JP7300640B2 - water purification cartridge - Google Patents

water purification cartridge Download PDF

Info

Publication number
JP7300640B2
JP7300640B2 JP2019060237A JP2019060237A JP7300640B2 JP 7300640 B2 JP7300640 B2 JP 7300640B2 JP 2019060237 A JP2019060237 A JP 2019060237A JP 2019060237 A JP2019060237 A JP 2019060237A JP 7300640 B2 JP7300640 B2 JP 7300640B2
Authority
JP
Japan
Prior art keywords
activated carbon
water purification
volume
purification cartridge
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060237A
Other languages
Japanese (ja)
Other versions
JP2020157242A (en
Inventor
友邦 甲斐
洋輝 前浪
一博 佐藤
健司 竹内
守信 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Lixil Corp
Original Assignee
Shinshu University NUC
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Lixil Corp filed Critical Shinshu University NUC
Priority to JP2019060237A priority Critical patent/JP7300640B2/en
Priority to PCT/JP2020/002961 priority patent/WO2020195116A1/en
Publication of JP2020157242A publication Critical patent/JP2020157242A/en
Application granted granted Critical
Publication of JP7300640B2 publication Critical patent/JP7300640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は活性炭及び浄水カートリッジに関する。 The present invention relates to activated carbon and water purification cartridges.

特許文献1には有機塩素化合物吸着用活性炭が開示されている。この活性炭は、フェノール樹脂粉末の炭化、賦活粒子が結合してなる粒状炭素成形物であり、細孔直径100Å以下の細孔容積が0.20~0.80cc/gであり、かつ細孔直径100Å以下の細孔容積に占める細孔直径6~8Åの細孔容積の割合が65vol%以上である。 Patent Document 1 discloses an activated carbon for adsorbing organochlorine compounds. This activated carbon is a granular carbon molding formed by combining carbonized phenolic resin powder and activated particles, and has a pore volume of 0.20 to 0.80 cc/g with a pore diameter of 100 Å or less, and a pore diameter of The ratio of the volume of pores with a diameter of 6 to 8 Å to the volume of pores with a diameter of 100 Å or less is 65 vol % or more.

特開平9-110409号公報JP-A-9-110409

しかし、特許文献1に開示の構成では、遊離塩素の除去という観点で、不十分である。具体的には、有機塩素化合物は主に活性炭による吸着作用により除去される一方、遊離塩素は有機塩素化合物とは異なる作用を受けて除去されるため、上述の要件を満たすのみでは十分な遊離塩素除去性能が得られないのが実情である。 However, the configuration disclosed in Patent Document 1 is insufficient from the viewpoint of removing free chlorine. Specifically, organic chlorine compounds are mainly removed by the adsorption action of activated carbon, while free chlorine is removed by a different action from organic chlorine compounds. The actual situation is that removal performance cannot be obtained.

本発明は、上記従来の実情に鑑みてなされたものであって、遊離塩素除去性能に優れた活性炭及びそれを用いた浄水カートリッジを提供することを解決すべき課題としている。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an activated carbon excellent in free chlorine removing performance and a water purification cartridge using the same.

遊離塩素が活性炭により除去される作用は、主に、細孔内に遊離塩素が吸着される吸着作用と、活性炭により遊離塩素が酸化分解される酸化分解作用の2つに分類される。本願発明者らは、遊離塩素である次亜塩素酸(HClO)の分子径が約0.4nmであることに着目し、活性炭における所定の細孔径の細孔容積と、塩素除去寿命との関係について研究し、本発明をするに至った。 The action of removing free chlorine by activated carbon is mainly classified into two: adsorption action in which free chlorine is adsorbed in pores and oxidative decomposition action in which free chlorine is oxidatively decomposed by activated carbon. The inventors of the present application focused on the fact that hypochlorous acid (HClO), which is free chlorine, has a molecular diameter of about 0.4 nm, and investigated the relationship between the pore volume of a given pore diameter in activated carbon and the chlorine removal life. I researched about and came to do the present invention.

〔1〕浄水カートリッジに用いられる遊離塩素除去用の活性炭であって、
BET-DFT法により測定される、細孔径0.679nm以上0.733nm以下の細孔容積が0.0177cm/g以上である活性炭。このような活性炭を用いることにより、遊離塩素除去性能に優れた浄水カートリッジを提供することができる。さらに、この活性炭によれば、細孔容積が0.0177cm/g以上であるから、例えば、汎用されているスパウトインタイプの浄水カートリッジの活性炭成形体の体積より小さい体積で、浄水カートリッジの塩素除去寿命900Lを達成することが可能となる。
[1] An activated carbon for removing free chlorine used in a water purification cartridge,
Activated carbon having a pore volume of 0.0177 cm 3 /g or more with a pore diameter of 0.679 nm or more and 0.733 nm or less as measured by the BET-DFT method. By using such activated carbon, it is possible to provide a water purification cartridge with excellent free chlorine removal performance. Furthermore, according to this activated carbon, since the pore volume is 0.0177 cm 3 /g or more, for example, the volume of the activated carbon molded body of the commonly used spout-in type water purification cartridge is smaller than the volume of the chlorine of the water purification cartridge. It becomes possible to achieve a removal life of 900L.

〔2〕前記細孔容積が、0.0475cm/g以上である〔1〕に記載の活性炭。この活性炭によれば、細孔容積が0.0475cm/g以上であるから、さらに小さい活性炭成形体の体積により、浄水カートリッジの塩素除去寿命900Lを達成することが可能となる。 [2] The activated carbon according to [1], wherein the pore volume is 0.0475 cm 3 /g or more. Since this activated carbon has a pore volume of 0.0475 cm 3 /g or more, it is possible to achieve a chlorine removal life of 900 L for the water purification cartridge with a smaller volume of the activated carbon compact.

〔3〕前記細孔容積が、0.1967cm/g以上である〔1〕に記載の活性炭。この活性炭によれば、細孔容積が0.1967cm/g以上であるから、例えば、汎用されているスパウトインタイプの浄水カートリッジの活性炭成形体の体積より小さい体積で、浄水カートリッジの塩素除去寿命1200Lを達成することが可能となる。 [3] The activated carbon according to [1], wherein the pore volume is 0.1967 cm 3 /g or more. According to this activated carbon, the pore volume is 0.1967 cm 3 /g or more. It becomes possible to achieve 1200L.

〔4〕上記〔3〕の活性炭を含んでなる活性炭成形体を備えた浄水カートリッジであって、
前記活性炭成形体の体積が37.6cm以下である浄水カートリッジ。この浄水カートリッジによれば、例えば、汎用されているスパウトインタイプの浄水カートリッジの活性炭成形体の体積より小さい体積で、浄水カートリッジの塩素除去寿命1200Lを達成することが可能となる。
[4] A water purification cartridge comprising an activated carbon compact containing the activated carbon of [3] above,
A water purification cartridge, wherein the activated carbon compact has a volume of 37.6 cm 3 or less. According to this water purification cartridge, for example, it is possible to achieve a chlorine removal life of 1200 L of the water purification cartridge with a volume smaller than the volume of the activated carbon molded body of the commonly used spout-in type water purification cartridge.

