JP7302045B1 - ブレ補正制御装置、撮像装置、レンズ装置、及びそれらの制御方法 - Google Patents

ブレ補正制御装置、撮像装置、レンズ装置、及びそれらの制御方法 Download PDF

Info

Publication number
JP7302045B1
JP7302045B1 JP2022008838A JP2022008838A JP7302045B1 JP 7302045 B1 JP7302045 B1 JP 7302045B1 JP 2022008838 A JP2022008838 A JP 2022008838A JP 2022008838 A JP2022008838 A JP 2022008838A JP 7302045 B1 JP7302045 B1 JP 7302045B1
Authority
JP
Japan
Prior art keywords
blur correction
imaging
lens
responsiveness
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022008838A
Other languages
English (en)
Other versions
JP2023107575A (ja
Inventor
剛 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022008838A priority Critical patent/JP7302045B1/ja
Priority to US17/820,065 priority patent/US20230239572A1/en
Application granted granted Critical
Publication of JP7302045B1 publication Critical patent/JP7302045B1/ja
Publication of JP2023107575A publication Critical patent/JP2023107575A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

【課題】 小さな手ブレの影響が撮影画像に現れるような条件であっても、当該手ブレの影響を軽減することができるブレ補正制御装置を提供する。【解決手段】 ブレ補正制御装置は、レンズ装置が有する撮影光学系の解像力を示す情報と、前記レンズ装置により結像された被写体像を撮像する撮像素子の解像力を示す情報とに基づいて撮像システムの解像力を取得する取得手段と、ブレによる撮影画像への影響を補正する補正手段を制御する制御手段と、撮像システムの解像力と撮影条件とに基づいて、制御手段により制御される補正手段の応答性を設定する設定手段とを備える。設定手段は撮影条件が所定の条件を満たす場合に、撮像システムの解像力が第1の値の場合、第1の値よりも低い第2の値の場合よりも高い応答性を補正手段に設定する。【選択図】 図2

