JP7307992B2 - Radioactivity measuring device - Google Patents

Radioactivity measuring device Download PDF

Info

Publication number
JP7307992B2
JP7307992B2 JP2022132839A JP2022132839A JP7307992B2 JP 7307992 B2 JP7307992 B2 JP 7307992B2 JP 2022132839 A JP2022132839 A JP 2022132839A JP 2022132839 A JP2022132839 A JP 2022132839A JP 7307992 B2 JP7307992 B2 JP 7307992B2
Authority
JP
Japan
Prior art keywords
radiation
water
concentration
measuring device
radioactivity measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022132839A
Other languages
Japanese (ja)
Other versions
JP2022162041A (en
Inventor
聡 石田
周平 吉本
克志 白旗
健雄 土原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017193857A external-priority patent/JP7197878B2/en
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2022132839A priority Critical patent/JP7307992B2/en
Publication of JP2022162041A publication Critical patent/JP2022162041A/en
Application granted granted Critical
Publication of JP7307992B2 publication Critical patent/JP7307992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、複雑な設備を用いることなく、リアルタイムで且つ正確に、水中の放射性物質濃度を把握できる放射能測定装置に関する。 TECHNICAL FIELD The present invention relates to a radioactivity measuring device capable of accurately ascertaining the concentration of radioactive substances in water in real time without using complicated equipment.

平成23年3月11日に発生した東北地方太平洋沖地震及びそれに伴う津波によって引き起こされた東京電力福島第一原子力発電所の事故によって、土壌等だけでなく、河川や、ため池、その他の水域についても放射性物質によって汚染された。特に、福島県内には3400箇所以上のため池が存在し、農業用水源として利用されていたが、その多くは水中から放射性セシウムが検出された。 Due to the accident at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station caused by the Tohoku-Pacific Ocean Earthquake that occurred on March 11, 2011 and the accompanying tsunami, not only soil, but also rivers, reservoirs, and other water bodies were damaged. was also contaminated with radioactive material. In particular, more than 3,400 irrigation ponds existed in Fukushima Prefecture and were used as water sources for agriculture, but radioactive cesium was detected in most of them.

その後、環境省や福島県、その他の各機関の除染作業によって、土壌中の放射性物質は除去され、営農が再開されている地域も増えている。ただし、河川やため池等から引かれた農業用水を通じて、放射性物質が水田に流入することが懸念されることから、現在、水中の放射性物質濃度を把握することが望まれていた。
そのため、従来は測定対象となる水域の水を、一旦サンプリングした後、分析施設で放射線検出器を用いて水中の放射性物質濃度を把握していた。
Since then, decontamination work by the Ministry of the Environment, Fukushima Prefecture, and other organizations has removed radioactive substances from the soil, and an increasing number of areas have resumed farming. However, since there is concern that radioactive materials may flow into paddy fields through agricultural water drawn from rivers and reservoirs, it is currently desired to know the concentration of radioactive materials in water.
For this reason, conventionally, the concentration of radioactive substances in the water has been grasped using a radiation detector at an analysis facility after once sampling the water in the water area to be measured.

しかしながら、水中の放射性物質については、水域の種類や、かんがい期や出水期等の時期によって大きく変化することから、一回のサンプリングによって測定するだけでなく、リアルタイム且つ連続的に観測できる技術の開発が強く望まれている。 However, since radioactive materials in water vary greatly depending on the type of water area and the timing of irrigation and flooding, development of technology that enables real-time and continuous observation, not just one-time sampling. is strongly desired.

本発明の目的は、複雑な設備を用いることなく、リアルタイムで且つ正確に、水中の放射性物質濃度を把握できる放射能測定装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a radioactivity measuring apparatus capable of accurately grasping the concentration of radioactive substances in water in real time without using complicated equipment.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、水中の放射性物質濃度を測定するための放射線検出器を、防水性を有し且つ放射線を透過させる材料からなる防水容器で覆うとともに、解析手段を設けて、放射線検出器から取得した信号に基づき放射性物質濃度をリアルタイムに算出することによって、リアルタイムで且つ正確に水中の放射性物質濃度を把握できることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have found that a radiation detector for measuring the concentration of radioactive substances in water is a waterproof container made of a material that is waterproof and allows radiation to pass through. In addition to covering, by providing an analysis means and calculating the radioactive substance concentration in real time based on the signal acquired from the radiation detector, it was found that the radioactive substance concentration in water can be accurately grasped in real time, and the present invention is completed. reached.

本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
(1)水中の放射性物質濃度を観測するための放射能測定装置であって、放射線検出器と、防水性を有し且つ放射線を透過させる材料からなり、前記放射線検出器を覆うように設けられた防水容器と、前記放射線検出器から取得した信号に基づいて放射性物質濃度を算出する解析手段と、を備えることを特徴とする、放射能測定装置。
The present invention was made based on such findings, and the gist thereof is as follows.
(1) A radioactivity measuring device for observing the concentration of radioactive substances in water, comprising: a radiation detector; and an analysis means for calculating a radioactive substance concentration based on a signal obtained from the radiation detector.

(2)前記解析手段は、前記算出した放射性物質濃度から、測定対象となる水域以外に由来する放射線の線量(バックグラウンド放射線量)を差し引く、バックグラウンド除去処理を実施することを特徴とする、(1)に記載の放射能測定装置。 (2) The analysis means performs a background removal process that subtracts the radiation dose (background radiation dose) derived from areas other than the water area to be measured from the calculated radioactive substance concentration, (1) The radioactivity measuring device according to the above.

