JP7297190B2 - alarm system - Google Patents

alarm system Download PDF

Info

Publication number
JP7297190B2
JP7297190B2 JP2022024189A JP2022024189A JP7297190B2 JP 7297190 B2 JP7297190 B2 JP 7297190B2 JP 2022024189 A JP2022024189 A JP 2022024189A JP 2022024189 A JP2022024189 A JP 2022024189A JP 7297190 B2 JP7297190 B2 JP 7297190B2
Authority
JP
Japan
Prior art keywords
acceleration
heart rate
acoustic
signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022024189A
Other languages
Japanese (ja)
Other versions
JP2022087093A (en
Inventor
幹也 田中
翔太 中島
浩士 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2022087093A publication Critical patent/JP2022087093A/en
Application granted granted Critical
Publication of JP7297190B2 publication Critical patent/JP7297190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Emergency Alarm Devices (AREA)

Description

特許法第30条第2項適用 公益社団法人計測自動制御学会が2016年11月26日に発行した「第25回計測自動制御学会中国支部学術講演会論文集」において発表Article 30, Paragraph 2 of the Patent Act applies. Presented in the "25th Annual Conference of the Society of Instrument and Control Engineers Chugoku Branch" published by the Society of Instrument and Control Engineers on November 26, 2016.

この発明は、被検者の脇の下にセットされる体導音センサを用いて、被検者の血流音、心音、呼吸音等を検出し、検出された音響信号に基づいて音響心拍数及び音響呼吸数を計測し、計測された音響心拍数及び音響呼吸数に基づいて、心拍数及び呼吸数のいずれかに異常があるか否か判定し、異常があると判定した場合に警報を発する警報発出システムに関するものである。
また、この発明は、被検者の胸部又は腹部にセットされる加速度センサを用いて、被検者の胸部又は腹部における加速度を検出し、検出された加速度信号に基づいて加速度心拍数及び加速度呼吸数を計測し、計測された加速度心拍数及び加速度呼吸数に基づいて、心拍数及び呼吸数のいずれかに異常があるか否か判定し、異常があると判定した場合に警報を発する警報発出システムに関するものである。
The present invention uses a body-conducted sound sensor set under the armpit of the subject to detect blood flow sound, heart sound, breathing sound, etc. of the subject, and based on the detected acoustic signals, the acoustic heart rate and Measure the acoustic respiration rate, determine whether there is an abnormality in either the heart rate or the respiration rate based on the measured acoustic heart rate and the acoustic respiration rate, and issue an alarm if it is determined that there is an abnormality It relates to an alarm issuing system .
In addition, the present invention uses an acceleration sensor set on the chest or abdomen of the subject to detect the acceleration in the chest or abdomen of the subject, and based on the detected acceleration signal, accelerated heart rate and accelerated respiration. Based on the measured accelerated heart rate and accelerated respiratory rate, it is determined whether there is an abnormality in either the heart rate or the respiratory rate, and if it is determined that there is an abnormality, an alarm is issued. It is about the system .

従来、呼吸器や循環器系疾患の早期発見を目的として、体導音(例えば、血流音、心音、呼吸音等)や加速度信号に基づく診断システムの研究・開発が進められている。
そして、血流音は手首の近く、心音は胸部又は腹部の近く、呼吸音は頬の近くで採取すれば明瞭な信号を取得し易い。
しかし、3箇所にマイクロホンを装着し、それぞれの体導音を採取することは、時間、コスト、手間がかかり、被検者の負担も大きい。
Conventionally, for the purpose of early detection of respiratory and circulatory system diseases, research and development of diagnostic systems based on body-conducted sounds (for example, blood flow sounds, heart sounds, breath sounds, etc.) and acceleration signals have been advanced.
Clear signals can be easily obtained by collecting blood flow sounds near the wrist, heart sounds near the chest or abdomen, and breathing sounds near the cheek.
However, it is time-consuming, costly, and troublesome to attach microphones to three locations and collect the body-conducted sound from each of them, and the burden on the subject is heavy.

そこで、特許文献1(特開2015-31889号公報)に記載されるように、1箇所で採取された混合音響信号から特定の成分を高精度に分離することのできる音響信号分離装置が提案されている(特に、段落0006~0007を参照)。
また、特許文献2(特許第3809847号公報)に記載されるように、1つの加速度センサで被検者の生体情報を得て、呼吸数や心拍数を検出する睡眠診断装置も提案されている(特に、段落0006~0007を参照)。
Therefore, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2015-31889), an acoustic signal separation device has been proposed that can separate a specific component from a mixed acoustic signal sampled at one location with high accuracy. (See in particular paragraphs 0006-0007).
In addition, as described in Patent Document 2 (Japanese Patent No. 3809847), a sleep diagnosis device has also been proposed that obtains biological information of a subject with a single acceleration sensor and detects the respiratory rate and heart rate. (See in particular paragraphs 0006-0007).

特開2015-31889号公報JP 2015-31889 A 特許第3809847号公報Japanese Patent No. 3809847

しかし、特許文献1の音響信号分離装置においては、音響センサ11(超低周波収録用のマイクロホン)が頸動脈上皮部に装着されているため、装着に手間がかかり、体導音以外の音を拾いやすいという欠点があった。
また、特許文献2の睡眠診断装置においては、寝姿変化、呼吸数及び心拍数以外の情報は導出できないという問題があった。
さらに、特許文献1の音響信号分離装置及び特許文献2の睡眠診断装置は、いずれも被検者の状態によっては、心拍数又は呼吸数の計測結果に誤差が生じるおそれがあった。
この発明は、体導音センサを被検者に容易に装着できるようにし、かつ、体導音センサが体導音以外の音を拾いにくくすることを第1の目的としてなされたものである。
そして、体導音センサと加速度センサを併用して、被検者の状態によらず、心拍数及び呼吸数の計測を高精度で行えるようにすることを第2の目的とし、1つの加速度センサで得た被検者の体動に関する情報に基づいて、呼気・吸気の識別及び呼吸の強弱も計測可能とすることを第3の目的としてなされたものである。
However, in the acoustic signal separation device of Patent Document 1, since the acoustic sensor 11 (microphone for recording ultra-low frequencies) is attached to the epithelium of the carotid artery, it is troublesome to attach, and sounds other than body-conducted sounds are not detected. The downside is that it is easy to pick up.
Moreover, in the sleep diagnosis device of Patent Document 2, there is a problem that information other than changes in sleeping posture, respiration rate, and heart rate cannot be derived.
Furthermore, both the acoustic signal separation device of Patent Document 1 and the sleep diagnosis device of Patent Document 2 may cause an error in the heart rate or respiration rate measurement results depending on the condition of the subject.
A first object of the present invention is to make it possible to easily attach a body-conducted sound sensor to a subject and to make it difficult for the body-conducted sound sensor to pick up sounds other than body-conducted sounds.
A second object of the present invention is to use both a body-conducted sound sensor and an acceleration sensor to measure the heart rate and respiration rate with high accuracy regardless of the subject's condition. The third purpose of the present invention is to make it possible to distinguish between exhalation and inhalation and to measure the intensity of respiration based on the information about the subject's body movement obtained in 1).

請求項1に係る発明の警報発出システムは、
血流音若しくは心音及び呼吸音を検知し音響信号を取得する体導音センサと、
被検者の脇の下に挿入可能な先端部を有し該先端部に前記体導音センサを設けてある棒状体と、
前記体導音センサにより取得された音響信号に基づいて音響心拍数を計測する音響心拍数計測部及び音響呼吸数を計測する音響呼吸数計測部を有する体導音信号処理手段と、
前記音響心拍数計測部で計測された音響心拍数のデータ及び前記音響呼吸数計測部で計測された音響呼吸数のデータを、所定のインターバルで送信するデータ送信手段と、
前記データ送信手段から送信された音響心拍数のデータ及び音響呼吸数のデータを受信するデータ収集手段と、
前記データ収集手段が受信した音響心拍数のデータ及び音響呼吸数のデータに基づいて、心拍数及び呼吸数のいずれかに異常があるか否か判定し、異常があると判定した場合に警報を発する警報手段を備える
ことを特徴とする警報発出システム。
The alarm issuing system of the invention according to claim 1,
a body-conducted sound sensor that detects blood flow sounds or heart sounds and breathing sounds and acquires acoustic signals;
a rod-shaped body having a tip that can be inserted into the armpit of a subject and having the body-conducting sound sensor at the tip;
body-conducted sound signal processing means having an acoustic heart rate measuring unit for measuring an acoustic heart rate based on the acoustic signal acquired by the body-conducted sound sensor and an acoustic respiration rate measuring unit for measuring an acoustic respiration rate;
data transmission means for transmitting, at predetermined intervals, the acoustic heart rate data measured by the acoustic heart rate measuring unit and the acoustic respiration rate data measured by the acoustic respiration rate measuring unit;
data collection means for receiving acoustic heart rate data and acoustic respiration rate data transmitted from the data transmission means;
Based on the acoustic heart rate data and the acoustic respiration rate data received by the data collection means , it is determined whether there is an abnormality in either the heart rate or the respiration rate, and if it is determined that there is an abnormality, an alarm is issued. An alarm issuing system characterized by comprising means for issuing an alarm.

請求項に係る発明は、請求項1に記載の警報発出システムにおいて、
前記警報発出システムは、少なくともZ軸方向における被検者の体動の加速度を検知し加速度信号を取得する加速度センサと、該加速度センサにより取得された加速度信号に基づいて加速度心拍数を計測する加速度心拍数計測部及び加速度呼吸数を計測する加速度呼吸数計測部を有する加速度信号処理手段と、前記音響心拍数計測部で計測された音響心拍数及び前記加速度心拍数計測部で計測された加速度心拍数に基づいて、修正心拍数を演算する修正心拍数演算部と、前記音響呼吸数計測部で計測された音響呼吸数及び前記加速度呼吸数計測部で計測された加速度呼吸数に基づいて、修正呼吸数を演算する修正呼吸数演算部を有し、
前記警報手段は、修正心拍数のデータ及び修正呼吸数のデータに基づいて、心拍数及び呼吸数のいずれかに異常があるか否か判定し、異常があると判定した場合に警報を発することを特徴とする。
The invention according to claim 2 is the alarm issuing system according to claim 1 ,
The alarm issuing system includes an acceleration sensor that detects acceleration of body movement of the subject at least in the Z-axis direction and acquires an acceleration signal, and an acceleration sensor that measures an acceleration heart rate based on the acceleration signal acquired by the acceleration sensor. Acceleration signal processing means having a heart rate measurement unit and an acceleration respiration rate measurement unit for measuring an acceleration respiration rate; an acoustic heart rate measured by the acoustic heart rate measurement unit and an acceleration heart rate measured by the acceleration heart rate measurement unit; a corrected heart rate calculation unit that calculates a corrected heart rate based on the number of breaths; Having a modified respiratory rate calculator that calculates the respiratory rate,
The alarm means determines whether or not there is an abnormality in either the heart rate or the respiratory rate based on the corrected heart rate data and the corrected respiratory rate data, and issues an alarm when it is determined that there is an abnormality . characterized by