Description

本発明は、撮影時のブレ補正手段を有する撮像システムのブレ補正制御装置に関するものである。
近年、撮像装置の高性能化により多くの撮像装置および撮影レンズにブレ補正機構が搭載されている。ブレ補正機構により、ユーザーは撮像装置を手持ちで撮影を行う際に、撮影画像に対して手ブレの影響を少なくすることが可能になる。撮像装置に用いられるブレ補正機構の方式はいくつかの種類が提案されている。例えば撮影光学系のレンズの一部を駆動(変位)させることによってブレ補正を行う方式や、カメラ本体内の撮像素子を駆動(変位)させることによってブレ補正を行う方式が知られている。レンズ交換式の撮像装置において、前者は交換可能なレンズ装置内の撮影光学系の一部のレンズを駆動させてブレ補正を行う方式であり、後者はカメラ本体内の撮像素子を駆動させてブレ補正を行う方式である。また両者を組み合わせ、撮影光学系の一部のレンズおよび撮像素子の双方を駆動させてブレ補正を行う方式も知られている。
特許文献1には、撮影レンズの解像力に応じて、撮影光学系の一部のレンズか撮像素子、もしくは双方を駆動させてブレ補正を行う方式を選択するといった技術が開示されている。
尚、一般に、手ブレの影響が撮影画像に顕著に現れるのは、1/焦点距離よりも遅いシャッター速度で撮影をした場合であるといわれている。例えば、焦点距離80mmの撮影光学系を用いて撮影する場合、1/80secよりも遅いシャッター速度で撮影した場合に手ブレの影響が撮影画像に現れるといわれている。
特開2006-113468
撮像装置の高性能化により、撮像素子の高画素化や撮影レンズの高解像力化が進んでいる。加えて、近年は撮影した写真の鑑賞方法として、PCやスマートフォンなどの画面で鑑賞する機会も増えてきている。そのため、特に、解像力の高い撮像装置やレンズ装置を用いて撮影した画像を、スマートフォン等の画面で拡大して観賞するような場合に、撮像素子面上でのブレ量が小さい画像であっても、手ブレとして観察されてしまう可能性があるという課題がある。
本発明は上記課題に鑑みてなされたものであり、小さな手ブレの影響が撮影画像に現れるような条件であっても、当該手ブレの影響を軽減することができるブレ補正制御装置を提供することを目的とする。
発明の一側面としてのブレ補正制御装置は、レンズ装置が有する撮影光学系の解像力を示す情報と、前記レンズ装置により結像された被写体像を撮像する撮像素子の解像力を示す情報とに基づいて撮像システムの解像力を取得する取得手段と、前記レンズ装置が装着された撮像装置に加わるブレによる撮影画像への影響を補正する補正手段を制御する制御部と、前記撮像システムの解像力と撮影条件とに基づいて、前記制御部により制御される補正手段の応答性を設定する設定手段と、を備え、前記設定手段は、前記撮影条件が所定の条件を満たす場合に、前記撮像システムの解像力が第1の値の場合、前記第1の値よりも低い第2の値の場合よりも高い応答性を前記補正手段に設定し、前記所定の条件は、連写モードに設定されていることと、発光手段を発光させる設定がされていることの少なくともいずれかであるすることを特徴とする。
本発明のその他の側面については、以下で説明する実施の形態で明らかにする。
小さな手ブレの影響が撮影画像に現れるような条件であっても、当該手ブレの影響を軽減することを目的とする。
第1実施例における撮像システム100装置の中央断面図およびブロック図 第1実施例におけるブレ補正システムのブロック図 撮像システムの解像力について説明する図 第1実施例におけるブレ補正部の応答性の変更について説明する図 第1実施例における制御フローチャート 第1実施例における制御フローチャート 第2実施例におけるブレ補正システムのブロック図 第2実施例におけるブレ補正部の制御の変更について説明する図 第2実施例における制御フローチャート 第3実施例におけるブレ補正部の制御の変更について説明する図 第4実施例におけるブレ補正部の制御の変更について説明する図 第5実施例における制御フローチャート 第6実施例における制御フローチャート 第6実施例における撮像システムのブロック図
以下、添付図面を参照して本発明の実施例を詳しく説明する。尚、以下の実施例は特許請求の範囲に係る発明を限定するものではない。下記実施例には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
以下、図1から図5を参照して、本発明の第1の実施例における撮像システムについて説明する。図1は、本実施例の撮像システム100の構成を説明する模式図である。図1(a)は、撮像システム100の中央断面図、図1(b)は、撮像システム100の電気的構成を示すブロック図である。
図1(a)に示すように、本実施例の撮像システム100は、カメラ本体(撮像装置)1と、カメラ本体1に装着可能なレンズ装置2を備える。撮像システム100はいわゆるレンズ交換式の一眼カメラであって、円形のマウントブロックを介して各種の交換レンズが着脱可能な構成となっている。マウントブロックは、電気接点11を有しており、マウントブロックを介してレンズ装置2がカメラ本体1に装着されることにより、レンズ装置2とカメラ本体1とが通信可能に接続される。
図1に示すように、レンズ装置2は、複数のレンズからなる撮影光学系3と、レンズ装置全体の動作を制御するレンズシステム制御部12と、手ブレ補正を行うレンズ側ブレ補正部13と、ブレ量を検出するレンズ側ブレ検出部16とを備える。撮影光学系3は、手ブレ補正を行う光学素子である、ブレ補正レンズ3aを有し、レンズ側ブレ補正部13は、ブレ補正レンズ3aを支持する支持部とアクチュエータを有する。レンズ側ブレ検出部16による検出結果に基づいて、レンズ側ブレ補正部13がブレ補正レンズ3aを撮影光学系の光軸4に垂直な平面上で駆動することにより、手ブレによる撮像画像への影響を軽減する手ブレ補正動作を行う。レンズシステム制御部12は、ブレ補正レンズ3aの駆動の他に、不図示のフォーカスレンズや、絞りなどを不図示の駆動部を用いて駆動することも可能である。
カメラ本体1は、カメラ全体の制御を行うカメラシステム制御部5と、撮影光学系により結像された被写体像を撮像する撮像素子6と、撮像素子により取得された電気信号に対して現像処理、ガンマ処理等を行う画像処理部7とを備える。画像処理部7により画像がいる形式に変換された電気信号は、カメラシステム制御部5によりメモリ部8に保存される。更にカメラ本体は表示部9と、撮像素子6の前面に設けられたシャッター17と、不図示のシャッターレリーズ釦などを含む操作部からの信号を検出する操作検出部10とを備える。尚、表示部9は、カメラ本体1の背面に設けられた背面表示装置9aと、カメラ本体1のファインダ内に設けられたEVF(エレクトロニックビューファインダー)9bとを有する。更に、カメラ本体1は、カメラ側ブレ検出部15と、ブレ検出結果に基づいて撮像素子6を光軸4と垂直な平面において移動させることで像ブレを補正するカメラ側ブレ補正部14とを備える。カメラ側ブレ補正部14は、撮像素子6を支持する支持部とアクチュエータとを有し、カメラシステム制御部5の制御のもとにアクチュエータを駆動することにより、撮像素子を光軸に垂直な平面において移動させることでカメラ側ブレ補正を行う。
カメラシステム制御部5とレンズシステム制御部12は、電気接点11を介して通信によって協調し、各々カメラ側ブレ補正部14およびレンズ側ブレ補正部13を用いて、撮像システム100に加わる振動を低減するための駆動制御を行う。尚、本実施例では、カメラシステム制御部5がレンズシステム制御部12に対して指示を送信して、レンズ側ブレ補正部13を制御することで、撮像システム100全体のブレ補正を制御する例について説明をする。レンズシステム制御部12がカメラシステム制御部5に対して指示を送信して撮像システム100全体のブレ補正を制御してもよいし、レンズ側ブレ補正部13もしくはカメラ側ブレ補正部14のいずれか一方しか持たないような構成の撮像システムでもよい。
カメラ本体1およびレンズ装置2を備える撮像システム100は、上述の構成により、撮像手段、画像処理手段、記録再生手段、制御手段を構成する。
撮像手段は、撮影光学系3、撮像素子6を含み、画像処理手段は、画像処理部7を含む。また、記録再生手段は、メモリ部8、表示部9(表示部9は背面表示装置9aやEVF9b)を含む。同じように、制御手段は、カメラシステム制御部5、操作検出部10、カメラ側ブレ検出部15、カメラ側ブレ補正部14、レンズシステム制御部12、レンズ側ブレ検出部16、レンズ側ブレ補正部13を含む。
カメラ側ブレ検出部15および、レンズ側ブレ検出部16は、撮像システム100に加わる光軸4に対する回転ブレ(ピッチ方向のブレ、ヨー方向のブレ)を検知可能であり、例えば振動ジャイロなどを用いてそれを実現する。カメラ側ブレ検出部15やレンズ側ブレ検出部16で検出された回転ブレ量に基づいて、カメラ側ブレ補正部14は撮像素子6を、レンズ側ブレ補正部13aはブレ補正用レンズ3aをそれぞれ光軸4に垂直な平面上で駆動させる。
さらにカメラ側ブレ検出部15には、例えば加速度センサなどが設けられており、撮像装置に加わる平行移動ブレを検出可能である。したがって、カメラ側ブレ補正部14はカメラ側ブレ検出部15において検出された回転ブレおよび平行移動ブレに基づいて、撮像素子6を光軸4に対して垂直な平面で駆動させる。
上述した撮像手段は、物体からの光を、撮影光学系3を介して撮像素子6の撮像面に結像する光学処理系である。撮像素子6からピント評価量/適当な露光量が得られるので、この信号(AF信号/AE信号)に基づいて適切に撮影光学系3が調整されることで、適切な光量の物体光を撮像素子に露光するとともに、撮像素子近傍で被写体像が結像する。
画像処理部7は、内部にA/D変換器、ホワイトバランス調整回路、ガンマ補正回路、補間演算回路等を有しており、記録用の画像を生成することができる。色補間処理手段はこの画像処理部7に備えられており、ベイヤ配列の信号から色補間(デモザイキング)処理を施してカラー画像を生成する。また、画像処理部7は、予め定められた方法を用いて画像、動画、音声などの圧縮を行う。
メモリ部8は不揮発性及び揮発性のメモリを備えている。撮像素子6により撮像された画像は、カメラシステム制御部5により、メモリ部8へ出力を行うとともに、表示部9にユーザーに提示する像を表示する。
カメラシステム制御部5は外部操作に応動して撮像系、画像処理系、記録再生系をそれぞれ制御する。例えば、不図示のシャッターレリーズ釦の押下を操作検出部10で検出すると、カメラシステム制御部5はタイミング信号を生成してシャッター17、撮像素子6、画像処理部7に出力することで撮像素子6の駆動、画像処理部7の動作、圧縮処理などを制御する。さらに表示部9によって情報表示を行う情報表示装置の各セグメントの状態を制御する。また、背面表示装置9aはタッチパネルになっており、表示部9と操作部の役割を兼ねていてもよい。
制御手段による撮影光学系の調整動作について説明する。カメラシステム制御部5には画像処理部7が接続されており、撮像素子6からの信号を基に適切な焦点位置、絞り位置を求める。カメラシステム制御部5は、電気接点11を介してレンズシステム制御部12に指令を出し、レンズシステム制御部12は不図示の焦点レンズ駆動手段および絞り駆動手段を適切に制御する。さらに、ブレ補正を行うモードにおいては、カメラシステム制御部5はカメラ側ブレ検出部15から得られた信号(ブレ検出結果)を基に、カメラ側ブレ補正部14を制御する。同様に、レンズシステム制御部12はレンズ側ブレ検出部16から得られた信号を基に、レンズブレ補正部13を制御する。
ブレ補正部の基本的な制御動作としては、まずカメラシステム制御部5および、レンズシステム制御部12がそれぞれ、カメラ側ブレ検出部15およびレンズ側ブレ検出部16によって検出された手ブレ信号(回転ブレおよび平行移動ブレ)を検知する。その結果を基に、カメラシステム制御部5および、レンズシステム制御部12がそれぞれ、ブレを補正するための、撮像素子6およびブレ補正用レンズ3aの駆動量を算出する。カメラシステム制御部5および、レンズシステム制御部12はその後、算出されたそれぞれの駆動量をカメラ側ブレ補正部14およびレンズ側ブレ補正部13へ指令値として出力する。カメラ側ブレ補正部14は撮像素子6を、レンズ側ブレ補正部13はブレ補正用レンズ3aを、入力された駆動量に従って駆動する。
尚、本実施形態においては、上記の制御に加え、撮影光学系3の解像力や撮像素子6の解像力、さらにはシャッタースピードといった撮影条件に応じて、カメラシステム制御部5およびレンズシステム制御部12による各ブレ補正部の制御を変更する。詳細な制御方法については後述する。
また、上述したように、カメラシステム制御部5およびレンズシステム制御部12はカメラ本体1およびレンズ装置2に設けられた不図示の操作手段へのユーザー操作に応じて、カメラ本体1およびレンズ装置2の各部の動作を制御する。それにより、静止画および動画の撮影が可能となっている。
<ブレ補正システムの制御について>
次に図2を用いて、本実施形態における、カメラ側ブレ補正システムおよび、レンズ側ブレ補正システムの構成について説明をする。
図2はカメラ本体1に設けられたカメラ側ブレ補正システムおよびレンズ装置2に設けられたレンズ側ブレ補正システムの制御ブロック図を表したものである。図2(a)はカメラ側ブレ補正システムの制御ブロック図を、図2(b)はレンズ側ブレ補正システムの制御ブロック図をそれぞれ表している。
図2(a)に示すように、本実施形態において、カメラ側ブレ補正システムは、カメラ側ブレ検出部15とカメラシステム制御部5とカメラ側ブレ補正部14と撮像素子6で構成される。また、カメラシステム制御部5は、カメラ側ブレ検出部15の検出結果に基づいて、カメラ側ブレ補正部14に対して出力する駆動目標値を生成するカメラ側目標値生成部5bを有する。カメラシステム制御部5は更に、設定されているシャッタースピードを記憶するシャッタースピード記憶部5eと解像力を備える。カメラシステム制御部5はさらに、撮影光学系3の解像力(レンズ解像力と呼ぶ)を示す情報を記憶するレンズ解像力記憶部5f、撮像素子6の解像力を示す情報を記憶する撮像素子解像力記憶部5gを備える。カメラ側目標値生成部5bは、ブレの検出結果のほかに、これらの記憶部(5e~g)からの情報に基づいて、駆動目標値を生成する。
カメラ側目標値生成部5bの構成の詳細について説明をする。カメラ側目標値生成部5bは、カメラ側ブレ検出部15の出力に対してフィルタ処理を行うカメラ側フィルタ処理部5aと、ゲイン特性を変更可能なカメラ側ゲイン補償器5cと、位相特性を変更可能なカメラ側位相補償器5dとを有する。カメラ側フィルタ処理部5aは、具体的には、カメラ側ブレ検出部15の特性に基づいたハイパスフィルタやゲイン補償器などにより構成されている。
シャッタースピード記憶部5eは、不図示の測光手段の結果から求められたシャッタースピードや、ユーザーによって入力されたシャッタースピードを記憶する。また、レンズ解像力記憶部5fは、レンズ装置2が装着されると、カメラシステム制御部5とレンズシステム制御部12が通信を行うことで取得したレンズ解像力を示すデータを記憶する。レンズ装置2が交換されると、新たに装着されたレンズ装置2からレンズ解像力を示す情報を取得して、情報を更新する。また、レンズ装置2の焦点位置(フォーカス)が変更されるたびにデータを更新したり、レンズ装置2がズームレンズである場合に、焦点距離が変更されるたびにデータを更新したりしてもよい。撮像素子解像力記憶部5gはカメラ本体1に設けられた撮像素子6の解像力の情報を記憶している。なお、レンズ解像力および撮像素子解像力の詳細については図3を用いて後述する。図2(a)に示すように、カメラシステム制御部5は、カメラ側ブレ検出部15より入力された手ブレの情報に基づいて、フィルタ処理及び駆動目標値を算出したのち、カメラ側ブレ補正部14を用いて、撮像素子6を駆動してブレ補正を行う。更に、本実施例では、カメラ側目標値生成部5bは、シャッタースピード記憶部5e、レンズ解像力記憶部5f、撮像素子解像力記憶部5gから取得した撮影条件や撮像システムの解像力に応じて、ゲイン特性と位相特性の少なくともいずれかを変更する。これにより、カメラ側目標値生成部5bは、カメラ側ブレ補正部14により行われるブレ補正の応答性を変更する。
図2(b)に示すように、本実施形態において、レンズ側ブレ補正システムは、レンズ側ブレ検出部16とレンズシステム制御部12とレンズ側ブレ補正部13とブレ補正用レンズ3aとで構成される。また、レンズシステム制御部12は、レンズ側ブレ検出部16の検出結果に基づいて、レンズ側ブレ補正部13に対して出力する駆動目標値を生成するレンズ側目標値生成部12bを有する。レンズシステム制御部12は更に、撮影光学系3の解像力を示す情報を記憶するレンズ解像力記憶部12f、撮像素子6の解像力を示す情報を記憶する撮像素子解像力記憶部12gを備える。レンズ側目標値生成部12bは、ブレの検出結果のほかに、これらの記憶部(12f、g)からの情報と、カメラ本体側から取得したシャッタースピードを示す情報とに基づいて、駆動目標値を生成する。