〔5〕上記〔3〕の活性炭を含んでなる活性炭成形体を備えた浄水カートリッジであって、JIS S3201に準拠した測定方法により測定した、ろ過流量2.5L/minの通水条件下で濃度2ppmの遊離塩素含有水を連続通水した際の遊離塩素除去率が80%に低下するまでの累積通水量が、前記活性炭成形体の体積1cm当たり37.7L以上である浄水カートリッジ。この浄水カートリッジによれば、例えば、汎用されているスパウトインタイプの浄水カートリッジの活性炭成形体の体積より小さい体積で、浄水カートリッジの塩素除去寿命1200Lを達成することが可能となる。 [5] A water purification cartridge comprising an activated carbon molded body containing the activated carbon of [3] above, and the concentration under water flow conditions of a filtration flow rate of 2.5 L/min, measured by a measurement method based on JIS S3201 A water purification cartridge, wherein the cumulative amount of water passing until the free chlorine removal rate drops to 80% when water containing 2 ppm of free chlorine is continuously passed is 37.7 L or more per 1 cm 3 of the volume of the activated carbon compact. According to this water purification cartridge, for example, it is possible to achieve a chlorine removal life of 1200 L of the water purification cartridge with a volume smaller than the volume of the activated carbon molded body of the commonly used spout-in type water purification cartridge.

一実施形態に係る水栓装置の側面図である。1 is a side view of a faucet device according to one embodiment; FIG. 活性炭成形体を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an activated carbon molded body; 活性炭成形体中の0.7nmの細孔容積と塩素除去寿命の関係を表すグラフである。4 is a graph showing the relationship between the pore volume of 0.7 nm in the activated carbon compact and the chlorine removal life. 次亜塩素酸イオンの中心から水分子の酸素までの距離(r)の動径分布(RDF)を表すグラフである。1 is a graph showing the radial distribution (RDF) of the distance (r) from the hypochlorite ion center to the oxygen of a water molecule. (a)は、細孔径0.679nm未満の細孔と次亜塩素酸の水和構造を模式的に示す説明図である。(b)は、細孔径0.679nm以上0.733nm以下の細孔と次亜塩素酸の水和構造を模式的に示す説明図である。(c)は、細孔径0.733nm超の細孔と次亜塩素酸の水和構造を模式的に示す説明図である。(a) is an explanatory view schematically showing a pore having a pore diameter of less than 0.679 nm and a hydration structure of hypochlorous acid. (b) is an explanatory view schematically showing the hydration structure of hypochlorous acid and pores having a pore diameter of 0.679 nm or more and 0.733 nm or less. (c) is an explanatory diagram schematically showing the hydration structure of hypochlorous acid and pores having a pore diameter of more than 0.733 nm. 実施例1~実施例4の細孔分布を表すグラフである。4 is a graph showing the pore size distributions of Examples 1 to 4. FIG. 活性炭成形体中の細孔径0.7nmの細孔容積と塩素除去寿命との関係を表すグラフである。4 is a graph showing the relationship between the volume of pores with a pore diameter of 0.7 nm in an activated carbon compact and the lifetime for removing chlorine.

以下、本発明の実施形態を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 Hereinafter, embodiments of the present invention will be described in detail. In this specification, the description using "-" for the numerical range includes the lower limit and the upper limit unless otherwise specified. For example, the description “10 to 20” includes both the lower limit “10” and the upper limit “20”. That is, "10 to 20" has the same meaning as "10 or more and 20 or less".

本実施形態の浄水カートリッジ20は、図1に示す水栓装置に装着される。水栓装置は、キッチンのキャビネットの天板1に取り付けられている。この水栓装置は、水栓本体10、操作ハンドル11、吐水ヘッド13、浄水カートリッジ20を備えている。浄水カートリッジ20は、吐水ヘッド13の内部に装着されている。 The water purification cartridge 20 of this embodiment is attached to the faucet device shown in FIG. A faucet device is attached to a top plate 1 of a kitchen cabinet. This faucet device includes a faucet main body 10 , an operating handle 11 , a water discharge head 13 and a water purification cartridge 20 . The water purification cartridge 20 is mounted inside the water discharge head 13 .

吐水ヘッド13は、グリップ部13Aと、グリップ部13Aに対して着脱自在に設けられたヘッド部13Bと、を備えている。吐水ヘッド13は、浄水カートリッジ20の通水量が塩素除去寿命を超えた場合に、ヘッド部13Bをグリップ部13Aから外して浄水カートリッジ20を交換できるようになっている。 The water discharge head 13 includes a grip portion 13A and a head portion 13B detachably attached to the grip portion 13A. The water discharge head 13 is designed so that the water purification cartridge 20 can be replaced by removing the head portion 13B from the grip portion 13A when the amount of water passing through the water purification cartridge 20 exceeds the chlorine removal life.

浄水カートリッジ20は円筒状である。浄水カートリッジ20は、図2に示す活性炭成形体21と、活性炭成形体21を外周面側から覆う不織布(不図示)と、活性炭成形体21の両端に設けられた封止キャップ(不図示)と、を備える。浄水カートリッジ20は、円筒形状の活性炭成形体21の外周面から中心に向けて水を通過させることによって、水を浄化することができる。 The water purification cartridge 20 is cylindrical. The water purification cartridge 20 includes an activated carbon molded body 21 shown in FIG. 2, a non-woven fabric (not shown) covering the activated carbon molded body 21 from the outer peripheral side, and sealing caps (not shown) provided at both ends of the activated carbon molded body 21. , provided. The water purification cartridge 20 can purify water by allowing water to pass from the outer peripheral surface of the cylindrical activated carbon compact 21 toward the center.

活性炭成形体21は、図2に示すように、円筒状の中芯23と、中芯23の外周面上に配置される活性炭層25とを備える。中芯23は、任意の材料を使用可能であるが、活性炭成形体21を成形する際に変形せず、また、得られた活性炭成形体21を浄水カートリッジ20に組み込み、ユーザーが実際に使用した際に変形しないものとされる。このような中芯の材料としては、多孔質セラミック、多孔質金属フィルタ、硬質不織布等が挙げられる。 The activated carbon compact 21 includes a cylindrical core 23 and an activated carbon layer 25 arranged on the outer peripheral surface of the core 23, as shown in FIG. Any material can be used for the core 23, but it does not deform when forming the activated carbon molded body 21, and the obtained activated carbon molded body 21 is incorporated into the water purification cartridge 20, and the user actually uses it. It shall not be deformed. Materials for such a core include porous ceramics, porous metal filters, hard nonwoven fabrics, and the like.

活性炭層25は、活性炭を含んでなる。活性炭の形状は特に限定するものではないが、粒子状、繊維状とすることができる。粒子状の活性炭を用いる場合には、保形性の観点から、活性炭層25が更にフィブリル繊維を含む構成とすることができる。活性炭としては、任意の出発原料から得られる活性炭を使用できる。具体的には、ヤシ殻、石炭、フェノール樹脂等を賦活させて活性炭としたものを使用できるが、ここに例示した以外の出発原料で製造した活性炭も使用できる。フィブリル繊維としては、粒子状活性炭を絡めて保形でき、且つ、中芯の表面と結合するものであれば、任意の繊維を使用できる。このようなフィブリル繊維としては、例えば、アクリル繊維、ポリエチレン繊維、セルロース繊維が挙げられる。 The activated carbon layer 25 contains activated carbon. Although the shape of the activated carbon is not particularly limited, it can be particulate or fibrous. When particulate activated carbon is used, the activated carbon layer 25 may further contain fibril fibers from the viewpoint of shape retention. Activated carbon obtained from any starting material can be used as the activated carbon. Specifically, activated carbon obtained by activating coconut shells, coal, phenolic resin, etc. can be used, but activated carbon produced from starting materials other than those exemplified here can also be used. As the fibril fiber, any fiber can be used as long as it can retain the shape of the particulate activated carbon and bond with the surface of the core. Examples of such fibril fibers include acrylic fibers, polyethylene fibers, and cellulose fibers.

