JP7296953B2 - 有機化合物、発光素子、発光装置、電子機器、照明装置、及び電子デバイス - Google Patents

有機化合物、発光素子、発光装置、電子機器、照明装置、及び電子デバイス Download PDF

Info

Publication number
JP7296953B2
JP7296953B2 JP2020517626A JP2020517626A JP7296953B2 JP 7296953 B2 JP7296953 B2 JP 7296953B2 JP 2020517626 A JP2020517626 A JP 2020517626A JP 2020517626 A JP2020517626 A JP 2020517626A JP 7296953 B2 JP7296953 B2 JP 7296953B2
Authority
JP
Japan
Prior art keywords
light
substituted
carbon atoms
unsubstituted
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020517626A
Other languages
English (en)
Other versions
JPWO2019215540A5 (ja
JPWO2019215540A1 (ja
Inventor
恭子 竹田
裕史 門間
悠介 滝田
恒徳 鈴木
哲史 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JPWO2019215540A1 publication Critical patent/JPWO2019215540A1/ja
Publication of JPWO2019215540A5 publication Critical patent/JPWO2019215540A5/ja
Application granted granted Critical
Publication of JP7296953B2 publication Critical patent/JP7296953B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明の一態様は、有機化合物及び当該有機化合物を用いた発光素子、ディスプレイモジュール、照明モジュール、表示装置、発光装置、電子機器及び照明装置に関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
有機EL素子を用いた表示装置、発光装置は一部実用化もされ、その応用が広まりつつある。液晶ディスプレイが大きな進歩を遂げている昨今、次世代のディスプレイと言われる有機ELディスプレイには、当然ながら高い品質が求められている。
有機ELディスプレイ用の材料としては、様々な物質が開発されてきているが、実用に耐えうるほどの特性を有する物質はそう多いわけではない。また、組み合わせの多様性や、相性などを考慮すると、選択肢は多ければ多いほど良いことに間違いはない。
有機EL素子は、複数の機能をそれぞれ異なる物質に担わせる機能分離型の構成を有するが、その中でも発光材料、特に消費電力に影響する発光効率と、表示品質を改善するための発光色に対する要望は大きい。
特許文献1乃至特許文献4にはナフトビスベンゾフラン骨格を有する有機化合物が開示されている。
特開2014-237682号公報 特開2010-59147号公報 特開2013-232521号公報 特表2016-503761号公報
本発明の一態様では、新規な有機化合物を提供することを目的とする。または、良好な色度の発光を呈する有機化合物を提供することを目的とする。または、良好な色度の青色発光を呈する有機化合物を提供することを目的とする。または、発光効率の良好な発光素子を提供することを目的とする。または、キャリア輸送性の高い有機化合物を提供することを目的とする。または、信頼性の良好な有機化合物を提供することを目的とする。
また、本発明の一態様では、新規発光素子を提供することを目的とする。または、発光効率の良好な発光素子を提供することを目的とする。または、良好な色度の発光を呈する発光素子を提供することを目的とする。または、良好な色度の青色発光を呈する発光素子を提供することを目的とする。または、寿命の良好な発光素子を提供することを目的とする。または、駆動電圧の小さな発光素子を提供することを目的とする。
または、本発明の他の一態様は、消費電力の小さい発光装置、電子機器および表示装置を各々提供することを目的とする。または、本発明の他の一態様では、信頼性の高い発光装置、電子機器及び表示装置を各々提供することを目的とする。または、本発明の他の一態様では、表示品質の良好な発光装置、電子機器及び表示装置を各々提供することを目的とする。