レンズ側目標値生成部12bの構成の詳細について説明をする。レンズ側目標値生成部12bは、レンズ側ブレ検出部16の出力に対してフィルタ処理を行うレンズ側フィルタ処理部12aと、ゲイン特性を変更可能なレンズ側ゲイン補償器12cと、位相特性を変更可能なレンズ側位相補償器12dとを有する。レンズ側フィルタ処理部12aは、具体的には、レンズ側ブレ検出部16の特性に基づいたハイパスフィルタやゲイン補償器などにより構成されている。
撮像素子解像力記憶部12gは、カメラ本体1が装着されると、カメラシステム制御部5とレンズシステム制御部12が通信を行うことで取得した、撮像素子の解像力を示すデータを記憶する。カメラ本体1が交換されると、新たに装着されたカメラ本体1から撮像素子の解像力を示す情報を取得して、情報を更新する。
レンズ解像力記憶部12fは撮影光学系3の解像力を示す情報を記憶している。レンズ解像力記憶部12fはレンズ装置2の焦点位置(フォーカス)が変更されるたびにデータを更新したり、レンズ装置2がズームレンズである場合に、焦点距離が変更されるたびに更新したりしても構わない。なお、レンズ解像力および撮像素子解像力の詳細については図3を用いて後述する。
図2(b)で示すように、レンズシステム制御部12も、レンズ用ブレ検出部16より入力された手ブレの情報に基づいてフィルタ処理及び駆動目標値を算出したのち、カメラ側ブレ補正部14を用いて、ブレ補正用レンズ3aを駆動してブレ補正を行う。更に、本実施例では、レンズ側目標値生成部12bは、シャッタースピード記憶部5e、レンズ解像力記憶部12f、撮像素子解像力記憶部12gから取得した撮影条件や撮像システムの解像力に応じて、ゲイン特性と位相特性の少なくともいずれかを変更する。これにより、レンズ側目標値生成部12bは、レンズ側ブレ補正部13により行われるブレ補正の応答性を変更する。
撮影条件や撮像システムの解像力に応じて、ブレ補正の応答性を変更することの効果について説明する。従来手ブレ補正を行う場合は、ブレ検出部の出力に対して適切なフィルタ処理を実行したのち、一定のパラメータにチューニングされた目標値生成部においてブレ補正部の目標値を生成し、駆動制御を行うというのが基本的な制御ブロックであった。つまり、図2における位相補償器(5d、12d)とゲイン補償器(5c、12c)のパラメータは固定されているものであった。
一方で、昨今の撮像システムの高性能化に伴い、撮影光学系3の解像力が向上したレンズ装置2や、より解像力の増した撮像素子6を有するカメラ本体1が見られるようになってきている。また、撮影された写真の鑑賞環境としても、PCのモニタやスマートフォンのモニタといった画面での鑑賞機会が増え、それに伴い、画素等倍などの拡大鑑賞の機会も増えてきている。そのため、撮像システムの解像力によっては、従来は観察できず気にならなかった微細なブレが観察されるようになってきている。また、このような微細なブレは手ブレとしては比較的周波数の高いブレが多く含まれており、シャッタースピードが遅い(露光時間が長い)画像に対して、シャッタースピードが速い(露光時間が短い)画像のほうが観察されやすい傾向がある。
従来の基本的な手ブレ補正の駆動制御は撮像装置の解像力やシャッタースピードなどの撮影条件によらず、一定のパラメータに従って制御される。そのため、取り付けられたレンズ装置やカメラ本体、設定された撮影条件によって、微細なブレが残り、拡大鑑賞時にその微細なブレが観察されてしまうことがあった。
そこで本実施例では、撮像システム(撮影光学系3または撮像素子6)の解像力が高い場合、より微細な手ブレ(高周波な手ブレ)にブレ補正部が対応可能なように、ブレ補正部の応答性が高くなるように、目標値生成部(5b、12b)のパラメータを変更する。さらに、シャッタースピードが速いほど、露光中に発生するブレは微小で高速な動きとなるため、大きなブレは生じにくく、微小なブレが観察されやすくなる。よって、シャッタースピードが高い場合、ブレ補正部の応答性が高くなるように、目標値生成部(5b、12b)のパラメータを変更する。一般に焦点距離f[mm]に対してシャッタースピード1/f[sec]程度より遅いと手ブレが目立ち始めると言われているように、焦点距離とシャッタースピードの双方によって、手ブレのしやすさは異なってくる。そのため本実施例では、撮像装置(カメラ本体1とレンズ装置2)の解像力だけでなく、シャッタースピードに応じてブレ補正部の応答性を変更することで、微小な手ブレに適したブレ補正を行うことが可能になる。
尚、応答性を高くするとは、高周波帯域での応答性を向上させることを指す。撮影条件にもよるが、具体的には、10Hz以上の周波数の少なくとも一部を含む帯域における応答性を向上させることが好ましい。例えば、焦点距離fで規定されるfHzを含む帯域の応答性を向上させることで、解像力が高い撮像システムを用いて撮影する場合であっても、解像力が低いシステムでは目立たなかったfHz付近のブレの補正能力を向上させることができる。
常に応答性が高くなるようにあらかじめパラメータを設定しておくという解決方法も考えられるが、その場合ブレ補正部を常に応答性良く駆動するため消費電力が増加しやすい、露光時間が長い場合に駆動音が聞こえやすいといった懸念がある。また、撮像装置の解像力を超えて微細にブレ補正部を動かしても、取得される撮影画像に差は見られないといったことも考えられる。本実施例では、撮像システムの解像力やシャッタースピードに応じて、ブレ補正部の応答性を変更することで、解像力の高いレンズや撮像素子を使用したシステムや、シャッタースピード等の撮影条件の違いによらず、手ブレ補正を効果的に行うことが可能になる。
なお、カメラシステム制御部5およびレンズシステム制御部12は上記のほかに、シャッターモードによってブレ補正部の応答性を変更してもよい。図1に示したシャッター17(メカシャッター)のように、撮像装置内で衝撃を発生させるようなコンポーネントがある場合、手ブレ(カメラの動き)以外の撮像装置内部で発生した衝撃がブレ検出部へ入力され得る。そのため、ブレ補正部の応答性を高くすると、それに合わせてブレ補正部が駆動してしまうということも起こりうる。よって、上述の応答性の変更は、はシャッター17の機構が駆動しない、いわゆる電子シャッターモードや、撮像素子6の露光中にはシャッター17の駆動による振動がブレ検出部に入力されない電子先幕シャッターモードの時に実施することが好ましい。
また、撮像素子6の露光期間のみブレ補正部の応答性を変更してもよい。ブレ補正部の応答性を上げる場合、一般に外乱に対しても良く応答するようになってしまう。つまり、ブレ検出部に対して入力された外乱に対しても応答性良く駆動してしまうことになる。したがって、撮像素子6の露光を行っていない、フレーミング中や、撮影準備動作中などにユーザーの意図しないような衝撃が撮像システムに入力されてしまった場合に、ブレ補正部がその衝撃に合わせて駆動するということが起こりうる。露光前のブレ補正部の駆動量が大きいと、露光中のブレ補正のためのストロークが足りなくなる、ということがあり得る。そのため、本実施例は、撮像素子6の露光中にのみブレ補正部の駆動制御パラメータを変更するように実施されることが好ましい。また上述したように、ブレ補正部の応答性を上げることで、消費電力が増加してしまう可能性があるため、消費電力という観点においても、応答性の変更は撮像素子6の露光中にのみ実施されるのが好ましいと考えられる。尚、本発明において、特に断りがない限り、露光中とは、記録用の画像(静止画、または動画の1フレーム)を撮影するための露光をしている期間のことを指すものとし、ライブビュー画像を撮影するための露光をしている期間のことは指さないものとする。
<解像力について>
次に図3を用いて、本実施例においてブレ補正部の応答性を変更する際に参照する解像力について説明する。図3は撮像素子6および撮影光学系3の解像力について説明する図であり、図3(a)はある解像力の撮像素子を、図3(b)は図3(a)よりも高い解像力の撮像素子を表している。図3(c)は、解像力の異なる2つの撮影光学系について説明するグラフである。
図3(a)は、ある撮像素子31とその拡大図を表している。撮像素子31は、複数の画素32を有しており、画素32がピッチ33で配置されている。図3(b)は、図3(a)の撮像素子31よりも解像力の高い撮像素子34とその拡大図を表している。撮像素子34は複数の画素35を有しており、画素35がピッチ36で配置されている。図3(a)、(b)に示すように、撮像素子31の画素のピッチ33に対して、撮像素子34の画素のピッチ36は小さく、より細かな被写体を撮像することが可能になっている。つまり、画素ピッチが相対的に小さい撮像素子34のほうが撮像素子31よりも解像力が高く、撮像素子34は撮像素子31よりも、細かなブレが見えやすい。
そこで本実施例のレンズ装置2は、図3(b)の撮像素子34を備えるカメラ本体に装着された場合、図3(a)の撮像素子31を備えるカメラ本体に装着された場合よりもレンズ側ブレ補正部13の応答性が高くなるように、駆動制御パラメータを変更する。
図3(c)はある2つの撮像光学系のMTF(Modulation Transfer Function)曲線を表している。MTF曲線は、横軸に空間周波数を、縦軸にコントラストをとったグラフであり、撮影光学系の解像力を示すグラフとして知られている。MTF曲線は、ある空間周波数をもつ被写体に対して、撮影光学系が信号をどの程度忠実に伝達できるかを表しており、一般的に、各空間周波数において、コントラストが高いほど、解像力が高いとされている。曲線37はあるレンズ装置のMTF曲線を表しており、曲線38はMTF曲線37のレンズ装置よりも解像力の高いレンズ装置のMTF曲線を表している。図3(c)に示すように、MTFがMTF曲線37で示される撮影光学系に対して、MTFがMTF曲線38で示される撮影光学系は、各空間周波数に対してコントラストが高い。つまり、MTFがMTF曲線38で示される撮影光学系は、各空間周波数に対して、十分に被写体を表現(より細かな被写体を撮像)することが可能になっている。つまり、MTFがMTF曲線38で示される第1の撮影光学系のほうが、MTFがMTF曲線37で示される第2の撮影光学系よりも解像力が高く、細かなブレが見えやすい。
そこで本実施例のカメラ本体1は、第1の撮影光学系を備えたレンズ装置2が装着された場合、第2の撮影光学系を備えたレンズ装置2が装着された場合よりも、カメラ側ブレ補正部14の応答性が高くなるように、駆動制御パラメータを変更する。尚、MTF曲線そのものではなく、像空間における解像できる1mm当たりのラインの本数(本/mm)に基づいてその撮影光学系の解像力を判定してもよい。駆動制御パラメータの変更の具体例については、図4を用いて説明をする。
<駆動制御パラメータの変更について>
次に図4を用いて、ブレ補正部の駆動制御パラメータの変更による応答性の変更について説明する。図4は本実施例におけるレンズ側及びカメラ側のブレ補正部(13、14)の応答性の変更について説明する図であり、ブレ補正部の周波数特性を表したグラフである。図4(a)は周波数応答のゲインについて表したグラフであり、図4(b)は周波数応答の位相について表したグラフである。
図4(a)において、曲線41および曲線42はブレ補正部の制御ゲイン(以下、端にゲインと呼ぶ)の周波数特性の例を表している。縦軸はゲインを示し、ゲイン=0のとき、レンズ側/カメラ側のブレ補正部(13、14)は入力された駆動量分、実際に駆動が出来ていることを示す。また、0よりも小さい値(紙面下方)になると、制御部から入力された駆動量と実際の駆動量との差が生じていることを示す。また、横軸は周波数を表しており、紙面右側に向かって高い周波数でのゲインを表している。ブレ補正部(カメラ側ブレ補正部14もしくはレンズ側ブレ補正部13、もしくはその両方)の応答性を高くする場合、ゲインの特性は、曲線41から曲線42へ変更する。具体的には、カメラ側ブレ補正部14の応答性を高くする場合、図2(a)におけるカメラ側ゲイン補償器5cの値を大きくする。また、レンズ側ブレ補正部13の応答性を高くする場合、図2(b)におけるレンズ側ゲイン補償器12cの値を大きくする。それにより、ブレ補正部の周波数応答のゲインが、曲線41から曲線42のようになることで、高周波帯域においてゲインが持ち上がり、より高い周波数においてもブレ補正部が応答可能になる。ゲインの変更の仕方は特に問わず、例えば、撮像素子6の解像力と撮影光学系3の解像力とに基づく撮像システムの解像力が所定値以上の場合に、ゲインの特性を曲線41から曲線42へ切り替えることで行ってもよい。また、撮像システムの解像力に応じて、解像力が高くなるほど、ゲインの特性が曲線41から曲線42へ近づくようにゲインを変更してもよい。撮像システムの解像力が所定値未満の場合はゲインの特性を曲線41とし、解像力が所定値以上であると、その解像力が上がるほどゲインの特性が曲線42へ近づけ、解像力が別の所定値に到達するとそれ以上は曲線42で一定となるようにゲインを設定してもよい。また、シャッター速度に応じて、応答性を変える場合も同様であり、シャッター速度が所定値より速いか否かでゲインの特性を切り替えてもよいし、シャッター速度が速くなるほどゲインの特性が曲線41から42へ近づいていくようにゲインを設定してもよい。
図4(b)において、曲線43および曲線44はブレ補正部の位相の周波数応答の例を表している。縦軸は位相を示し、紙面上方の方が、制御部から駆動量の入力を受けてから実際に駆動が完了するまでの位相遅れが少なく、紙面下方に行くほど位相遅れが大きいことを示す。また、横軸は周波数を表しており、紙面右側に向かって高い周波数でのゲインを表している。ブレ補正部(カメラ側ブレ補正部14もしくはレンズ側ブレ補正部13、もしくはその両方)の応答性を高くする場合、位相の特性は、曲線43から曲線44へ変更する。具体的には、カメラ側ブレ補正部14の応答性を高くする場合、図2(a)におけるカメラ側位相補償器5dの値を変更し、位相の遅れを高周波側へシフトする。また、また、レンズ側ブレ補正部13の応答性を高くする場合、レンズ側位相補償器12dの値を変更し、位相の遅れを高周波側へシフトする。それにより、ブレ補正部の周波数応答の位相が、曲線43から曲線44のようになることで、位相の遅れが高周波側へシフトし、より高い周波数においてもブレ補正部の応答性が向上する。尚、位相の変更も、ゲインの変更と同様に、撮像システムの解像力が所定値以上の場合に、位相を曲線43から曲線44へ切り替えることで行ってもよいし、解像力に応じて徐々に変更してもよい。また、シャッター速度に応じて、応答性を変える場合も同様であり、シャッター速度が所定値より速いか否かで位相の度d九定を切り替えてもよいし、シャッター速度が速くなるほど位相の特性が曲線41から42へ近づいていくように位相を設定してもよい。また、位相とゲインの両方を変更することにより、応答性を変更してもよい。
このように本実施例では、撮像システムの解像力やシャッタースピードなどの撮影条件に応じて、ブレ補正部の制御パラメータを変更することで、より高周波の周波数まで応答性を向上させる。
なお、本実施例においては、ゲイン補償器(5c、12c)や位相補償器(5d、12d)のパラメータを変更することにより応答性を高くすることについて説明したが、ブレ補正部の制御パラメータの変更方法についてはその限りではない。例えば、PID制御の各パラメータを変更するといった方法であってもよい。
<フローチャートに関する説明>
次に図5を用いて、本実施例におけるカメラ本体1の防振制御フローについて説明する。図5のフローは、カメラ本体1の電源が入るとともにスタートし、カメラシステム制御部5がカメラ本体内の各部及び、レンズシステム制御部12から各種情報を取得し、それらを制御することで行われる。また、撮影した画像を表示する再生モードから、撮影を待機する撮影モードへの切り替えに応じて本フローを開始してもよい。
ステップS5001では、カメラシステム制御部5はカメラ本体1の撮像素子6の解像力を確認し、ステップS5002へ進む。撮像素子6の解像力の確認方法としては、画素ピッチがメモリ部8に格納されており、画素ピッチの情報を、解像力を示す情報として読み出すという方法をとることができる。また、カメラ本体1の型番と撮像素子解像力が紐づいており、カメラ本体1の型番を、撮像素子解像力を示す情報として確認するといった方法が考えられる。
ステップS5002では、カメラシステム制御部5はレンズシステム制御部12と電気接点11を介して通信を行い、レンズ装置2における撮影光学系3の解像力を確認し、ステップS5003へ進む。撮影光学系3の解像力の確認方法としては、撮影光学系3のMTF曲線がレンズシステム制御部12に格納されており、通信によりそれを読み出すといった方法をとることができる。ズームレンズの場合、焦点距離に応じて解像力が変わるため、本ステップで複数の焦点距離に応じたMTF曲線の情報を取得しておき、後述する焦点距離の確認ステップで現在の焦点距離に応じたMTF曲線を特定してもよい。また、レンズ装置2の型番とレンズ解像力を示す情報を紐づけたテーブルをメモリ部8に格納しておき、レンズ装置から受信したレンズ装置2の型番(ID)に基づいてテーブルを参照することによりレンズ解像力を示す情報を取得してもよい。
