus even when the wavelength of the optical signal output from the optical signal waveform measurement target differs for each optical signal waveform measurement target. It is possible to measure the power of the optical signal input to the optical signal waveform measurement device with high accuracy without setting it with a command etc., and without dispersing it with an external spectrometer, etc., and automation of measurement can be facilitated.

本開示の第1実施形態の光信号波形測定装置の構成を示す図である。1 is a diagram showing the configuration of an optical signal waveform measuring device according to a first embodiment of the present disclosure; FIG. 本開示の第1実施形態の光信号波形測定方法の手順を示す図である。It is a figure which shows the procedure of the optical signal waveform measuring method of 1st Embodiment of this indication. 本開示の第2実施形態の光信号波形測定装置の構成を示す図である。It is a figure which shows the structure of the optical signal waveform measuring apparatus of 2nd Embodiment of this indication. 本開示の第2実施形態の光信号波形測定方法の手順を示す図である。It is a figure which shows the procedure of the optical-signal-waveform-measurement method of 2nd Embodiment of this indication. 本開示の第3実施形態の光信号波形測定装置の構成を示す図である。It is a figure which shows the structure of the optical signal waveform measuring apparatus of 3rd Embodiment of this indication. 本開示の第3実施形態の光信号波形測定方法の手順を示す図である。It is a figure which shows the procedure of the optical signal waveform measuring method of 3rd Embodiment of this indication.

添付の図面を参照して本開示の実施形態を説明する。以下に説明する実施形態は本開示の実施の例であり、本開示は以下の実施形態に制限されるものではない。 Embodiments of the present disclosure will be described with reference to the accompanying drawings. The embodiments described below are examples of implementing the present disclosure, and the present disclosure is not limited to the following embodiments.

(第1実施形態の光信号波形測定方法)
本開示の第1実施形態の光信号波形測定装置の構成を図1に示す。本開示の第1実施形態の光信号波形測定方法の手順を図2に示す。なお、第1実施形態の光信号波形測定方法は、第2、3実施形態の光信号波形測定方法と比べて、上位概念の方法である。
(Optical signal waveform measurement method according to the first embodiment)
FIG. 1 shows the configuration of the optical signal waveform measuring device according to the first embodiment of the present disclosure. FIG. 2 shows the procedure of the optical signal waveform measuring method according to the first embodiment of the present disclosure. Note that the optical signal waveform measurement method of the first embodiment is a method of a higher concept than the optical signal waveform measurement methods of the second and third embodiments.

光信号波形測定装置2は、入力端子21、波長識別部22、信号変換部23及び波形測定部24を自装置の筐体内に備えたうえで、図2に示した手順を実行する。 The optical signal waveform measurement device 2 includes an input terminal 21, a wavelength discrimination section 22, a signal conversion section 23, and a waveform measurement section 24 in its housing, and then executes the procedure shown in FIG.

光信号波形測定対象1は、例えばDUT(Device Under Test)等である。光信号波形測定装置2は、例えば光サンプリングオシロスコープ等である。光信号波形測定対象1と光信号波形測定装置2とは、接続端子11及び入力端子21を介して接続される。 The optical signal waveform measurement target 1 is, for example, a DUT (Device Under Test). The optical signal waveform measuring device 2 is, for example, an optical sampling oscilloscope. The optical signal waveform measurement object 1 and the optical signal waveform measurement device 2 are connected via a connection terminal 11 and an input terminal 21 .

波長識別部22は、光信号波形測定装置2に入力された光信号の波長を識別する(ステップS1)。第1実施形態の波長識別部22は、第2実施形態の信号分配部42、特定波長識別部43、信号増幅部44、信号検出部45及び波長切替制御部46に対応し、第3実施形態の信号分光部62に対応する。第1実施形態のステップS1は、第2実施形態のステップS11~S13及び第3実施形態のステップS21に対応する。 The wavelength identifying unit 22 identifies the wavelength of the optical signal input to the optical signal waveform measuring device 2 (step S1). The wavelength identification unit 22 of the first embodiment corresponds to the signal distribution unit 42, the specific wavelength identification unit 43, the signal amplification unit 44, the signal detection unit 45, and the wavelength switching control unit 46 of the second embodiment. corresponds to the signal spectroscopic unit 62 of . Step S1 of the first embodiment corresponds to steps S11 to S13 of the second embodiment and step S21 of the third embodiment.