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
本発明の一態様は、下記一般式(G1)で表される有機化合物である。
Figure 0007296953000001
但し、式中Bは置換または無置換のナフトビスベンゾフラン骨格、置換または無置換のナフトビスベンゾチオフェン骨格および置換または無置換のナフトベンゾチエノベンゾフラン骨格のいずれかである。
また、Arは置換または無置換の炭素数6乃至25の芳香族炭化水素基、置換または無置換のジベンゾフラニル基、置換または無置換のジベンゾチオフェニル基、および置換または無置換のカルバゾリル基のいずれかである。なお、当該置換または無置換のジベンゾフラニル基、置換または無置換のジベンゾチオフェニル基、および置換または無置換のカルバゾリル基は、さらにベンゼン環が縮合した構造であってもよい。
Aは、置換または無置換の少なくとも一つのベンゼン環が縮合したジベンゾフラニル基、置換または無置換の少なくとも一つのベンゼン環が縮合したジベンゾチオフェニル基、および置換または無置換の少なくとも一つのベンゼン環が縮合したカルバゾリル基のいずれかであり、α乃至αはそれぞれ独立に置換または無置換の炭素数6乃至25の二価の芳香族炭化水素基である。l、m、nはそれぞれ独立に0乃至2の整数を表し、qは1又は2である。
または、本発明の他の一態様は、下記一般式(G1)で表される有機化合物である。
Figure 0007296953000002
但し、式中Bは置換または無置換のナフトビスベンゾフラン骨格、置換または無置換のナフトビスベンゾチオフェン骨格および置換または無置換のナフトベンゾチエノベンゾフラン骨格のいずれかである。Arは置換もしくは無置換の炭素数6乃至25の芳香族炭化水素基または下記一般式(g1)乃至(g3)で表される基のいずれかであり、Aは下記一般式(g1)乃至(g3)で表される基のいずれかである。α乃至αはそれぞれ独立に置換または無置換の炭素数6乃至14の二価の芳香族炭化水素基のいずれかである。l、m、nはそれぞれ独立に0乃至2の整数を表し、qは1または2である。
Figure 0007296953000003
一般式(g1)乃至(g3)においては、R乃至Rは、そのいずれか1が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基のいずれかを表す。
なお、Aは、上記一般式(g1)乃至(g3)のいずれかであるが、上記一般式(g1)乃至(g3)におけるR乃至Rのうち、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、並びにRおよびRの少なくとも一つの組み合わせにおいて縮合してベンゼン環を形成した構造を有しているものとする。また、Aが一般式(g3)で表され、且つ当該一般式(g3)におけるRが単結合を表す場合、nは1または2の値を採る。
また、Arが上記一般式(g1)乃至(g3)で表される基である場合、上記一般式(g1)乃至(g3)におけるR乃至Rのうち、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、並びにRおよびRは、互いに縮合してベンゼン環を形成した構造を有していてもよい。また、Arが一般式(g3)で表され、かつ当該一般式(g3)においてRが単結合を表す場合、mは1または2であるものとする。
または、本発明の他の一態様は、上記構成において、前記Bが、下記一般式(B1)乃至一般式(B4)で表される骨格のいずれかである有機化合物である。
Figure 0007296953000004
但し、式中XおよびXはそれぞれ独立に酸素原子または硫黄原子を表す。
なお、上記一般式(B1)においては、R10乃至R21のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
また、上記一般式(B2)においては、R30乃至R41のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
また、上記一般式(B3)においては、R50乃至R61のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
また、上記一般式(B4)においては、R70乃至R81のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
または、本発明の他の一態様は、上記構成において、前記一般式(G1)におけるqが2である有機化合物である。
または、本発明の他の一態様は、上記構成において、前記一般式(G1)におけるqが2であり、前記Bが、下記一般式(B1)乃至一般式(B4)で表される骨格のいずれかである有機化合物である。