ステップS5003では、カメラシステム制御部5は、ユーザーにより撮影準備開始指示(所謂シャッターレリーズ釦半押し、S1)が入力されたか否かを判定し、撮影準備開始指示が入力されたらステップS5004へ進み、入力されていなければ待機する。
ステップS5004では、カメラシステム制御部5は、撮影光学系3の焦点距離を確認し、ステップS5005へ進む。ここで撮影光学系3の焦点距離情報の取得方法は、カメラ本体1の電源が投入された際に、カメラシステム制御部5とレンズシステム制御部12が通信を行い、撮影光学系3の焦点距離情報を取得するような方法が挙げられる。その他の方法としては、レンズ装置2がズームレンズの場合、焦点距離が変更されるたびにカメラシステム制御部5とレンズシステム制御部12が通信を行い、焦点距離情報を取得する方法が挙げられる。取得された焦点距離情報はメモリ部8に格納しておき、本ステップではこの情報を参照することで、焦点距離を確認する。また、ステップS5004において改めて通信を行い、焦点距離を取得することで焦点距離の確認を行ってもよい。
ステップS5005では、カメラシステム制御部5はシャッタースピードを確認し、ステップS5006へ進む。ここで、シャッタースピードの確認方法は、ユーザーにより設定されたものを読み込むという方法や、不図示のAE(Auto Exposure)手段によって求められたものを読み込みという方法が挙げられる。
ステップS5006では、カメラシステム制御部5はユーザーにより撮影開始指示(所謂シャッターレリーズ釦押下、S2)が入力されたか否かを判定し、撮影開始指示が入力されたらステップS5007へ進み、入力されていなければステップS5003へ戻る。
ステップS5007では、カメラシステム制御部5はシャッター方式が電子シャッターモード、もしくは電子先幕シャッターモードであるのか否かの判定を行う。その結果、電子シャッターモードもしくは電子先幕シャッターモードである場合はステップS5008へ、そうでない場合はステップS5009へ進む。
ステップS5008では、カメラシステム制御部5は、撮像システムの解像力とシャッター速度とに基づいてカメラ側ブレ補正部14の応答性を変更する。撮像システムの解像力は、ステップS5001で確認した撮像素子6の解像力、ステップS5002で確認した撮影光学系3の解像力、ステップS5004で確認した焦点距離に基づいて、取得することができる。例えば、現在の撮影光学系の焦点距離に基づいて取得された撮影光学系の解像力と、撮像素子の解像力とを比較し、解像力の低い方の解像力を撮像システムの解像力としてもよい。撮像システムの解像力が所定値以下で、且つ、シャッター速度が所定値以下(つまり、所定値と同じか、または所定値よりも遅い)の場合は、通常の駆動制御パラメータ(第1のパラメータとする)を設定したままにしておく。一方で、撮像システムの解像力が所定値よりも高い場合と、シャッター速度が所定値よりも高い場合は、図4で説明したようにブレ補正部の応答性が第1のパラメータが設定されているときよりも上がる駆動制御パラメータ(第2のパラメータ)の設定をする。設定後、ステップS5009へ進む。尚、ここでは第1のパラメータが予め設定されているものとして説明をしたが、撮像システムの解像力が所定値以下で、且つ、シャッター速度が所定値以下であれば第1のパラメータを設定し、そうでない場合は第2のパラメータを設定してもよい。
ステップS5009では、カメラシステム制御部5はカメラ側ブレ補正部14の駆動を開始し、ステップS5010へ進む。本実施例では、カメラ側ブレ検出部15の検出結果に基づいて撮像素子6を移動させることにより、ブレ補正を行う。さらに、本実施例では、レンズ装置2もレンズ側ブレ補正部13を備えるため、検出したブレをカメラ側とレンズ側とで分担をしてブレ補正を行う。分担の仕方は特に問わないが、例えば本ステップの前に決定された分担比に応じてカメラ側とレンズ側のそれぞれが、検出したブレ量のうち、分担比に応じたブレ量を補正するようにブレ補正を行ってもよい。例えば、分担比が1:1の場合、カメラシステム制御部5は、カメラ側ブレ検出部15の検出結果に0.5を乗算したブレ量を補正するように、カメラ側ブレ補正部14を制御する。
ステップS5010では、カメラシステム制御部5は撮像素子6の露光を開始し、ステップS5005で読み出したシャッタースピードに相当する時間、撮影を行い、ステップS5011へ進む。ステップS5011では、カメラ側ブレ補正部14の駆動を停止しステップS5012へ進む。
ステップS5012では、カメラシステム制御部5はユーザーの入力などを基にして、撮影モードを終了するか否かを判定し、撮影モードを終了する場合はフローを終了し、終了しない場合は、ステップS5003へ戻る。
なお、図5においてはカメラシステム制御部5が各制御フローにおいてカメラ本体1の制御を行ように説明したが、レンズシステム制御部12が各制御フローにおいてカメラ本体1の制御を行っても構わない。
図6は、本実施例におけるレンズ装置2の防振制御フローである。図6のフローは、カメラ本体1の電源が入るとともにスタートし、レンズシステム制御部12がレンズ装置内の各部及び、カメラシステム制御部5から各種情報を取得し、それらを制御することで行われる。また、カメラ本体1の、撮影した画像を表示する再生モードから、撮影を待機する撮影モードへの切り替えに応じて本フローを開始してもよい。
ステップS6001では、レンズシステム制御部12はカメラシステム制御部5と電気接点11を介して通信を行い、カメラ本体1の撮像素子6の解像力を確認し、ステップS6002へ進む。撮像素子6の解像力の確認方法としては、カメラシステム制御部5から画素ピッチの情報を解像力を示す情報として取得するという方法をとることができる。また、カメラ本体1の型番と撮像素子解像力を紐づけたテーブルがレンズ内のメモリ部(不図示)に格納されており、カメラ本体から受信したカメラ本体の型番(ID)に基づいて、像素子解像力を確認するといった方法が考えられる。
ステップS6002では、レンズシステム制御部12は撮影光学系3の解像力を確認し、ステップS6003へ進む。撮影光学系3の解像力の確認方法としては、撮影光学系3のMTF曲線を不図示のメモリ部が格納しており、その情報を読み出すといった方法をとることができる。
ステップS6003では、レンズシステム制御部12は、ユーザーにより撮影準備開始指示(所謂シャッターレリーズ釦半押し、S1)が入力されたことの通知を、カメラシステム制御部5から受信したか否かを判定する。撮影準備開始指示の入力を通知されたらステップS6004へ進み、入力されていなければ待機する。
ステップS6004では、レンズシステム制御部12は、撮影光学系3の焦点距離を確認し、ステップS6005へ進む。
ステップS6005では、レンズシステム制御部12はシャッタースピードを確認し、ステップS6006へ進む。シャッタースピードの情報は、カメラシステム制御部5との通信により受信する。また、ここで確認するシャッタースピードは、シャッタースピードを示す情報であれば、シャッタースピードそのものではなくてもよい。例えば、図5のフロー図で説明したように、シャッタースピードが所定値以下の場合に応答性を高くする場合は、シャッタースピードが所定値よりも大きい(つまり速い)か否かの情報を取得してもよい。
ステップS6006では、レンズシステム制御部12はカメラシステム制御部5より、シャッターモードが電子シャッターモード、もしくは電子先幕シャッターモードであるのか否かを示す情報を受信する。その結果、電子シャッターモードもしくは電子先幕シャッターモードである場合はステップS6007へ、そうでない場合はステップS6008へ進む。
ステップS6007では、レンズシステム制御部12は、撮像システムの解像力とシャッター速度とに基づいてブレ補正部の応答性を設定する。応答性の設定方法は、ステップS5008と同様であるため説明を省略する。
ステップS6008では、レンズシステム制御部12はレンズ側ブレ補正部13の駆動を開始し、ステップS6009へ進む。本実施例では、レンズ側ブレ検出部16の検出結果に基づいてブレ補正レンズ3aを移動させることにより、ブレ補正を行う。尚、本実施例では、カメラ側ブレ補正部14は撮影開始指示の入力後にブレ補正を開始するため、本ステップの実行中にはカメラ側ブレ補正部14はブレ補正を行わない。よって、ここでは上述のステップS5009で説明をしたような、カメラ側とレンズ側で分担をしたブレ補正ではなく、レンズ側だけでブレ補正を行う。
ステップS6009では、レンズシステム制御部12は、ユーザーにより撮影開始指示(S2)が入力されたことの通知を、カメラシステム制御部5から受信したか否かを判定する。撮影開始指示の入力を通知されたらステップS6010へ進み、入力されていなければステップS6003へ戻る。
ステップS6010では、レンズシステム制御部12はレンズ側ブレ補正部13の駆動方式を、レンズ側ブレ補正部13単独でのブレ補正方式から、カメラ側ブレ補正部14と協調してブレ補正を行う方式へ変更してブレ補正を継続する。ここでは、上述のステップS5009で説明をしたような、カメラ側とレンズ側で分担をしたブレ補正を行う。
ステップS6011では、レンズシステム制御部12は、カメラ本体1による撮影が終了したか否かを判定する。判定方法は、カメラ本体1から撮影終了の通知を受けたか否かで判定してもよいし、撮影開始のタイミングから、S6005で確認したシャッタースピード分の時間が経過したか否かで判定してもよい。撮影が終了した場合はステップS6012へ進み、終了していない場合は待機する。
ステップS6012では、レンズシステム制御部12は、カメラシステム制御部5より、撮影モードを終了することの通知を受けたか否かを判定する。撮影モード終了の通知を受けた場合はフローを終了し、通知を受けていない場合は、ステップS6003へ戻る。
図5及び図6では、カメラ本体1とレンズ装置2とがともにブレ補正部を備え双方の応答性を撮像システムの解像力とシャッタースピードとに基づいて設定する場合について説明をした。しかしながら、本実施例はこれに限定されず、カメラ側ブレ補正部14もしくはレンズ側ブレ補正部13のいずれか一方のみの応答性を変更してもよい。例えば撮像システムがブレ補正部を備えたカメラ本体とブレ補正部を備えないレンズ装置の組み合わせの場合、撮像素子の解像力、撮影光学系の解像力や焦点距離、シャッタースピードに応じて、カメラ側ブレ補正部14の駆動制御パラメータを変更する。ブレ補正部を備えないカメラ本体とブレ補正部を備えたレンズ装置の組み合わせの場合、撮像素子の解像力、撮影光学系の解像力や焦点距離、シャッタースピードに応じて、レンズ側ブレ補正部13の駆動制御パラメータを変更する。カメラ本体側とレンズ装置側の双方がブレ補正部を備える場合であっても、いずれか一方のみの応答性を変更するような形態でもよい。例えば、カメラ側目標値生成部5bが有する位相補償器5dとゲイン補償器5cの特性が固定されており、レンズ装置2側のブレ補正システム側のみが撮像システムの解像力に応じて応答性を変更するような構成としても効果を得ることができる。
尚、図5において、カメラシステム制御部5は、ステップS5001で撮像素子の解像力を確認し、ステップS5002で撮影光学系の解像力を確認し、更にステップS50008で撮像システムの解像力を取得する例について説明をした。しかしながら、撮像システムの解像力の取得方法はこれに限定されない。例えば、撮影光学系の解像力の確認時に、撮影光学系の解像力が所定値以上かどうかを判定することで、撮像システムの解像力を取得してもよい。この所定値は、撮像素子の解像力に応じて予め設定されている値である。撮影光学系の解像力が所定値未満の場合、撮像素子の解像力に応じた第1の応答性をカメラ側ブレ補正部14の応答性として設定し、所定値以上の場合、撮影光学系の解像力に応じた第2の応答性をカメラ側ブレ補正部14の応答性として設定してもよい。尚、第1の応答性を、カメラ側ブレ補正部14の既定の応答性とし、撮影光学系の解像力が所定値以上の場合のみ、カメラ側ブレ補正部14の応答性を第1の応答性よりも応答性が高い第2の応答性に変更してもよい。この場合も、上述のように、撮影光学系の解像力が高くなるほど第2の応答性を高くしてもよいし、撮影光学系の解像力が所定値以上の場合は第1の応答性よりも高い一律の応答性を設定してもよい。
また、図6において、ブレ補正部の応答性変更(S6007)の後にブレ補正部駆動(単独)(S6008)を行ったが、所定の条件を満たした状態で露光をする際にブレ補正部の応答性が第2のパラメータに変更されていれば、処理の順番は特に問わない。
以上説明したように、撮像素子と撮影光学系の解像力に応じてブレ補正制御部の特性を切り替えることで、解像力の高いレンズや撮像素子を使用したシステムにおいて、手ブレ補正を正確に行うことが可能になる。さらに、シャッタースピードに応じて、ブレ補正制御部の特性を切り替えることで、撮影条件の違いによらず、手ブレ補正を正確に行うことが可能になる。
以下、図7~8を参照して、本発明の第2の実施例による撮像システムについて説明する。本実施例では、レンズ側ブレ補正部13とカメラ側ブレ補正部14のブレ補正の分担の仕方を変更することで、シャッタースピードが所定値以上の場合は撮像システム全体におけるブレ補正の応答性を高くする撮像システムについて説明をする。具体的には、シャッタースピードが所定値以上の場合は、レンズ側とカメラ側のブレ補正システムのうち、ブレ補正の応答性が高い方にブレ信号のうちの高周波帯域の補正を、もう一方に低周波帯域の補正を分担させるように制御する。一方で、シャッタースピードが所定値未満(所定値よりも遅い)の場合は、レンズ側とカメラ側のブレ補正システムのそれぞれは、検出したブレ信号のうち、分担比率に応じたブレ分の補正を行う。基本的な構成については図1および図2を用いて説明した第1の実施例と同様であるため、差異のある箇所についてのみ詳細に説明する。
図7を用いて、本実施例における、カメラ側ブレ補正システムおよび、レンズ側ブレ補正システムの構成について説明をする。
図7はカメラ本体1に設けられたカメラ側ブレ補正システムおよびレンズ装置2に設けられたレンズ側ブレ補正システムの制御ブロック図を表したものである。図7(a)はカメラ側ブレ補正システムの制御ブロック図を、図7(b)はレンズ側ブレ補正システムの制御ブロック図をそれぞれ表している。基本的な構成は図2で説明した第1の実施例と変わらないため、差異のある箇所についてのみ詳細に説明する。
図7(a)において、カメラシステム制御部5は、カメラ側ブレ補正システムとレンズ側ブレ補正システムのそれぞれの応答性に基づいて、制御を変更すための応答性判定部61を有する。応答性判定部61は、カメラ側ブレ補正システムとレンズ側ブレ補正システム双方の情報に基づいて、それぞれの応答性を比較し、どちらの応答性が高いか(高周波帯域での応答性が良いか)を判定する。この際に、応答性判定部61が参照する情報としては、カメラ側ブレ補正部14およびレンズ側ブレ補正部13の可動部の重量、周波数応答(モータ駆動特性)や、カメラ側ブレ検出部15およびレンズ側ブレ検出部16の感度特性等が挙げられる。高周波の応答性が高い方の判定方法の例としては、ブレ補正部の可動部の重量が軽い方、ブレ補正部の周波数応答(モータ駆動特性)がより高周波側まで追従可能である方、といった方法が考えられる。また、ブレ検出部の感度特性として、高周波の周波数のブレに対する検出感度が高い場合や、ブレ検出部内部の信号処理に使用されるローパスフィルタのカットオフ周波数がより高い(高周波の信号まで出力される)といったことも挙げられる。また、予め応答性を示す情報とレンズ装置の型番とを紐づけたテーブルをメモリ部に格納しておき、受信したレンズ装置2の型番に基づいてレンズ側ブレ補正システムの応答性を取得し、これに基づいてブレ補正システムの応答性を比較してもよい。また、応答性判定部61は、カメラ側ブレ補正システムの応答性は既知であるため、レンズ装置の型番に毎の比較結果をメモリ部に格納しておいてもよい。例えば、カメラ側ブレ補正システムの応答性が、型番xのレンズ装置のブレ補正システムよりも応答性が低く、型番yのレンズ装置のブレ補正システムよりも応答性が高い、といった情報を格納しておけば良い。また、レンズ装置2がレンズ側ブレ補正システムの応答性を示す評価値を保持しており、これをカメラシステム制御部5に送信することで応答性判定部61が応答性を判定するような形態でもよい。
本実施例のカメラシステム制御部5は、シャッタースピード記憶部5eに記憶されたシャッタースピードと、応答性判定部61において判定された各ブレ補正システムの応答性に基づいて、カメラ側とレンズ側のブレ補正システムにおける補正の制御を変更する。具体的には、応答性判定部61において、カメラ側ブレ補正システムとレンズ側ブレ補正システムのどちらが高周波の応答性が高いかを判定し、シャッタースピードに応じて、各ブレ補正システムにおいて補正を行う周波数の分担方式を決定する。レンズシステム制御部12は、図7(b)に示すように、応答性判定部61による判定結果とシャッタースピード記憶部5eに記憶されたシャッタースピードとを、カメラシステム制御部5から受信する。そして、シャッタースピードに応じて、各ブレ補正システムにおいて補正を行う周波数の分担方式を決定する。