活性炭は、粒子状の場合には積算粒度分布での50%粒子径(メジアン径)が50μm~130μmのものを使用することが好ましく、60μm~90μmのものを使用することがより好ましい。粒子径を調整するために、粒度分布の異なる2種以上の粒子状活性炭を混合させてもよい。粒子状活性炭の50%粒子径が50μm以上であると、中芯の細孔径に関わらず活性炭成形体のろ過流量を確保することができ、目詰まりしにくくなる。また、粒子状活性炭の50%粒子径が130μm以下であると、活性炭成形体が十分な遊離塩素除去性能を発揮できる傾向にある。 When the activated carbon is particulate, it is preferable to use one having a 50% particle diameter (median diameter) in cumulative particle size distribution of 50 μm to 130 μm, more preferably 60 μm to 90 μm. In order to adjust the particle size, two or more types of particulate activated carbon having different particle size distributions may be mixed. When the 50% particle diameter of the particulate activated carbon is 50 μm or more, the filtration flow rate of the activated carbon compact can be ensured regardless of the pore diameter of the core, and clogging is less likely to occur. Further, when the 50% particle size of the particulate activated carbon is 130 μm or less, the activated carbon compact tends to exhibit sufficient free chlorine removal performance.

また、活性炭は、繊維状の場合には繊維径が5μm~30μmのものを使用することが好ましく、10μm~20μmのものを使用することがより好ましい。繊維径が5μm以上であると、中芯の細孔径に関わらず活性炭成形体のろ過流量を確保することができ、目詰まりしにくくなる。また、繊維径が5μm以上であると、活性炭の強度が高くなり活性炭成形体を成形する際等に壊れにくくなる。また、繊維径が30μm以下であると、活性炭成形体が十分な遊離塩素除去性能を発揮できる傾向にある。 When activated carbon is fibrous, it is preferable to use one having a fiber diameter of 5 μm to 30 μm, more preferably 10 μm to 20 μm. When the fiber diameter is 5 μm or more, the filtration flow rate of the activated carbon molded body can be ensured regardless of the pore diameter of the core, and clogging is less likely to occur. Further, when the fiber diameter is 5 μm or more, the strength of the activated carbon becomes high and it becomes difficult to break when forming an activated carbon compact. Further, when the fiber diameter is 30 μm or less, the activated carbon molded article tends to exhibit sufficient free chlorine removal performance.

この活性炭は、比表面積が500m/g~4000m/gのものを使用することが好ましく、1000m/g~2000m/gのものを使用することがより好ましい。比表面積が500m/g以上であると、活性炭成形体が十分な遊離塩素除去性能を発揮できる傾向にある。比表面積が4000m/g以下であると、活性炭の強度が高くなり活性炭成形体を成形する際等に壊れにくくなる。また、活性炭は、全細孔容積が0.1cm/g~5.0cm/gのものを使用することが好ましく、0.3cm/g~1.5cm/gのものを使用することがより好ましい。全細孔容積が0.1cm/g以上であると、活性炭成形体が十分な遊離塩素除去性能を発揮できる傾向にある。全細孔容積が5.0cm/g以下であると、活性炭の強度が高くなり活性炭成形体を成形する際等に壊れにくくなる。活性炭は、真密度が1.6g/cm以上が好ましく、1.8g/cm以上が更に好ましい。活性炭の真密度は、通常2.2g/cm以下である。さらに、活性炭は、嵩密度が0.1g/cm~2.0g/cmのものを使用することが好ましく、0.4g/cm~1.3g/cmのものを使用することがより好ましい。嵩密度が0.1g/cm以上であると、活性炭の強度が高くなり活性炭成形体を成形する際等に壊れにくくなる。嵩密度が5.0g/cm以下であると、活性炭成形体が十分な遊離塩素除去性能を発揮できる傾向にある。 The activated carbon preferably has a specific surface area of 500 m 2 /g to 4000 m 2 /g, more preferably 1000 m 2 /g to 2000 m 2 /g. When the specific surface area is 500 m 2 /g or more, the activated carbon molded body tends to exhibit sufficient free chlorine removal performance. When the specific surface area is 4000 m 2 /g or less, the strength of the activated carbon becomes high and it becomes difficult to break when forming an activated carbon compact. In addition, it is preferable to use activated carbon having a total pore volume of 0.1 cm 3 /g to 5.0 cm 3 /g, preferably 0.3 cm 3 /g to 1.5 cm 3 /g. is more preferable. When the total pore volume is 0.1 cm 3 /g or more, the activated carbon compact tends to exhibit sufficient free chlorine removal performance. When the total pore volume is 5.0 cm 3 /g or less, the strength of the activated carbon is increased, and the activated carbon compact is less likely to break when formed. The activated carbon preferably has a true density of 1.6 g/cm 3 or more, more preferably 1.8 g/cm 3 or more. The true density of activated carbon is usually 2.2 g/cm 3 or less. Furthermore, it is preferable to use activated carbon having a bulk density of 0.1 g/cm 3 to 2.0 g/cm 3 , more preferably 0.4 g/cm 3 to 1.3 g/cm 3 . more preferred. When the bulk density is 0.1 g/cm 3 or more, the strength of the activated carbon is high, and it becomes difficult to break when forming an activated carbon compact. When the bulk density is 5.0 g/cm 3 or less, the activated carbon compact tends to exhibit sufficient free chlorine removal performance.

本実施形態の活性炭は、BET(Brunauer-Emmett-Teller)-DFT法(Density Functional Theory)により測定される、細孔径0.679nm以上0.733nm以下の細孔容積(「細孔径0.7nmの細孔容積」とも称する)が0.0102cm/g以上である。この細孔容積は、遊離塩素除去性の観点において、0.0177cm/g以上であることが好ましく、0.0647cm/g以上であることがより好ましく、0.1967cm/g以上であることが更に好ましい。活性炭の細孔径0.7nmの細孔容積は、通水に耐えうる十分な強度を確保するという観点において、5.0cm/g以下であることが好ましく、1.5cm/g以下であることがより好ましい。なお、細孔容積1.5cm/gは、比表面積4000m/gに相当する。
なお、細孔径0.7nmの細孔容積は、活性炭の出発原料、賦活法、賦活後の後処理の有無、後処理の種類等により適宜設計可能である。
The activated carbon of the present embodiment has a pore volume with a pore diameter of 0.679 nm or more and 0.733 nm or less (“a pore volume with a pore diameter of 0.7 nm, pore volume”) is 0.0102 cm 3 /g or more. The pore volume is preferably 0.0177 cm 3 /g or more, more preferably 0.0647 cm 3 /g or more, and 0.1967 cm 3 /g or more, from the viewpoint of free chlorine removal property. is more preferred. The pore volume of activated carbon with a pore diameter of 0.7 nm is preferably 5.0 cm 3 /g or less, and 1.5 cm 3 /g or less, from the viewpoint of ensuring sufficient strength to withstand water passage. is more preferable. A pore volume of 1.5 cm 3 /g corresponds to a specific surface area of 4000 m 2 /g.
The pore volume with a pore diameter of 0.7 nm can be appropriately designed depending on the starting material of the activated carbon, the activation method, the presence or absence of post-treatment after activation, the type of post-treatment, and the like.