Figure 0007296953000005
但し、式中XおよびXはそれぞれ独立に酸素原子または硫黄原子を表す。
なお、上記一般式(B1)において、R12およびR18が単結合を表し、R10、R11、R13乃至R17、R19乃至R21がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
また、上記一般式(B2)において、R32およびR38が単結合を表し、R30、R31、R33乃至R37、R39乃至R41がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
また、上記一般式(B3)において、R52およびR58が単結合を表し、R50、R51、R53乃至R57、R59乃至R61がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
また、上記一般式(B4)において、R72およびR77が単結合を表し、R70、R71、R73乃至R76、R78乃至R81がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。
または、本発明の他の一態様は、下記一般式(G1-1)で表される有機化合物である。
Figure 0007296953000006
但し上記一般式(G1-1)において、Bは下記一般式(B1-1)または(B3-1)を表す。Arは置換もしくは無置換の炭素数6乃至25の芳香族炭化水素基であり、Aは下記一般式(g0)で表される基である。mは0乃至2の整数を表す。αは置換または無置換の炭素数6乃至14の二価の芳香族炭化水素基である。
Figure 0007296953000007
但し、上記一般式(B1-1)または(B3-1)において、XおよびXはそれぞれ独立に酸素原子または硫黄原子を表す。R12、R18、R52およびR58は単結合を表す。
Figure 0007296953000008
但し、上記一般式(g0)において、Xは酸素原子または硫黄原子、または、置換もしくは無置換のフェニル基が結合した窒素原子である。また、Rは単結合を表す。また、R乃至Rのうち、RおよびR、RおよびR、RおよびR、並びにRおよびRは、その少なくとも一つの組み合わせにおいてベンゼン環が縮合した構造を有し、残りは水素原子を表す。
または、本発明の他の一態様は、上記構成において、分子量が1300以下である前記有機化合物である。
または、本発明の他の一態様は、下記構造式のいずれかで表される有機化合物である。
Figure 0007296953000009
Figure 0007296953000010
または、本発明の他の一態様は、上記構成を有する有機化合物を含む発光素子である。
または、本発明の他の一態様は、上記構成を有する発光素子と、トランジスタ、または、基板と、を有する発光装置である。
または、本発明の他の一態様は、上記構成を有する発光装置と、センサ、操作ボタン、スピーカ、または、マイクと、を有する電子機器である。
または、本発明の他の一態様は、上記構成を有する発光装置と、筐体と、を有する照明装置である。
または、本発明の他の一態様は、上記構成を有する有機化合物を含む電子デバイスである。
なお、本明細書における発光装置とは、発光素子を用いた画像表示デバイスを含む。また、発光素子にコネクター、例えば異方導電性フィルム又はTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、又は発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも、発光装置に含む場合がある。さらに、照明器具等は、発光装置を有する場合がある。
本発明の一態様では、新規な有機化合物を提供することができる。または、良好な色度の発光を呈する有機化合物を提供することができる。または、良好な色度の青色発光を呈する有機化合物を提供することができる。または、発光効率の良好な発光素子を提供することができる。または、キャリア輸送性の高い有機化合物を提供することができる。または、信頼性の良好な有機化合物を提供することができる。
また、本発明の一態様では、新規発光素子を提供することができる。または、発光効率の良好な発光素子を提供することができる。または、良好な色度の発光を呈する発光素子を提供することができる。または、良好な色度の青色発光を呈する発光素子を提供することができる。または、寿命の良好な発光素子を提供することができる。または、駆動電圧の小さな発光素子を提供することができる。