分担方式について説明をする。カメラ側ブレ補正システムおよびレンズ側ブレ補正システムの双方を用いてブレ補正を行う場合、それぞれのブレ検出部(カメラ側ブレ検出部15およびレンズ側ブレ検出部16)の出力に応じて、それぞれのブレ補正システムが動作する。その際、各ブレ検出部が検出したブレ量の全てを、それぞれのブレ補正部で補正してしまった場合、ブレ補正をしすぎてしまうことが起こりうる。
そこで本実施例では、上述のように、シャッタースピードが所定値未満の場合は、レンズ側とカメラ側のブレ補正システムのそれぞれは、検出したブレ信号のうち、分担比率に応じたブレ分の補正を行う。この分担方式を、ここでは第1の方式と呼ぶ。この方式では、例えば、各ブレ検出部で検出したブレ量の半分ずつを各ブレ補正部で補正するというようにすることで、過剰にブレ補正を行ってしまうということを避けることが可能となる。この方式は、各ブレ検出部で検出されたブレ量もしくはブレ補正部の駆動量に対して一定の割合を乗じる(ゲイン補償を行う)ことで実現可能なため、制御器を構成することが比較的容易である。また、各ブレ補正部の補正ストローク(可動量)に応じて分担比率を決めることができる。これにより、入力されるブレの周波数に関わらず、一方のストロークに余裕があるにもかかわらず、もう一方が可動範囲の端に当たり、補正ができない状態(ストロークアウト)になる、といったケースが発生しにくい。
一方で、シャッタースピードが所定値以上の場合は、レンズ側とカメラ側のブレ補正システムのうち、ブレ補正の応答性が高い方に検出したブレ信号のうちの高周波帯域の補正を、もう一方に低周波帯域の補正を分担させるように制御する。この分担方式をここでは第2の方式と呼ぶ。この方式では、ブレ補正の応答性が高い方に検出したブレ信号のうちの高周波帯域の補正を行わせることで、シャッタースピードが速い場合に視認しやすくなる高周波数のブレに対してブレ残りを少なくすることが可能である。
ここでは、応答性判定部61の判定の結果、レンズ側ブレ補正システムの方が応答性が高いと判定されたものとして説明をする。第1の方式と第2の方式では、カメラ側フィルタ処理部5aによる処理と、レンズ側フィルタ処理部12aによる処理が異なる。
第1の方式における、カメラ側フィルタ処理部5aによる処理と、レンズ側フィルタ処理部12aによる処理について説明をする。図7(a)に示すように、カメラシステム制御部5は、カメラ側ブレ検出部15から得られた信号に対してブレ信号フィルタ処理部74にてカメラ側ブレ検出部15の特性に基づいたハイパスフィルタ処理を行い、ノイズなどを除去する。第1の方式では、その後、点線の経路を辿り、フィルタ処理された検出信号に対してゲイン補償器73でゲインを乗算する。ブレ信号フィルタ処理部74とゲイン補償器73の構成は、実施例1におけるカメラ側フィルタ処理部5aと同様である。ゲイン補償器73の出力は位相補償器5dに入力され、実施例1と同様に位相特性とゲイン特性を変更されてカメラ側ブレ補正部14へ入力される。
レンズ側フィルタ処理部12aによる処理も同様である。図7(b)に示すように、レンズシステム制御部12は、レンズ側ブレ検出部16からの信号に対してブレ信号フィルタ処理部76にてレンズ側ブレ検出部16の特性に基づいたハイパスフィルタ処理を行う。第1の方式ではその後、点線の経路を辿り、フィルタ処理された検出信号に対してゲイン補償器75でゲインを乗算する。ブレ信号フィルタ処理部76とゲイン補償器75構成は、実施例1におけるカメラ側フィルタ処理部5aと同様である。ゲイン補償器75の出力は位相補償器12dに入力され、実施例1と同様に位相特性とゲイン特性を変更されてレンズブレ補正部13へ入力される。このように、第1の方式では、検出したブレ信号に対してゲイン補償器5c、12cで分担比率を乗算することにより、各ブレ補正システムが分担比率に応じたブレ分の補正を行う。
一方、第2の方式では、応答性判定部61により応答性が高いと判定されたレン側ブレ補正システムが高周波帯域を、もう一方のカメラ側ブレ補正システムが低周波帯域を補正するように、カメラ側とレンズ側のフィルタ処理部5a、12aがフィルタ処理を行う。具体的なカメラ側フィルタ処理部5aによる処理と、レンズ側フィルタ処理部12aによる処理について説明をする。
第2の方式では、図7(a)のブレ信号フィルタ処理部74にてフィルタ処理されたブレ信号は実線の経路を辿る。実線の経路は、ハイパスフィルタ71(以下、HPFと略す)およびゲイン補償器72で構成されている。
同様に図7(b)に示すように、第2の方式では、ブレ信号フィルタ処理部76似てフィルタ処理されたブレ信号は実線の経路を辿る。この実線の経路は、ハイパスフィルタ(HPFと略す)およびゲイン補償器72で構成されている。
複数のブレ補正システムを用いて、補正を行う周波数を分担する場合、一方のブレ補正システムに、あるカットオフ周波数をもつHPFを組み込み、もう一方にはブレ信号から同じカットオフ周波数をもつHPFを減算するという方法がある。
図7(b)の実線で示す経路では、レンズ側ブレ補正システムのレンズ側フィルタ処理部12aにおいて、レンズ側ブレ検出部16から入力されるブレ信号に対して、HPF71およびゲイン補償器72を設けている。一方で、図7(a)の実線で示す経路では、カメラ側フィルタ処理部5aにおいて、カメラ側ブレ検出部15からの入力されるブレ信号から、当該ブレ信号に対して、HPF71およびゲイン補償器72を通過したブレ信号を差し引くように構成している。このように構成することで、一方のブレ補正システムにおいてはHPFを通し、もう一方のブレ補正システムにおいては(1-HPF)を通した信号処理となるため、双方で周波数を分担して制御するようにすることが可能となる。また、本実施例ではHPFと(1-HPF)をそれぞれの信号処理系に対して設ける例を説明したが、ローパスフィルタ(以下、LPFと標記する)を用いて構成しても構わない。その場合は、HPFと同様に一方のブレ補正システムにおいてはLPFを通し、もう一方のブレ補正システムにおいては(1-LPF)を通した信号処理となるため、双方で周波数を分担して制御するようにすることが可能となる。
次に図8を用いて、本実施例におけるカメラ側とレンズ側の双方のブレ補正システムの周波数特性について説明する。
図8(a)は、カメラ側ブレ補正システムとレンズ側ブレ補正システムとが上記第1の方式で分担してブレを補正する場合におけるそれぞれの周波数特性を表している。図4(a)と同様に、縦軸がゲイン、横軸が周波数を表している。図8(a)で示すように、カメラ側ブレ補正システムおよびレンズ側ブレ補正システムは、多くの場合、単独でも動作可能となるように、それぞれが手ブレ補正全般の周波数帯域をカバーできるように周波数特性が設計されている。図8(a)においても、カメラ側ブレ補正部の周波数特性81と、レンズ側ブレ補正部の周波数特性82は同様の周波数帯域をカバーするように周波数特性が設計されている。実際には、ブレ補正を行う際に動かす部材(可動部材)の重さや、駆動部の大きさといった特徴によって、双方のブレ補正システムの周波数特性には違いがある。図8(a)では可動部材の重量の軽い、レンズ側ブレ補正部の周波数特性82のほうが高周波数側までカバーできている(つまり、応答性が高い)様子を表している。
図8(b)はカメラ側ブレ補正システムとレンズ側ブレ補正システムとが上記第2の方式で分担してブレを補正する場合におけるそれぞれのブレ補正システムの周波数特性を表している。こちらも、縦軸がゲイン、横軸が周波数を表している。図8(b)で表されるように、カメラ側ブレ補正部の周波数特性83は、あるカットオフ周波数85を持つ、(1-HPF)を通した周波数特性に対応している。一方で、レンズ側ブレ補正部の周波数特性84は図7(b)で示したように、あるカットオフ周波数85を持つHPF71を通した周波数特性に対応している。図8(a)に示したように、各ブレ補正システムによって補正が得意な周波数帯域が異なる。そのため、本実施例では、シャッタースピードが速く、高周波数のブレが視認されやすい場合は、高周波帯域のブレ補正が得意な(つまり、応答性が高い)レンズ側のブレ補正部13を用いて高周波帯域のブレ補正を行う。そして、レンズ側補正部よりも高周波帯域のブレ補正が苦手な(つまり、応答性が低く、高周波帯域を補正しようとするとブレ残りが生じやすい)カメラ側ブレ補正部14を用いて低周波帯域のブレの補正を行う。つまり、第1の方式では、周波数特性81のカメラ側ブレ補正部にもゲインが低下するような高周波帯域のブレの補正を分担させることになるが第2の方式では高周波帯域のブレは応答性が高いレンズ側ブレ補正部が補正する。このように、周波数を分担して双方のブレ補正部を駆動することにより、シャッタースピードが速い場合のように、周波数の高いブレが入力された場合においても、第1の方式でよりもブレ残り量を少なくすることが可能になる。尚、カットオフ周波数の周辺の周波数では、カメラ側ブレ補正部の周波数特性83とレンズ側ブレ補正部の周波数特性84が重複しており、カメラ側ブレ補正部もカットオフ周波数85よりも高い周波数のブレの一部も補正する。しかしながら、本明細書及び本発明では、カメラ側ブレ補正部が補正の対象とする周波数帯域は、カットオフ周波数よりも低周波帯域側の周波数帯域(第1の周波数帯域)とみなす。同様に、レンズ側ブレ補正部が補正の対象とする周波数帯域は、カットオフ周波数よりも高周波帯域側の周波数帯域(第2の周波数帯域)とみなすこととする。つまり、カットオフ周波数は、カメラ側ブレ補正部の補正対象のブレと、レンズ側ブレ補正対象のブレとの境界であるとみなす。
次に、図9を用いて、本実施例におけるカメラ本体1の防振制御フローについて説明する。本実施例におけるフローチャートとしては、図5で示したものと差異がある箇所についてのみ説明する。このフローは、図5と同様、撮像装置の電源が入るとともにスタートし、カメラシステム制御部5がカメラ本体内の各部及び、レンズシステム制御部12から各種情報を取得し、それらを制御することで行われる。
ステップS9001では、カメラシステム制御部5はカメラ側ブレ補正システムの応答性を確認し、ステップS9002へ進む。ステップS9002では、カメラシステム制御部5はレンズシステム制御部12と電気接点11を介して通信を行い、レンズ側ブレ補正システムの応答性を確認し、ステップS5003へ進む。ステップS9001およびステップS9002において確認した応答性は、応答性判定部61が参照する情報として上述したように、下記のいずれかのようなブレ補正システムの応答性に関する情報や、それらに基づく情報であればよい。例えば、カメラ側ブレ補正部14およびレンズ側ブレ補正部13の可動部の重量、周波数応答(モータ駆動特性)、カメラ側ブレ検出部15およびレンズ側ブレ検出部16の感度特性等が挙げられる。ステップS5003~S5007の各ステップは、図5のS5003~S5007の各ステップと同じ処理であるため説明を省略する。ステップS9001、9002で各ブレ補正システムの応答性を確認し、電子先幕を用いる撮影の開始指示の入力を受けると、ステップS9008へ進む。
ステップS9008では、カメラシステム制御部5はシャッタースピードに応じて分担方式を決定し、決定結果と各ブレ補正システムの応答性とに基づいて各ブレ補正部の周波数特性を設定することで、各ブレ補正部の応答性を設定し、ステップS5009へ進む。本ステップでは。上述のように、シャッタースピードが所定値未満の場合は、図8(a)に示す周波数特性になるように、各ブレ補正部の応答性を設定し、第1の方式で分担する。一方で、シャッタースピードが所定値以上の場合は、図8(b)に示すように、高周波の応答性の高いと判定された方のブレ補正システムにおいて高周波側のブレ補正を行い、もう一方で低周波側のブレ補正を行う第2の方式で分担するように応答性を設定する。
S5009以降のステップは、図5のステップS5009~5012と同様であるため、説明を省略する。
また、レンズ装置2の防振制御フローは、図6のステップS6001、S6002の解像力の確認ステップが、応答性判定部61による判定結果をカメラ本体1から受信するステップに代わる。更に、ステップS6007のブレ補正部の応答性設定ステップが、ステップS9008と同様にシャッター速度と各ブレ補正システムの応答性とに基づく応答性設定ステップに代わる。その他の点は図6のフローと同じであるため、説明を省略する。
尚、上述の実施例では、カメラ本体1、レンズ装置2ともに応答性判定部61による判定結果と、シャッタースピードとに基づいてカメラ側とレンズ側のブレ補正の分担方式を決定した。しかしながら、いずれか一方が分担方式を決定し、他方がその決定結果を受信する形態としてもよい。例えば、カメラシステム制御部が応答性判定部61による判定結果とシャッタースピードとに基づいて分担方式を第1の方式とするか第2の方式とするかを決定し、その決定結果を電気接点11を介してレンズシステム制御部12に送信してもよい。レンズシステム制御部は、応答性判定部61による判定結果を受信する代わりに、分担方式を示す情報をカメラ本体1から受信し、カメラから指示された分担方式でレンズ側ブレ補正システムを動作させる。
また、上述の実施例では、シャッタースピードに応じてカメラ側とレンズ側のブレ補正システムの分担方式を決定したが、シャッタースピードに加えて、撮像システムの解像力にも基づいて分担方式を決定してもよい。撮像システムの解像力が低い場合、シャッタースピードが速くても高周波のブレは視認しにくくなるため、第1の方式でもブレ残りが目立たないためである。例えば、上述のようにシャッタースピードが所定値以上の場合に第2の方式で分担する形態において、当該所定値を撮像システムの解像力が低いほど所定値を大きく(速く)、高いほど所定値を小さく(遅く)してもよい。また、撮像システムの解像力が所定値以下で、且つ、シャッター速度が所定値未満の場合には第1の方式とし、撮像システムの解像力が所定値よりも高い場合と、シャッター速度が所定値以上の場合は、第2の方式としてもよい。但し、シャッタースピードが速いときは、撮影期間中に生じるブレの量(積算量)が小さく、第2の方式を採用してもストローク不足になりにくいため、上述の実施例のように解像力に関わらず第2の方式を採用してもよい。一方で、第1の実施例と同様に、シャッタースピードに関わらず、撮像システムの解像力に応じて第1の方式と第2の方式とを選択してもよい。撮像システムの解像力が所定値よりも高い場合は第2の方式とし、所定値以下の場合や第1の方式としてもよい。
以上説明したように、本実施例では、カメラ側ブレ補正システムとレンズ側ブレ補正システムの双方を用いてブレ補正を行う場合に、シャッタースピードおよび、それぞれのブレ補正システムの応答性に基づいて分担方式を変更する。これにより、シャッタースピードが速く、高周波のブレが目立ちやすい撮影条件では、カメラ側ブレ補正システムとレンズ側ブレ補正システムとを総合した撮像システム全体におけるブレ補正の応答性を高くすることができる。そのため、ブレ残りが少ないブレ補正を行うことが可能になる。
以下、図10を参照して、本発明の第3の実施例による撮像システムについて説明する。本実施例は、第2の実施例におけるブレ補正システムの制御の変更方法が異なる場合の実施例である。
本実施例では、シャッター速度に関わらず、カメラ側ブレ補正システムとレンズ側ブレ補正システムの双方を用いてブレ補正を行う場合は第2の方式で各ブレ補正部の制御を行い、シャッター速度に応じて分担する切り替えの周波数を変更する構成となっている。
基本的な構成については図7~9を用いて説明した第2の実施例と同様であるため、差異のある箇所についてのみ詳細に説明する。ただし、本実施例では、図7に示したカメラ側フィルタ処理部5aとレンズ側フィルタ処理部12aとのうち、点線で示した経路が不要であるため、ゲイン補償器73、75は不要である。
図10を用いて、本実施例における各ブレ補正システムの周波数特性の変更について説明する。本実施例においても、第2の実施例と同様、応答性はレンズ側ブレ補正部の方が高いものとする。図10は図8と同様に各ブレ補正システムの周波数特性を示すグラフであり、縦軸がゲイン、横軸が周波数を示す。図10(a)はシャッタースピードが所定値未満の場合の各ブレ補正システムの周波数特性の一例を表しており、図10(b)はシャッタースピードが所定値以上の場合の各ブレ補正システムの周波数特性の一例を表している。
図10(a)に示した例では、HPF71のカットオフ周波数103よりも低い周波数帯域をカメラ側、高い周波数帯域をレンズ側のブレ補正部で補正する。そのため、カメラ側ブレ補正部の周波数特性101は、カットオフ周波数103よりも少し低い周波数からゲインが徐々に低下していくものとする。一方で、レンズ側ブレ補正部の周波数特性102は、カットオフ周波数103よりも少し高い周波数からゲインが徐々に低下していくものとする。