(3)前記放射能測定装置は、前記測定対象となる水域の水位を測定する水位測定手段をさらに備え、前記解析手段は、前記水位測定手段の測定した水位に応じて、前記バックグラウンド放射線量を算出することを特徴とする、(1)又は(2)に記載の放射能測定装置。 (3) The radioactivity measuring device further includes water level measuring means for measuring the water level of the water area to be measured, and the analyzing means measures the background radiation dose according to the water level measured by the water level measuring means. The radioactivity measuring device according to (1) or (2), which calculates the

(4)前記放射線検出器は、シンチレータとしてNaI(Tl)、CsI(Tl)、CsI(Na)、LnBr3、ZnS(Ag)又はCsIを有することを特徴とする、(1)~(3)のいずれかに記載の放射能測定装置。 (4) The radiation detector has NaI(Tl), CsI(Tl), CsI(Na), LnBr3 , ZnS(Ag) or CsI as a scintillator, (1) to (3) Radioactivity measuring device according to any one of.

(5)前記放射能測定装置は、前記測定対象となる水域の水底に設置されることを特徴とする、(1)~(4)のいずれかに記載の放射能測定装置。 (5) The radioactivity measuring device according to any one of (1) to (4), characterized in that the radioactivity measuring device is installed on the bottom of the water area to be measured.

本発明によれば、複雑な設備を用いることなく、リアルタイムで且つ正確に、水中の放射性物質濃度を把握できる放射能測定装置を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the radioactivity measuring apparatus which can grasp|ascertain the radioactive substance density|concentration in water accurately in real time, without using complicated equipment.

本発明の放射能測定装置の一実施形態について、模式的に示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed typically about one Embodiment of the radioactivity measuring apparatus of this invention. 本発明の放射能測定装置の放射線検出器から得られた信号に基づいて作製した光電効果のカウント数を示すスペクトルデータを示すグラフである。4 is a graph showing spectral data showing photoelectric effect counts produced based on signals obtained from the radiation detector of the radioactivity measuring apparatus of the present invention. 河川の降水量と放射性Csの濃度のそれぞれの推移を示したグラフである。2 is a graph showing changes in river rainfall and radioactive Cs concentrations. 本発明の放射能測定装置の一実施形態を、実際に河川で使用した際の状態を示した写真である。It is the photograph which showed the state at the time of actually using one Embodiment of the radioactivity measuring apparatus of this invention in a river. 本発明の実施例で得られた、河川中のCsピーク計数、河川の水位及びCsの実測値のそれぞれの推移を示したグラフである。4 is a graph showing changes in the Cs peak count in the river, the water level of the river, and the actual measurement value of Cs obtained in the example of the present invention.

<放射能測定装置>
本発明の放射能測定装置の一実施形態について、必要に応じて図面を用いて説明する。
本発明の放射能測定装置は、水中の放射性物質濃度を観測するための放射能測定装置であって、図1に示すように、放射線検出器10と、防水性を有し且つ放射線を透過させる材料からなり、前記放射線検出器を覆うように設けられた防水容器20と、前記放射線検出器から取得した信号に基づいて放射性物質濃度を算出する解析手段30と、を備えることを特徴とする。
<Radiation measuring device>
One embodiment of the radioactivity measuring device of the present invention will be described with reference to the drawings as necessary.
The radioactivity measuring device of the present invention is a radioactivity measuring device for observing the concentration of radioactive substances in water, and as shown in FIG. It is characterized by comprising a waterproof container 20 made of material and provided so as to cover the radiation detector, and an analysis means 30 for calculating the radioactive substance concentration based on the signal acquired from the radiation detector.

放射性物質濃度を測定するための放射線検出器10を、防水性を有し且つ放射線を透過させる材料からなる防水容器20で覆うことによって、防水を図りつつ放射線量を測定でき、さらに、解析手段30を設けて、放射線検出器10から取得した信号から放射性物質濃度をリアルタイムに算出するできる結果、リアルタイムで且つ正確に水中の放射性物質濃度を把握することが可能となる。そのため、かんがい期や出水期での、放射性物質濃度の増減についても、リアルタイムに把握することができるようになる。 By covering the radiation detector 10 for measuring the concentration of radioactive substances with a waterproof container 20 made of a waterproof and radiation-permeable material, it is possible to measure the radiation dose while maintaining waterproofness. is provided to calculate the concentration of radioactive substances in real time from the signal obtained from the radiation detector 10. As a result, the concentration of radioactive substances in water can be accurately determined in real time. Therefore, it will be possible to grasp the increase and decrease of radioactive material concentration in real time during irrigation season and flood season.

なお、本発明の放射能測定装置が放射性物質濃度を観測する際の、対象となる水域については、特に限定はされない。例えば、河川、湖、池、湾、入り江等の地学的水域や、貯水施設(ため池、ダムなど)、水路、港等の人工的水域が挙げられる。また、本発明の放射能測定装置が放射性物質濃度を観測する際の「水中」とは、前記水域中の任意の部分を意味し、水域中での深さ等は特に限定されない。 There is no particular limitation on the target water area when the radioactivity measuring device of the present invention observes the concentration of radioactive substances. Examples include geological bodies of water such as rivers, lakes, ponds, bays and coves, and man-made bodies of water such as reservoirs (reservoirs, dams, etc.), watercourses, harbors and the like. In addition, "in water" when the radioactivity measuring device of the present invention observes the concentration of radioactive substances means an arbitrary part in the water area, and the depth in the water area is not particularly limited.

また、本発明の放射能測定装置による濃度観測の対象である「放射性物質」は、放射能を持った物質である。その種類については、特に限定はされず、例えば、核燃料物質や、放射性元素、又は、放射性同位体、中性子から生成された放射化物質などが挙げられる。その中でも、本発明では、特に、137Cs(セシウム)、134Cs(セシウム)、40K(カリウム)、214Bi(ビスマス)、228Ac(アクチニウム)、208Tl(タリウム)、212Pb(鉛)、235U(ウラン)等の放射性物質が対象となる。これらの放射性物質は水中に含まれることが多く、本発明によって放射性物質濃度を把握する利益が大きい。
なお、本発明での「放射線」とは、α線、β線、γ線、中性子線等の人体に与える影響の強い電離放射線のことであり、「放射能」とは、放射線を発する能力のことである。その中でも本発明では、放射線として、主に「γ線」を対象としており、以後の説明で「放射線」と記載する場合には、実質的に「γ線」を示すことがある。
The "radioactive substance" whose concentration is to be observed by the radioactivity measuring apparatus of the present invention is a substance having radioactivity. The type thereof is not particularly limited, and examples thereof include nuclear fuel materials, radioactive elements, radioactive isotopes, activated substances generated from neutrons, and the like. Among them, in the present invention, 137 Cs (cesium), 134 Cs (cesium), 40 K (potassium), 214 Bi (bismuth), 228 Ac (actinium), 208 Tl (thallium), 212 Pb (lead) , 235 U (uranium) and other radioactive materials. These radioactive substances are often contained in water, and the advantage of grasping the radioactive substance concentration by the present invention is great.
In the present invention, "radiation" means ionizing radiation that has a strong effect on the human body, such as α rays, β rays, γ rays, and neutron rays, and "radioactivity" means the ability to emit radiation. That is. Among them, the present invention mainly deals with "γ-rays" as radiation, and when "radiation" is described in the following description, it may actually mean "γ-rays".