請求項に係る発明は、請求項に記載の警報発出システムにおいて、
前記加速度信号処理手段は、前記加速度センサにより取得された加速度信号をフーリエ変換する加速度信号変換部を有し、
前記加速度心拍数計測部は、前記加速度信号変換部で得られた加速度変換信号から低周波成分を除去する第2の低周波除去部と、該第2の低周波除去部で得られた第2の低周波除去信号に基づいて加速度心拍数を演算する加速度心拍数演算部を有し、
前記加速度呼吸数計測部は、前記加速度信号変換部で得られた加速度変換信号から高周波成分を除去する第2の高周波除去部と、該第2の高周波除去部で得られた第2の高周波除去信号に基づいて加速度呼吸数を演算する加速度呼吸数演算部を有していることを特徴とする。
The invention according to claim 3 is the alarm issuing system according to claim 2 ,
The acceleration signal processing means has an acceleration signal conversion unit that Fourier-transforms the acceleration signal acquired by the acceleration sensor,
The acceleration heart rate measurement unit includes a second low frequency removal unit that removes low frequency components from the acceleration conversion signal obtained by the acceleration signal conversion unit, and a second low frequency removal unit obtained by the second low frequency removal unit. has an acceleration heart rate calculator that calculates an acceleration heart rate based on the low-frequency removed signal of
The acceleration respiration rate measurement unit includes a second high frequency removal unit for removing high frequency components from the acceleration conversion signal obtained by the acceleration signal conversion unit, and a second high frequency removal unit obtained by the second high frequency removal unit. It is characterized by having an accelerated respiration rate calculator for calculating an accelerated respiration rate based on the signal.

請求項1に係る発明の警報発出システムによれば、体導音センサが、被検者の脇の下に挿入可能な先端部を有する棒状体の先端部に設けてあるので、棒状体の先端部を脇の下に差し込むだけで体導音センサを被検者に装着することができ、しかも体導音センサが体導音以外の音を拾いにくい。
そのため、手軽に被検者の心拍数及び呼吸数を計測することができ、しかも比較的高い精度で心拍数及び呼吸数を同時に計測することができる。
また、在宅患者の遠隔診断システムを実現したり、心拍数や呼吸数に異常のある被災者を的確に把握して警報を発したり、居眠り運転を検知して運転者や同乗者に対して警報を発したりすることができる。
According to the warning issuing system of the first aspect of the invention, the body-conducted sound sensor is provided at the tip of the rod-shaped body having the tip that can be inserted into the armpit of the subject. The body-conducted sound sensor can be attached to the subject only by inserting it under the armpit, and the body-conducted sound sensor hardly picks up sounds other than the body-conducted sound.
Therefore, the heart rate and respiration rate of the subject can be easily measured, and the heart rate and respiration rate can be measured simultaneously with relatively high accuracy.
In addition, we will realize a remote diagnosis system for patients at home, accurately identify victims with abnormal heart and breathing rates and issue warnings, and detect drowsy driving and warn drivers and passengers. can be emitted.

請求項に係る発明の警報発出システムによれば、請求項1に係る発明の効果に加え、体導音センサと加速度センサを併用して被検者の心拍数及び呼吸数の計測を行うので、被検者の状態によらず、その計測精度を高めることができる。 According to the alarm issuing system of the invention according to claim 2 , in addition to the effect of the invention according to claim 1 , the body-conducted sound sensor and the acceleration sensor are used together to measure the heart rate and respiration rate of the subject. , the measurement accuracy can be improved regardless of the condition of the subject.

請求項に係る発明の警報発出システムによれば、請求項に係る発明の効果に加え、加速度センサにより取得された加速度信号をフーリエ変換して加速度変換信号を得た上で、加速度変換信号から低周波成分を除去した第2の低周波除去信号に基づいて加速度心拍数を演算するとともに、加速度変換信号から高周波成分を除去した第2の高周波除去信号に基づいて加速度呼吸数を演算することができるので、被検者の心拍数及び呼吸数を簡素な構成によって精度良く計測できる。 According to the alarm issuing system of the invention according to claim 3 , in addition to the effect of the invention according to claim 2 , after obtaining the acceleration conversion signal by Fourier transforming the acceleration signal acquired by the acceleration sensor, the acceleration conversion signal calculating the accelerated heart rate based on the second low-frequency-removed signal obtained by removing the low-frequency component from the acceleration conversion signal, and calculating the accelerated respiration rate based on the second high-frequency-removed signal obtained by removing the high-frequency component from the acceleration conversion signal Therefore, the heart rate and respiration rate of the subject can be accurately measured with a simple configuration.

実施例1に係る心拍数及び呼吸数計測装置の概念図。1 is a conceptual diagram of a heart rate and respiration rate measuring device according to Example 1. FIG. 実施例1に係る棒状体の側面図、体導音センサの拡大断面図及び平面図。1A and 1B are a side view of a rod-shaped body, an enlarged cross-sectional view, and a plan view of a body-conducting sound sensor according to Embodiment 1. FIG. 実施例1に係る体導音信号処理手段のブロック図。FIG. 2 is a block diagram of body-conducted sound signal processing means according to the first embodiment; 体導音センサで計測された音響信号の一例。An example of an acoustic signal measured by a body conduction sound sensor. 図4の音響信号をフーリエ変換して得られた音響変換信号のグラフ。5 is a graph of an acoustic conversion signal obtained by Fourier transforming the acoustic signal of FIG. 4; 実施例2に係る第2の体導音信号処理手段のブロック図。FIG. 8 is a block diagram of a second body-conducted sound signal processing means according to the second embodiment; 実施例2に係る第2の体導音信号処理手段の処理フロー。FIG. 10 is a processing flow of a second body-conducted sound signal processing means according to the second embodiment; FIG. 体導音センサで計測された音響信号の他の例。Another example of an acoustic signal measured by a body-conduction sound sensor. 図8の音響信号をフーリエ変換して得られた音響変換信号のグラフ。9 is a graph of an acoustic conversion signal obtained by Fourier transforming the acoustic signal of FIG. 8; 図9に示す音響変換信号から心音及び呼吸音に近い周波数成分を抽出した信号のグラフ。FIG. 10 is a graph of a signal obtained by extracting frequency components close to heart sounds and breath sounds from the acoustic conversion signal shown in FIG. 9; FIG. 図10に示す信号を逆フーリエ変換して得られた逆変換信号のグラフ。11 is a graph of an inverse transformed signal obtained by inverse Fourier transforming the signal shown in FIG. 10; 実施例3に係る心拍数及び呼吸数計測装置の概念図。FIG. 11 is a conceptual diagram of a heart rate and respiration rate measuring device according to Example 3; 実施例3に係る加速度センサの斜視図。FIG. 11 is a perspective view of an acceleration sensor according to Example 3; 実施例3に係る加速度信号処理手段のブロック図。FIG. 11 is a block diagram of acceleration signal processing means according to the third embodiment; 加速度センサで計測された加速度信号の一例。An example of an acceleration signal measured by an acceleration sensor. 図15の加速度信号をフーリエ変換して得られた加速度変換信号のグラフ。16 is a graph of an acceleration conversion signal obtained by Fourier transforming the acceleration signal of FIG. 15; 図16に示す加速度変換信号から高周波成分を除去した信号のグラフ。17 is a graph of a signal obtained by removing high frequency components from the acceleration conversion signal shown in FIG. 16; 図17に示す信号を逆フーリエ変換して得られた逆変換信号のグラフ。18 is a graph of an inverse transformed signal obtained by inverse Fourier transforming the signal shown in FIG. 17; 強呼吸、弱呼吸、無呼吸の状態における逆変換信号のグラフ。Graphs of inverse transformed signals for strong, weak, and apnea conditions. 実施例4に係る第2の加速度信号処理手段のブロック図。FIG. 12 is a block diagram of second acceleration signal processing means according to the fourth embodiment; 実施例4に係る第2の加速度信号処理手段の呼吸数に関する処理フロー。FIG. 12 is a processing flow regarding the respiration rate of the second acceleration signal processing means according to the fourth embodiment; FIG. 実施例4に係る第2の加速度信号処理手段の心拍数に関する処理フロー。FIG. 11 is a processing flow regarding the heart rate of the second acceleration signal processing means according to the fourth embodiment; FIG. 加速度センサで計測されたY軸方向加速度信号の一例。An example of a Y-axis direction acceleration signal measured by an acceleration sensor. 図23のY軸方向加速度信号をフーリエ変換して得られたY軸方向加速度変換信号のグラフ。24 is a graph of a Y-axis direction acceleration conversion signal obtained by Fourier transforming the Y-axis direction acceleration signal of FIG. 23; 図24に示すY軸方向加速度変換信号から呼吸数に近い周波数成分を抽出した高周波除去信号のグラフ。FIG. 25 is a graph of a high-frequency removed signal obtained by extracting a frequency component close to the respiratory rate from the Y-axis direction acceleration conversion signal shown in FIG. 24; 図25に示す高周波除去信号を逆フーリエ変換して得られた呼吸波形信号のグラフ。26 is a graph of a respiratory waveform signal obtained by inverse Fourier transforming the high frequency removed signal shown in FIG. 25; 加速度センサで計測されたZ軸方向加速度信号の一例。An example of a Z-axis direction acceleration signal measured by an acceleration sensor. 図27のZ軸方向加速度信号から呼吸波形信号を差し引いて得られたZ軸方向差分加速度信号のグラフ。28 is a graph of the Z-axis direction differential acceleration signal obtained by subtracting the respiratory waveform signal from the Z-axis direction acceleration signal of FIG. 27; 変形例(1)に係る心拍数及び呼吸数計測装置の概念図。FIG. 4 is a conceptual diagram of a heart rate and respiration rate measuring device according to Modification (1).

以下、実施例によって本発明の実施形態を説明する。 The embodiments of the present invention will now be described with reference to examples.