または、本発明の他の一態様は、消費電力の小さい発光装置、電子機器および表示装置を各々提供することができる。または、本発明の他の一態様では、信頼性の高い発光装置、電子機器及び表示装置を各々提供することができる。または、本発明の他の一態様では、表示品質の良好な発光装置、電子機器及び表示装置を各々提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
(A)乃至(C)発光素子の概略図。 (A)乃至(D)発光素子の作製方法の一例を表す図。 液滴吐出装置の概念図。 アクティブマトリクス型発光装置の概念図。 アクティブマトリクス型発光装置の概念図。 アクティブマトリクス型発光装置の概念図。 (A)、(B)パッシブマトリクス型発光装置の概念図。 (A)、(B)照明装置を表す図。 (A)乃至(D)電子機器を表す図。 光源装置を表す図。 照明装置を表す図。 照明装置を表す図。 車載表示装置及び照明装置を表す図。 (A)、(B)電子機器を表す図。(C)ブロック図。 (A)乃至(C)電子機器を表す図。 (A)、(B)3,10BnfA2Nbf(IV)-02のH NMRスペクトル 3,10BnfA2Nbf(IV)-02のトルエン溶液における吸収スペクトルおよび発光スペクトル 3,10BnfA2Nbf(IV)-02の薄膜状態における吸収スペクトルおよび発光スペクトル 3,10BnfA2Nbf(IV)-02のMSスペクトル (A)、(B)3,10aBnfA2Nbf(IV)-02のH NMRスペクトル 3,10aBnfA2Nbf(IV)-02のトルエン溶液における吸収スペクトルおよび発光スペクトル 3,10aBnfA2Nbf(IV)-02の薄膜状態における吸収スペクトルおよび発光スペクトル 3,10aBnfA2Nbf(IV)-02のMSスペクトル 発光素子1および比較発光素子1の輝度-電流密度特性を表す図 発光素子1および比較発光素子1の電流効率-輝度特性を表す図 発光素子1および比較発光素子1の輝度-電圧特性を表す図 発光素子1および比較発光素子1の電流-電圧特性を表す図 発光素子1および比較発光素子1の外部量子効率-輝度特性を表す図 発光素子1および比較発光素子1の発光スペクトル 発光素子1および比較発光素子1の規格化輝度-時間変化特性を表す図 発光素子2および比較発光素子2の輝度-電流密度特性を表す図 発光素子2および比較発光素子2の電流効率-輝度特性を表す図 発光素子2および比較発光素子2の輝度-電圧特性を表す図 発光素子2および比較発光素子2の電流-電圧特性を表す図 発光素子2および比較発光素子2の外部量子効率-輝度特性を表す図 発光素子2および比較発光素子2の発光スペクトル 発光素子2および比較発光素子2の規格化輝度-時間変化特性を表す図 3,10Bnf(II)A2Nbf(IV)-02の質量スペクトルを表す図 (A)、(B)2,9PcBCA2Nbf(III)のH NMRスペクトル 2,9PcBCA2Nbf(III)のトルエン溶液における吸収スペクトルおよび発光スペクトル 2,9PcBCA2Nbf(III)の薄膜状態における吸収スペクトルおよび発光スペクトル 2,9PcBCA2Nbf(III)のMSスペクトル 発光素子3および比較発光素子2の輝度-電流密度特性を表す図 発光素子3および比較発光素子2の電流効率-輝度特性を表す図 発光素子3および比較発光素子2の輝度-電圧特性を表す図 発光素子3および比較発光素子2の電流-電圧特性を表す図 発光素子3および比較発光素子2の外部量子効率-輝度特性を表す図 発光素子3および比較発光素子2の発光スペクトル 発光素子3および比較発光素子2の規格化輝度-時間変化特性を表す図 発光素子4および比較発光素子2の輝度-電流密度特性を表す図 発光素子4および比較発光素子2の電流効率-輝度特性を表す図 発光素子4および比較発光素子2の輝度-電圧特性を表す図 発光素子4および比較発光素子2の電流-電圧特性を表す図 発光素子4および比較発光素子2の外部量子効率-輝度特性を表す図 発光素子4および比較発光素子2の発光スペクトル 発光素子5の輝度-電流密度特性を表す図 発光素子5の電流効率-輝度特性を表す図 発光素子5の輝度-電圧特性を表す図 発光素子5の電流-電圧特性を表す図 発光素子5の外部量子効率-輝度特性を表す図 発光素子5の発光スペクトル
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
本発明の一態様の有機化合物は、下記一般式(G1)で表される有機化合物である。
Figure 0007296953000011
上記一般式(G1)において、骨格Bは置換または無置換のナフトビスベンゾフラン骨格、置換または無置換のナフトビスベンゾチオフェン骨格および置換または無置換のナフトベンゾチエノベンゾフラン骨格のいずれかを表している。
上記骨格Bには、1または2のアリールアミノ基が結合する(すなわち、qは1または2)が、当該アリールアミノ基は、ベンゼン環が1つ以上縮合した構造を有する、ジベンゾフラニル基、ジベンゾチオフェニル基およびカルバゾリル基のいずれか一を有している。