(放射線検出器)
本発明の放射能測定装置は、図1に示すように、放射線検出器10を備える。該放射線検出器10は、内部にシンチレータ等の放射線検出素子10aを有し、放射線の有無及び放射線量を検出するための機器である。
(radiation detector)
The radioactivity measuring apparatus of the present invention comprises a radiation detector 10 as shown in FIG. The radiation detector 10 has a radiation detection element 10a such as a scintillator inside, and is a device for detecting the presence or absence of radiation and the amount of radiation.

前記放射線検出素子10aについては、放射線の有無及び放射線量を検出できるものであれば特に限定はされない。公知の放射線検出素子として、例えば、シンチレータ、電離箱、比例計数管、GM計数管、半導体検出器、熱ルミネッセンス素子、光ルミネッセンス素子、蛍光ガラス素子等が挙げられる。
その中でも、比較的容易且つ正確に放射線の種類及び放射線量を取得できる点から、前記放射線検出素子10aとして、シンチレータを用いることが好ましい。ここで、前記シンチレータとは、放射線を吸収し、励起されることにより発光する特性を示す物質の総称である。
The radiation detection element 10a is not particularly limited as long as it can detect the presence or absence of radiation and the amount of radiation. Examples of known radiation detection elements include scintillators, ionization chambers, proportional counters, GM counters, semiconductor detectors, thermoluminescence elements, photoluminescence elements, and fluorescent glass elements.
Among them, it is preferable to use a scintillator as the radiation detection element 10a, because the type and dose of radiation can be obtained relatively easily and accurately. Here, the scintillator is a general term for substances exhibiting properties of absorbing radiation and emitting light when excited.

さらに、前記シンチレータは、放射線の中でもγ線に高い感度を有する、NaI(Tl)、CsI(Tl)、CsI(Na)、LnBr3、ZnS(Ag)又はCsIを用いることが好ましい。前記放射線吸収量の検出精度が高く、より正確に水中の放射性物質濃度を把握できるためである。さらに、NaI(Tl)、CsI(Tl)、CsI(Na)、LnBr3、ZnS(Ag)又はCsIを放射線受光素子として用いた場合、放射性物質の種類ごとに放射線量の検出を行うことが可能である。 Further, the scintillator preferably uses NaI(Tl), CsI(Tl), CsI(Na), LnBr 3 , ZnS(Ag) or CsI, which has high sensitivity to γ rays among radiations. This is because the detection accuracy of the radiation absorption amount is high, and the concentration of radioactive substances in water can be grasped more accurately. Furthermore, when NaI(Tl), CsI(Tl), CsI(Na), LnBr 3, ZnS(Ag) or CsI is used as the radiation receiving element, it is possible to detect the radiation dose for each type of radioactive material. is.

なお、前記放射線検出器10は、上述した放射線検出素子10a以外にも、放射線検出器に用いられる公知の部材を組み込むことが可能である。例えば、放射線検出素子10aとしてシンチレータを用いた場合には、後述する解析手段30へ送る信号を増幅するために、光電子増倍管(図示せず)を放射線検出器10内に組み込むことが可能である。 The radiation detector 10 can incorporate known members used in radiation detectors in addition to the radiation detection element 10a described above. For example, when a scintillator is used as the radiation detection element 10a, a photomultiplier tube (not shown) can be incorporated in the radiation detector 10 in order to amplify the signal sent to the analysis means 30, which will be described later. be.

(防水容器)
本発明の放射能測定装置は、図1に示すように、前記放射線検出器10を覆うように設けられた防水容器20を、さらに備える。
前記防水容器20は、防水性を有し且つ放射線を透過させる材料からなる。これによって、放射線検出器10を水に曝すことなく、水中の放射性物質濃度を直接的に把握できる。
(waterproof container)
The radioactivity measuring apparatus of the present invention further includes a waterproof container 20 provided to cover the radiation detector 10, as shown in FIG.
The waterproof container 20 is made of a waterproof and radiation-permeable material. This makes it possible to directly grasp the concentration of radioactive substances in water without exposing the radiation detector 10 to water.

前記防水容器を構成する材料については、防水性を有し且つ放射線を透過させるものであれば、特に限定はされない。ただし、放射線を透過させる点からは、金属のような密度が大きい材料を避けることが好ましい。
具体的には、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン、熱硬化性ポリイミド等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、ポリテトラフルオロエチレン、アクリル系樹脂、ポリカーボネート等の熱可塑性樹脂、天然樹脂などが挙げられる。それらの中でも、放射線の透過性、加工の容易性、製造コスト等の点から、ポリエチレン、ポリ塩化ビニル又はポリカーボネートを材料として含むことが好ましい。
The material constituting the waterproof container is not particularly limited as long as it is waterproof and allows radiation to pass through. However, from the viewpoint of transmitting radiation, it is preferable to avoid materials with high density such as metal.
Specifically, for example, thermosetting resins such as phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, polyurethane, thermosetting polyimide, polyethylene, polypropylene, polyvinyl chloride, polyvinyl chloride, etc. Thermoplastic resins such as vinylidene chloride, polystyrene, polyvinyl acetate, polyurethane, polytetrafluoroethylene, acrylic resins and polycarbonates, natural resins, and the like. Among them, it is preferable to include polyethylene, polyvinyl chloride, or polycarbonate as a material from the viewpoints of radiation transparency, ease of processing, manufacturing cost, and the like.