信号変換部23は、光信号波形測定装置2に入力された光信号を電気信号に変換するに際し、波長識別部22で識別された光信号の波長に応じた変換効率を有する(ステップS2)。第1実施形態の信号変換部23は、第2実施形態の信号変換部47に対応し、第3実施形態の信号変換部63、64に対応する。第1実施形態のステップS2は、第2実施形態のステップS14及び第3実施形態のステップS22に対応する。 The signal converter 23 has a conversion efficiency corresponding to the wavelength of the optical signal identified by the wavelength identifier 22 when converting the optical signal input to the optical signal waveform measuring device 2 into an electrical signal (step S2). The signal converter 23 of the first embodiment corresponds to the signal converter 47 of the second embodiment, and corresponds to the signal converters 63 and 64 of the third embodiment. Step S2 of the first embodiment corresponds to step S14 of the second embodiment and step S22 of the third embodiment.

波形測定部24は、信号変換部23から出力された電気信号の電力を受ける。そして、波形測定部24は、信号変換部23から出力された電気信号の電力に信号変換部23の変換効率(波長識別部22で識別された波長に応じて変換効率は異なる。)を適用して、光信号波形測定装置2に入力された光信号の電力を測定し、電力を例えば縦軸として、時間を例えば横軸として、波形を表示する(ステップS3)。第1実施形態の波形測定部24は、第2実施形態の波形測定部48に対応し、第3実施形態の波形測定部65に対応する。第1実施形態のステップS3は、第2実施形態のステップS15及び第3実施形態のステップS23に対応する。 The waveform measuring section 24 receives power of the electrical signal output from the signal converting section 23 . Then, the waveform measurement unit 24 applies the conversion efficiency of the signal conversion unit 23 (the conversion efficiency varies depending on the wavelength identified by the wavelength identification unit 22) to the power of the electrical signal output from the signal conversion unit 23. Then, the power of the optical signal input to the optical signal waveform measuring device 2 is measured, and the waveform is displayed with the power, for example, as the vertical axis and the time, for example, as the horizontal axis (step S3). The waveform measurement section 24 of the first embodiment corresponds to the waveform measurement section 48 of the second embodiment, and corresponds to the waveform measurement section 65 of the third embodiment. Step S3 of the first embodiment corresponds to step S15 of the second embodiment and step S23 of the third embodiment.

このように、光信号波形測定対象1から出力された光信号の波長が、光信号波形測定対象1毎に異なるときでも、光信号波形測定装置2に入力される光信号の波長を、手動のコマンド等で設定することなく、また外付けの分光器等で分光することなく、光信号波形測定装置2に入力される光信号の電力を、高精度に測定することができ、また測定の自動化を容易にすることができる。 As described above, even when the wavelength of the optical signal output from the optical signal waveform measurement target 1 differs for each optical signal waveform measurement target 1, the wavelength of the optical signal input to the optical signal waveform measurement device 2 can be manually adjusted. The power of the optical signal input to the optical signal waveform measuring device 2 can be measured with high accuracy without setting by command or the like, and without spectroscopy by an external spectroscope or the like, and the measurement can be automated. can be facilitated.

(第2実施形態の光信号波形測定方法)
本開示の第2実施形態の光信号波形測定装置の構成を図3に示す。本開示の第2実施形態の光信号波形測定方法の手順を図4に示す。なお、第2実施形態の光信号波形測定方法は、第1実施形態の光信号波形測定方法と比べて、下位概念の方法の一例である。
(Optical signal waveform measurement method according to the second embodiment)
FIG. 3 shows the configuration of an optical signal waveform measuring device according to the second embodiment of the present disclosure. FIG. 4 shows the procedure of the optical signal waveform measuring method according to the second embodiment of the present disclosure. Note that the optical signal waveform measurement method of the second embodiment is an example of a method of a lower concept than the optical signal waveform measurement method of the first embodiment.

光信号波形測定装置4は、入力端子41、信号分配部42、特定波長識別部43、信号増幅部44、信号検出部45、波長切替制御部46、信号変換部47及び波形測定部48を自装置の筐体内に備えたうえで、図4に示した手順を実行する。 The optical signal waveform measurement device 4 includes an input terminal 41, a signal distribution section 42, a specific wavelength identification section 43, a signal amplification section 44, a signal detection section 45, a wavelength switching control section 46, a signal conversion section 47 and a waveform measurement section 48. The procedure shown in FIG. 4 is executed after being prepared in the housing of the apparatus.