図1は実施例1に係る心拍数及び呼吸数計測装置の概念図である。
棒状体1は、被検者の脇の下に挿入可能な先端部を有し、その先端部に体導音センサ2が設けてある。
体導音センサ2を用いて被検者の心拍数及び呼吸数を計測する場合には、棒状体1の先端部を被検者の脇の下に挿入し、体導音センサ2の上面を被検者の胸側に向けて腕で挟むか棒状体1の中央部等をテープやベルトで固定する。
そして、被検者が落ち着いてから体導音センサ2によって取得された音響信号を体導音信号処理手段3で受信し、音響心拍数計測部4及び音響呼吸数計測部5で処理して、被検者の音響心拍数及び音響呼吸数を演算して求める。
報知手段6は、音響心拍数計測部4及び音響呼吸数計測部5から音響心拍数及び音響呼吸数に関する情報を受信し、表示部7に音響心拍数及び音響呼吸数を表示して、検査者又は被検者に知らせる。
FIG. 1 is a conceptual diagram of a heart rate and respiration rate measuring device according to the first embodiment.
The rod-shaped body 1 has a tip that can be inserted into the armpit of a subject, and a body-conducting sound sensor 2 is provided at the tip.
When the body-conducted sound sensor 2 is used to measure the heart rate and respiration rate of the subject, the tip of the rod-shaped body 1 is inserted into the subject's armpit, and the upper surface of the body-conducted sound sensor 2 is measured. The rod-shaped body 1 is held by the arm toward the chest side of the person, or the central part of the rod-shaped body 1 is fixed with a tape or a belt.
Then, after the subject has calmed down, the acoustic signal acquired by the body-conducted sound sensor 2 is received by the body-conducted sound signal processing means 3, processed by the acoustic heart rate measurement unit 4 and the acoustic respiration rate measurement unit 5, The subject's acoustic heart rate and acoustic respiration rate are calculated and obtained.
The notification means 6 receives information about the acoustic heart rate and the acoustic respiration rate from the acoustic heart rate measurement unit 4 and the acoustic respiration rate measurement unit 5, displays the acoustic heart rate and the acoustic respiration rate on the display unit 7, and Or inform the subject.

図2(a)は実施例1に係る棒状体1の側面図であり、図2(b)は棒状体1の先端部に設けてある体導音センサ2の拡大断面図及び平面図である。
体導音センサ2は、図2(b)に示すように全体の形状は円柱状であり、中央部に段差のある凹部8を有する円柱状のアクリル製ケース9と、凹部8の中心部に嵌め込まれているエレクトレットコンデンサマイクロホン(ECM)10と、凹部8の開口側を閉塞するウレタンゲル充填材11とからなっている。
2(a) is a side view of the rod-shaped body 1 according to the first embodiment, and FIG. 2(b) is an enlarged cross-sectional view and a plan view of the body-conducting sound sensor 2 provided at the tip of the rod-shaped body 1. FIG. .
As shown in FIG. 2(b), the body-conducting sound sensor 2 has a cylindrical overall shape. It consists of a fitted electret condenser microphone (ECM) 10 and a urethane gel filling material 11 that closes the opening side of the recess 8 .

図3は実施例1に係る体導音信号処理手段3のブロック図である。
体導音信号処理手段3は、体導音センサ2からの音響信号を受けると、所定時間(例えば30秒間)における音響信号を音響信号変換部12によりフーリエ変換し音響変換信号を得て、音響心拍数計測部4及び音響呼吸数計測部5に送信する。
そして、音響心拍数計測部4においては、低周波除去部13(具体的にはハイパスフィルタ)によって、受信した音響変換信号から周波数0.8Hz未満の信号を除去し、音響心拍数演算部14では低周波除去部13から送られた低周波除去信号がピークとなる周波数を判定して音響心拍数を演算する。
また、音響呼吸数計測部5においては、高周波除去部15(具体的にはローパスフィルタ)によって、受信した音響変換信号から周波数0.5Hz以上の信号を除去し、音響呼吸数演算部16では高周波除去部15から送られた高周波除去信号がピークとなる周波数を判定して音響呼吸数を演算する。
FIG. 3 is a block diagram of the body-conducted sound signal processing means 3 according to the first embodiment.
When the body-conducted sound signal processing means 3 receives the acoustic signal from the body-conducted sound sensor 2, the acoustic signal conversion unit 12 Fourier-transforms the acoustic signal for a predetermined time (for example, 30 seconds) to obtain an acoustic conversion signal. It is transmitted to the heart rate measurement unit 4 and the acoustic respiration rate measurement unit 5 .
Then, in the acoustic heart rate measurement unit 4, the low frequency elimination unit 13 (specifically, a high-pass filter) eliminates signals with a frequency of less than 0.8 Hz from the received acoustic conversion signal, and the acoustic heart rate calculation unit 14 The frequency at which the low-frequency removed signal sent from the low-frequency remover 13 peaks is determined to calculate the acoustic heart rate.
In the acoustic respiration rate measuring unit 5, a high frequency elimination unit 15 (specifically, a low-pass filter) eliminates signals with a frequency of 0.5 Hz or higher from the received acoustic conversion signal. The acoustic respiration rate is calculated by determining the frequency at which the high-frequency removed signal sent from the remover 15 peaks.

図4は体導音センサ2を用いて、被検者の左脇の下において30秒間にわたって計測された音響信号の一例であり、図5は図4の音響信号をフーリエ変換して得られた音響変換信号のグラフである。
この例によれば、周波数が0.8Hz以上の信号は、周波数1.1Hzにおいてピークとなっているので、音響心拍数は66[bpm]となり、周波数が0.5Hz未満の信号は、周波数0.33Hzにおいてピークとなっているので、音響呼吸数は20[回/分]となっていることが分かる。
FIG. 4 shows an example of an acoustic signal measured for 30 seconds under the left armpit of the subject using the body-conducted sound sensor 2. FIG. 5 shows an acoustic transform obtained by Fourier transforming the acoustic signal in FIG. It is a graph of the signal.
According to this example, the signal with a frequency of 0.8 Hz or higher has a peak at a frequency of 1.1 Hz, so the acoustic heart rate is 66 [bpm], and the signal with a frequency of less than 0.5 Hz has a frequency of 0. Since it peaks at 0.33 Hz, it can be seen that the acoustic respiration rate is 20 [times/minute].

図6は実施例2に係る第2の体導音信号処理手段17のブロック図である。
また、実施例2に係る心拍数及び呼吸数計測装置の概念図は実施例1(図1)と同様であり、実施例1に係る心拍数及び呼吸数計測装置と相違しているのは、音響心拍数計測部4に低周波除去信号逆変換部20が追加されて第2の音響心拍数計測部18となっている点及び音響呼吸数計測部5に高周波除去信号逆変換部21が追加されて第2の音響呼吸数計測部19となっている点である。
そして、棒状体1、体導音センサ2、報知手段6、表示部7、音響信号変換部12、低周波除去部13及び高周波除去部15については、実施例1と同じなので説明は省略する。
FIG. 6 is a block diagram of the second body-conducted sound signal processing means 17 according to the second embodiment.
Further, the conceptual diagram of the heart rate and respiration rate measuring device according to the second embodiment is the same as that of the first embodiment (FIG. 1), and the difference from the heart rate and respiration rate measuring device according to the first embodiment is that A low-frequency-removed signal inverse transforming unit 20 is added to the acoustic heart rate measuring unit 4 to form a second acoustic heart rate measuring unit 18, and a high-frequency-removing signal inverse transforming unit 21 is added to the acoustic respiration rate measuring unit 5. It is the point that it becomes the second acoustic respiration rate measuring unit 19. FIG.
The rod-shaped body 1, the body-conducted sound sensor 2, the notification means 6, the display section 7, the acoustic signal conversion section 12, the low frequency elimination section 13, and the high frequency elimination section 15 are the same as those in the first embodiment, and thus description thereof is omitted.

実施例2に係る第2の体導音信号処理手段17においては、図7の処理フロー図に示すように、体導音センサ2で取得した生体音を音響信号変換部12によりフーリエ変換し、低周波除去部13によって低周波除去信号(心音に近い信号)を抽出するとともに、高周波除去部15によって高周波除去信号(呼吸音に近い信号)を抽出する。
その後、低周波除去信号が、低周波除去信号逆変換部20によって逆フーリエ変換され、得られた逆変換信号に対して音響心拍数演算部14で自己相関関数処理して周期を導出し、導出した周期に基づいて音響心拍数を演算する。
また、高周波除去信号が、高周波除去信号逆変換部21によって逆フーリエ変換され、得られた逆変換信号について音響呼吸数演算部16で周期を導出し、導出した周期に基づいて音響呼吸数を演算する。
In the second body-conducted sound signal processing means 17 according to the second embodiment, as shown in the processing flow diagram of FIG. The low-frequency removing unit 13 extracts a low-frequency removed signal (a signal close to heart sounds), and the high-frequency removing unit 15 extracts a high-frequency removed signal (a signal close to breathing sounds).
After that, the low-frequency removed signal is subjected to inverse Fourier transform by the low-frequency removed signal inverse transforming unit 20, and the obtained inversely transformed signal is subjected to autocorrelation function processing in the acoustic heart rate computing unit 14 to derive the period. Calculate the acoustic heart rate based on the period.
In addition, the high-frequency removed signal is subjected to inverse Fourier transform by the high-frequency removed signal inverse transforming unit 21, the period of the obtained inversely transformed signal is derived by the acoustic respiration rate computing unit 16, and the acoustic respiration rate is computed based on the derived period. do.

図8は体導音センサ2を用いて、被検者の左脇の下において30秒間にわたって計測された音響信号の他の例であり、図9は図8の音響信号をフーリエ変換して得られた音響変換信号のグラフである。
そして、図10は図9に示す音響変換信号から心音及び呼吸音に近い周波数成分を抽出した信号のグラフであり、心音については0.9~2Hz、呼吸音については0.5Hz未満の信号を抽出している。
また、図11は図10に示す信号を、それぞれ逆フーリエ変換して得られた逆変換信号のグラフであり、この例によれば、心音の周期は0.79秒、呼吸音の周期は2.55秒となっているので、音響心拍数は75.9[bpm]、音響呼吸数は23.5[回/分]と演算される。
FIG. 8 shows another example of the acoustic signal measured for 30 seconds under the left armpit of the subject using the body-conducted sound sensor 2, and FIG. 9 is obtained by Fourier transforming the acoustic signal of FIG. 4 is a graph of an acoustic conversion signal;
FIG. 10 is a graph of signals obtained by extracting frequency components close to heart sounds and breath sounds from the acoustic conversion signal shown in FIG. are extracting.
FIG. 11 is a graph of inverse-transformed signals obtained by inverse Fourier transforming the signals shown in FIG. Since it is 0.55 seconds, the acoustic heart rate is calculated as 75.9 [bpm] and the acoustic respiratory rate is calculated as 23.5 [times/minute].