詳細には、汎用されているスパウトインタイプの浄水カートリッジの活性炭成形体の体積は45cm程度である。細孔径0.7nmの細孔容積が0.0177cm/g以上である場合、汎用品より小さい約40cmで900Lの塩素除去寿命を達成することが可能となる。なお、900Lの塩素除去寿命は、1日10Lの浄水を使用すると想定して、3ヶ月分に相当する。
また、細孔径0.7nmの細孔容積が0.0475cm/g以上である場合、さらに小さい約37.6cmで900Lの塩素除去寿命を達成することが可能となる。
さらに、細孔径0.7nmの細孔容積が0.1967cm/g以上である場合、例えば、汎用品より小さい約31.8cmで1200Lの塩素除去寿命を達成することが可能となる。約31.8cm以下の活性炭成形体を用いた場合、従来の浄水カートリッジ(直径約2.66cm)の長さ寸法をそのままに直径2.28cm程度まで小型化することができる。これは、呼径25の規格のパイプ中にそのまま組み込めるサイズであり、水栓のデザイン性が格段に高まる。なお、1200Lの塩素除去寿命は、1日10Lの浄水を使用すると想定して、4ヶ月分に相当する。なお、呼径25とは、給水栓を規定するJIS B2061や一般配管用ステンレス鋼管を規定するJIS G3448に示されるものである。
Specifically, the volume of the activated carbon molded body of the widely used spout-in type water purification cartridge is about 45 cm 3 . When the pore volume with a pore diameter of 0.7 nm is 0.0177 cm 3 /g or more, it is possible to achieve a chlorine removal life of 900 L with about 40 cm 3 which is smaller than a general-purpose product. Note that the chlorine removal life of 900 L corresponds to 3 months, assuming that 10 L of purified water is used per day.
Moreover, when the pore volume with a pore diameter of 0.7 nm is 0.0475 cm 3 /g or more, it is possible to achieve a chlorine removal life of 900 L with a smaller pore volume of about 37.6 cm 3 .
Furthermore, when the pore volume with a pore diameter of 0.7 nm is 0.1967 cm 3 /g or more, for example, it is possible to achieve a chlorine removal life of 1200 L with about 31.8 cm 3 which is smaller than a general-purpose product. When an activated carbon compact having a diameter of about 31.8 cm 3 or less is used, the length of a conventional water purification cartridge (about 2.66 cm in diameter) can be reduced to about 2.28 cm in diameter. This is a size that can be incorporated in a standard pipe with a nominal diameter of 25 as it is, and the design of the faucet is greatly improved. Note that the chlorine removal life of 1200 L corresponds to 4 months, assuming that 10 L of purified water is used per day. The nominal diameter of 25 is indicated in JIS B2061, which defines hydrants, and JIS G3448, which defines stainless steel pipes for general piping.

所定の細孔径における細孔容積の算出に当たっては、活性炭に形成された細孔の形状をスリット状と仮定して算出した。まず、測定中に窒素ガスが活性炭に吸着していく累積体積を測定し、解析ソフト(ASAP2020分析プログラム)を用いて活性炭1g当たりの所定の細孔径における細孔容積(cm/g)を算出した。活性炭1g当たりの細孔径0.679nm以上0.733nm以下の細孔容積X(cm/g)は、細孔径0.679nm以下の細孔容積B(cm/g)と細孔径0.643nm以下の細孔容積A(cm/g)との差分値と、細孔径0.733nm以下の細孔容積C(cm/g)と細孔径0.679nm以下の細孔容積B(cm/g)との差分値の合算値として求めた(X=C-A)。 In calculating the pore volume at a given pore diameter, the calculation was performed on the assumption that the shape of the pores formed in the activated carbon was slit-like. First, the cumulative volume of nitrogen gas adsorbed to the activated carbon during measurement is measured, and the pore volume (cm 3 /g) at a predetermined pore diameter per 1 g of activated carbon is calculated using analysis software (ASAP2020 analysis program). bottom. The pore volume X (cm 3 /g) with a pore diameter of 0.679 nm or more and 0.733 nm or less per 1 g of activated carbon is the pore volume B (cm 3 /g) with a pore diameter of 0.679 nm or less and the pore diameter of 0.643 nm. The difference value between the following pore volume A (cm 3 /g), the pore volume C (cm 3 /g) with a pore diameter of 0.733 nm or less, and the pore volume B (cm 3 ) with a pore diameter of 0.679 nm or less / g) was obtained as the sum of the difference values (X = CA).

細孔径0.679nm以上0.733nm以下の細孔において、遊離塩素が除去される作用について説明する。
本願発明者らは、図3に示すように、浄水カートリッジ20に含まれる細孔径0.679nm以上0.733nm以下の細孔容積と、塩素除去寿命との間に正の相関関係があることを新たに見出した。なお、図3のグラフ中、各プロットは後述する実施例1~実施例4の活性炭において得られたデータに対応する。一方、カートリッジに含まれる細孔径0.679nm以下の細孔径を有する細孔の細孔容積と、塩素除去寿命との間には相関関係がみられなかった。また、カートリッジに含まれる細孔径0.733nm以上の細孔径を有する細孔の細孔容積と、塩素除去寿命との間には相関関係がみられなかった。なお、この塩素除去寿命は、JIS S3201に準拠して測定した、ろ過流量2.5L/minの通水条件下で濃度2ppmの遊離塩素含有水を連続通水した際の遊離塩素除去率が80%に低下するまでの累積通水量として求めた。
The effect of removing free chlorine from pores having a pore diameter of 0.679 nm or more and 0.733 nm or less will be described.
The inventors of the present application have found that there is a positive correlation between the pore volume with a pore diameter of 0.679 nm or more and 0.733 nm or less contained in the water purification cartridge 20 and the chlorine removal life, as shown in FIG. newly found. In the graph of FIG. 3, each plot corresponds to data obtained with activated carbon of Examples 1 to 4, which will be described later. On the other hand, no correlation was found between the pore volume of pores having a pore diameter of 0.679 nm or less contained in the cartridge and the chlorine removal life. Further, no correlation was observed between the pore volume of pores having a pore diameter of 0.733 nm or more contained in the cartridge and the chlorine removal life. In addition, this chlorine removal life is measured in accordance with JIS S3201, and the free chlorine removal rate is 80 when free chlorine-containing water with a concentration of 2 ppm is continuously passed under water flow conditions with a filtration flow rate of 2.5 L / min. It was obtained as the cumulative amount of water flow until it decreased to %.