光信号波形測定対象3は、例えばDUT(Device Under Test)等である。光信号波形測定装置4は、例えば光サンプリングオシロスコープ等である。光信号波形測定対象3と光信号波形測定装置4とは、接続端子31及び入力端子41を介して接続される。 The optical signal waveform measurement target 3 is, for example, a DUT (Device Under Test). The optical signal waveform measuring device 4 is, for example, an optical sampling oscilloscope. The optical signal waveform measurement object 3 and the optical signal waveform measurement device 4 are connected via a connection terminal 31 and an input terminal 41 .

信号分配部42は、光信号波形測定装置4に入力された光信号を分配する(ステップS11)。ここで、信号分配部42は、例えば高分配比の光カプラ等(例えば分配比率99:1等)であり、一部の小電力の光信号を特定波長識別部43に出力する一方で、残りの大電力の光信号を信号変換部47に出力する。よって、光信号波形測定装置4に入力された光信号の波長を、後述のように自動的に測定することができる一方で、光信号波形測定装置4に入力された光信号の電力を、小さな損失で高精度に測定することができる。 The signal distributor 42 distributes the optical signal input to the optical signal waveform measuring device 4 (step S11). Here, the signal distribution unit 42 is, for example, an optical coupler with a high distribution ratio (for example, a distribution ratio of 99:1), and outputs a portion of the low-power optical signal to the specific wavelength identification unit 43, while outputting the remaining is output to the signal converter 47 . Therefore, while the wavelength of the optical signal input to the optical signal waveform measuring device 4 can be automatically measured as described later, the power of the optical signal input to the optical signal waveform measuring device 4 can be reduced. Loss can be measured with high accuracy.

特定波長識別部43は、信号分配部42で分配された一部の小電力の光信号が特定波長を有するかどうかを識別する(ステップS12)。ここで、特定波長識別部43は、例えば光学薄膜等の波長フィルタ付のPD(Photo Diode)等であり、例えばマルチモード光ファイバ通信の850nm帯及びシングルモード光ファイバ通信の1650nm帯等のうち、一の波長帯に対して高感度を有する一方で、他の波長帯に対して低感度を有する。 The specific wavelength identifier 43 identifies whether some of the low-power optical signals distributed by the signal distributor 42 have a specific wavelength (step S12). Here, the specific wavelength identification unit 43 is, for example, a PD (Photo Diode) with a wavelength filter such as an optical thin film. While having high sensitivity to one wavelength band, it has low sensitivity to other wavelength bands.

波長切替制御部46は、信号変換部47の変換効率として、特定波長識別部43で識別された一部の小電力の光信号の特定波長に応じた変換効率を適用する(ステップS13)。ここで、信号増幅部44は、特定波長識別部43から出力された小電力の電気信号を増幅する例えばオペアンプ等である。そして、信号検出部45は、信号増幅部44から出力された増幅後の電気信号を閾値判定する例えばコンパレータ等である。すると、ステップS13が可能となる。 The wavelength switching control unit 46 applies the conversion efficiency corresponding to the specific wavelength of the part of the low-power optical signals identified by the specific wavelength identification unit 43 as the conversion efficiency of the signal conversion unit 47 (step S13). Here, the signal amplification unit 44 is, for example, an operational amplifier or the like that amplifies the low-power electrical signal output from the specific wavelength identification unit 43 . The signal detection unit 45 is, for example, a comparator or the like that performs a threshold value determination on the amplified electrical signal output from the signal amplification unit 44 . Then, step S13 becomes possible.

信号変換部47は、信号分配部42で分配された残りの大電力の光信号を電気信号に変換するにあたり(ステップS14)、特定波長識別部43で識別された光信号の波長に応じた変換効率を有する(ステップS13)。ここで、信号変換部47は、例えばPD(Photo Diode)等であり、入力電圧から出力電流への、光信号の波長に応じた変換効率(損失を含めて)を有する。 The signal conversion unit 47 converts the remaining large-power optical signals distributed by the signal distribution unit 42 into electrical signals (step S14). have efficiency (step S13). Here, the signal converter 47 is, for example, a PD (Photo Diode) or the like, and has conversion efficiency (including loss) from input voltage to output current according to the wavelength of the optical signal.