図12は実施例3に係る心拍数及び呼吸数計測装置の概念図である。
棒状体1、体導音センサ2、体導音信号処理手段3、音響心拍数計測部4及び音響呼吸数計測部5については、実施例1と同じなので説明は省略する。
実施例3では、体導音センサ2に加えて加速度センサ22を用いて被検者の加速度心拍数及び加速度呼吸数を計測し、両センサによる心拍数及び呼吸数の演算結果を総合することにより、精度の高い心拍数及び呼吸数を求めている。
なお、加速度センサ22にはスマートフォンに内蔵されている3軸方向の加速度を検知できる加速度計(LIS2DH)を利用し、図13に示すように、スマートフォンの短辺に平行な軸をX軸、長辺に平行な軸をY軸、X軸及びY軸に直交する軸をZ軸とし、下向きをZ軸の正方向としている。
FIG. 12 is a conceptual diagram of a heart rate and respiration rate measuring device according to the third embodiment.
The rod-shaped body 1, the body-conducted sound sensor 2, the body-conducted sound signal processing means 3, the acoustic heart rate measuring unit 4, and the acoustic respiration rate measuring unit 5 are the same as those in the first embodiment, and thus description thereof is omitted.
In Example 3, the acceleration sensor 22 is used in addition to the body-conducted sound sensor 2 to measure the accelerated heart rate and the accelerated respiratory rate of the subject, and the calculation results of the heart rate and the respiratory rate by both sensors are integrated. , to obtain accurate heart rate and respiration rate.
As the acceleration sensor 22, an accelerometer (LIS2DH) built in the smartphone that can detect acceleration in three directions is used. As shown in FIG. The axis parallel to the sides is the Y axis, the X axis and the axis orthogonal to the Y axis are the Z axis, and the downward direction is the positive direction of the Z axis.

加速度センサ22を用いて被検者の加速度心拍数及び加速度呼吸数を計測する場合には、スマートフォンの背面を仰向けに寝ている被検者の胸又は腹部に載せ、両面テープ等の適宜の手段により固定する。
そして、被検者が落ち着いてから加速度センサ22によって取得された加速度信号を加速度信号処理手段23で受信し、加速度心拍数計測部24及び加速度呼吸数計測部25で処理して、加速度心拍数及び加速度呼吸数を演算して求める。
なお、加速度センサ22から加速度信号処理手段23に加速度信号を送信するには、スマートフォンに搭載されている有線又は無線通信手段を適宜利用すれば良い。
When measuring the accelerated heart rate and accelerated respiratory rate of the subject using the acceleration sensor 22, the back of the smartphone is placed on the chest or abdomen of the subject lying on his back, and an appropriate means such as double-sided tape is used. fixed by
Then, after the subject calms down, the acceleration signal acquired by the acceleration sensor 22 is received by the acceleration signal processing means 23, processed by the acceleration heart rate measurement unit 24 and the acceleration respiration rate measurement unit 25, and the acceleration heart rate and It is obtained by calculating the accelerated respiratory rate.
In order to transmit the acceleration signal from the acceleration sensor 22 to the acceleration signal processing means 23, a wired or wireless communication means installed in the smart phone may be used as appropriate.

修正心拍数演算部26は、音響心拍数計測部4及び加速度心拍数計測部24で演算された音響心拍数及び加速度心拍数に基づいて、精度の高い修正心拍数を演算する。
また、修正呼吸数演算部27は、音響呼吸数計測部5及び加速度呼吸数計測部25で演算された音響呼吸数及び加速度呼吸数に基づいて、精度の高い修正呼吸数を演算する。
一例としては、音響心拍数と加速度心拍数の単純平均又は加重平均を演算するとともに、音響呼吸数と加速度呼吸数の単純平均又は加重平均を演算する。
報知手段6は、修正心拍数演算部26及び修正呼吸数演算部27から修正心拍数及び修正呼吸数に関する情報を受信し、表示部7に修正心拍数及び修正呼吸数を表示して、検査者又は被検者に知らせる。
The corrected heart rate calculation unit 26 calculates a highly accurate corrected heart rate based on the acoustic heart rate and acceleration heart rate calculated by the acoustic heart rate measurement unit 4 and acceleration heart rate measurement unit 24 .
Further, the corrected respiration rate calculation unit 27 calculates a highly accurate corrected respiration rate based on the acoustic respiration rate and the accelerated respiration rate calculated by the acoustic respiration rate measurement unit 5 and the acceleration respiration rate measurement unit 25 .
For example, a simple average or weighted average of the acoustic heart rate and the acceleration heart rate is calculated, and a simple average or weighted average of the acoustic respiration rate and the acceleration respiration rate is calculated.
The notification means 6 receives information about the corrected heart rate and the corrected respiratory rate from the corrected heart rate calculator 26 and the corrected respiratory rate calculator 27, displays the corrected heart rate and the corrected respiratory rate on the display unit 7, and Or inform the subject.

図14は実施例3に係る加速度信号処理手段23のブロック図である。
加速度信号処理手段23は、加速度センサ22からの加速度信号を受けると、所定時間(例えば40秒間)における加速度信号を、加速度信号変換部28によりフーリエ変換し加速度変換信号を得て、加速度心拍数計測部24及び加速度呼吸数計測部25に送信する。
そして、加速度心拍数計測部24においては、第2の低周波除去部29(具体的にはバンドパスフィルタ)によって受信した加速度変換信号から周波数0.8Hz未満及び2Hz以上の信号を除去し、第2の低周波除去信号逆変換部30によって得られた低周波除去信号を逆フーリエ変換し、得られた逆変換信号について加速度心拍数演算部31で周期を導出し、導出した周期に基づいて加速度心拍数を演算する。
また、加速度呼吸数計測部25においては、第2の高周波除去部32(具体的にはローパスフィルタ)によって受信した加速度変換信号から周波数0.5Hz以上の信号を除去し、第2の高周波除去部32によって得られた高周波除去信号を逆フーリエ変換し、得られた逆変換信号について加速度呼吸数演算部34で周期を導出し、導出した周期に基づいて加速度呼吸数を演算する。
FIG. 14 is a block diagram of the acceleration signal processing means 23 according to the third embodiment.
Upon receiving the acceleration signal from the acceleration sensor 22, the acceleration signal processing means 23 Fourier-transforms the acceleration signal for a predetermined time (for example, 40 seconds) by the acceleration signal conversion section 28 to obtain an acceleration conversion signal, thereby measuring the acceleration heart rate. It is transmitted to the unit 24 and the accelerated respiration rate measuring unit 25 .
Then, in the acceleration heart rate measurement unit 24, signals with a frequency of less than 0.8 Hz and 2 Hz or more are removed from the received acceleration conversion signal by a second low-frequency removal unit 29 (specifically, a band-pass filter). The low frequency removed signal obtained by the low frequency removed signal inverse transforming unit 30 in 2 is subjected to inverse Fourier transform, the period of the obtained inverse transformed signal is derived by the acceleration heart rate calculating unit 31, and the acceleration is calculated based on the derived period. Calculate heart rate.
Further, in the acceleration respiration rate measurement unit 25, a signal with a frequency of 0.5 Hz or higher is removed from the received acceleration conversion signal by a second high frequency removal unit 32 (specifically, a low-pass filter), and the second high frequency removal unit The high frequency removed signal obtained by 32 is subjected to inverse Fourier transform, the period of the obtained inverse transformed signal is derived by the accelerated respiration rate calculator 34, and the accelerated respiration rate is calculated based on the derived period.

図15は加速度センサ22を用いて、被検者の腹部の上において40秒間にわたって計測されたZ軸方向における加速度信号の一例である。
また、図16は図15の加速度信号をフーリエ変換して得られた加速度変換信号のグラフである。
さらに、図17は図16に示す加速度変換信号から高周波成分を除去した信号のグラフであり、図18は図17に示す信号を逆フーリエ変換して得られた逆変換信号のグラフである。
そして、図18のグラフからは、40秒間のうち前半の20秒間に9回(27[回/分])の呼吸が行われ、後半の20秒間に6回の呼吸が行われていたことが分かる。
なお、低周波除去信号を逆フーリエ変換して得られた逆変換信号についてのグラフは示していないが、図15の例では、前半20秒間における加速度心拍数は84[bpm]、後半20秒間における加速度心拍数は54[bpm]であった。
すなわち、逆変換信号を解析すれば、心拍数や呼吸数が途中で変化した場合においても、それぞれの期間における心拍数や呼吸数を演算し報知することができる。
FIG. 15 shows an example of an acceleration signal in the Z-axis direction measured over 40 seconds on the subject's abdomen using the acceleration sensor 22 .
FIG. 16 is a graph of an acceleration conversion signal obtained by Fourier transforming the acceleration signal of FIG.
Further, FIG. 17 is a graph of a signal obtained by removing high frequency components from the acceleration transform signal shown in FIG. 16, and FIG. 18 is a graph of an inverse transform signal obtained by inverse Fourier transforming the signal shown in FIG.
Further, from the graph in FIG. 18, it can be seen that 9 breaths (27 [breaths/minute]) were performed in the first 20 seconds of the 40 seconds, and 6 breaths were performed in the latter 20 seconds. I understand.
Although the graph of the inverse transform signal obtained by inverse Fourier transforming the low frequency removed signal is not shown, in the example of FIG. The acceleration heart rate was 54 [bpm].
That is, by analyzing the inversely-transformed signal, even if the heart rate or the respiration rate changes in the middle, the heart rate or the respiration rate in each period can be calculated and reported.

図18の逆変換信号からは、呼気と吸気を判別することもできる。
この例では、逆変換信号のグラフが右上がりの期間(加速度が増加する期間)は呼気(息を吐いている期間)であり、右下がりの期間(加速度が減少する期間)は吸気(息をすっている期間)であると判別することができる。
また、図18の逆変換信号から呼吸の強弱も判定できる。
図19は、強呼吸、弱呼吸、無呼吸の状態における逆変換信号のグラフであるが、加速度の振幅幅が概ね0.06[m/s2]以上であれば強呼吸の状態、0.03~0.06[m/s2]の範囲であれば弱呼吸の状態、0.03[m/s2]以下であれば無呼吸の状態であると判定することができる。
このように、高周波除去信号を逆フーリエ変換することにより、呼吸数変化の解析、呼気と吸気の判別及び呼吸の強弱の判定を行えることが分かる。
From the inversely transformed signal of FIG. 18, it is also possible to discriminate between expiration and inspiration.
In this example, the period during which the graph of the inverse transform signal rises to the right (the period during which the acceleration increases) is the expiration period (the period during which the acceleration decreases), and the period during which the graph falls to the right (the period during which the acceleration decreases) is the inhalation period (the period during which the acceleration decreases). It can be determined that it is a period of rubbing).
Also, the intensity of respiration can be determined from the inversely transformed signal of FIG.
FIG. 19 is a graph of inversely transformed signals in the states of strong breathing, weak breathing, and apnea. If it is in the range of 0.3 to 0.06 [m/s 2 ], it can be determined that it is in a weak respiratory state, and if it is 0.03 [m/s 2 ] or less, it can be determined that it is in an apnea state.
Thus, it can be seen that by performing the inverse Fourier transform on the high-frequency removed signal, it is possible to analyze changes in respiration rate, distinguish between exhalation and inhalation, and determine the intensity of respiration.