図10(b)に示した例では、図10(a)よりも高いカットオフ周波数106をHPF71のカットオフ周波数とする。そのため、カメラ側ブレ補正部の周波数特性104はカットオフ周波数106よりも少し低い周波数からゲインが徐々に低下してく。一方で、レンズ側ブレ補正部の周波数特性105はカットオフ周波数106よりも少し高い周波数からゲインが徐々に低下していく。
第2の実施例において説明したように、各ブレ補正システムには、ブレ補正を行う際に得意な周波数帯域が存在し、例えば可動部重量が少ないレンズ側ブレ補正システムでは、カメラ側ブレ補正システムに比べて高周波数側のブレ補正性能が良いという場合がある。シャッタースピードが速い場合、撮像素子6の露光期間は短く、露光期間中のブレは高周波帯域のものが主となる。したがって、シャッタースピードが速い場合には、高周波数側のブレを応答性の高いレンズ側ブレ補正部で補正し、低周波数側のブレをカメラ側ブレ補正部で補正することにより、ブレ残りをより少なくすることが可能となる。
一方で、シャッタースピードが遅い場合、一般的にはブレ量が大きくなる傾向がある。また、低周波数側の手ブレのほうがブレ量としては大きい傾向がある。これらの理由により、シャッタースピードが遅い場合において、周波数を分担してブレ補正を行う際のカットオフ周波数が高いと、低周波数側を担当するブレ補正システムにおいて、補正ストロークが足りなくなってしまうということが起こりうる。そのため、本実施例では、シャッタースピードが所定値未満の場合は図10(a)のように各ブレ補正システムで周波数を分担してブレ補正を行う。そして、シャッタースピードが所定値以上の場合は、図10(b)のように、カットオフ周波数106が図10(a)におけるカットオフ周波数103よりも高い周波数になるように、各ブレ補正システムの特性を変更する。
以上説明したように、カメラ側ブレ補正システムとレンズ側ブレ補正システムの双方を用いて周波数を分担してブレ補正を行う場合、シャッタースピードに基づいて、分担する周波数のカットオフ周波数を変更することで、ブレ残りを低減することが可能になる。また、第2の実施例と同様に、シャッタースピードだけでなく、レンズとカメラの解像力に基づく撮像システムの解像力にも基づいて周波数特性を変更してもよいし、シャッタースピードの代わりに撮像システムの解像力に基づいて周波数特性を変更してもよい。
以下、図11を参照して、本発明の第4の実施例による撮像装置について説明する。第4の実施例は、第2の実施例における各ブレ補正システムの制御の変更方法が異なる場合の実施形態である。本実施例では、カメラ側ブレ補正システムとレンズ側ブレ補正システムの双方を用いてブレ補正を行う場合、シャッタースピードに応じて高周波数側の応答性の良い一方(ここでは、レンズ側ブレ補正部)の制御特性を変更する。基本的な構成については図6~9を用いて説明した第2の実施例と変わりないため、差異のある箇所についてのみ詳細に説明する。
図11を用いて、本実施例における各ブレ補正システムの制御特性の変更について説明する。図11(a)は2つのブレ補正システムで駆動量を分担して(第2の実施例における、第1の方式)制御する場合のそれぞれのブレ補正システムの周波数特性の一例を表している。図11(b)は、2つのブレ補正システムで周波数を分担して(第2の実施例における、第2の方式)制御する場合のそれぞれのブレ補正システムの周波数特性の一例を表している。ともに、縦軸がゲイン、横軸が周波数を示す。
図11(a)は、第1の方式で制御する場合の周波数特性であるため、カメラ側ブレ補正部の周波数特性111とレンズ側ブレ補正部の周波数特性112はそのほとんどが重複する。さらに本実施例では、シャッタースピードが所定値未満の場合、レンズ側ブレ補正部の周波数特性を、周波数特性112よりも応答性の高い周波数特性113へ変更する。これにより、シャッタースピードが速く、高周波なブレが目立つような撮影条件の場合は、そうでないときよりもブレ補正の応答性を高くすることができる。
図11(b)は、第2の方式で制御する場合の周波数特性であり、概して、カットオフ周波数117よりも低周波帯域のブレを補正するように、カメラ側ブレ補正部の周波数特性114を設定している。同様に、カットオフ周波数117よりも高周波帯域のブレを補正するようにレンズ側ブレ補正部の周波数特性115を設定している。さらに本実施例では、シャッタースピードが所定値未満の場合、レンズ側ブレ補正部の周波数特性を、周波数特性112よりも応答性の高い周波数特性116へ変更する。これにより、シャッタースピードが速く、高周波なブレが目立つような撮影条件の場合は、そうでないときよりもブレ補正の応答性を高くすることができる。
このように、本実施例においては、シャッタースピードに応じて、一方のブレ補正システムの周波数特性を変更する。基本的にはシャッタースピードが速い場合に、高周波数側の周波数特性の高いブレ補正システムの特性を変更し、さらに高周波数側の特性を向上させるように変更する。具体的には制御器のパラメータを変更し、高周波数側のゲインが上がるように変更を行う。このようにすることで、高周波数側のブレ補正部の応答性が向上し、シャッタースピードが速い場合(高周波数のブレが入力される)においても、精度よくブレ補正を行うことが可能となる。
なお、本実施例においてはレンズ側ブレ補正部の周波数特性を変更することで撮像システムの応答性を変更する例について説明したが、カメラ側ブレ補正部の周波数特性を変更しても構わない。
以上説明したように、カメラ側ブレ補正システムとレンズ側ブレ補正システムの双方を用いてブレ補正を行う場合、シャッタースピードに基づいて、一方の周波数特性を変更することで、ブレ残りを軽減することが可能になる。また、第2の実施例と同様に、シャッタースピードだけでなく、レンズとカメラの解像力に基づく撮像システムの解像力にも基づいて周波数特性を変更してもよいし、シャッタースピードの代わりに撮像システムの解像力に基づいて周波数特性を変更してもよい。
以下、図12を参照して、本発明の第5の実施例による撮像システムについて説明する。本実施例は、実施例1とブレ補正システムの応答性の変更方法が異なる。基本的な構成については図1~5を用いて説明した実施例1と同様であるため、差異のある箇所についてのみ詳細に説明する。
本実施例では、撮像素子6もしくは撮影光学系3の解像力に加え、撮影モード選択手段によって、撮影モードとして単写モードが選択されているか、連写モードが選択されているかに応じて、ブレ補正システムの制御特性(応答性)を変更する。
単写モードとは、撮像装置に撮影準備開始指示が入力されている(所謂シャッターレリーズ釦半押し、S1)状態から、撮影開始指示が入力されている(所謂シャッターレリーズ釦全押し、S2)状態に遷移した際に、撮像装置が1枚のみ撮影するモードを指す。一方で、連写モードとは、撮像装置に撮影開始指示が入力されている状態の間、撮像装置が連続的に複数枚の画像が撮影されるモードのことを指す。連写モードは単写モードに比べ、比較的シャッタースピードが速く設定される場合が多い。よって、手ブレ補正に関しても、従来のブレ補正の対象としていた手ブレよりも、速いシャッタースピードが設定されているときに目立ってくることが分かった微細な手ブレを優先してブレ補正を行うことができることが好ましい。したがって、本実施例では撮影モードに応じて、ブレ補正システムの制御特性を変更することで、それぞれのモードに合わせたブレ補正を行う。
図12を用いて、本実施例におけるブレ補正システムの制御特性の変更フローについて説明する。図12は図5と同様にカメラ本体1の防振制御フローであり、図5で示したものと差異のある箇所についてのみ詳細に説明する。このフローは、図5と同様、撮像装置の電源が入るとともにスタートし、カメラシステム制御部5がカメラ本体内の各部及び、レンズシステム制御部12から各種情報を取得し、それらを制御することで行われる。
ステップS5001からS5006の処理は、実施例1と同様であるため説明を省略する。ステップS5006でカメラシステム制御部5はユーザーにより撮影開始指示が入力されたことを判定すると、ステップS1201へ進む。ステップS1201では、カメラシステム制御部5は撮影モードとして、連写モードが選択されているか否かを判定し、連写モードが選択されている場合はステップS1202へ進み、連写モードが選択されていない場合はステップS5009へ進む。尚、撮影モードは、例えば、操作部を操作することでユーザが選択してもよいし、シーン等に応じて撮像装置が自動で設定してもよい。操作部を操作することでユーザが選択する場合、操作検出部10が撮影モードの選択操作を検出し、検出結果の入力を受けたカメラシステム制御部5が撮影モードを選択することで撮像システム(カメラ本体1)の撮影モードが選択される。
ステップS1202では、カメラ制御部5は撮像システム全体の解像力に基づいてカメラ側ブレ補正部14の応答性を変更する。撮像システムの解像力の取得方法は、実施例1のステップS5008と同様である。カメラ制御部5はステップS5001およびステップS5002で参照した撮像素子6の解像力と撮影光学系3の解像力とステップS5004で参照した焦点距離に基づいて撮像システム全体としての解像力を取得する。そして、撮像システムの解像力が高い方が、カメラ側ブレ補正部14の応答性が高くなるように、図4のように駆動制御パラメータを変更する。尚、撮像システムの解像力が高いほど応答性が上がるように駆動制御パラメータを変更してもよいし、解像力が閾値以上の場合は、閾値未満の場合よりも応答性が高くなるように駆動制御パラメータを変更してもよい。本ステップを経る場合(連写モードが選択されている場合)、本ステップを経ない場合(連写モードが選択されていない場合)以上の応答性となるように駆動制御パラメータを変更することが好ましい。ただし、撮像システムの解像力が高くない場合は、連写モードが選択されている場合と単写モードが選択されている場合とで応答性が等しくてもよい。応答性を変更すると、ステップS5009へ進む。ステップS5009からS5012も実施例1と同様であるため説明を省略する。
なお、図12では、図5におけるステップS5005の、シャッタースピードを参照した応答性変更はしない制御フローについて説明をしたが、本実施例においてもシャッタースピードを参照してもよい。また、図5におけるステップS5007の前後にステップS1201の判定処理を入れ、電子シャッターモードであり、かつ、連写モードの際に、ステップS1202へ進むフローとしてもよい。また、応答性の設定(変更)方法としては、実施例2~4で説明したような、分担方式を変更したり、分担する周波数を変更したりする方法を用いることもできる。例えば、連写モードが設定されており、かつ、撮像システムの解像力が所定値よりも高い場合はそれぞれの補正手段で補正する周波数を分担する第2の方式とし、所定値以下の場合はそれぞれの補正手段が分担比分のブレを補正する第1の方式としてもよい。
また、本実施例におけるレンズ装置2の防振制御フローは、カメラ本体1の防振制御フローと同様に、図9におけるステップS5005を省略し、ステップS5007とS5008のそれぞれをステップS1201とS1202のそれぞれに置き換えたものである。カメラ本体の制御フローと同様に、ステップS5005は省略しなくてもよいし、ステップS5007に加えてステップS1201を行ってもよい。
以上説明したように、撮像素子もしくは撮影光学系の解像力に応じてブレ補正制御手段の特性を切り替えることで、解像力の高いレンズや撮像素子を使用したシステムにおいて、当該解像力での撮影に適した手ブレ補正を行うことが可能になる。さらに、撮影モードに応じて、ブレ補正制御手段の応答性を変更することで、撮影条件にあわせて、目立ちやすい手ブレに対する補正を行うことが可能になる。
以下、図13、14を参照して、本発明の第6の実施例による撮像システムについて説明する。本実施例は、実施例1とブレ補正システムの応答性の変更方法が異なる。基本的な構成については図1~5を用いて説明した実施例1と同様であるため、差異のある箇所についてのみ詳細に説明する。
本実施例では、撮像素子6もしくは撮影光学系3の解像力に加え、ストロボ(発光手段)を使用して撮影を行うか否かに応じて、ブレ補正システムの制御特性(応答性)を変更する。尚、ストロボとは、閃光を発するものに限定されず、継続的に発光するものを含むものとする。
ストロボを用いて撮影を行う際には、比較的シャッタースピードが速く設定される場合が多い。よって、手ブレ補正に関しても、従来のブレ補正の対象としていた手ブレよりも、速いシャッタースピードが設定されているときに目立ってくる微細な手ブレを優先してブレ補正を行うことができることが好ましい。したがって、本実施例では、ストロボを使用して撮影を行うか否かに応じて、ブレ補正システムの制御特性を変更する。
本実施例の撮像システムの構成を図14に示す。基本的に実施例1と同様であるが、内蔵ストロボを備える点が実施例1(図1(b))との差異である。内蔵ストロボの代わりに、外部ストロボを使ってもよいが、その場合もカメラシステム制御部5と接続され、撮影時に外部ストロボが発光するか否かの情報をカメラシステム制御部5が有する構成とする。
図13を用いて、本実施例におけるブレ補正システムの制御特性の変更フローについて説明する。図13は図5と同様にカメラ本体1の防振制御フローであり、図5で示したものと差異のある箇所についてのみ詳細に説明する。このフローは、図5と同様、撮像装置の電源が入るとともにスタートし、カメラシステム制御部5がカメラ本体内の各部及び、レンズシステム制御部12から各種情報を取得し、それらを制御することで行われる。
ステップS5001からS5006の処理は、実施例1と同様であるため説明を省略する。ステップS5006でカメラシステム制御部5はユーザーにより撮影開始指示が入力されたことを判定すると、ステップS1301へ進む。ステップS1301では、カメラシステム制御部5は撮影時にストロボを使用するか否かを判定し、ストロボを使用する場合はステップS1302へ進み、ストロボを使用しない場合はステップS5009へ進む。
ステップS1302では、カメラ制御部5は撮像システム全体の解像力に基づいてカメラ側ブレ補正部14の応答性を変更する。撮像システムの解像力の取得方法は、実施例1のステップS5008と同様である。カメラ制御部5はステップS5001およびステップS5002で参照した撮像素子6と撮影光学系3の解像力とステップS5004で参照した焦点距離情報に基づいて撮像システム全体としての解像力を取得する。そして、撮像システムの解像力が高い方が、カメラ側ブレ補正部14の応答性が高くなるように、図4のように駆動制御パラメータを変更する。尚、撮像システムの解像力が高いほど応答性が上がるように駆動制御パラメータを変更してもよいし、解像力が閾値以上の場合は、閾値未満の場合よりも応答性が高くなるように駆動制御パラメータを変更してもよい。本ステップを経る場合(ストロボを使用して撮影する設定の場合)、本ステップを経ない場合(ストロボを使用せず撮影する設定の場合)以上の応答性となるように駆動制御パラメータを変更することが好ましい。ただし、撮像システムの解像力が高くない場合は、ストロボを使用する場合としない場青とで関わらず応答性が等しくてもよい。応答性を変更すると、ステップS5009へ進む。ステップS5009からS5012も実施例1と同様であるため説明を省略する。
なお、図13では、図5におけるステップS5005の、シャッタースピードを参照した応答性変更はしない制御フローについて説明をしたが、本実施例においてもシャッタースピードを参照してもよい。また、図5におけるステップS5007の前後にステップS1301の判定処理を入れ、電子シャッターモードであり、かつ、連写モードの際に、ステップS1302へ進むフローとしてもよい。また、応答性の設定(変更)方法としては、実施例2~4で説明したような、分担方式を変更したり、分担する周波数を変更したりする方法を用いることもできる。例えば、連写モードが設定されており、かつ、撮像システムの解像力が所定値よりも高い場合はそれぞれの補正手段で補正する周波数を分担する第2の方式とし、所定値以下の場合はそれぞれの補正手段が分担比分のブレを補正する第1の方式としてもよい。
また、本実施例におけるレンズ装置2の防振制御フローは、カメラ本体1の防振制御フローと同様に、図9におけるステップS5005を省略し、ステップS5007とS5008のそれぞれをステップS1301とS1302のそれぞれに置き換えたものである。カメラ本体の制御フローと同様に、ステップS5005は省略しなくてもよい。
以上説明したように、撮像素子もしくは撮影光学系の解像力に応じてブレ補正制御手段の特性を切り替えることで、解像力の高いレンズや撮像素子を使用したシステムにおいて、該解像力での撮影に適した手ブレ補正を行うことが可能になる。さらに、ストロボを使用して撮影を行うか否かに応じて、ブレ補正制御手段の応答性を変更することで、撮影条件にあわせて目立ちやすい手ブレに対する補正を行うことが可能になる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
3 撮影光学系
5 カメラシステム制御部
6 撮像素子
12 レンズシステム制御部
13 レンズ側ブレ補正部
14 カメラ側ブレ補正部
15 カメラ側ブレ検出部
16 レンズ側ブレ検出部