波形測定部48は、信号変換部47から出力された電気信号の電力を受ける。そして、波形測定部48は、信号変換部47から出力された電気信号の電力に信号変換部47の変換効率(信号検出部45で識別された波長に応じて変換効率は異なる。)及び信号分配部42の分配比率を適用して、光信号波形測定装置4に入力された光信号の電力を測定し、電力を例えば縦軸として、時間を例えば横軸として、波形を表示する(ステップS15)。 The waveform measuring section 48 receives power of the electrical signal output from the signal converting section 47 . Then, the waveform measurement unit 48 applies the power of the electrical signal output from the signal conversion unit 47 to the conversion efficiency of the signal conversion unit 47 (conversion efficiency varies depending on the wavelength identified by the signal detection unit 45) and signal distribution. Applying the distribution ratio of the unit 42, the power of the optical signal input to the optical signal waveform measuring device 4 is measured, and the waveform is displayed with the power on the vertical axis and the time on the horizontal axis (step S15). .

このように、第2実施形態においても、第1実施形態と同様な効果を奏する。そして、信号分配部42、特定波長識別部43、信号増幅部44、信号検出部45及び波長切替制御部46は、損失を小さくするとともに、安価にかつ簡易に実装することができる。さらに、n種類の波長を識別するためには、(n-1)系統の信号分配部42、特定波長識別部43、信号増幅部44、信号検出部45及び波長切替制御部46を備えればよい。 Thus, the second embodiment also has the same effect as the first embodiment. The signal distribution unit 42, the specific wavelength identification unit 43, the signal amplification unit 44, the signal detection unit 45, and the wavelength switching control unit 46 can be mounted inexpensively and easily while reducing loss. Furthermore, in order to identify n types of wavelengths, (n-1) systems of signal distribution unit 42, specific wavelength identification unit 43, signal amplification unit 44, signal detection unit 45, and wavelength switching control unit 46 are provided. good.

(第3実施形態の光信号波形測定方法)
本開示の第3実施形態の光信号波形測定装置の構成を図5に示す。本開示の第3実施形態の光信号波形測定方法の手順を図6に示す。なお、第3実施形態の光信号波形測定方法は、第1実施形態の光信号波形測定方法と比べて、下位概念の方法の一例である。
(Optical signal waveform measurement method according to the third embodiment)
FIG. 5 shows the configuration of an optical signal waveform measuring device according to the third embodiment of the present disclosure. FIG. 6 shows the procedure of the optical signal waveform measuring method according to the third embodiment of the present disclosure. Note that the optical signal waveform measurement method of the third embodiment is an example of a method of a lower concept than the optical signal waveform measurement method of the first embodiment.

光信号波形測定装置6は、入力端子61、信号分光部62、信号変換部63、64及び波形測定部65を自装置の筐体内に備えたうえで、図6に示した手順を実行する。 The optical signal waveform measuring device 6 includes an input terminal 61, a signal spectroscopic section 62, signal converting sections 63 and 64, and a waveform measuring section 65 in its housing, and then executes the procedure shown in FIG.

光信号波形測定対象5は、例えばDUT(Device Under Test)等である。光信号波形測定装置6は、例えば光サンプリングオシロスコープ等である。光信号波形測定対象5と光信号波形測定装置6とは、接続端子51及び入力端子61を介して接続される。 The optical signal waveform measurement target 5 is, for example, a DUT (Device Under Test). The optical signal waveform measuring device 6 is, for example, an optical sampling oscilloscope. The optical signal waveform measurement object 5 and the optical signal waveform measuring device 6 are connected via a connection terminal 51 and an input terminal 61 .

信号分光部62は、光信号波形測定装置6に入力された光信号を分光する(ステップS21)。ここで、信号分光部62は、例えば回折格子、エタロンフィルタ又は波長弁別フィルタ等の光学フィルタ等であり、例えばマルチモード光ファイバ通信の850nm帯及びシングルモード光ファイバ通信の1650nm帯等のうち、一の波長帯の光信号を信号変換部63に出力する一方で、他の波長帯の光信号を信号変換部64に出力する。 The signal spectroscopic unit 62 spectroscopically separates the optical signal input to the optical signal waveform measuring device 6 (step S21). Here, the signal spectroscopy unit 62 is, for example, an optical filter such as a diffraction grating, an etalon filter, or a wavelength discrimination filter. While outputting the optical signal in the wavelength band of 1 to the signal conversion unit 63 , the optical signal in the other wavelength band is output to the signal conversion unit 64 .