細孔径0.679nm以上0.733nm以下の細孔が、塩素除去作用に有効である理由は定かではないが、次のように推察される。第一原理分子動力学法により水和構造計算を行い、次亜塩素酸イオンの中心から、水分子の酸素の中心までの距離(r)の動径分布(RDF)を算出すると、図4のグラフに示すように溶媒和イオン半径約3.2Å(0.32nm)付近にピークを有することが示された。つまり、親水性の次亜塩素酸イオンM1は、水中において周囲に水分子M2を伴って直径約0.64nmの水和構造を形成していると考えられる(図5参照)。図5(a)に示すように、この水和構造を形成した次亜塩素酸イオンM1は、細孔径0.679nm未満の細孔25Aの内部に進入しにくく、細孔径0.679nm未満の細孔25Aによる遊離塩素の除去作用は小さいと考えられる。図5(c)に示すように、この水和構造を形成した次亜塩素酸イオンM1は、細孔径0.733nm超の細孔25Cの内部に進入することが許容され得る。しかし、細孔25Cは水和構造を形成した次亜塩素酸イオンM1に対して細孔径が大きすぎるため、細孔25Cの内壁と内部に進入した次亜塩素酸イオンM1との距離が大きくなり、活性炭による遊離塩素の吸着や酸化分解が十分に促進されないと考えられる。また、浄水カートリッジ20のようにろ過流量が大きい条件(例えば空間速度(SV)が3500/h以上)で使用される場合には、細孔径0.733nm超の細孔25Cでは水和構造を有する次亜塩素酸イオンM1を十分に捕捉しておくことができないものと推測される。一方、細孔径0.679nm以上0.733nm以下の細孔25Bは、図6(b)に示すように、好適に水和構造を有する次亜塩素酸イオンM1を補足して、遊離塩素の吸着や酸化分解が促進されると考えられる。 Although the reason why pores with a pore diameter of 0.679 nm or more and 0.733 nm or less are effective in removing chlorine is not clear, it is speculated as follows. Hydration structure calculation is performed by the first-principles molecular dynamics method, and the radial distribution (RDF) of the distance (r) from the center of the hypochlorite ion to the center of the oxygen of the water molecule is calculated. As shown in the graph, it was shown to have a peak near the solvated ion radius of about 3.2 Å (0.32 nm). In other words, the hydrophilic hypochlorite ion M1 is considered to form a hydrated structure with a diameter of about 0.64 nm in water with water molecules M2 around it (see FIG. 5). As shown in FIG. 5(a), the hypochlorite ions M1 that have formed this hydration structure are less likely to enter the pores 25A having a pore diameter of less than 0.679 nm, and It is considered that the function of removing free chlorine by the holes 25A is small. As shown in FIG. 5(c), the hypochlorite ions M1 that have formed this hydrated structure can be allowed to enter the pores 25C having a pore diameter greater than 0.733 nm. However, since the pore diameter of the pores 25C is too large for the hypochlorite ions M1 that form the hydrated structure, the distance between the inner walls of the pores 25C and the hypochlorite ions M1 entering the interior becomes large. , it is considered that the adsorption and oxidative decomposition of free chlorine by activated carbon are not sufficiently promoted. In addition, when used under conditions where the filtration flow rate is large like the water purification cartridge 20 (for example, the space velocity (SV) is 3500/h or more), the pores 25C having a pore diameter of more than 0.733 nm have a hydrated structure. It is presumed that hypochlorite ions M1 cannot be sufficiently captured. On the other hand, the pores 25B with a pore diameter of 0.679 nm or more and 0.733 nm or less capture the hypochlorite ions M1 having a suitable hydration structure and adsorb free chlorine, as shown in FIG. 6(b). and oxidative decomposition are accelerated.

続いて、本実施形態の一態様である、BET-DFT法により測定される、細孔径0.7nmの細孔容積が0.1967cm/g以上である活性炭を含んでなる活性炭成形体21を備えた浄水カートリッジ20について説明する。 Subsequently, an activated carbon compact 21 comprising activated carbon having a pore diameter of 0.7 nm and a pore volume of 0.1967 cm 3 /g or more as measured by the BET-DFT method, which is one aspect of the present embodiment. The provided water purification cartridge 20 will be described.

浄水カートリッジ20は、活性炭成形体21の体積が37.6cm以下であることが好ましい。活性炭成形体21の体積の下限値は、特に定めるものではないが、31.8cm以上とすることができる。さらに、浄水カートリッジ20は、JIS S3201に準拠した測定方法により測定した、ろ過流量2.5L/minの通水条件下で濃度2ppmの遊離塩素含有水を連続通水した際の遊離塩素除去率が80%に低下するまでの累積通水量が、活性炭成形体の体積1cm当たり37.7L以上であることが好ましい。このような塩素除去寿命が長い活性炭を用いた浄水カートリッジ20は、十分な塩素除去寿命を確保しつつ、従来の浄水カートリッジより小型化可能である。 In the water purification cartridge 20, the volume of the activated carbon compact 21 is preferably 37.6 cm 3 or less. Although the lower limit of the volume of the activated carbon compact 21 is not particularly defined, it can be 31.8 cm 3 or more. Furthermore, the water purification cartridge 20 has a free chlorine removal rate when free chlorine-containing water having a concentration of 2 ppm is continuously passed under a filtration flow rate of 2.5 L/min, which is measured by a measurement method based on JIS S3201. It is preferable that the cumulative amount of water passing until it drops to 80% is 37.7 L or more per 1 cm 3 of the volume of the activated carbon compact. The water purification cartridge 20 using activated carbon with such a long chlorine removal life can be made smaller than the conventional water purification cartridge while securing a sufficient chlorine removal life.

この活性炭成形体21の体積及び単位体積当たりの累積通水量は、本願発明者らが別に得た、塩素除去寿命Lが、活性炭成形体の体積Vの2乗に比例するとの知見に基づき算出されたものである。この知見に基づき、細孔径0.7nmの細孔容積が異なる活性炭について、活性炭の体積37.6cmのカートリッジを作成して、JIS S3201に準拠して通水試験を行って比例定数を算出し、活性炭成形体の体積と塩素除去寿命との関係式を導き出した。図7において実施例1と記された太い実線のグラフが、細孔径0.7nmの細孔容積が0.1967cm/gの活性炭における関係式(L=1.1880×V)を表すグラフである。この関係式から、本実施形態の活性炭成形体21の体積と、活性炭成形体1cm当たり累積通水量を算出した。なお、図7において、各グラフにプロットされた、活性炭成形体の体積19.3cm、24.8cm、30.1cm、44.8cm、52.5cmにおける塩素除去寿命は、上記の関係式に基づき算出された理論値である。 The volume of the activated carbon compact 21 and the cumulative amount of water flow per unit volume are calculated based on the finding that the chlorine removal life L is proportional to the square of the volume V of the activated carbon compact, which was separately obtained by the inventors of the present application. It is a thing. Based on this knowledge, for activated carbon with a pore diameter of 0.7 nm and different pore volumes, a cartridge with a volume of activated carbon of 37.6 cm 3 was prepared, and a water flow test was performed in accordance with JIS S3201 to calculate the constant of proportionality. , derived a relational expression between the volume of the activated carbon compact and the chlorine removal life. The graph of the thick solid line labeled Example 1 in FIG. 7 represents the relational expression (L=1.1880×V 2 ) in activated carbon with a pore diameter of 0.7 nm and a pore volume of 0.1967 cm 3 /g. is. From this relational expression, the volume of the activated carbon compact 21 of this embodiment and the cumulative water flow per 1 cm 3 of the activated carbon compact were calculated. In addition, in FIG. 7, the chlorine removal lifetimes in the volumes of 19.3 cm 3 , 24.8 cm 3 , 30.1 cm 3 , 44.8 cm 3 and 52.5 cm 3 of the activated carbon compact plotted in each graph are It is a theoretical value calculated based on the relational expression.