図20は実施例4に係る第2の加速度信号処理手段35のブロック図である。
また、実施例4に係る心拍数及び呼吸数計測装置の概念図は実施例3(図12)と同様であり、実施例3に係る心拍数及び呼吸数計測装置と相違しているのは、加速度信号変換部28がY軸方向加速度信号変換部36とZ軸方向加速度信号抽出部37に分けてある点、加速度呼吸数計測部25が第2の加速度呼吸数演算部40、第2の高周波除去部32及び第2の高周波除去信号逆変換部33からなる第2の加速度呼吸数計測部38となっている点並びに加速度心拍数計測部24が差分演算部42及び第2の加速度心拍数演算部43からなる第2の加速度心拍数計測部38となっている点である。
そして、棒状体1、体導音センサ2、体導音信号処理手段3、音響心拍数計測部4、音響呼吸数計測部5、報知手段6、表示部7、加速度センサ22、修正心拍数演算部26及び修正呼吸数演算部27については、実施例1又は3と同じなので説明は省略する。
FIG. 20 is a block diagram of the second acceleration signal processing means 35 according to the fourth embodiment.
Further, the conceptual diagram of the heart rate and respiration rate measuring device according to Example 4 is the same as that of Example 3 (FIG. 12), and the difference from the heart rate and respiration rate measuring device according to Example 3 is that The acceleration signal conversion unit 28 is divided into a Y-axis direction acceleration signal conversion unit 36 and a Z-axis direction acceleration signal extraction unit 37, and the acceleration respiration rate measurement unit 25 is divided into a second acceleration respiration rate calculation unit 40 and a second high frequency respiration rate calculation unit 40. A second acceleration respiration rate measurement unit 38 consisting of a removal unit 32 and a second high frequency removed signal inverse conversion unit 33, and the acceleration heart rate measurement unit 24 is a difference calculation unit 42 and a second acceleration heart rate calculation. The point is that it is a second acceleration/heart rate measurement unit 38 made up of the unit 43 .
Rod-shaped body 1, body-conducted sound sensor 2, body-conducted sound signal processing means 3, acoustic heart rate measurement unit 4, acoustic respiration rate measurement unit 5, notification means 6, display unit 7, acceleration sensor 22, corrected heart rate calculation Since the unit 26 and the corrected respiratory rate calculation unit 27 are the same as those in the first or third embodiment, the description thereof is omitted.

実施例4に係る第2の加速度信号処理手段35においては、図21の処理フロー図に示すように、加速度センサ22で測定された所定時間(例えば33秒間)におけるY軸方向加速度信号をY軸方向加速度信号変換部36によりフーリエ変換し、得られたY軸方向加速度変換信号を第2の加速度呼吸数演算部40に送る。
すると、第2の加速度呼吸数演算部40は、最大振幅が閾値(例えば40)を超えているか判別し、超えていなければ無呼吸と判定し、超えていれば最大振幅の周波数に基づいて加速度呼吸数を導出する。
また、Y軸方向加速度信号変換部36で得られたY軸方向加速度変換信号から第2の高周波除去部32によって高周波除去信号(呼吸音に近い信号)を抽出し、第2の高周波除去信号逆変換部33によって高周波除去信号が逆フーリエ変換され、逆変換信号(呼吸波形信号41)を導出する。
In the second acceleration signal processing means 35 according to the fourth embodiment, as shown in the processing flow chart of FIG. Fourier transform is performed by the directional acceleration signal transforming section 36 , and the obtained Y-axis directional acceleration transform signal is sent to the second acceleration breathing rate computing section 40 .
Then, the second accelerated breathing rate calculation unit 40 determines whether the maximum amplitude exceeds a threshold value (for example, 40). Derive the respiratory rate.
Further, a high-frequency removed signal (a signal close to breathing sound) is extracted by the second high-frequency remover 32 from the Y-axis direction acceleration converted signal obtained by the Y-axis direction acceleration signal converter 36, and the second high-frequency removed signal is reversed. The high-frequency-removed signal is inverse Fourier-transformed by the transformer 33 to derive an inverse-transformed signal (respiratory waveform signal 41).

実施例4に係る第2の加速度信号処理手段35においては、さらに、図22の処理フロー図に示すように、Z軸方向加速度信号抽出部37が加速度センサ22からZ軸方向加速度信号を抽出し、所定時間(例えば33秒間)におけるZ軸方向加速度信号を差分演算部42に送る。
すると、差分演算部42は所定時間におけるZ軸方向加速度信号から第2の高周波除去信号逆変換部33で得られた呼吸波形信号41を差し引き、Z軸方向差分加速度信号を得て第2の加速度心拍数演算部43に送信する。
そして、第2の加速度心拍数演算部43においては、パルス振幅が閾値(例えば0.2m/s2以上又は-0.2m/s2以下)となっているか判別し、なっていなければ心拍なしと判定し、なっていれば心拍パルスの時間間隔(周期)に基づいて加速度心拍数を導出する。
In the second acceleration signal processing means 35 according to the fourth embodiment, the Z-axis direction acceleration signal extraction unit 37 further extracts the Z-axis direction acceleration signal from the acceleration sensor 22 as shown in the processing flow diagram of FIG. , the Z-axis direction acceleration signal for a predetermined time (for example, 33 seconds) is sent to the difference calculator 42 .
Then, the difference calculation unit 42 subtracts the respiratory waveform signal 41 obtained by the second high-frequency-removed-signal inverse transform unit 33 from the Z-axis direction acceleration signal at a predetermined time, obtains the Z-axis direction difference acceleration signal, and obtains the second acceleration. It is transmitted to the heart rate calculator 43 .
Then, in the second acceleration/heart rate calculator 43, it is determined whether or not the pulse amplitude is a threshold value (for example, 0.2 m/s 2 or more or −0.2 m/s 2 or less). If so, the acceleration heart rate is derived based on the time interval (period) of heartbeat pulses.

図23は加速度センサ22を用いて、被検者の胸部の上(好ましくは、加速度センサ22の上部を左心尖部の真上、加速度センサ22の下部を左心尖部の腹部側の上)において33秒間にわたって計測されたY軸方向加速度信号の一例である。
また、図24は図23のY軸方向加速度信号をフーリエ変換して得られたY軸方向加速度変換信号のグラフである。
そして、このグラフから最大振幅の周波数は0.24Hzであることが分かり、計測時間である33秒間では約8回(14.4回/分)の加速度呼吸数と演算される。
さらに、図25は図24に示すY軸方向加速度変換信号から高周波成分を除去した信号のグラフであり、図26は図25に示す高周波除去信号を逆フーリエ変換して得られた逆変換信号(呼吸波形信号41)のグラフである。
FIG. 23 shows that the acceleration sensor 22 is used on the subject's chest (preferably, the upper part of the acceleration sensor 22 is directly above the left heart apex, and the lower part of the acceleration sensor 22 is above the abdomen side of the left heart apex). 1 is an example of a Y-axis direction acceleration signal measured over 33 seconds;
FIG. 24 is a graph of a Y-axis direction acceleration conversion signal obtained by Fourier transforming the Y-axis direction acceleration signal of FIG.
From this graph, it can be seen that the frequency of the maximum amplitude is 0.24 Hz, which is calculated as an accelerated respiratory rate of about 8 times (14.4 times/minute) during the measurement time of 33 seconds.
Furthermore, FIG. 25 is a graph of a signal obtained by removing high frequency components from the Y-axis direction acceleration conversion signal shown in FIG. 24, and FIG. 26 is an inverse transform signal ( 4 is a graph of a respiratory waveform signal 41).

図27は加速度センサ22を用いて、被検者の胸部の上(好ましくは、加速度センサ22の上部を左心尖部の真上、加速度センサ22の下部を左心尖部の腹部側の上)において33秒間にわたって計測されたZ軸方向加速度信号の一例である。
また、図28は図27のZ軸方向加速度信号から図26の逆変換信号(呼吸波形信号)を差し引いた信号のグラフである。
そして、図28のグラフからは、パルス振幅が閾値(例えば0.2m/s2以上又は-0.2m/s2以下)となっていることが分かるとともに、33秒間に36回(周期0.912秒=65.5回/分)の心拍が行われていたことが分かる。
FIG. 27 shows that the acceleration sensor 22 is used on the subject's chest (preferably, the upper part of the acceleration sensor 22 is directly above the left heart apex, and the lower part of the acceleration sensor 22 is above the abdomen side of the left heart apex). 1 is an example of a Z-axis acceleration signal measured over 33 seconds;
28 is a graph of a signal obtained by subtracting the inversely transformed signal (respiratory waveform signal) of FIG. 26 from the Z-axis direction acceleration signal of FIG.
From the graph of FIG. 28, it can be seen that the pulse amplitude is a threshold value (for example, 0.2 m/s 2 or more or −0.2 m/s 2 or less), and 36 times in 33 seconds (period 0.2 m/s 2 or less). 912 seconds = 65.5 beats/minute) heartbeat was occurring.

実施例1~4の心拍数及び呼吸数計測装置に関する変形例を列記する。
(1)実施例4では体導音センサ2及び加速度センサ22を用いて心拍数及び呼吸数を計測し、表示部7に計測され演算された修正心拍数及び修正呼吸数を表示したが、図29に示すように、加速度センサ22のみを用いて加速度心拍数及び加速度呼吸数を計測し、表示部7に計測された加速度心拍数及び加速度呼吸数を表示するようにしても良い。
そうした場合、発明の構成は次のとおりとなる。
「 少なくともY軸方向及びZ軸方向における被検者の体動の加速度を検知し、Y軸方向加速度信号及びZ軸方向加速度信号を取得する加速度センサと、
該加速度センサにより取得されたY軸方向加速度信号に基づいて加速度呼吸数を計測する加速度呼吸数計測部と、前記加速度センサにより取得されたZ軸方向加速度信号に基づいて加速度心拍数を計測する加速度心拍数計測部を有する加速度信号処理手段と、
前記加速度呼吸数計測部で計測された加速度呼吸数及び前記加速度心拍数計測部で計測された加速度心拍数を報知する報知手段を備える
ことを特徴とする心拍数及び呼吸数計測装置。」
Modifications of the heart rate and respiration rate measuring devices of Examples 1 to 4 are listed.
(1) In Example 4, the heart rate and respiration rate were measured using the body-conducted sound sensor 2 and the acceleration sensor 22, and the measured and calculated corrected heart rate and corrected respiration rate were displayed on the display unit 7. As shown in 29 , the acceleration sensor 22 alone may be used to measure the accelerated heart rate and accelerated respiratory rate, and the measured accelerated heart rate and accelerated respiratory rate may be displayed on the display unit 7 .
In such cases, the configuration of the invention is as follows.
"an acceleration sensor that detects the acceleration of the subject's body movement in at least the Y-axis direction and the Z-axis direction and obtains a Y-axis direction acceleration signal and a Z-axis direction acceleration signal;
an acceleration breathing rate measuring unit for measuring an acceleration breathing rate based on the Y-axis direction acceleration signal obtained by the acceleration sensor; and an acceleration for measuring an acceleration heart rate based on the Z-axis direction acceleration signal obtained by the acceleration sensor. acceleration signal processing means having a heart rate measuring unit;
A heart rate and respiration rate measuring device, comprising a notification means for notifying the accelerated respiration rate measured by the accelerated respiration rate measuring unit and the accelerated heart rate measured by the accelerated heart rate measuring unit. "