すなわち、上記一般式(G1)においてAは、少なくとも一つのベンゼン環が縮合した構造を有するジベンゾフラニル基、少なくとも一つのベンゼン環が縮合した構造を有するジベンゾチオフェニル基および少なくとも一つのベンゼン環が縮合した構造を有するカルバゾリル基の3つの基のうちのいずれかを表している。なお、これらの基は置換基を有していてもいなくても良く、また、これらの基に縮合するベンゼン環は、1または2であることが好ましい。
また、上記一般式(G1)においてArは、炭素数6乃至25の芳香族炭化水素基、ジベンゾフラニル基、ジベンゾチオフェニル基およびカルバゾリル基のいずれかを表す。なお、Arがジベンゾフラニル基、ジベンゾチオフェニル基およびカルバゾリル基のいずれかである場合、これらの基にはベンゼン環が縮合していても良く、また、これらの基は置換基を有していてもいなくてもよい。
なお、上記AまたはArが、ベンゼン環が縮合した構造を有する、ジベンゾフラニル基、ジベンゾチオフェニル基およびカルバゾリル基のいずれかである場合、当該ベンゼン環が縮合している位置は、これらの基にもともと含まれるベンゼン骨格であるものとし、すなわちAまたはArはベンゼン環が2個縮合した骨格、いわゆるナフタレン骨格を少なくとも有することになる。
上記一般式(G1)において、α、αおよびαはそれぞれ独立に置換または無置換の炭素数6乃至25の二価の芳香族炭化水素基のいずれか一であり、l、mおよびnはそれぞれ独立に0、1および2のいずれかの数値を採る。
上記置換もしくは無置換のナフトビスベンゾフラン骨格、置換もしくは無置換のナフトビスベンゾチオフェン骨格または置換もしくは無置換のナフトベンゾチエノベンゾフラン骨格は、発光団として非常に有用な骨格である。当該骨格を有する有機化合物は、発光効率が高く、また、良好な青色発光を呈するため、当該有機化合物を用いた発光素子は、発光効率の良好な青色発光素子とすることができる。青色蛍光材料は様々な物質が開発されているが、本有機化合物は色度が非常に良好な青色発光を呈するため、8Kディスプレイに準拠する超広色域の国際規格であるITU-R BT.2020規格をカバーする色域を表現するための青色発光材料として、非常に有望な材料である。
本発明者らは、これら発光団として有用な骨格に、ベンゼン環が縮合した構造を有するジベンゾフラニル基、ベンゼン環が縮合した構造を有するジベンゾチオフェニル基およびベンゼン環が縮合した構造を有するカルバゾリル基のいずれかを一つ以上有する特殊なアリールアミンを有する有機化合物を用いた発光素子が、特に特性の良好な発光素子となることを見出した。具体的には、発光効率がより良好となる、色純度が良好となる、などの効果がある。
上記一般式(G1)においてAの選択肢および、Arの選択肢の一部の基である、上記ジベンゾフラニル基、ジベンゾチオフェニル基およびカルバゾリル基は、以下の一般式(g1)乃至一般式(g3)のように表すことも可能である。
Figure 0007296953000012
上記一般式(g1)乃至一般式(g3)において、R乃至Rは、そのいずれか1が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水基、置換または無置換の炭素数6乃至14の芳香族炭化水素基のいずれかを表す。
なお、上記一般式(g1)乃至(g3)で表される基は、下記一般式(g0)として表すこともできる。
Figure 0007296953000013
上記一般式(g0)において、Xは酸素原子、硫黄原子または置換もしくは無置換のフェニル基が結合した窒素原子である。また、R乃至Rは、そのいずれか1が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水基、置換または無置換の炭素数6乃至14の芳香族炭化水素基のいずれかを表す。
ただし、Aが上記一般式(g0)または一般式(g1)乃至(g3)のいずれか一で表される基である場合、当該Aは、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、並びにRおよびRの少なくとも一つの組み合わせにおいて縮合してベンゼン環を形成した縮合多環構造を有する基であるものとする。
また、Arが上記一般式(g0)または一般式(g1)乃至(g3)のいずれか一で表される基である場合、R乃至Rのうち、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、並びにRおよびRは、互いに縮合してベンゼン環を形成した縮合多環構造を有していてもよい。