本実施形態に係る活性炭成形体を実施例により具体的に説明するが、本発明はこれに限定されるものではない。 Although the activated carbon compact according to the present embodiment will be specifically described with reference to Examples, the present invention is not limited to these.

1.活性炭(実施例1~実施例4)
(1)比表面積、全細孔容積、細孔径0.7nmの細孔容積、細孔分布
実施例1~実施例4の活性炭は、表1に示す比表面積、全細孔容積、細孔径0.7nmの細孔容積であった。この比表面積、全細孔容積、細孔径0.7nmの細孔容積は、次のようにして測定した。
まず、活性炭0.1gを380℃にて真空加熱した後、Surface Area Porosity Analyzer(マイクロメリティックス社製、ASAP-2020)を用いて、窒素ガスを吸着させて吸着等温線を求め、BET法により比表面積(m/g)を算出した。そして、この吸着等温線から細孔直径300nm以下の細孔の全細孔容積(cm/g)を算出した。
活性炭1g当たりの細孔径0.7nmの細孔容積は、上述の実施形態に記載したようにBET-DFT法により算出した。実施例1の細孔径0.7nmの細孔容積は、0.1967cm/gであった。実施例2の細孔径0.7nmの細孔容積は、0.0177cm/gであった。実施例3の細孔径0.7nmの細孔容積は、0.0475cm/gであった。実施例4の細孔径0.7nmの細孔容積は、0.1166cm/gであった。
また、BET-DFT法により所定の細孔径の細孔容積を算出し、細孔分布を求めた。その結果を、図6に示す。図6のグラフは、横軸が細孔径(nm)を示し、縦軸が細孔容積(cm/g)を示す。
1. Activated carbon (Examples 1 to 4)
(1) Specific surface area, total pore volume, pore volume with a pore diameter of 0.7 nm, pore distribution The pore volume was 0.7 nm. The specific surface area, total pore volume, and pore volume with a pore diameter of 0.7 nm were measured as follows.
First, 0.1 g of activated carbon was vacuum-heated at 380° C., then nitrogen gas was adsorbed using a Surface Area Porosity Analyzer (manufactured by Micromeritics, ASAP-2020) to obtain an adsorption isotherm, and the BET method was performed. The specific surface area (m 2 /g) was calculated. Then, the total pore volume (cm 3 /g) of pores with a pore diameter of 300 nm or less was calculated from this adsorption isotherm.
The pore volume with a pore diameter of 0.7 nm per 1 g of activated carbon was calculated by the BET-DFT method as described in the above embodiment. The pore volume with a pore diameter of 0.7 nm in Example 1 was 0.1967 cm 3 /g. The pore volume with a pore diameter of 0.7 nm in Example 2 was 0.0177 cm 3 /g. The pore volume with a pore diameter of 0.7 nm in Example 3 was 0.0475 cm 3 /g. The pore volume with a pore diameter of 0.7 nm in Example 4 was 0.1166 cm 3 /g.
Also, the pore volume of a predetermined pore diameter was calculated by the BET-DFT method to determine the pore distribution. The results are shown in FIG. In the graph of FIG. 6, the horizontal axis indicates the pore diameter (nm) and the vertical axis indicates the pore volume (cm 3 /g).

(2)真密度、嵩密度
実施例1~実施例4の活性炭は、表1に示す真密度、嵩密度であった。活性炭の真密度(cm/g)は、JIS Z 8807の比重瓶による密度及び比重の測定方法に従い、測定液に1-ブタノールを用いて求めた。活性炭の嵩密度(cm/g)は、以下の式により求めた。
嵩密度=真密度/{1+(全細孔容積×真密度)}
(2) True Density and Bulk Density The activated carbons of Examples 1 to 4 had true densities and bulk densities shown in Table 1. The true density (cm 3 /g) of activated carbon was determined according to the method of measuring density and specific gravity using a pycnometer according to JIS Z 8807, using 1-butanol as a measuring solution. The bulk density (cm 3 /g) of activated carbon was determined by the following formula.
Bulk density = true density / {1 + (total pore volume x true density)}

Figure 0007300640000001
Figure 0007300640000001

2.浄水カートリッジ(実施例1~実施例4)
(1)実施例1~実施例3の活性炭(粒子状)を用いた浄水カートリッジの作製
実施例1~実施例3の活性炭を含むスラリーに、吸引ポンプに接続された中芯を投入し、吸引ポンプを作動して活性炭を中芯の周囲に付着させた。そして、活性炭が付着した中芯を乾燥機にて十分乾燥させた後、外径24.5mm×内径8.3mm×長さ90mm、体積37.6cmの円筒形状に成形し、活性炭成形体を得た。なお、中芯は、SiOを主成分とした多孔質セラミックによって作製されたものを用いた。得られた活性炭成形体の外周面に透水性を有する不織布を巻き、さらに、円筒形状の活性炭成形体の長手方向の一端側に、一端側の面を完全に閉塞できる円形状のキャップを装着させ、他端側に中心部分が開口した円形状のキャップを装着させることで、浄水カートリッジを作製した。
2. Water purification cartridge (Examples 1 to 4)
(1) Preparation of water purification cartridge using activated carbon (particulate) of Examples 1 to 3 A medium connected to a suction pump was put into the slurry containing the activated carbon of Examples 1 to 3, and suction was carried out. The pump was activated to deposit activated carbon around the core. Then, after sufficiently drying the core to which the activated carbon was adhered in a dryer, it was formed into a cylindrical shape having an outer diameter of 24.5 mm, an inner diameter of 8.3 mm, a length of 90 mm, and a volume of 37.6 cm 3 to obtain an activated carbon compact. Obtained. The core was made of porous ceramic containing SiO 2 as a main component. A water-permeable nonwoven fabric is wrapped around the outer peripheral surface of the obtained activated carbon molded body, and a circular cap that can completely close the one end surface is attached to one end side of the cylindrical activated carbon molded body in the longitudinal direction. A water purification cartridge was produced by attaching a circular cap with an opening at the center to the other end.

(2)実施例4の活性炭(繊維状)を用いた浄水カートリッジの作製
実施例4の活性炭を中芯の周りに巻き回して、外径24.5mm×内径8.3mm×長さ90mm、体積37.6cmの円筒形状の活性炭成形体を得た。その他は、実施例1~実施例3と同様にして浄水カートリッジを作製した。
(2) Preparation of Water Purification Cartridge Using Activated Carbon (Fibrous) of Example 4 A cylindrical activated carbon compact of 37.6 cm 3 was obtained. Otherwise, a water purification cartridge was produced in the same manner as in Examples 1 to 3.