(2)実施例1~4の報知手段6は、表示部7に心拍数及び呼吸数を表示して、検査者又は被検者に知らせるものであったが、表示部7に数字を表示するものに限らず、レベルメータのような表示としても良く、アナログ的な表示としても良い。
また、表示部7に代えて又は加えてスピーカを設け、音声で心拍数及び呼吸数を報知するようにしても良い。
(3)実施例3及び4の報知手段6は、表示部7に修正心拍数及び修正呼吸数を表示して検査者又は被検者に知らせるものであったが、表示部7に修正心拍数及び修正呼吸数を表示するのに代えて又は加えて、体導音センサ2を用いて計測された音響心拍数及び音響呼吸数並びに加速度センサ22を用いて計測された加速度心拍数及び加速度呼吸数を表示する表示部を設けても良い。
(2) The notification means 6 of Examples 1 to 4 displays the heart rate and respiration rate on the display unit 7 to notify the examiner or the subject, but displays numbers on the display unit 7 The display is not limited to the object, and may be a display such as a level meter, or may be an analog display.
Also, a speaker may be provided in place of or in addition to the display unit 7 to notify the heart rate and the respiratory rate by voice.
(3) The notification means 6 of Examples 3 and 4 displays the corrected heart rate and the corrected respiratory rate on the display unit 7 to notify the examiner or the subject. and instead of or in addition to displaying the modified respiration rate, the acoustic heart rate and acoustic respiration rate measured using the body-conducted sound sensor 2 and the acceleration heart rate and acceleration respiration rate measured using the acceleration sensor 22 You may provide the display part which displays.

(4)実施例1及び2においては、体導音センサ2を、円柱状のアクリル製ケース9と、凹部8の中心部に嵌め込まれているECM10と、凹部8の開口側を閉塞するウレタンゲル充填材11とからなるものとしたが、棒状体1の先端部自体に凹部を設け、その凹部にECMを嵌め込み、その開口側をウレタンゲル充填材で閉塞しても良い。
また、ECMに代えて通常のコンデンサ型、可動コイル型、圧電型などのマイクロホンを用いても良く、充填材としてはウレタンゲルに限らず、硬化後の状態で人体の皮膚と同等の音響インピーダンス特性をもつ疎水性の樹脂であれば、適宜の弾性高分子材料が採用可能である。
(5)実施例3及び4では加速度センサ22としてスマートフォンに内蔵されている3軸方向の加速度を検知できる加速度計(LIS2DH)を利用したが、実施例3においては少なくともZ軸方向(鉛直方向)における加速度を検知できるものであれば、どんなものでも良く、実施例4においては少なくともY軸方向(長手方向)及びZ軸方向(鉛直方向)における加速度を検知できるものであれば、どんなものでも良い。
(4) In Examples 1 and 2, the body-conducting sound sensor 2 consists of a cylindrical acrylic case 9, an ECM 10 fitted in the center of the recess 8, and a urethane gel closing the opening of the recess 8. However, it is also possible to form a recess in the tip portion of the rod-shaped body 1, insert the ECM into the recess, and block the opening side with a urethane gel filler.
In addition, instead of the ECM, a normal condenser type, moving coil type, piezoelectric type, etc. microphone may be used. Any suitable elastic polymeric material can be employed as long as it is a hydrophobic resin having a
(5) In Embodiments 3 and 4, an accelerometer (LIS2DH) built in a smartphone that can detect acceleration in three axial directions was used as the acceleration sensor 22, but in Embodiment 3, at least in the Z-axis direction (vertical direction) Any device may be used as long as it can detect the acceleration in the direction of the sensor. .

(6)実施例1の音響心拍数計測部4においては、低周波除去部13によって、受信した音響変換信号から周波数0.8Hz未満の信号を除去し、音響呼吸数計測部5においては、高周波除去部15によって、受信した音響変換信号から周波数0.5Hz以上の信号を除去した。
また、実施例2の第2の音響心拍数計測部18においては、低周波除去部13によって、受信した音響変換信号から0.9~2Hzの信号を抽出し、第2の音響呼吸数計測部19においては、高周波除去部15によって、0.5Hz未満の信号を抽出した。
しかし、どの範囲の信号を除去し又は抽出するかについては、個人差や計測時の被検者の状態に応じて適宜変化させても良い。
例えば、被検者の心拍数や呼吸数が低い場合(心拍数が45程度、呼吸数が20程度)、低周波除去部13によって周波数0.6Hz未満の信号を除去し、高周波除去部15によって周波数0.4Hz以上の信号を除去するようにし、逆に被検者の心拍数や呼吸数が高い場合(心拍数が80程度、呼吸数が50程度)、低周波除去部13によって周波数1.1Hz未満の信号を除去し、高周波除去部15によって周波数1.0Hz以上の信号を除去するようにすれば良い。
また、実施例3の加速度心拍数計測部24においては、第2の低周波除去部29によって受信した加速度変換信号から周波数0.8Hz未満及び2Hz以上の信号を除去し、加速度呼吸数計測部25においては、第2の高周波除去部32によって受信した加速度変換信号から周波数0.5Hz以上の信号を除去したが、上記と同様に個人差や計測時の被検者の状態に応じて、除去する信号の周波数帯を変化させても良い。
例えば、心拍数が90[bpm]を超えることはないと仮定した場合、第2の低周波除去部29によって受信した加速度変換信号から周波数0.8Hz未満の信号及び1.5Hz超の信号を除去するようにすれば良く、呼吸数が9[回/分]を下回ることはないと仮定した場合、第2の高周波除去部32によって受信した加速度変換信号から周波数0.15Hz未満の信号及び0.5Hz以上の信号を除去するようにすれば良い。
(6)実施例3においては、第2の低周波除去信号逆変換部30及び第2の高周波除去信号逆変換部33を備えているが、いずれか一方の逆変換部だけを備えるようにしても良く、心拍数及び呼吸数の変化を解析したり、呼気と吸気の判別や心拍及び呼吸の強弱の判定を行ったりする必要がなければ、これらの逆変換部は備えなくても良い。
(6) In the acoustic heart rate measurement unit 4 of Example 1, the low frequency elimination unit 13 eliminates signals with a frequency of less than 0.8 Hz from the received acoustic conversion signal, and the acoustic respiration rate measurement unit 5 eliminates high frequency A signal having a frequency of 0.5 Hz or more was removed from the received acoustic conversion signal by the removing unit 15 .
Further, in the second acoustic heart rate measuring unit 18 of the second embodiment, the low frequency removing unit 13 extracts a signal of 0.9 to 2 Hz from the received acoustic conversion signal, and the second acoustic respiration rate measuring unit In 19, the high frequency elimination unit 15 extracts signals of less than 0.5 Hz.
However, the range of signals to be removed or extracted may be appropriately changed according to individual differences or the condition of the subject at the time of measurement.
For example, when the heart rate and respiration rate of the subject are low (heart rate is about 45, respiration rate is about 20), the low frequency elimination unit 13 eliminates signals with a frequency of less than 0.6 Hz, and the high frequency elimination unit 15 Signals with a frequency of 0.4 Hz or higher are removed. Conversely, when the subject's heart rate and respiratory rate are high (heart rate is about 80 and respiratory rate is about 50), the low-frequency removing unit 13 removes signals with a frequency of 1.4 Hz or higher. Signals of less than 1 Hz may be removed, and signals of frequency 1.0 Hz or higher may be removed by the high frequency removing section 15 .
Further, in the acceleration heart rate measurement unit 24 of the third embodiment, signals with a frequency of less than 0.8 Hz and 2 Hz or more are removed from the acceleration conversion signal received by the second low frequency removal unit 29, and the acceleration respiration rate measurement unit 25 In , the signal with a frequency of 0.5 Hz or more is removed from the acceleration conversion signal received by the second high-frequency removal unit 32, but similar to the above, it is removed according to individual differences and the condition of the subject at the time of measurement. You may change the frequency band of a signal.
For example, assuming that the heart rate does not exceed 90 [bpm], remove signals with a frequency of less than 0.8 Hz and signals with a frequency of more than 1.5 Hz from the acceleration conversion signal received by the second low frequency removal unit 29 Assuming that the respiratory rate does not fall below 9 [times/minute], signals with a frequency of less than 0.15 Hz and signals with a frequency of 0.15 Hz are extracted from the acceleration conversion signal received by the second high-frequency remover 32 . Signals above 5 Hz should be removed.
(6) In the third embodiment, the second low-frequency-removed signal inverse transforming unit 30 and the second high-frequency-removing signal inverse transforming unit 33 are provided. If there is no need to analyze changes in heart rate and respiration rate, distinguish between exhalation and inhalation, and determine the intensity of heartbeat and respiration, these inverse transforming units may not be provided.

実施例1~4の心拍数及び呼吸数計測装置の応用例を列記する。
(A)被検者への装着が容易であり、しかも心拍数と呼吸数を同時に計測できるため、心筋細胞又は冠状動脈硬化巣に中性脂肪が蓄積する難病で“心臓の肥満”と呼ばれることもある中性脂肪蓄積心筋血管症(TGCV)の医学研究用生体量計測装置として病院での治験用として好適に利用できる。
なお、TGCVの医学研究用に限らず、各種の呼吸器や循環器系疾患に関する研究や治験用としても利用できる。
(B)加速度センサ22を内蔵しているスマートフォン(実施例1又は2の場合には加速度センサ22を内蔵していなくても良い)に専用のアプリを搭載することにより、体導音信号処理手段3、報知手段6、加速度信号処理手段23、修正心拍数演算部26、修正呼吸数演算部27等の機能を持たせるとともに、心拍数や呼吸数等の各種データをインターネット回線経由で病院にあるサーバやクラウドサーバに送信できるようにして、在宅患者の遠隔診断システムを実現することができる。
特に、ぜんそく、睡眠時無呼吸症候群又は心疾患等、呼吸器や循環器系の病気に罹患している通院患者に適用するのに適している。
また、呼吸器や循環器系の病気に罹患していなくても、そのような病気にかかる可能性の高い中高齢者等に適用して健康管理を行う健康管理システムに利用できる。
さらに、睡眠不足がアルツハイマー病の原因になることに鑑み、心拍数や呼吸数等の各種データに基づいて睡眠状態を監視し、睡眠不足の解消に向けてアドバイスしたり環境を整えたりすることで認知症の予防に役立てることもできる。
Application examples of the heart rate and respiration rate measuring devices of Examples 1 to 4 are listed.
(A) Because it is easy to wear on the subject and can simultaneously measure heart rate and respiratory rate, it is an intractable disease called "cardiac obesity" in which neutral fat accumulates in cardiomyocytes or coronary arteriosclerotic lesions. It can be suitably used for clinical trials in hospitals as a biomass measuring device for medical research on triglyceride accumulation myocardial vasculopathy (TGCV).
In addition, it can be used not only for medical research on TGCV but also for research and clinical trials on various respiratory and circulatory diseases.
(B) By installing a dedicated application in a smartphone that incorporates the acceleration sensor 22 (the acceleration sensor 22 may not be incorporated in the case of the first or second embodiment), the body-conducted sound signal processing means 3. In addition to providing functions such as notification means 6, acceleration signal processing means 23, corrected heart rate calculation unit 26, corrected respiratory rate calculation unit 27, etc., various data such as heart rate and breathing rate are sent to the hospital via the Internet line By enabling transmission to a server or a cloud server, a remote diagnosis system for at-home patients can be realized.
It is particularly suitable for application to ambulatory patients suffering from respiratory and circulatory ailments such as asthma, sleep apnea or heart disease.
In addition, the present invention can be applied to a health management system that manages the health of middle-aged and elderly people who have a high possibility of contracting respiratory or circulatory system diseases even if they do not suffer from such diseases.
In addition, in light of the fact that lack of sleep causes Alzheimer's disease, we monitor sleep conditions based on various data such as heart rate and breathing rate, and provide advice and improve the environment to eliminate lack of sleep. It can also help prevent dementia.