前記防水容器20の形状についても、特に限定はされず、前記放射線検出器10の形状や、水域の状態によって適宜変更することができる。例えば、前記防水容器20の形を、円柱状、多角状、球状、楕円体状、平板状、円盤状、棒状等にすることが可能である。その中でも、前記放射線検出器10の形状に対応させる点からは、前記防水容器20の形状を、円柱状又は多角柱状とすることが好ましく、水域における水の抵抗が少ないという点からは、円柱状とすることがより好ましい。 The shape of the waterproof container 20 is also not particularly limited, and can be appropriately changed according to the shape of the radiation detector 10 and the condition of the water area. For example, the shape of the waterproof container 20 can be cylindrical, polygonal, spherical, ellipsoidal, tabular, disk-shaped, rod-shaped, or the like. Among them, the shape of the waterproof container 20 is preferably cylindrical or polygonal in order to correspond to the shape of the radiation detector 10, and in terms of low water resistance in water, it is preferable to use a cylindrical shape. is more preferable.

さらに、前記防水容器20は、前記放射線検出器10に水が触れないように、放射線検出器10を覆う必要があるところ、防水容器の水と接する部分が密閉されていれば、必ずしも全面を密閉する必要はない。図1に示すように、防水容器20の上部が水と接触していない場合には、上面については密閉しなくてもよい。 Furthermore, the waterproof container 20 needs to cover the radiation detector 10 so that the radiation detector 10 does not come into contact with water. do not have to. As shown in FIG. 1, when the upper portion of the waterproof container 20 does not come into contact with water, the upper surface does not have to be sealed.

また、図1に示すように、前記防水容器20は、必要に応じてその内部に、放射線シールド11を有することが好ましい。前記放射線検出器10が検出する放射線のうち、不要なもの(測定対象となる水域以外に由来する放射線)をできるだけ排除することで、水中の放射性物質濃度の検出精度を高めることができるからである。
なお、前記放射線シールド11を設ける場所については、特に限定はされず、例えば図1に示すように、前記放射線検出器10の下面を覆うように設けることができる。この場合、土壌等に含まれる放射性物質に由来した下からの放射線を抑制することが可能である。また、同様に上からの放射線を抑制するために、前記放射線検出器10の上部に放射線シールド11を設けることもできる。
また、前記放射線シールド11の材料については、放射線を遮蔽する作用があるものであれば、特に限定はされず、公知のものを用いることができる。前記放射線シールド11の材料としては、密度の大きい材料、例えば、鉛、金、銀、鉄、コンクリート等が挙げられる。
Moreover, as shown in FIG. 1, it is preferable that the waterproof container 20 has a radiation shield 11 therein as required. This is because, among the radiation detected by the radiation detector 10, the detection accuracy of the concentration of radioactive substances in water can be increased by eliminating as much as possible unnecessary radiation (radiation originating from areas other than the water area to be measured). .
The place where the radiation shield 11 is provided is not particularly limited. For example, as shown in FIG. In this case, it is possible to suppress radiation from below originating from radioactive substances contained in soil or the like. Also, a radiation shield 11 may be provided above the radiation detector 10 to similarly suppress radiation from above.
Further, the material of the radiation shield 11 is not particularly limited as long as it has a function of shielding radiation, and known materials can be used. Materials for the radiation shield 11 include high-density materials such as lead, gold, silver, iron, and concrete.

(解析手段)
本発明の放射能測定装置は、図1に示すように、解析手段30をさらに備える。該解析手段30は、図1に示すように、ケーブル等の接続機器を介して前記放射線検出器10と接続されており(図1では、アンプ33と接続されている。)、該放射線検出器10から取得した信号に基づいて放射性物質濃度を算出する。
なお、解析手段30の設けられる場所については特に限定はされない。例えば図1では、解析手段30が、地上に設置され、前記防水容器20の外に設けられているが、解析手段30の全部又は一部が、前記防水容器20の中に入るような構成とすることも可能である。
(Analysis means)
The radioactivity measuring apparatus of the present invention further comprises analysis means 30, as shown in FIG. As shown in FIG. 1, the analysis means 30 is connected to the radiation detector 10 via a connection device such as a cable (in FIG. 1, it is connected to an amplifier 33). Based on the signal obtained from 10, the radioactive substance concentration is calculated.
Note that the place where the analyzing means 30 is provided is not particularly limited. For example, in FIG. 1, the analysis means 30 is installed on the ground and provided outside the watertight container 20, but all or part of the analysis means 30 may be configured to be inside the watertight container 20. It is also possible to

ここで、前記解析手段30による放射性物質濃度の算出は、分析装置34によって行われる。放射線検出器10から取得した信号に基づき、放射性物質濃度を算出する具体的な方法については、特に限定はされず、使用する計算機の種類や、状況に応じて、公知の技術を適宜選択することができる。
一例として、前記放射線検出器10から取得した信号を、図2に示すように、波高分析器を用いて、光電効果のカウント数を示すスペクトルデータとした後、該スペクトルデータを元に、積算及びスムージング等の処理を行った後、放射線物質元素(Cs)のピーク係数(放射線物質の時間当たりの濃度(カウント数))へ変換する。一方で、ピーク係数とサンプリングによって別途得られた水中の放射性物質濃度との関係式を求めておくことで、放射性物質濃度を得ることができる。
Here, the calculation of the radioactive substance concentration by the analysis means 30 is performed by the analysis device 34 . A specific method for calculating the radioactive substance concentration based on the signal obtained from the radiation detector 10 is not particularly limited, and a known technique can be appropriately selected according to the type of computer used and the situation. can be done.
As an example, as shown in FIG. 2, the signal obtained from the radiation detector 10 is converted into spectral data indicating the count number of the photoelectric effect using a pulse height analyzer, and then integrated and calculated based on the spectral data. After processing such as smoothing, it is converted into the peak coefficient of the radioactive material element (Cs) (concentration of radioactive material per hour (count number)). On the other hand, the concentration of radioactive substances can be obtained by calculating the relational expression between the peak coefficient and the concentration of radioactive substances in water separately obtained by sampling.