なお、Aが上記一般式(g3)で表される基であり、且つ上記一般式(g3)で表される基におけるRが単結合を表す場合、上記一般式(G1)におけるnは1または2であることが好ましい。また、Arが上記一般式(g3)で表される基であり、かつ(g3)においてRが単結合を表す場合、上記一般式(G1)におけるmは1または2であるものとする。
ArとAのどちらかまたは両方が上記一般式(g1)で表される基である場合、R乃至Rのいずれか一が単結合であることが好ましい。また、同様に、ArとAのどちらかまたは両方が上記一般式(g2)で表される基である場合、R乃至Rのいずれか一が単結合であることが好ましい。また、ArとAのどちらかまたは両方が上記一般式(g3)で表される基である場合は、RまたはRが単結合であることが好ましい。
なお、上記一般式(g0)乃至(g3)は、R乃至Rのいずれか一である単結合で、上記一般式(G1)におけるα、α、あるいはNに結合している。
また、上記一般式(G1)におけるAが上記一般式(g3)で表される基であり且つRが単結合である場合を除き、nは0である構成が合成ステップが少なく、昇華温度も低くなり、好ましい態様である。また、lやnはそれぞれAによらず0であることが合成ステップが少なく、昇華温度も低くなり、好ましい。
上記一般式(G1)におけるAが上記一般式(g3)で表される基であり且つRが単結合である場合は、nは1である構成が合成しやすく、化学的に安定であるため好ましい態様である。Arが上記一般式(g3)で表される基であり且つRが単結合である場合も、同様の理由からmは1である構成が好ましい。
また、一般式(G1)におけるAおよびArのいずれか一方または両方が、上記一般式(g1)で表される基または上記一般式(g2)で表される基、好ましくは上記一般式(g1)で表される基であることが、上記一般式(G1)で表される有機化合物が短波長発光となるため好ましい構成である。
この際、上記一般式(g1)で表される基または上記一般式(g2)で表される基の、α、α、あるいはNと結合する単結合の位置はRまたはRであるとより短波長発光となり好ましい。また、上記一般式(g1)で表される基または上記一般式(g2)で表される基の、α、α、あるいはNと結合する単結合の位置がRまたはRであると発光量子収率がより高くなり好ましい。また、単結合の位置がRであると、発光スペクトルが狭線化するため好ましい構成である。
また、一般式(G1)におけるArとAのどちらかまたは両方が上記一般式(g3)で表される基であると信頼性が良好となり好ましい構成である。
また、Arは置換又は無置換の炭素数6乃至25の芳香族炭化水素基であることが昇華温度が低くなり、好ましい。
またqは2である方が、量子収率が高くなり、好ましい。qは1である方が、昇華温度が低くなり、好ましい。
なお、本明細書では昇華温度は蒸発温度の意味も含むものとする。
上記一般式(G1)におけるAで表される基の代表的な例を、以下の構造式(Ar-200)乃至(Ar-284)に示す。なおこれらは、さらに炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基などの置換基を有していてもよい。
Figure 0007296953000014
Figure 0007296953000015
Figure 0007296953000016
Figure 0007296953000017
Figure 0007296953000018
また、上記一般式(G1)における、Arは置換または無置換の炭素数6乃至25の芳香族炭化水素基、置換または無置換のジベンゾフラニル基、置換または無置換のジベンゾチオフェニル基および置換または無置換のカルバゾリル基のいずれかを表し、これらの基にはベンゼン環が縮合していてもよい。置換または無置換の炭素数6乃至25の芳香族炭化水素基としては、具体的にはフェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ジメチルフルオレニル基、スピロフルオレニル基、ジフェニルフルオレニル基、フェナントリル基、アントリル基、ジヒドロアントリル基、トリフェニレニル基、ピレニル基等を挙げることができる。Arの代表的な例を以下の構造式(Ar-50)乃至(Ar-66)、(Ar-100)乃至(Ar-119)、(Ar-130)乃至(Ar-140)、(Ar-200)乃至(Ar-284)に示す。なおこれらは、さらに炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基などの置換基を有していてもよい。
Figure 0007296953000019
Figure 0007296953000020
Figure 0007296953000021
Figure 0007296953000022
Figure 0007296953000023
Figure 0007296953000024
Figure 0007296953000025