(C)実施例1~4の心拍数及び呼吸数計測装置に、現在の心拍数や呼吸数のデータを所定のインターバルで、有線又は無線によりデータ収集手段に送信できる機能を持たせれば、災害現場で治療を必要としている被災者に、その心拍数及び呼吸数計測装置を装着することにより、心拍数や呼吸数に異常のある被災者を的確に把握して警報や指示を発するトリアージ支援用のシステムを構築できる。
(D)実施例1~4の心拍数及び呼吸数計測装置から得た心拍数や呼吸数のデータに基づいて居眠り運転を検知し、運転者や同乗者に対して警報を発する装置を車に搭載するか運転者が所持するようにすれば、居眠り運転検知システムを構築できる。
この居眠り運転検知及び警報機能も、上記(B)の応用例と同様、各種スマートフォンに専用のアプリを搭載することにより実現可能である。
(E)実施例1~4の心拍数及び呼吸数計測装置では、一つの体導音センサ2で取得した生体音又は一つの加速度センサ22で取得した加速度信号に基づいて、同時に心拍数及び呼吸数のデータを得ることができるので、これらのデータに基づいて心拍数と呼吸数の同期の程度(以下「ゆらぎ」という。)を数値化することができ、ゆらぎの数値によって被検者が安定状態か不安定状態かを見極めることができる。
具体的には、一定時間中(例えば1分間)における単位時間中(例えば5秒間)の呼吸数群についての標準偏差である呼吸変動(Respiratory rate variability:RRV)を、一定時間中(例えば1分間)における単位時間中(例えば5秒間)の心拍数群についての標準偏差である心拍変動(Heart rate variability:HRV)で除した値によりゆらぎを数値化し、この数値が小さくなる時には被検者が安定状態から不安定状態に向かっていると判定し、この数値が大きくなる時には被検者が不安定状態から安定状態に向かっていると判定する。
この被検者状態判定機能も、上記(B)の応用例と同様、各種スマートフォンに専用のアプリを搭載することにより実現可能である。
(C) If the heart rate and respiration rate measuring devices of Examples 1 to 4 are provided with a function that can transmit the current heart rate and respiration rate data to the data collection means by wire or wirelessly at a predetermined interval, disasters will occur. For triage support, by attaching a heart rate and respiratory rate measurement device to victims who need medical treatment at the site, it is possible to accurately identify victims who have abnormalities in their heart rate or respiratory rate, and issue warnings and instructions. system can be constructed.
(D) A device that detects drowsy driving based on the heart rate and respiratory rate data obtained from the heart rate and respiratory rate measuring devices of Examples 1 to 4 and issues an alarm to the driver and passengers. If it is installed or carried by the driver, a drowsy driving detection system can be constructed.
This drowsy-driving detection and warning function can also be realized by installing a dedicated application in various smartphones, as in the application example of (B) above.
(E) In the heart rate and respiration rate measurement devices of Examples 1 to 4, based on the body sound acquired by one body-conducted sound sensor 2 or the acceleration signal acquired by one acceleration sensor 22, heart rate and respiration are measured simultaneously. Based on these data, the degree of synchronization between the heart rate and the respiratory rate (hereinafter referred to as "fluctuation") can be quantified. It can be determined whether it is in a state or an unstable state.
Specifically, the respiratory rate variability (RRV), which is the standard deviation for the respiratory rate group in a unit time (for example, 5 seconds) during a certain time (for example, 1 minute), is measured during a certain time (for example, 1 minute ) in unit time (e.g. 5 seconds) heart rate variability (HRV), which is the standard deviation for the heart rate group. It is determined that the subject is moving from the unstable state to the unstable state, and when this numerical value increases, it is determined that the subject is moving from the unstable state to the stable state.
This subject state determination function can also be realized by installing a dedicated application in various smartphones, as in the application example of (B) above.

(F)さらに、上記(E)に記載したゆらぎの数値に、不安定定数Kを掛けることにより包括的不安定指数を求めることができる。
包括的不安定指数は、被検者が安定状態に向かっているか不安定状態に向かっているかを判定できるだけではなく、痛み刺激の大きさの判定にも使うことができる。
その理由は、「痛み」は生体にとって包括的不安定状態であり、脳は「痛み」を感じると原始的反射を使って優先的に、かつ、可能な限り速やかに、この包括的不安定状態から脱しようとするからである。
すなわち、脳は自分(脳)自身の維持の為に、心臓と肺のサイクルをゆらぎによって調整し、脳内の酸素濃度と持続時間を確保しようとしていると考えられる。
よって、包括的不安定指数を痛み指数と読み替えれば、痛みの数値化が可能となる。
なお、包括的不安定指数は絶対的不安定指数と呼んでも良く、包括的(絶対的)安定指数の逆数ということもできる。
また、不安定定数Kは生体によってそれぞれ異なる固定値であり、生体固有値といえる。
そして、包括的不安定指数=1/包括的安定指数=K×呼吸変動/心拍変動という関係があるので、Kの値は絶対的不安定状態又は絶対的安定状態において、呼吸変動と心拍変動をモニターできれば計算できる。
ただし、絶対的不安定状態や絶対的安定状態といった理想的な状況は簡単には作り出せないため、今後その計算手法を開発する必要がある。
(F) Furthermore, by multiplying the fluctuation value described in (E) above by the instability constant K, a global instability index can be obtained.
A global instability index can be used not only to determine whether a subject is heading toward stability or instability, but also to determine the magnitude of a painful stimulus.
The reason is that "pain" is a comprehensive unstable state for the living body, and when the brain feels "pain", it uses primitive reflexes preferentially and as quickly as possible to activate this comprehensive unstable state. because they try to get out of it.
In other words, it is thought that the brain is trying to maintain its own (brain) self by adjusting the cycle of the heart and lungs by fluctuations to secure the oxygen concentration and duration in the brain.
Therefore, if the comprehensive instability index is read as the pain index, pain can be quantified.
The inclusive instability index may be called the absolute instability index, or the inverse of the inclusive (absolute) stability index.
In addition, the instability constant K is a fixed value that differs depending on the living body, and can be said to be a living body peculiar value.
In addition, since there is a relationship of comprehensive instability index = 1 / comprehensive stability index = K × respiratory variability / heart rate variability, the value of K is the value of respiratory variability and heart rate variability in an absolute unstable state or an absolute stable state. If you can monitor it, you can calculate it.
However, since it is not easy to create ideal conditions such as absolute instability and absolute stability, it is necessary to develop a calculation method for this in the future.

1 棒状体 2 体導音センサ 3 体導音信号処理手段
4 音響心拍数計測部 5 音響呼吸数計測部 6 報知手段
7 表示部 8 凹部 9 アクリル製ケース
10 エレクトレットコンデンサマイクロホン(ECM)
11 ウレタンゲル充填材
12 音響信号変換部 13 低周波除去部
14 音響心拍数演算部 15 高周波除去部
16 音響呼吸数演算部 17 第2の体導音信号処理手段
18 第2の音響心拍数計測部 19 第2の音響呼吸数計測部
20 低周波除去信号逆変換部 21 高周波除去信号逆変換部
22 加速度センサ 23 加速度信号処理手段
24 加速度心拍数計測部 25 加速度呼吸数計測部
26 修正心拍数演算部 27 修正呼吸数演算部
28 加速度信号変換部 29 第2の低周波除去部
30 第2の低周波除去信号逆変換部 31 加速度心拍数演算部
32 第2の高周波除去部 33 第2の高周波除去信号逆変換部
34 加速度呼吸数演算部 35 第2の加速度信号処理手段
36 Y軸方向加速度信号変換部 37 Z軸方向加速度信号抽出部
38 第2の加速度呼吸数計測部 39 第2の加速度心拍数計測部
40 第2の加速度心拍数演算部 41 呼吸波形信号
42 差分演算部 43 第2の加速度心拍数演算部
K 不安定定数
REFERENCE SIGNS LIST 1 bar 2 body-conducted sound sensor 3 body-conducted sound signal processing means 4 acoustic heart rate measurement section 5 acoustic respiration rate measurement section 6 reporting means 7 display section 8 concave portion 9 acrylic case 10 electret condenser microphone (ECM)
11 Urethane gel filling material 12 Acoustic signal conversion unit 13 Low frequency elimination unit 14 Acoustic heart rate calculation unit 15 High frequency elimination unit 16 Acoustic breathing rate calculation unit 17 Second body-conducted sound signal processing means 18 Second acoustic heart rate measurement unit 19 Second Acoustic Respiration Rate Measuring Unit 20 Low-Frequency-Removed Signal Inverse Transformation Unit 21 High-Frequency-Removed Signal Inverse Transformation Unit 22 Acceleration Sensor 23 Acceleration Signal Processing Means 24 Acceleration Heart Rate Measurement Unit 25 Acceleration Respiration Rate Measurement Unit 26 Modified Heart Rate Calculation Unit 27 corrected breathing rate calculator 28 acceleration signal converter 29 second low frequency remover 30 second low frequency removed signal inverse converter 31 acceleration heart rate calculator 32 second high frequency remover 33 second high frequency removed signal Inverse transformation unit 34 Acceleration breathing rate calculation unit 35 Second acceleration signal processing means 36 Y-axis direction acceleration signal conversion unit 37 Z-axis direction acceleration signal extraction unit 38 Second acceleration breathing rate measurement unit 39 Second acceleration heart rate measurement unit Unit 40 Second acceleration heart rate calculator 41 Respiratory waveform signal 42 Difference calculator 43 Second acceleration heart rate calculator K Instability constant