また、前記放射線検出器10から取得した信号については、図1に示すように、アンプ(増幅器)33によって、増幅させた後に、放射性物質濃度を算出するための分析装置34へと送ることもできる。前記分析装置34で利用しやすいデータとすることができるためである。 Further, as shown in FIG. 1, the signal obtained from the radiation detector 10 can be amplified by an amplifier 33 and then sent to an analyzer 34 for calculating the concentration of radioactive substances. . This is because the data can be easily used by the analysis device 34 .

なお、前記アンプ33や、前記分析装置34の動作や、データの授受等についての制御は、例えば図1に示すように、制御盤32によって行うことができる。この制御盤32の動作については、手動によって行うことも可能であるが、ソフトウェア等によって自動化することもできる。 The operation of the amplifier 33 and the analysis device 34, and the control of data transmission/reception can be performed by a control panel 32 as shown in FIG. 1, for example. The operation of the control panel 32 can be performed manually, but can also be automated by software or the like.

なお、前記解析手段30に用いられる機材としては特に限定はされず、市販の電子計算機(コンピュータ)に、特定のソフトウェアを組み込むことで、解析手段30として用いることが可能である。また、図1では、解析手段30の中に電源31が組み込まれているが、電源を解析手段30とは独立した形で備えることも可能である。 The equipment used for the analysis means 30 is not particularly limited, and a commercially available electronic computer (computer) can be used as the analysis means 30 by incorporating specific software. Also, in FIG. 1, the power source 31 is incorporated in the analyzing means 30, but it is also possible to provide the power source independently of the analyzing means 30. FIG.

そして、本発明の放射能測定装置では、図1に示すように、前記前記解析手段30が、算出した放射性物質濃度から、測定対象となる水域100以外に由来する放射線の線量(以下、「バックグラウンド放射線量」ということがある。)を差し引く、バックグラウンド除去処理35を実施することが好ましい。
通常、水域中の放射線濃度を観測する場合には、前記放射線検出器が、測定対象の水域100以外、例えば、大気中に含まれる放射線物質や、水底若しくは水域近くにある土壌中の放射線物質などに由来した放射線を同時に測定することとなる。そのため、バックグラウンド除去処理35を実施し、測定対象の水域100以外に由来したバックグラウンド放射線の影響を差し引くことによって、測定対象の水域100の放射性物質濃度を正確に観測することが可能になる。
In the radioactivity measuring apparatus of the present invention, as shown in FIG. 1, the analysis means 30 calculates the dose of radiation derived from areas other than the water area 100 to be measured (hereinafter referred to as "back It is preferable to perform a background removal process 35 that subtracts the "ground radiation dose".
Normally, when observing the radiation concentration in a water area, the radiation detector is placed outside the water area 100 to be measured. At the same time, the radiation derived from Therefore, by performing the background removal process 35 and subtracting the influence of background radiation derived from areas other than the water area 100 to be measured, it becomes possible to accurately observe the concentration of radioactive substances in the water area 100 to be measured.

なお、一般的なバックグラウンド放射線の除去技術としては、十分な厚さの鉛等の金属からなる遮蔽物によって放射線検出器を覆うものが挙げられる。しかしながら、その場合、遮蔽物の大きさや重量が大きくなり、装置の作製や、測定場所での設置が困難となることが考えられる。また、前記遮蔽物によってバックグラウンド放射線の全てを除去することは困難であり、放射線検出器の全てを覆うと水中の放射線物質の濃度も観測できなくなることから、本発明のように、バックグランド除去処理を実施することが、装置作製の煩雑性や、観測精度の観点からも好ましい。
また、前記バックグラウンド放射線量については、常に一定ではないため、後述する水域の水位や、水域の濁度等に応じて、バックグラウンド放射線量を算出することがより好ましい。
As a general technique for removing background radiation, there is a technique in which the radiation detector is covered with a sufficiently thick shield made of metal such as lead. However, in that case, the size and weight of the shielding object will increase, and it is conceivable that it will be difficult to manufacture the device and install it at the measurement location. In addition, it is difficult to remove all of the background radiation with the shield, and if the radiation detector is completely covered, the concentration of radioactive substances in water cannot be observed. Carrying out the treatment is preferable from the viewpoint of complexity of device production and observation accuracy.
Moreover, since the background radiation dose is not always constant, it is more preferable to calculate the background radiation dose according to the water level of the water area, the turbidity of the water area, and the like, which will be described later.

(水位測定手段)
また、本発明の放射能測定装置では、図1に示すように、前記測定対象となる水域100の水位を測定する水位測定手段40をさらに備え、前記解析手段30は、前記水位測定手段40の測定した水位に応じて、前記バックグラウンド放射線量を算出することがより好ましい。放射性物質濃度をより高精度に把握できるためである。
(Water level measuring means)
Further, the radioactivity measuring apparatus of the present invention, as shown in FIG. More preferably, the background radiation dose is calculated according to the measured water level. This is because the concentration of radioactive substances can be grasped with higher accuracy.