(3)活性炭の重量、活性炭成形体における活性炭の充填率
活性炭の重量Wは、浄水カートリッジ(活性炭成形体)に含まれる活性炭全体の重さとして求めた。活性炭成形体における活性炭の充填率は、活性炭成形体の体積Vに対する活性炭の体積(細孔を含む)の比率である。細孔を含む活性炭の体積は、活性炭の重量Wを活性炭の嵩密度で除して求めた。その結果を、表2に示す。
(4)活性炭成形体における細孔径0.7nmの細孔容積
得られた浄水カートリッジについて、活性炭成形体中の細孔径0.7nmの細孔容積と、活性炭成形体1cm当たりの細孔径0.7nmの細孔容積を算出した。活性炭成形体中の細孔径0.7nmの細孔容積Y(cm)は、活性炭1g当たりの細孔径0.7nmの細孔容積X(cm/g)に浄水カートリッジの活性炭の重量W(g)を乗じて算出した(Y=X×W)。また、活性炭成形体1cm当たりの細孔径0.7nmの細孔容積Z(cm/cm)は、活性炭成形体中の細孔径0.7nmの細孔容積Y(cm)を活性炭成形体の体積V(cm)で除して算出した(Z=Y/V)。その結果を、表2に示す。
(3) Weight of Activated Carbon, Filling Ratio of Activated Carbon in Activated Carbon Molded Body The weight W of activated carbon was determined as the weight of the entire activated carbon contained in the water purification cartridge (activated carbon molded body). The filling rate of activated carbon in the activated carbon compact is the ratio of the volume of activated carbon (including pores) to the volume V of the activated carbon compact. The volume of activated carbon containing pores was obtained by dividing the weight W of activated carbon by the bulk density of activated carbon. The results are shown in Table 2.
(4) Pore volume with a pore diameter of 0.7 nm in the activated carbon compact The obtained water purification cartridge was tested for a pore volume with a pore diameter of 0.7 nm in the activated carbon compact and a pore diameter of 0.7 nm per 1 cm 3 of the activated carbon compact. The 7 nm pore volume was calculated. The pore volume Y (cm 3 ) with a pore diameter of 0.7 nm in the activated carbon molded body is the weight W of the activated carbon of the water purification cartridge ( g) and calculated (Y=X×W). In addition, the pore volume Z (cm 3 /cm 3 ) with a pore diameter of 0.7 nm per 1 cm 3 of the activated carbon molded body is the pore volume Y (cm 3 ) with a pore diameter of 0.7 nm in the activated carbon molded body. It was calculated by dividing by the body volume V (cm 3 ) (Z=Y/V). The results are shown in Table 2.

(5)塩素除去寿命の測定
塩素除去寿命は、株式会社LIXIL製の浄水器内蔵水栓「JF-AB461SYX(JW)」に浄水カートリッジを装着し、JIS S3201に準拠した測定方法により測定した、ろ過流量2.5L/minの通水条件下で濃度2ppmの遊離塩素含有水を連続通水した際の遊離塩素除去率が80%に低下するまでの累積通水量として求めた。通水時の印加水圧は、2.5L/minの流速を確保できるように表2のとおりに調整した。なお、印加水圧がほぼ同じになるように浄水カートリッジ中の活性炭の粒度や活性炭成形体の充填率などを制御して圧力損失を調整した。また、通水試験時の空間速度(SV)は3989/hである。通水試験は、実施例毎に3本の浄水カートリッジについて行い、3回の通水試験により求められた塩素除去寿命の平均値を各実施例における浄水カートリッジの塩素除去寿命とした。その結果を、表2に示す。
(5) Measurement of chlorine removal life Chlorine removal life is measured by a water purification cartridge attached to a water faucet with a built-in water purifier “JF-AB461SYX (JW)” manufactured by LIXIL Corporation, and measured according to JIS S3201. It was determined as the cumulative amount of water flow until the free chlorine removal rate decreased to 80% when free chlorine-containing water with a concentration of 2 ppm was continuously passed under a flow rate of 2.5 L/min. The applied water pressure during water flow was adjusted as shown in Table 2 so as to ensure a flow rate of 2.5 L/min. The pressure loss was adjusted by controlling the particle size of the activated carbon in the water purification cartridge, the filling rate of the activated carbon compact, etc. so that the applied water pressure would be substantially the same. Moreover, the space velocity (SV) during the water flow test is 3989/h. The water flow test was performed on three water purification cartridges for each example, and the average value of the chlorine removal life obtained from the three water flow tests was taken as the chlorine removal life of the water purification cartridge in each example. The results are shown in Table 2.

Figure 0007300640000002
Figure 0007300640000002

3.活性炭成形体中の細孔径0.7nmの細孔容積と塩素除去寿命との関係
活性炭成形体中の細孔径0.7nmの細孔容積と塩素除去寿命とは、図3に示すような正の相関関係を有することが分かった。この結果から、細孔径0.7nmの細孔が遊離塩素除去に有効であることが示された。
3. Relationship between pore volume with pore diameter of 0.7 nm in activated carbon compact and chlorine removal life It was found to have a correlation. From this result, it was shown that pores with a pore diameter of 0.7 nm are effective in removing free chlorine.

4.実施例1~実施例4の活性炭の細孔分布
図6のグラフに示されるように、実施例1の活性炭は0.733nmに細孔分布のピークがあり、細孔径0.679nm以上0.733nm以下の細孔容積が0.1967cm/gであった。この実施例1の活性炭を用いた浄水カートリッジは、実施例2、実施例3、実施例4の活性炭より、細孔径0.679nm以上0.733nm以下の細孔容積が大きく、浄水カートリッジに用いた場合の塩素除去寿命が長かった。また、実施例4の活性炭も0.733nmに細孔分布のピークがあり、実施例1の活性炭の次に浄水カートリッジに用いた場合の塩素除去寿命が長かった。これらの結果から、細孔径0.679nm以上0.733nm以下の細孔が塩素除去に有効であることが示唆された。また、細孔分布において、細孔径0.679nm~0.733nmに細孔容積のピークを有する活性炭において塩素除去性能が高いことが示された。
また、実施例2と実施例3の活性炭は、細孔径0.679nm未満に細孔容積のピークを有するが、これらの活性炭は実施例1及び実施例4の活性炭より塩素除去寿命が短かった。この結果から、細孔径0.679nm未満の細孔が塩素除去に有効でないことが示唆された。
4. Pore Size Distribution of Activated Carbons of Examples 1 to 4 As shown in the graph of FIG. The following pore volume was 0.1967 cm 3 /g. The water purification cartridge using the activated carbon of Example 1 has a larger pore volume with a pore diameter of 0.679 nm or more and 0.733 nm or less than the activated carbons of Examples 2, 3, and 4. Chlorine removal life was long in the case. In addition, the activated carbon of Example 4 also had a pore distribution peak at 0.733 nm, and the chlorine removal life when used in a water purification cartridge next to that of the activated carbon of Example 1 was long. These results suggest that pores with a pore diameter of 0.679 nm or more and 0.733 nm or less are effective in removing chlorine. In addition, in the pore distribution, it was shown that the activated carbon having a pore volume peak at a pore size of 0.679 nm to 0.733 nm has high chlorine removal performance.
The activated carbons of Examples 2 and 3 had a pore volume peak at a pore diameter of less than 0.679 nm, but these activated carbons had a shorter chlorine removal life than the activated carbons of Examples 1 and 4. This result suggested that pores with a pore diameter of less than 0.679 nm were not effective in removing chlorine.