Claims (3)

血流音若しくは心音及び呼吸音を検知し音響信号を取得する体導音センサと、
被検者の脇の下に挿入可能な先端部を有し該先端部に前記体導音センサを設けてある棒状体と、
前記体導音センサにより取得された音響信号に基づいて音響心拍数を計測する音響心拍数計測部及び音響呼吸数を計測する音響呼吸数計測部を有する体導音信号処理手段と、
前記音響心拍数計測部で計測された音響心拍数のデータ及び前記音響呼吸数計測部で計測された音響呼吸数のデータを、所定のインターバルで送信するデータ送信手段と、
前記データ送信手段から送信された音響心拍数のデータ及び音響呼吸数のデータを受信するデータ収集手段と、
前記データ収集手段が受信した音響心拍数のデータ及び音響呼吸数のデータに基づいて、心拍数及び呼吸数のいずれかに異常があるか否か判定し、異常があると判定した場合に警報を発する警報手段を備える
ことを特徴とする警報発出システム。
a body-conducted sound sensor that detects blood flow sounds or heart sounds and breathing sounds and acquires acoustic signals;
a rod-shaped body having a tip that can be inserted into the armpit of a subject and having the body-conducting sound sensor at the tip;
body-conducted sound signal processing means having an acoustic heart rate measuring unit for measuring an acoustic heart rate based on the acoustic signal acquired by the body-conducted sound sensor and an acoustic respiration rate measuring unit for measuring an acoustic respiration rate;
data transmission means for transmitting, at predetermined intervals, the acoustic heart rate data measured by the acoustic heart rate measuring unit and the acoustic respiration rate data measured by the acoustic respiration rate measuring unit;
data collection means for receiving acoustic heart rate data and acoustic respiration rate data transmitted from the data transmission means;
Based on the acoustic heart rate data and the acoustic respiration rate data received by the data collection means , it is determined whether there is an abnormality in either the heart rate or the respiration rate, and if it is determined that there is an abnormality, an alarm is issued. An alarm issuing system characterized by comprising means for issuing an alarm.
前記警報発出システムは、少なくともZ軸方向における被検者の体動の加速度を検知し加速度信号を取得する加速度センサと、
該加速度センサにより取得された加速度信号に基づいて加速度心拍数を計測する加速度心拍数計測部及び加速度呼吸数を計測する加速度呼吸数計測部を有する加速度信号処理手段と、
前記音響心拍数計測部で計測された音響心拍数及び前記加速度心拍数計測部で計測された加速度心拍数に基づいて、修正心拍数を演算する修正心拍数演算部と、
前記音響呼吸数計測部で計測された音響呼吸数及び前記加速度呼吸数計測部で計測された加速度呼吸数に基づいて、修正呼吸数を演算する修正呼吸数演算部を有し、
前記警報手段は、修正心拍数のデータ及び修正呼吸数のデータに基づいて、心拍数及び呼吸数のいずれかに異常があるか否か判定し、異常があると判定した場合に警報を発する
ことを特徴とする請求項1に記載の警報発出システム
The alarm issuing system includes an acceleration sensor that detects acceleration of body movement of the subject at least in the Z-axis direction and obtains an acceleration signal;
acceleration signal processing means having an acceleration heart rate measuring unit for measuring an acceleration heart rate and an acceleration breathing rate measurement unit for measuring an acceleration respiratory rate based on an acceleration signal acquired by the acceleration sensor;
a corrected heart rate calculation unit that calculates a corrected heart rate based on the acoustic heart rate measured by the acoustic heart rate measurement unit and the acceleration heart rate measured by the acceleration heart rate measurement unit;
a corrected respiration rate calculation unit for calculating a corrected respiration rate based on the acoustic respiration rate measured by the acoustic respiration rate measurement unit and the acceleration respiration rate measured by the acceleration respiration rate measurement unit;
The alarm means determines whether there is an abnormality in either the heart rate or the respiration rate based on the corrected heart rate data and the corrected respiration rate data, and issues an alarm when it is determined that there is an abnormality .
The alarm issuing system according to claim 1, characterized by:
前記加速度信号処理手段は、前記加速度センサにより取得された加速度信号をフーリエ変換する加速度信号変換部を有し、
前記加速度心拍数計測部は、前記加速度信号変換部で得られた加速度変換信号から低周波成分を除去する第2の低周波除去部と、該第2の低周波除去部で得られた第2の低周波除去信号に基づいて加速度心拍数を演算する加速度心拍数演算部を有し、
前記加速度呼吸数計測部は、前記加速度信号変換部で得られた加速度変換信号から高周波成分を除去する第2の高周波除去部と、該第2の高周波除去部で得られた第2の高周波除去信号に基づいて加速度呼吸数を演算する加速度呼吸数演算部を有している
ことを特徴とする請求項に記載の警報発出システム
The acceleration signal processing means has an acceleration signal conversion unit that Fourier-transforms the acceleration signal acquired by the acceleration sensor,
The acceleration heart rate measurement unit includes a second low frequency removal unit that removes low frequency components from the acceleration conversion signal obtained by the acceleration signal conversion unit, and a second low frequency removal unit obtained by the second low frequency removal unit. has an acceleration heart rate calculator that calculates an acceleration heart rate based on the low-frequency removed signal of
The acceleration respiration rate measurement unit includes a second high frequency removal unit for removing high frequency components from the acceleration conversion signal obtained by the acceleration signal conversion unit, and a second high frequency removal unit obtained by the second high frequency removal unit. 3. The alarm issuing system according to claim 2 , further comprising an accelerated respiratory rate calculator that calculates an accelerated respiratory rate based on the signal.
JP2022024189A 2017-02-07 2022-02-18 alarm system Active JP7297190B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017020466 2017-02-07
JP2017020466 2017-02-07
JP2018019367A JP7044225B2 (en) 2017-02-07 2018-02-06 Heart rate and respiration rate measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018019367A Division JP7044225B2 (en) 2017-02-07 2018-02-06 Heart rate and respiration rate measuring device

Publications (2)

Publication Number Publication Date
JP2022087093A JP2022087093A (en) 2022-06-09
JP7297190B2 true JP7297190B2 (en) 2023-06-26

Family

ID=63172523

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018019367A Active JP7044225B2 (en) 2017-02-07 2018-02-06 Heart rate and respiration rate measuring device
JP2022024189A Active JP7297190B2 (en) 2017-02-07 2022-02-18 alarm system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018019367A Active JP7044225B2 (en) 2017-02-07 2018-02-06 Heart rate and respiration rate measuring device

Country Status (1)

Country Link
JP (2) JP7044225B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113749626B (en) * 2020-06-04 2024-02-13 安徽华米健康科技有限公司 Heart rate detection method and device, wearable device and storage medium
JP7414201B2 (en) * 2020-08-06 2024-01-16 浩士 中村 Biometric information acquisition device
KR102642248B1 (en) * 2021-05-28 2024-02-29 젠트리 주식회사 Device, system and method for measuring respiratory rate using heart sound, and heart sound measurring device therefor
DE102021205970A1 (en) * 2021-06-11 2022-12-15 Volkswagen Aktiengesellschaft Method for diagnosing a disease, preferably a respiratory disease

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017693A (en) 2000-07-10 2002-01-22 Amenitex Inc Portable wireless telephone type vitality checker
JP2006238971A (en) 2005-02-28 2006-09-14 Sanyo Electric Co Ltd Cycle calculator and program
JP2007151617A (en) 2005-11-30 2007-06-21 Medical Electronic Science Inst Co Ltd Biological information monitoring system
JP2009273611A (en) 2008-05-14 2009-11-26 Yokogawa Electric Corp Bioinformation detecting device
JP2013116216A (en) 2011-12-02 2013-06-13 Maspro Denkoh Corp Biological information detecting device and temperature adjusting device
JP2014153125A (en) 2013-02-06 2014-08-25 Terumo Corp Electronic clinical thermometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
JP4494985B2 (en) 2005-01-12 2010-06-30 株式会社国際電気通信基礎技術研究所 Heart rate and respiratory information collection device
JP3809847B1 (en) 2005-05-18 2006-08-16 松下電工株式会社 Sleep diagnostic device and sleep apnea test device
JP2008113913A (en) 2006-11-06 2008-05-22 Akira Sako Electronic thermometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017693A (en) 2000-07-10 2002-01-22 Amenitex Inc Portable wireless telephone type vitality checker
JP2006238971A (en) 2005-02-28 2006-09-14 Sanyo Electric Co Ltd Cycle calculator and program
JP2007151617A (en) 2005-11-30 2007-06-21 Medical Electronic Science Inst Co Ltd Biological information monitoring system
JP2009273611A (en) 2008-05-14 2009-11-26 Yokogawa Electric Corp Bioinformation detecting device
JP2013116216A (en) 2011-12-02 2013-06-13 Maspro Denkoh Corp Biological information detecting device and temperature adjusting device
JP2014153125A (en) 2013-02-06 2014-08-25 Terumo Corp Electronic clinical thermometer

Also Published As

Publication number Publication date
JP2022087093A (en) 2022-06-09
JP2018126511A (en) 2018-08-16
JP7044225B2 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
JP6594399B2 (en) Biological information monitoring system
JP7297190B2 (en) alarm system
JP7303854B2 (en) Evaluation device
KR101656611B1 (en) Method for obtaining oxygen desaturation index using unconstrained measurement of bio-signals
JP6799536B2 (en) Wearable pain monitor with accelerometer
JP6387352B2 (en) System for detecting brain biosignals
EP3451901B1 (en) A method and apparatus for determining at least one of a position and an orientation of a wearable device on a subject
JP6497425B2 (en) Heart rate monitoring method and apparatus
CN101365373A (en) Techniques for prediction and monitoring of clinical episodes
CN108289638B (en) Biological state determination device and biological state determination method
CN108289779B (en) Physical condition examination device, physical condition examination method, and bed system
JP2022520934A (en) Sleep monitoring system and method
JP6321719B2 (en) Biological information monitoring system
EP3459450B1 (en) Respiration waveform drawing system
EP3459451B1 (en) Respiration waveform drawing system and respiration waveform drawing method
EP3459452A1 (en) Respiration waveform drawing system and biological information monitoring system
CA3100475C (en) Apparatus and a method for monitoring a patient during his sleep
Gardner et al. Estimation of heart rate during sleep measured from a gyroscope embedded in a CPAP mask
JP2018126423A (en) Bed monitoring system
JPWO2002036009A1 (en) Body motion analysis system and body motion analysis method
JP6535770B2 (en) Biological information monitoring system
JP2017158635A (en) Body motion wave analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7297190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150