Claims (21)

  1. レンズ装置が有する撮影光学系の解像力を示す情報と、前記レンズ装置により結像された被写体像を撮像する撮像素子の解像力を示す情報とに基づいて撮像システムの解像力を取得する取得手段と、
    前記レンズ装置が装着された撮像装置に加わるブレによる撮影画像への影響を補正する補正手段を制御する制御手段と、
    前記撮像システムの解像力と撮影条件とに基づいて、前記制御手段により制御される補正手段の応答性を設定する設定手段と、を備え、
    前記設定手段は、前記撮影条件が所定の条件を満たす場合に、前記撮像システムの解像力が第1の値の場合、前記第1の値よりも低い第2の値の場合よりも高い応答性を前記補正手段に設定し、
    前記所定の条件は、連写モードに設定されていることと、発光手段を発光させる設定がされていることの少なくともいずれかであることを特徴とするブレ補正制御装置。
  2. 前記所定の条件は、前記撮像システムに連写モードが設定されていることであることを特徴とする請求項1に記載のブレ補正制御装置。
  3. 前記所定の条件は、撮影時に発光手段を発光させる設定がされていることを特徴とする請求項1または2に記載のブレ補正制御装置。
  4. 前記設定手段は、少なくとも一部の周波数帯域の制御ゲインを上げることで応答性を高くすることを特徴とする請求項1乃至3のいずれか1項に記載のブレ補正制御装置。
  5. 前記設定手段は、少なくとも第1の周波数帯域の位相を早めることで応答性を高くすることを特徴とする請求項1乃至4のいずれか1項に記載のブレ補正制御装置。
  6. 前記撮像素子の解像力を示す情報は前記撮像素子の画素ピッチに基づくことを特徴とする請求項1乃至5のいずれか1項に記載のブレ補正制御装置。
  7. 前記設定手段は、前記撮像装置の露光中に行われるブレ補正動作の応答性を、前記撮像システムの解像力に基づいて設定することを特徴とした請求項1乃至6のいずれか1項に記載のブレ補正制御装置。
  8. 前記撮影光学系の解像力を示す情報は前記撮影光学系の各空間周波数に対するコントラストの高さを表すMTF曲線に基づくことを特徴とする請求項1乃至7のいずれか1項に記載のブレ補正制御装置。
  9. 前記撮影光学系の解像力を示す情報は、前記撮影光学系の焦点距離の変更に伴って変更されることを特徴とする請求項1乃至8のいずれか1項に記載のブレ補正制御装置。
  10. 前記設定手段は、前記撮像システムの解像力が高いほど、前記補正手段の応答性を高くすることを特徴とする請求項1乃至7のいずれか1項に記載のブレ補正制御装置。
  11. 前記制御手段は、前記レンズ装置が備える第1のブレ補正手段と、前記レンズ装置が装着された撮像装置が備える第2のブレ補正手段と、を制御し、
    前記設定手段は、前記第1のブレ補正手段と前記第2のブレ補正手段との少なくともいずれか一方の応答性を、前記撮像システムの解像力に基づいて設定することを特徴とする請求項1乃至10のいずれか1項に記載のブレ補正制御装置。
  12. 前記制御手段は、レンズ装置が備える第1のブレ補正手段と、前記レンズ装置が装着された撮像装置が備える第2のブレ補正手段とを制御し、
    前記設定手段は、前記撮影条件が前記所定の条件を満たす場合に、前記第1のブレ補正手段と前記第2のブレ補正手段との少なくともいずれかの応答性を、前記撮像システムの解像力に基づいて設定することを特徴とする請求項1乃至11のいずれか1項に記載のブレ補正制御装置。
  13. 前記制御手段は、
    前記第1のブレ補正手段と前記第2のブレ補正手段とが、前記撮像装置に加わるブレのうち、分担比に応じたブレを補正する第1の方式と、
    前記撮像装置に加わるブレのうち、第1の周波数帯域のブレを前記第1のブレ補正手段が、前記第1の周波数帯域と少なくとも一部が異なる第2の周波数帯域のブレを前記第2のブレ補正手段がそれぞれ補正する第2の方式とで前記第1のブレ補正手段と前記第2のブレ補正手段とを制御が可能であり、
    前記設定手段は、前記撮影条件が前記所定の条件を満たす場合、
    少なくとも前記第1の方式と前記第2の方式とを含む複数の分担方式から選択した分担方式を設定することで、前記応答性を設定し、
    前記解像力が所定の値よりも高い合前記第2の方式を選択し、前記解像力が前記所定の値以下の場合前記第1の方式を選択することを特徴とする請求項12に記載のブレ補正制御装置。
  14. 前記設定手段は、前記第1のブレ補正手段と、前記第2のブレ補正手段との応答性を比較し、前記第1のブレ補正手段の方が応答性が高いと判定した場合は前記第1の周波数帯域を前記第2の周波数帯域よりも高周波数側とし、
    前記第2のブレ補正手段の方が応答性が高いと判定した場合は前記第2の周波数帯域を前記第1の周波数帯域よりも高周波数側とすることを特徴とする請求項13に記載のブレ補正制御装置。
  15. 前記レンズ装置が装着可能な撮像装置であって、
    請求項1乃至14のいずれか1項に記載のブレ補正制御装置と、
    前記撮像素子と、
    前記撮像素子を移動させることで撮像装置に加わるブレによる撮影画像への影響を補正する第2のブレ補正手段と、を備え、
    前記設定手段は、前記第2のブレ補正手段の応答性を設定することを特徴とする撮像装置。
  16. 撮影光学系を備えるレンズ装置が装着可能な撮像装置であって、
    前記レンズ装置と通信する通信手段と、
    前記通信手段を介して、前記レンズ装置が有する撮影光学系の解像力を示す情報を取得する取得手段と、
    撮像素子と、
    前記撮像素子を移動させることで撮像装置に加わるブレによる撮影画像への影響を補正する第2のブレ補正手段と、
    前記取得手段により取得された前記撮影光学系の解像力を示す情報と撮影条件とに基づいて前記第2のブレ補正手段の応答性を設定する設定手段と、を備え、
    前記設定手段は、前記撮影条件が所定の条件を満たす場合に、第1の撮影光学系を備えるレンズ装置が装着された場合に比べ、第1の撮影光学系よりも解像力の高い第2の撮影光学系を備えるレンズ装置が装着された場合のほうが、前記第2のブレ補正手段の応答性が高くなるように、前記応答性を設定し、
    前記所定の条件は、連写モードに設定されていることと、発光手段を発光させる設定がされていることの少なくともいずれかであることを特徴とする撮像装置。
  17. 前記撮像装置に装着可能なレンズ装置であって、
    請求項1乃至14のいずれか1項に記載のブレ補正制御装置と、
    前記撮影光学系と、
    前記撮影光学系を構成する光学素子の一部を移動させることで前記撮像装置に加わるブレによる撮影画像への影響を補正する第1のブレ補正手段と、を備え、
    前記設定手段は、前記撮像システムの解像力に基づいて前記第1のブレ補正手段の応答性を設定することを特徴とするレンズ装置。
  18. 撮像素子を備える撮像装置に装着可能なレンズ装置であって、
    前記撮像装置と通信する通信手段と、
    前記通信手段を介して、前記撮像装置が有する撮像素子の解像力を示す情報を取得する取得手段と、
    撮像装置に加わるブレによる撮影画像への影響を補正する第1のブレ補正手段と、
    前記取得手段により取得された前記撮像素子の解像力を示す情報と撮影条件とに基づいて前記第1のブレ補正手段の応答性を設定する設定手段と、を備え、
    前記設定手段は、前記撮影条件が所定の条件を満たす場合に、第1の撮像素子を備える撮像装置が装着された場合に比べ、第1の撮像素子よりも解像力の高い第2の撮像素子を備える撮像装置が装着された場合のほうが、前記第1のブレ補正手段の応答性が高くなるように前記応答性を設定し、
    前記所定の条件は、連写モードに設定されていることと、発光手段を発光させる設定がされていることの少なくともいずれかであることを特徴とするレンズ装置。
  19. レンズ装置が有する撮影光学系の解像力を示す情報と、前記レンズ装置により結像された被写体像を撮像する撮像素子の解像力を示す情報とに基づいて撮像システムの解像力を取得する取得工程と、
    前記レンズ装置が装着された撮像装置に加わるブレによる撮影画像への影響を補正する補正手段を制御する制御工程と、
    前記撮像システムの解像力と撮影条件とに基づいて、前記制御工程により制御される補正手段の応答性を設定する設定工程と、を備え、
    前記撮影条件が所定の条件を満たす場合、前記設定工程において、前記撮像システムの解像力が第1の値の場合、前記第1の値よりも低い第2の値の場合よりも高い応答性を前記補正手段に設定し、
    前記所定の条件は、連写モードに設定されていることと、発光手段を発光させる設定がされていることの少なくともいずれかであることを特徴とするブレ補正制御装置の制御方法。
  20. 撮影光学系を備えるレンズ装置が装着可能な撮像装置の制御方法であって、
    前記レンズ装置と通信することで、前記レンズ装置が有する撮影光学系の解像力を示す情報を取得する取得工程と、
    撮像素子を移動させることで撮像装置に加わるブレによる撮影画像への影響を補正するブレ補正工程と、
    前記撮影光学系の解像力を示す情報と撮影条件とに基づいて前記ブレ補正工程におけるブレ補正の応答性を設定する設定工程と、を有し、
    前記撮影条件が所定の条件を満たす場合、前記設定工程において、第1の撮影光学系を備えるレンズ装置が装着された場合に比べ、第1の撮影光学系よりも解像力の高い第2の撮影光学系を備えるレンズ装置が装着された場合のほうが、前記ブレ補正の応答性が高くなるように、前記応答性を設定し、
    前記所定の条件は、連写モードに設定されていることと、発光手段を発光させる設定がされていることの少なくともいずれかであることを特徴とする撮像装置の制御方法。
  21. 撮像素子を備える撮像装置に装着可能なレンズ装置の制御方法であって、
    前記撮像装置と通信することで、前記撮像装置が有する撮像素子の解像力を示す情報を取得する取得工程と
    撮像装置に加わるブレによる撮影画像への影響を補正するブレ補正工程と、
    前記撮像素子の解像力を示す情報と撮影条件とに基づいて前記ブレ補正工程におけるブレ補正の応答性を設定する設定工程と、を有し、
    前記撮影条件が所定の条件を満たす場合、前記設定工程において、第1の撮像素子を備える撮像装置が装着された場合に比べ、第1の撮像素子よりも解像力の高い第2の撮像素子を備える撮像装置が装着された場合のほうが、前記ブレ補正の応答性が高くなるように前記応答性を設定し、
    前記所定の条件は、連写モードに設定されていることと、発光手段を発光させる設定がされていることの少なくともいずれかであることを特徴とするレンズ装置の制御方法。
JP2022008838A 2022-01-24 2022-01-24 ブレ補正制御装置、撮像装置、レンズ装置、及びそれらの制御方法 Active JP7302045B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022008838A JP7302045B1 (ja) 2022-01-24 2022-01-24 ブレ補正制御装置、撮像装置、レンズ装置、及びそれらの制御方法
US17/820,065 US20230239572A1 (en) 2022-01-24 2022-08-16 Image stabilization control apparatus, imaging apparatus, lens apparatus, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022008838A JP7302045B1 (ja) 2022-01-24 2022-01-24 ブレ補正制御装置、撮像装置、レンズ装置、及びそれらの制御方法