信号変換部63、64は、信号分光部62で分光された各々の波長の光信号を電気信号に変換するに際し、信号分光部62で分光された光信号の各々の波長に応じた各々の変換効率を有する(ステップS22)。ここで、信号変換63、64は、例えばPD(Photo Diode)等であり、入力電圧から出力電流への、光信号の各々の波長に応じた各々の変換効率(各々の損失を含めて)を有する。 The signal converters 63 and 64, when converting the optical signals of the respective wavelengths split by the signal spectrometer 62 into electrical signals, convert the respective wavelengths of the optical signals split by the signal spectrometer 62 into electrical signals. have efficiency (step S22). Here, the signal converters 63 and 64 are, for example, PDs (Photo Diodes) or the like, and each conversion efficiency (including each loss) from the input voltage to the output current according to each wavelength of the optical signal is have.

波形測定部65は、信号変換部63、64から出力された電気信号の電力を受ける。そして、波形測定部65は、信号変換部63、64から出力された電気信号の電力に信号変換部63、64の各々の変換効率(信号分光部62で分光された波長に応じて変換効率は異なる。)を適用して、光信号波形測定装置6に入力された各々の波長の光信号の電力を測定し、電力を例えば縦軸として、時間を例えば横軸として、波形を表示する(ステップS23)。 The waveform measuring section 65 receives power of the electrical signals output from the signal converting sections 63 and 64 . Then, the waveform measurement unit 65 converts the power of the electrical signals output from the signal conversion units 63 and 64 into the conversion efficiency of each of the signal conversion units 63 and 64 (the conversion efficiency is ) is applied to measure the power of the optical signal of each wavelength input to the optical signal waveform measuring device 6, and the waveform is displayed with the power, for example, as the vertical axis and the time, for example, as the horizontal axis (step S23).

このように、第3実施形態においても、第1実施形態と同様な効果を奏する。そして、信号分光部62は、ソフトウェアの制御を不要とするとともに、安価にかつ簡易に実装することができる。さらに、n種類の波長を識別するためには、n種類の波長に対応する信号分光部62を備えるとともに、n系統の信号変換部63、64等を備えればよい。 Thus, the third embodiment also has the same effect as the first embodiment. The signal spectroscopic unit 62 does not require software control, and can be implemented inexpensively and easily. Furthermore, in order to identify n kinds of wavelengths, it is sufficient to provide the signal spectroscopic unit 62 corresponding to the n kinds of wavelengths, as well as the n systems of signal conversion units 63 and 64 and the like.

本開示の光信号波形測定装置及び光信号波形測定方法は、例えば光サンプリングオシロスコープ等に適用することができ、光信号波形測定装置に入力される光信号の波長を、手動のコマンド等で設定することなく、また外付けの分光器等で分光することなく、光信号波形測定装置に入力される光信号の電力を、高精度に測定することができ、また測定の自動化を容易にすることができる。 The optical signal waveform measuring device and optical signal waveform measuring method of the present disclosure can be applied to, for example, an optical sampling oscilloscope, etc., and the wavelength of the optical signal input to the optical signal waveform measuring device is set by a manual command or the like. The power of the optical signal input to the optical signal waveform measurement device can be measured with high accuracy without dispersing the spectrum with an external spectroscope or the like, and the measurement can be easily automated. can.

1、3、5:光信号波形測定対象
2、4、6:光信号波形測定装置
11、31、51:接続端子
21、41、61:入力端子
22:波長識別部
23、47、63、64:信号変換部
24、48、65:波形測定部
42:信号分配部
43:特定波長識別部
44:信号増幅部
45:信号検出部
46:波長切替制御部
62:信号分光部
1, 3, 5: optical signal waveform measurement objects 2, 4, 6: optical signal waveform measuring devices 11, 31, 51: connection terminals 21, 41, 61: input terminal 22: wavelength identification units 23, 47, 63, 64 : signal converters 24, 48, 65: waveform measurement unit 42: signal distribution unit 43: specific wavelength identification unit 44: signal amplification unit 45: signal detection unit 46: wavelength switching control unit 62: signal spectroscopy unit