上述したように、前記バックグラウンド放射線量については、常に一定ではなく、水位に応じて大きく変化するものである。例えば、水位が低い場合には、水による放射線遮蔽効果が小さいため、測定対象の水域以外に由来するバックグラウンド放射線量が大きくなり、一方、水位が高い場合には、水による放射線遮蔽効果が大きいため、測定対象の水域以外に由来するバックグラウンド放射線量が小さくなることが考えられる。そのため、水域100の水位を測定し、バックグラウンド放射線量の算出の条件として用いることによって、バックグラウンド処理35を正確且つリアルタイムに実施できる結果、放射性物質濃度をより高精度に算出できる。 As mentioned above, the background radiation dose is not always constant, but varies greatly depending on the water level. For example, when the water level is low, the radiation shielding effect of water is small, so the amount of background radiation derived from areas other than the target water area increases. On the other hand, when the water level is high, the radiation shielding effect of water is large. Therefore, it is conceivable that the background radiation dose derived from areas other than the target water area will be reduced. Therefore, by measuring the water level of the water area 100 and using it as a condition for calculating the background radiation dose, the background processing 35 can be performed accurately and in real time, and as a result, the concentration of radioactive substances can be calculated with higher accuracy.

なお、前記バックグラウンド放射線量の算出については、水位とバックグラウンド放射線量との関係を予め導出し、用意しておくことで、水位計40によって水位を測定するだけで、前記解析手段30において、リアルタイムにバックグラウンド除去35の処理を行うことが可能となる。 In addition, regarding the calculation of the background radiation dose, the relationship between the water level and the background radiation dose is derived in advance and prepared, so that the water level is measured by the water level gauge 40, and the analysis means 30: It is possible to perform the background removal 35 in real time.

ここで、前記水位計40については、特に限定はされず、使用目的に応じて公知のものを適宜使用することができる。
なお、図1では、前記水位計40による測定値を、前記解析手段30のバックグラウンド除去35のために用いているが、測定した水位を放射性物質濃度の算出に利用することもでき、その場合には、水位計40を分析装置34にも接続することができる。
Here, the water level gauge 40 is not particularly limited, and a known one can be appropriately used depending on the purpose of use.
In FIG. 1, the value measured by the water level gauge 40 is used for the background removal 35 of the analysis means 30, but the measured water level can also be used to calculate the concentration of radioactive substances. Alternatively, the water level gauge 40 can also be connected to the analyzer 34 .

なお、水位が高い場合には、水による放射線遮蔽効果が大きいため、測定対象の水域以外に由来するバックグラウンド放射線量が小さくなることを説明したが、水域の水量の増す出水時には、放射性物質を吸着した粘土等が多く含まれるため、水中の放射性物質濃度自体は高くなることが知られている。
ここで、図3は、福島県のある河川について、7/1~10/31までの期間における、降水量及び測定した放射性Cs濃度の推移を示したグラフである。図3では、降水量が多い、つまり河川の水位が高くなる場合には、水中のCs濃度が上がっていることがわかる。一方で、数日間降雨が無い時の河川水中の放射性Cs濃度はほぼゼロであり、この時測定される放射線量は全てバックグラウンドとなる。バックグラウンド放射線量は、水位が高いほど小さくなるので、水中のCs濃度がゼロである時にバックグラウンド放射線量と水位を測定しておけば、両者の関係を求めることができる。
It was explained that when the water level is high, the radiation shielding effect of water is large, so the background radiation dose derived from areas other than the target water area decreases. It is known that the concentration of radioactive substances in water itself is high because it contains a lot of adsorbed clay and the like.
Here, Fig. 3 is a graph showing changes in precipitation and measured radioactive Cs concentrations in a river in Fukushima Prefecture during the period from July 1 to October 31. In Fig. 3, it can be seen that the Cs concentration in the water increases when the amount of rainfall is high, that is, when the water level of the river is high. On the other hand, when there is no rainfall for several days, the concentration of radioactive Cs in the river water is almost zero, and all radiation doses measured at this time are background. Since the background radiation dose decreases as the water level increases, the relationship between the background radiation dose and the water level can be obtained by measuring the background radiation dose and the water level when the Cs concentration in the water is zero.

さらに、前記バックグラウンド放射線量を算出する材料として、水位以外にも、水中の濁度を用いることも可能である。その場合、本発明の放射能測定装置は、任意の濁度計(図示せず)をさらに備えることも可能である。 Furthermore, as a material for calculating the background radiation dose, it is also possible to use water turbidity in addition to the water level. In that case, the radioactivity measuring device of the present invention can further comprise an arbitrary turbidity meter (not shown).

なお、本発明の放射能測定装置は、測定対象となる水域100において、どのように設置しても良いが、図1に示すように、前記測定対象となる水域100の水底100aに設置されることが好ましい。水底100aに設置することで、水域100の水が遮蔽材となるため、大気中に含まれる放射線物質や、水域近くにある土壌中の放射線物質等に由来したバックグラウンド放射線量を低減できるからである。なお、水底100aの下にある土壌101に由来したバックグラウンド放射線量については、上述したように、前記放射線検出器10の下に放射線シールド11を設けることで、低減することが可能である。 The radioactivity measuring apparatus of the present invention may be installed in any manner in the water area 100 to be measured, but as shown in FIG. is preferred. By installing it on the bottom of the water 100a, the water in the water area 100 serves as a shielding material, so it is possible to reduce the background radiation dose derived from radioactive substances contained in the atmosphere and radioactive substances in the soil near the water area. be. The background radiation dose derived from the soil 101 under the water bottom 100a can be reduced by providing the radiation shield 11 under the radiation detector 10 as described above.

<放射能測定方法>
次に、本発明による放射能測定方法について説明する。
本発明の放射能測定方法は、図1に示すように、防水容器20内に設置した放射線検出器10によって、水中の放射線量を測定し、放射線検出器から取得した信号に基づいて放射性物質濃度を算出し、算出した放射性物質濃度から、測定対象となる水域100以外に由来する放射線の線量(バックグラウンド放射線量)を差し引く、バックグラウンド除去処理を実施することを特徴とする。
<Radioactivity measurement method>
Next, the method for measuring radioactivity according to the present invention will be described.
In the radioactivity measuring method of the present invention, as shown in FIG. 1, the radiation dose in water is measured by a radiation detector 10 installed in a waterproof container 20, and the radioactive substance concentration is measured based on the signal obtained from the radiation detector. is calculated, and background removal processing is performed by subtracting the radiation dose (background radiation dose) derived from areas other than the water area 100 to be measured from the calculated radioactive substance concentration.