Figure 0007296953000026
なお、(Ar-50)、(Ar-53)、(Ar-54)、(Ar-225)乃至(Ar-231)、(Ar-238)乃至(Ar-244)のように、Arが一般式(g3)のRで一般式(G1)におけるα、窒素(アミン)と結合している構造を有する有機化合物は、共役が伸びづらく、短波長発光が得られるため、好ましい。
また、(Ar-51)、(Ar-55)、(Ar-56)、(Ar-57)、(Ar-60)、(Ar-209)乃至(Ar-214)、(Ar-232)乃至(Ar-237)、(Ar-245)乃至(Ar-250)、(Ar-260)乃至(Ar-265)のように、一般式(G1)におけるα、窒素(アミン)に一般式(g1)乃至(g3)のRで結合している有機化合物は、正孔輸送性が高く、長波長発光が得られる、信頼性が良好などの効果が得られるため好ましい。中でも特にカルバゾリル基でその効果が高い。
また、(Ar-52)、(Ar-59)、(Ar-62)、(Ar-200)乃至(Ar-208)、(Ar-251)乃至(Ar-259)、(Ar-276)乃至(Ar-284)のように、一般式(G1)におけるα、窒素(アミン)に一般式(g1)乃至(g3)のRで結合している有機化合物は、キャリア輸送性が高く、駆動電圧の低減が期待でき、好ましい構成である。
また、(Ar-51)、(Ar-52)、(Ar-55)、(Ar-56)、(Ar-232)乃至(Ar-237)、(Ar-245)乃至(Ar-250)、(Ar-276)乃至(Ar-284)のように、一般式(g3)のRはアリール基が結合している方が、信頼性が良好などの効果が得られるため好ましい。
また、(Ar-58)、(Ar-61)、(Ar-63)乃至(Ar-66)、(Ar-214)乃至(Ar-224)、(Ar-266)乃至(Ar-275)のように、一般式(G1)におけるα、窒素(アミン)に一般式(g1)乃至(g2)がRで結合している有機化合物は共役が伸びづらく、短波長発光が得られ、信頼性が良好であるため、好ましい。
また、(Ar-100)乃至(Ar-104)、(Ar-106)乃至(Ar-108)の様に、フェニル基が連結したものは、共役が伸びづらく発光波長が短波長となり、好ましい。
また、(Ar-100)乃至(Ar-119)の様に、ベンゼン環、ナフタレン環、フルオレン環のように六員環の縮合数が2つ以下であるもの、またはフェナントレン環の様に六員環の縮合数が3つ以上であっても六員環に対して他の六員環がb位とd位で縮合されている炭化水素で構成されているものは、共役が広がりづらく、発光が短波長となるため、好ましい。
上記一般式(G1)におけるα乃至αは、それぞれ独立に置換または無置換の炭素数6乃至25の二価の芳香族炭化水素基を表すが、具体的にはフェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、フルオレニレン基、ジメチルフルオレニル基、などがあげられる。α乃至αの代表的な例としては、下記構造式(Ar-1)乃至(Ar-27)で表される基を挙げることができる。なお、これらはさらに、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基などの置換基を有していてもよい。
Figure 0007296953000027
Figure 0007296953000028
なお、α乃至αは(Ar-1)乃至(Ar-11)の様に、フェニレン基またはフェニレン基が数個つながった基であると共役が伸び辛く、一重項励起準位が高く保たれるため好ましい。特にメタフェニレン基が含まれる構成は、その効果が顕著であるため好ましい態様である。また、α乃至αがパラフェニレン基である構成は発光材料として信頼性が高くなり、好ましい態様である。また、(Ar-24)乃至(Ar-27)の様に、置換基がフルオレンの9位などのシグマ結合を有する炭素で連結している場合、共役が伸び辛く、S1準位が高く保たれるため、発光波長がより短波長となり好ましい構成である。
上記一般式(G1)において、l、mおよびnがそれぞれ2の場合、α、αおよびαはそれぞれ異なる置換基同士が連結していてもよい。例えば、(Ar-17)や(Ar-18)はナフチレンとフェニレンが連結したものである。
上記一般式(G1)で表される有機化合物において、Bで表される置換もしくは無置換のナフトビスベンゾフラン骨格、置換もしくは無置換のナフトビスベンゾチオフェン骨格または置換もしくは無置換のナフトベンゾチエノベンゾフラン骨格は、下記一般式(B1)乃至(B4)で表される骨格のいずれかであることが好ましい。
Figure 0007296953000029