Claims (2)

光信号の波形を測定する光信号波形測定装置であって、
自装置に入力された光信号の波長を識別する波長識別部と、
前記自装置に入力された光信号を電気信号に変換するに際し、前記波長識別部で識別された光信号の波長に応じた変換効率を有する信号変換部と、
前記信号変換部から出力された電気信号の波形を測定するに際し、前記信号変換部の変換効率に基づいて、前記自装置に入力された光信号の電力を測定する波形測定部と、
を前記自装置の筐体内に備え
前記波長識別部は、前記自装置に入力された光信号を分配する信号分配部と、前記信号分配部で分配された一部の光信号が特定波長を有するかどうかを識別する特定波長識別部と、前記信号変換部の変換効率として、前記特定波長識別部で識別された前記一部の光信号の前記特定波長に応じた変換効率を適用する波長切替制御部と、を備え、
前記信号変換部は、前記信号分配部で分配された前記一部の光信号を除く残りの光信号を電気信号に変換し、前記波形測定部は、前記信号変換部の変換効率及び前記信号分配部の分配比率に基づいて、前記自装置に入力された光信号の電力を測定する
ことを特徴とする光信号波形測定装置。
An optical signal waveform measuring device for measuring the waveform of an optical signal,
a wavelength identification unit that identifies the wavelength of an optical signal input to the device;
a signal conversion unit having a conversion efficiency corresponding to the wavelength of the optical signal identified by the wavelength identification unit when converting the optical signal input to the device into an electrical signal;
a waveform measurement unit for measuring the power of the optical signal input to the device based on the conversion efficiency of the signal conversion unit when measuring the waveform of the electrical signal output from the signal conversion unit;
provided in the housing of the own device ,
The wavelength identification unit includes a signal distribution unit that distributes the optical signal input to the device itself, and a specific wavelength identification unit that identifies whether a part of the optical signals distributed by the signal distribution unit has a specific wavelength. and a wavelength switching control unit that applies, as the conversion efficiency of the signal conversion unit, the conversion efficiency corresponding to the specific wavelength of the part of the optical signals identified by the specific wavelength identification unit,
The signal conversion section converts the remaining optical signals, excluding the part of the optical signals distributed by the signal distribution section, into electrical signals, and the waveform measurement section measures the conversion efficiency of the signal conversion section and the signal distribution. measure the power of the optical signal input to the device based on the distribution ratio of the part
An optical signal waveform measuring device characterized by:
光信号の波形を測定する光信号波形測定装置を用いる光信号波形測定方法であって、
自装置に入力された光信号の波長を識別する波長識別手順と、
前記自装置に入力された光信号を電気信号に変換するに際し、前記波長識別手順で識別された光信号の波長に応じた変換効率を有する信号変換手順と、
前記信号変換手順で出力された電気信号の波形を測定するに際し、前記信号変換手順の変換効率に基づいて、前記自装置に入力された光信号の電力を測定する波形測定手順と、
を前記自装置の筐体内で行い、
前記波長識別手順は、前記自装置に入力された光信号を分配する信号分配手順と、前記信号分配手順で分配された一部の光信号が特定波長を有するかどうかを識別する特定波長識別手順と、前記信号変換手順の変換効率として、前記特定波長識別手順で識別された前記一部の光信号の前記特定波長に応じた変換効率を適用する波長切替制御手順と、を備え、
前記信号変換手順は、前記信号分配手順で分配された前記一部の光信号を除く残りの光信号を電気信号に変換し、前記波形測定手順は、前記信号変換手順の変換効率及び前記信号分配手順の分配比率に基づいて、前記自装置に入力された光信号の電力を測定する
ことを特徴とする光信号波形測定方法。
An optical signal waveform measuring method using an optical signal waveform measuring device for measuring the waveform of an optical signal,
a wavelength identification procedure for identifying the wavelength of the optical signal input to the device;
a signal conversion procedure having a conversion efficiency corresponding to the wavelength of the optical signal identified by the wavelength identification procedure when converting the optical signal input to the self-device into an electrical signal;
a waveform measurement procedure for measuring the power of the optical signal input to the device based on the conversion efficiency of the signal conversion procedure when measuring the waveform of the electrical signal output in the signal conversion procedure;
is performed within the housing of the own device,
The wavelength identification procedure includes a signal distribution procedure for distributing an optical signal input to the own device, and a specific wavelength identification procedure for identifying whether or not some of the optical signals distributed by the signal distribution procedure have a specific wavelength. and a wavelength switching control procedure for applying, as the conversion efficiency of the signal conversion procedure, the conversion efficiency according to the specific wavelength of the part of the optical signals identified in the specific wavelength identification procedure,
The signal conversion step converts the remaining optical signals, excluding the part of the optical signals distributed in the signal distribution step, into electrical signals, and the waveform measurement step measures the conversion efficiency of the signal conversion step and the signal distribution. Measure the power of the optical signal input to the device based on the distribution ratio of the procedure
An optical signal waveform measuring method characterized by:
JP2021063097A 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method Active JP7308874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021063097A JP7308874B2 (en) 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021063097A JP7308874B2 (en) 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method