上記構成を具備することで、防水を図りつつ、リアルタイムで且つ正確に水中の放射性物質濃度を把握できるとともに、バックグラウンド放射線の影響を取り除くことによって、測定対象の水域の放射性物質濃度をより高精度に把握することが可能となる。 By providing the above configuration, it is possible to accurately grasp the concentration of radioactive substances in water in real time while maintaining waterproofing, and by removing the influence of background radiation, the concentration of radioactive substances in the water area to be measured can be measured with higher accuracy. It is possible to grasp the

本発明の放射能測定方法のその他の条件については、上述した本発明の放射能測定装置の中で記載された内容と同様である。 Other conditions of the radioactivity measuring method of the present invention are the same as those described in the above radioactivity measuring apparatus of the present invention.

以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.

(実施例)
図1に示すように、放射線検出器10と、防水容器20と、解析手段30と、水位測定手段40とを備える放射能測定装置1を作製した。
なお、放射線検出器10については、5インチNaIシンチレーション検出器を用いた。また、防水容器については、長さ:2m、外形200mmのVU(塩化ビニル)管を用い、前記5インチNaIシンチレータを、ほぼ隙間がない状態で収納し、前記5インチNaIシンチレータの上部及び底部に厚さ50mmの鉛からなる放射線シールドを設けた。さらに、水位測定手段40として、市販の水位計を用いた。
なお、解析手段30については、制御盤32、アンプ33を防水容器20内に組み込み、電源31は放射線検出器10からケーブルを防水容器20外に引き出し、地上に設置したバッテリーと結ぶことで供給した。分析装置34は、市販のノートパソコンにプログラムを組み込むことで、分析装置として用いた。
(Example)
As shown in FIG. 1, a radioactivity measuring device 1 comprising a radiation detector 10, a waterproof container 20, an analyzing means 30, and a water level measuring means 40 was produced.
As for the radiation detector 10, a 5-inch NaI scintillation detector was used. Also, for the waterproof container, a VU (vinyl chloride) tube with a length of 2 m and an outer diameter of 200 mm is used, and the 5-inch NaI scintillator is stored in a state where there is almost no gap, and the top and bottom of the 5-inch NaI scintillator A radiation shield made of lead with a thickness of 50 mm was provided. Furthermore, as the water level measuring means 40, a commercially available water level gauge was used.
As for the analysis means 30, a control panel 32 and an amplifier 33 are incorporated in the waterproof container 20, and the power supply 31 is supplied by pulling out a cable from the radiation detector 10 to the outside of the waterproof container 20 and connecting it to a battery installed on the ground. . The analysis device 34 was used as an analysis device by installing a program in a commercially available notebook computer.

(評価)
図4に示すように、作製した放射能測定装置1を用いて、河川中のセシウム137濃度(137Csピーク係数)を測定した。なお、測定対象の河川は、福島県双葉郡浪江町にある河川である。図4に示す測定期間は、2016年10月11日~10月19日の9日間である。
測定結果として、図5に、河川の水位(cm)及び算出した137Csピーク係数(cps:カウント数/秒)の、9日間の推移を示す。また、評価指標として、適宜河川から採水し、137Cs濃度を実測して、9日間の推移を導出した。
(evaluation)
As shown in FIG. 4, the prepared radioactivity measuring device 1 was used to measure the cesium-137 concentration ( 137 Cs peak coefficient) in rivers. The river to be measured is a river in Namie-cho, Futaba-gun, Fukushima Prefecture. The measurement period shown in FIG. 4 is nine days from October 11, 2016 to October 19, 2016.
As a result of the measurement, Fig. 5 shows changes in the river water level (cm) and the calculated 137 Cs peak coefficient (cps: counts/second) for 9 days. In addition, as an evaluation index, water was sampled from the river appropriately, the 137 Cs concentration was actually measured, and the change over the nine days was derived.

図5から、出水時(水位が大きくなった時)には、算出した137Csピーク係数は、実測した137Cs濃度と同じ挙動で上昇していることがわかり、本発明の放射能測定装置1は、137Cs濃度を高い精度で観測できていることがわかった。
また、10月14日~10月15日において実測によって得られた137Cs濃度がほぼゼロである期間の水位及びCsピーク係数の推移を確認すると、バックグラウンド放射線量を示すピーク係数が、水位の下降に伴って増加していることを確認できた。
From FIG. 5, it can be seen that the calculated 137 Cs peak coefficient increases with the same behavior as the actually measured 137 Cs concentration at the time of flooding (when the water level increases). was able to observe the 137 Cs concentration with high accuracy.
In addition, when checking the changes in the water level and the Cs peak coefficient during the period when the 137 Cs concentration obtained by actual measurement from October 14 to 15 was almost zero, the peak coefficient indicating the background radiation dose It was confirmed that it increased with the descent.

本発明によれば、複雑な設備を用いることなく、リアルタイムで且つ正確に、水中の放射性物質濃度を把握できる放射能測定装置を提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the radioactivity measuring apparatus which can grasp|ascertain the radioactive substance density|concentration in water accurately in real time, without using complicated equipment.

10 放射線検出器
11 放射線シールド
20 防水容器
30 解析手段
31 電源
32 制御盤
33 アンプ
34 分析装置
35 バックグラウンド除去
40 水位測定手段
100 水域
101 土壌
10 radiation detector 11 radiation shield 20 waterproof container 30 analysis means 31 power supply 32 control panel 33 amplifier 34 analysis device 35 background removal 40 water level measurement means 100 water area 101 soil

Claims (3)