Publications (2)

Publication Number Publication Date
JP7302045B1 true JP7302045B1 (ja) 2023-07-03
JP2023107575A JP2023107575A (ja) 2023-08-03

Family

ID=86996665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022008838A Active JP7302045B1 (ja) 2022-01-24 2022-01-24 ブレ補正制御装置、撮像装置、レンズ装置、及びそれらの制御方法

Country Status (2)

Country Link
US (1) US20230239572A1 (ja)
JP (1) JP7302045B1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064921A1 (ja) 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. 撮影装置、製品パッケージおよび半導体集積回路
JP2008203317A (ja) 2007-02-16 2008-09-04 Nikon Corp カメラシステムおよびカメラボディ
JP2008257211A (ja) 2007-03-13 2008-10-23 Hoya Corp 像ブレ補正装置
JP2015136018A (ja) 2014-01-16 2015-07-27 キヤノン株式会社 像ブレ補正装置およびその制御方法、光学機器、撮像装置
JP2016057361A (ja) 2014-09-05 2016-04-21 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022181570A (ja) * 2021-05-26 2022-12-08 キヤノン株式会社 ブレ補正制御装置、撮像装置、レンズ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064921A1 (ja) 2003-12-26 2005-07-14 Matsushita Electric Industrial Co., Ltd. 撮影装置、製品パッケージおよび半導体集積回路
JP2008203317A (ja) 2007-02-16 2008-09-04 Nikon Corp カメラシステムおよびカメラボディ
JP2008257211A (ja) 2007-03-13 2008-10-23 Hoya Corp 像ブレ補正装置
JP2015136018A (ja) 2014-01-16 2015-07-27 キヤノン株式会社 像ブレ補正装置およびその制御方法、光学機器、撮像装置
JP2016057361A (ja) 2014-09-05 2016-04-21 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体

Also Published As

Publication number Publication date
US20230239572A1 (en) 2023-07-27
JP2023107575A (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
JP5919543B2 (ja) デジタルカメラ
TWI360349B (en) Digital imaging apparatus with camera shake compen
JP4551475B2 (ja) 撮像装置
JP5518362B2 (ja) カメラ本体、交換レンズ、及び撮像装置
US10694109B2 (en) Imaging apparatus
CN110121024B (zh) 图像稳定设备、摄像***及其控制方法
JP2019117977A (ja) 防振制御装置、撮像装置、撮像システム、制御方法及びプログラム
JPWO2007097287A1 (ja) 撮像装置及びレンズ鏡筒
JP2009282510A (ja) 交換レンズ、カメラ本体、及び撮像装置
US10798314B2 (en) Imaging apparatus and display method
JP5906427B2 (ja) 撮像装置、画像処理装置
JP6985898B2 (ja) 撮像装置及び表示方法
JP2022181570A (ja) ブレ補正制御装置、撮像装置、レンズ装置
JP2023159227A (ja) 撮像装置
JP7302045B1 (ja) ブレ補正制御装置、撮像装置、レンズ装置、及びそれらの制御方法
JP5618765B2 (ja) 撮像装置及びその制御方法
JP6971618B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2016099598A (ja) 撮像装置、その制御方法、および制御プログラム
US9648220B2 (en) Imaging apparatus, imaging apparatus body and image sound output method
JP6521034B2 (ja) 撮像装置
WO2007148453A1 (ja) カメラ本体、カメラシステム、交換レンズユニットおよび制御方法
JP2024071858A (ja) ブレ補正装置、ブレ補正方法及び撮像装置
JP2012244532A (ja) 撮像装置及び制御方法
JP2007240733A (ja) 防振機能付きカメラ
JP2012156613A (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R151 Written notification of patent or utility model registration

Ref document number: 7302045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151