Publications (2)

Publication Number Publication Date
JP2022158312A JP2022158312A (en) 2022-10-17
JP7308874B2 true JP7308874B2 (en) 2023-07-14

Family

ID=83639034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021063097A Active JP7308874B2 (en) 2021-04-01 2021-04-01 Optical signal waveform measuring device and optical signal waveform measuring method

Country Status (1)

Country Link
JP (1) JP7308874B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345312A (en) 2004-06-03 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> Optical signal waveform measurement/evaluation apparatus by optoelectric sampling
JP2007240389A (en) 2006-03-09 2007-09-20 Fujitsu Ltd Light waveform measuring instrument and light waveform measuring method
JP2014228504A (en) 2013-05-27 2014-12-08 アンリツ株式会社 Light sampling device and light sampling method
JP2018124237A (en) 2017-02-03 2018-08-09 アンリツ株式会社 Optical sampling oscilloscope and method for improving its sensitivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345312A (en) 2004-06-03 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> Optical signal waveform measurement/evaluation apparatus by optoelectric sampling
JP2007240389A (en) 2006-03-09 2007-09-20 Fujitsu Ltd Light waveform measuring instrument and light waveform measuring method
JP2014228504A (en) 2013-05-27 2014-12-08 アンリツ株式会社 Light sampling device and light sampling method
JP2018124237A (en) 2017-02-03 2018-08-09 アンリツ株式会社 Optical sampling oscilloscope and method for improving its sensitivity

Also Published As

Publication number Publication date
JP2022158312A (en) 2022-10-17

Similar Documents

Publication Publication Date Title
US11680870B2 (en) Opto electrical test measurement system for integrated photonic devices and circuits
US7064832B2 (en) Color and intensity measuring module for test of light emitting components by automated test equipment
US6639666B2 (en) System and method for optical spectrum fast peak reporting
CN104898037A (en) Test apparatus, calibration device, calibration method and test method
US9490907B2 (en) Optical receiver and detection method
RU2510609C2 (en) Apparatus for optical identification of measurement channels of built-in nondestructive inspection system based on fibre-optic bragg sensors
US6643011B2 (en) SNR calculation method and optical spectrum measurement apparatus
CN102012310B (en) Novel full-band CCD detector performance evaluating system and method
JP7308874B2 (en) Optical signal waveform measuring device and optical signal waveform measuring method
US20080253765A1 (en) Optical power measuring apparatus and optical signal receiving apparatus comprising same
US10649059B2 (en) Multi-channel detecting system
KR200385979Y1 (en) The handheld type optical multi-wavelength analyzer for CWDM wavelength measurements
KR20080004643A (en) Wavelength power meter
CN101846551B (en) Video optical power meter
CN110082075B (en) Ultra-high wavelength resolution passive optical device spectrum scanning device and method
CN209745527U (en) passive optical device spectrum scanning device with ultrahigh wavelength resolution
KR20110115395A (en) Ship structure dynamic measuring instrument
US20140021335A1 (en) Microprocessor based multi-junction detector system and method of use
CN220207839U (en) Parallel calibration circuit, automatic test equipment and test system
CN113381807B (en) Optical module performance detection device, method and system
US20230324219A1 (en) Dual-amplifier circuit for optical signals
KR100815549B1 (en) Optical signal detector
JP2007292642A (en) Photometric instrument, and measuring method in photometric instrument
JPH0295222A (en) Color sensor circuit
JPH04113037U (en) Spectroscopic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7308874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150