5.カートリッジに含まれる活性炭の体積と塩素除去寿命との関係
実施例1~実施例4の活性炭について、浄水カートリッジに含まれる活性炭成形体の体積Vと塩素除去寿命Lの関係式を導きだした。この関係式を表すグラフを図7に示す。図7のグラフより、基準値として設定される塩素除去寿命1200Lにおいて、実施例1の活性炭を用いることが浄水カートリッジの小型化に有利であることが示された。また、実施例1の活性炭より細孔径0.7nmの細孔容積が大きい活性炭を用いることで、十分な遊離塩素除去性能を有する小型の浄水カートリッジを実現可能であることが示唆された。
5. Relationship Between Volume of Activated Carbon Contained in Cartridge and Chlorine Removal Life For the activated carbons of Examples 1 to 4, a relational expression between the volume V of the activated carbon compact contained in the water purification cartridge and the chlorine removal life L was derived. A graph representing this relational expression is shown in FIG. From the graph of FIG. 7, it was shown that the use of the activated carbon of Example 1 is advantageous for miniaturization of the water purification cartridge at a chlorine removal life of 1200 L set as a reference value. In addition, it was suggested that by using activated carbon with a pore diameter of 0.7 nm and a larger pore volume than the activated carbon of Example 1, it is possible to realize a compact water purification cartridge having sufficient free chlorine removal performance.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。
例えば、活性炭成形体の形状は、円筒状に限られず、また、活性炭成形体は中芯を備えていなくても構わない。
The present invention is not limited to the embodiments detailed above, and various modifications and changes are possible within the scope of the claims of the present invention.
For example, the shape of the activated carbon compact is not limited to a cylindrical shape, and the activated carbon compact does not have to have a core.

20…浄水カートリッジ
21…活性炭成形体
20... Water purification cartridge 21... Activated carbon compact

Claims (2)

活性炭を含んでなる活性炭成形体を備えた浄水カートリッジであって、
前記活性炭は、
浄水カートリッジに用いられる遊離塩素除去用の活性炭であって、
BET-DFT法により測定される、細孔径0.679nm以上0.733nm以下の細孔容積が0.1967cm/g以上であり、
積算粒度分布での50%粒子径が60μm~90μmの粒子状であり、
前記活性炭成形体の体積が37.6cm3以下である浄水カートリッジ
A water purification cartridge comprising an activated carbon compact comprising activated carbon,
The activated carbon is
Activated carbon for removing free chlorine used in water purification cartridges,
A pore volume with a pore diameter of 0.679 nm or more and 0.733 nm or less measured by the BET-DFT method is 0.1967 cm 3 /g or more ,
It is particulate with a 50% particle size in the cumulative particle size distribution of 60 μm to 90 μm,
A water purification cartridge, wherein the activated carbon compact has a volume of 37.6 cm 3 or less .
JIS S3201に準拠した測定方法により測定した、ろ過流量2.5L/minの通水条件下で濃度2ppmの遊離塩素含有水を連続通水した際の遊離塩素除去率が80%に低下するまでの累積通水量が、前記活性炭成形体の体積1cm当たり37.7L以上である請求項1に記載の浄水カートリッジ。 Until the free chlorine removal rate decreases to 80% when free chlorine-containing water with a concentration of 2 ppm is continuously passed under water flow conditions with a filtration flow rate of 2.5 L / min, measured by a measurement method in accordance with JIS S3201. 2. The water purification cartridge according to claim 1 , wherein the cumulative water flow rate is 37.7 L or more per 1 cm 3 of the volume of the activated carbon compact.
JP2019060237A 2019-03-27 2019-03-27 water purification cartridge Active JP7300640B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019060237A JP7300640B2 (en) 2019-03-27 2019-03-27 water purification cartridge
PCT/JP2020/002961 WO2020195116A1 (en) 2019-03-27 2020-01-28 Activated carbon and water purification cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060237A JP7300640B2 (en) 2019-03-27 2019-03-27 water purification cartridge

Publications (2)

Publication Number Publication Date
JP2020157242A JP2020157242A (en) 2020-10-01
JP7300640B2 true JP7300640B2 (en) 2023-06-30

Family

ID=72609769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060237A Active JP7300640B2 (en) 2019-03-27 2019-03-27 water purification cartridge

Country Status (2)

Country Link
JP (1) JP7300640B2 (en)
WO (1) WO2020195116A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453462B1 (en) 2023-11-29 2024-03-19 大阪ガスケミカル株式会社 Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171111A (en) 2001-12-04 2003-06-17 Nippon Telegr & Teleph Corp <Ntt> Carbon material for storing hydrogen
JP2007186403A (en) 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same
WO2018116859A1 (en) 2016-12-19 2018-06-28 株式会社アドール Active carbon and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628399B2 (en) * 1995-10-18 2005-03-09 カネボウ株式会社 Activated carbon for adsorption of organic chlorine compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171111A (en) 2001-12-04 2003-06-17 Nippon Telegr & Teleph Corp <Ntt> Carbon material for storing hydrogen
JP2007186403A (en) 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same
WO2018116859A1 (en) 2016-12-19 2018-06-28 株式会社アドール Active carbon and production method thereof

Also Published As

Publication number Publication date
JP2020157242A (en) 2020-10-01
WO2020195116A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6275368B2 (en) Activated carbon molded body and water purifier using the same
KR102511171B1 (en) Chloramine and chlorine removal material and method for producing the same
US7429326B2 (en) Water purification apparatus and system
JP5936423B2 (en) Activated carbon for water purifier and activated carbon cartridge using the same
CN205323397U (en) Gas purifier
JP6726520B2 (en) Activated carbon molding and water purification cartridge
JP7300640B2 (en) water purification cartridge
JP4064309B2 (en) Water purifier
JP3164470U (en) Water purifier filter and water purifier using the same
US20040180190A1 (en) Composite particulate article and method for preparation thereof
US20090045133A1 (en) Low Pressure Drop Cyst Filter
JP6182819B2 (en) Water purification cartridge, water purifier
JP7060772B1 (en) Carbonaceous materials and their manufacturing methods, as well as fluorine-containing organic compound removing materials, water purification filters and water purifiers
US11795066B2 (en) Carbonaceous material and method for producing same, water purification filter, and water purifier
JP2005000768A (en) Water cleaning cartridge
JP2015073919A (en) Activated carbon molded body
JP7301591B2 (en) Manufacturing method for residual chlorine removal filter body
CN106267889A (en) Ultra-fine particles fixes penetrating adsorbent bed and application apparatus
JP4068080B2 (en) Functional ceramic manufacturing method, functional ceramic resin manufacturing method, functional ceramic, functional ceramic resin, and water purifier
EP2644571A1 (en) High flow-through gravity purification system for water
JP7478163B2 (en) Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same
RU2728331C1 (en) Porous block filter material for purifying drinking water from iron and a method for production thereof
JP2010269225A (en) Anion adsorbent molding and water purifier using the same
WO2020027147A1 (en) Water-purifying cartridge and water purifier
JPH07222971A (en) Cartridge for water purifier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R150 Certificate of patent or registration of utility model

Ref document number: 7300640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150