水中の放射性物質濃度を観測するための放射能測定装置であって、
放射線検出器と、防水性を有し且つ放射線を透過させる材料からなり、前記放射線検出器を覆うように設けられた防水容器と、前記放射線検出器から取得した信号に基づいて放射性物質濃度を算出する解析手段と、測定対象となる水域の水位を測定する水位測定手段とを備え
前記解析手段は、前記算出した放射性物質濃度から、前記測定対象となる水域以外に由来する放射線の線量(バックグラウンド放射線量)を差し引く、バックグラウンド除去処理を実施し、前記水位測定手段の測定した水位に応じて、前記バックグラウンド放射線量を算出し、
前記測定対象となる水域の放射性物質濃度をリアルタイムに把握し、
前記放射能測定装置は、前記測定対象となる水域に設置されることを特徴とする、放射能測定装置。
A radioactivity measuring device for observing the concentration of radioactive substances in water,
A radiation detector, a waterproof container made of a material that is waterproof and permeable to radiation and provided so as to cover the radiation detector, and calculating the radioactive substance concentration based on the signal obtained from the radiation detector. and a water level measurement means for measuring the water level of the water area to be measured ,
The analysis means performs a background removal process by subtracting the radiation dose (background radiation dose) derived from areas other than the water area to be measured from the calculated radioactive substance concentration, and the water level measurement means measures Calculating the background radiation dose according to the water level,
Grasp the concentration of radioactive substances in the water area to be measured in real time,
A radioactivity measuring device, wherein the radioactivity measuring device is installed in the water area to be measured .
前記放射線検出器は、シンチレータとしてNaI(Tl)、CsI(Tl)、CsI(Na)、LnBr3、ZnS(Ag)又はCsIを有することを特徴とする、請求項に記載の放射能測定装置。 2. The radioactivity measuring device according to claim 1 , wherein the radiation detector has NaI(Tl), CsI(Tl), CsI(Na), LnBr3 , ZnS(Ag) or CsI as a scintillator. . 前記放射能測定装置は、前記測定対象となる水域の水底に設置されることを特徴とする、請求項1に記載の放射能測定装置。
2. The radioactivity measuring device according to claim 1, wherein the radioactivity measuring device is installed on the bottom of the water area to be measured.
JP2022132839A 2017-10-03 2022-08-23 Radioactivity measuring device Active JP7307992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022132839A JP7307992B2 (en) 2017-10-03 2022-08-23 Radioactivity measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017193857A JP7197878B2 (en) 2017-10-03 2017-10-03 Radioactivity measuring device
JP2022132839A JP7307992B2 (en) 2017-10-03 2022-08-23 Radioactivity measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017193857A Division JP7197878B2 (en) 2017-10-03 2017-10-03 Radioactivity measuring device

Publications (2)

Publication Number Publication Date
JP2022162041A JP2022162041A (en) 2022-10-21
JP7307992B2 true JP7307992B2 (en) 2023-07-13

Family

ID=87072562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022132839A Active JP7307992B2 (en) 2017-10-03 2022-08-23 Radioactivity measuring device

Country Status (1)

Country Link
JP (1) JP7307992B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181739U (en) 2012-12-03 2013-02-21 いであ株式会社 Towed underwater radioactivity measurement system
JP2013543587A (en) 2010-10-07 2013-12-05 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ System for in situ direct measurement of alpha rays and related methods for quantifying the activity of alpha radionuclides in solution
JP2013257159A (en) 2012-06-11 2013-12-26 Horiba Ltd Measuring device and measuring method for measuring radiation or radioactivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543587A (en) 2010-10-07 2013-12-05 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ System for in situ direct measurement of alpha rays and related methods for quantifying the activity of alpha radionuclides in solution
JP2013257159A (en) 2012-06-11 2013-12-26 Horiba Ltd Measuring device and measuring method for measuring radiation or radioactivity
JP3181739U (en) 2012-12-03 2013-02-21 いであ株式会社 Towed underwater radioactivity measurement system

Also Published As

Publication number Publication date
JP2022162041A (en) 2022-10-21

Similar Documents

Publication Publication Date Title
Ereeş et al. Assessment of dose rates around Manisa (Turkey)
Eleftheriou et al. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry
JP6475931B2 (en) Radioactive substance monitoring device and radioactive substance monitoring method
Caridi et al. Radon radioactivity in groundwater from the Calabria region, south of Italy
Hosoda et al. Simultaneous measurements of radon and thoron exhalation rates and comparison with values calculated by UNSCEAR equation
Purnama et al. Determination of internal and external hazard index of natural radioactivity in well water samples
JP3930234B2 (en) Radon concentration measuring apparatus and method
JP7307992B2 (en) Radioactivity measuring device
JP7197878B2 (en) Radioactivity measuring device
Jaber et al. Radon concentrations in the marine sediments of Khor-Abdulla northern west of the Arabian Gulf
Pisapak et al. Correlation between radon and radium concentrations in soil and estimation of natural radiation hazards in Namom district, Songkhla province (Southern Thailand)
JP6029054B2 (en) Radioactive cesium simple measuring method and portable radioactive cesium simple measuring device
Aliyu et al. Determination of radionuclide concentrations, hazard indices and physiochemical parameters of water, fishes and sediments in River Kaduna, Nigeria
Wang et al. Monte Carlo simulation of in situ gamma-spectra recorded by NaI (Tl) detector in the marine environment
Obaid et al. Determination of natural radioactivity and hazard in some rock samples
CA3157271A1 (en) Method and device for the quantification of radionuclides in liquid media
JP6782879B2 (en) Radioactivity measuring device and radioactivity measuring method
JP2020056738A (en) Device and method for searching for buried underground thorium
Kim et al. Development of a CsI (Tl) scintillator based gamma probe for the identification of nuclear materials in unknown areas
Ongori In-situ measurements and calculation of radon gas concentration and exhalation from a tailings mine dump
Zeng et al. Overview of Radon Background Correction Technology for Airborne Gamma Spectrometry
Ngachin et al. 226Ra, 232Th and 40K contents and radon exhalation rate from materials used for construction and decoration in Cameroon
Daling et al. Gamma-spectrometric measurements of natural-radionuclide contents in soil and gamma dose rates in Yangjiang, PR China
JP2024021903A (en) Radioactivity measurement device
Jaber et al. The concentrations of radon in the marine sediments of Ra's Al-Besha, Northern west of the Arabian Gulf

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20220916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7307992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150