上記一般式(B1)乃至一般式(B4)において、XおよびXはそれぞれ独立に酸素原子または硫黄原子を表している。なお、これらは二つとも同じ原子であることが合成が簡便となり好ましい。また、どちらも酸素原子である構成が、合成が容易であり、一重項励起準位が高くより短波長の発光を得る事ができる、高い発光収率が得られる、などの効果があるため好ましい態様である。なお、X、Xは酸素原子の数が多いほど短波長の発光を呈し、硫黄原子の数が多いほど長波長の発光を呈するため、目的の一重項励起準位や発光波長により任意に酸素原子または硫黄原子の数を選択することができる。
上記一般式(G1)で表される有機化合物は、Bで表される骨格によってその発光波長に傾向がみられ、Bが一般式(B2)で表される骨格、一般式(B4)で表される骨格、一般式(B1)で表される骨格、一般式(B3)で表される骨格の順で長波長になる。そのため、より短波長な青色発光を得たい場合は、一般式(B2)で表される化合物が好ましい。比較的長波長な青色発光を得たい場合は、一般式(B3)で表される化合物が好ましい。
また、上記一般式(G1)で表される有機化合物は、Bで表される骨格が一般式(B3)で表される骨格であると、発光スペクトルが狭線化し、色純度の高い発光が得られるため好ましい。
また、上記一般式(B1)で表される骨格においては、R10乃至R21のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。なお、単結合は、R10乃至R21のうちR11、R12、R17およびR18のいずれか1または2であることが、合成が簡便であるため好ましい構成である。
また、上記一般式(B1)においてR10乃至R21のいずれか2が単結合である場合(すなわち、上記一般式(G1)におけるqが2である場合)、R11またはR12、およびR17またはR18が単結合であることが合成の容易さから好ましい。この場合、R11およびR17が単結合であると長波長発光を得る観点で好ましく、また、R12およびR18が単結合であると短波長発光が得られ、発光量子効率が良好で、モル吸光係数も高く、発光させた時の信頼性も良いことから好ましい。
また、上記一般式(B2)においては、R30乃至R41のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。なお、単結合は、R30乃至R41のうちR31、R32、R37およびR38のいずれか1または2であることが、合成が簡便であるため好ましい。
また、上記一般式(B2)においてR30乃至R41のいずれか2が単結合である場合(すなわち、上記一般式(G1)におけるqが2である場合)、R31またはR32、およびR37またはR38が単結合であることが合成の容易さから好ましい。また、この場合、R31およびR37が単結合であると長波長発光を得る観点で好ましく、R32およびR38が単結合であると短波長発光が得られ、発光量子効率も良好で、モル吸光係数も高く、発光させた時の信頼性も良いことから好ましい。
また、上記一般式(B3)においては、R50乃至R61のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換のジアリールアミノ基のいずれかを表す。なお、単結合は、R50乃至R61のうちR51、R52、R57およびR58のいずれか1または2であることが、合成が簡便であるため好ましい。
また、上記一般式(B3)においてR50乃至R61のいずれか2が単結合である場合(すなわち、上記一般式(G1)におけるqが2である場合)、R51またはR52、およびR57またはR58が単結合であることが合成の容易さから好ましい。また、この場合、R51およびR57が単結合であると長波長発光を得る観点で好ましく、R52およびR58が単結合であると短波長発光が得られ、発光量子効率も良好で、モル吸光係数も高く、発光させた時の信頼性も良いことから好ましい。
また、上記一般式(B4)においては、R70乃至R81のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。なお、単結合は、R70乃至R81のうちR71、R72、R77およびR78のいずれか1または2であることが、合成が簡便であるため好ましい。
また、上記一般式(B4)においてR70乃至R81のいずれか2が単結合である場合(すなわち、上記一般式(G1)におけるqが2である場合)、R71またはR72のいずれか一方、およびR77またはR78のいずれか一方が単結合であることが合成の容易さから好ましい。また、この場合、R71およびR78が単結合であると長波長発光を得る観点で好ましく、R72およびR77が単結合であると短波長発光が得られ、発光量子効率も良好で、モル吸光係数も高く、発光させた時の信頼性も良いことから好ましい。
なお、ここでの単結合とは、上記一般式(G1)のαまたは窒素(アミン)との結合手を表している。
また、上記一般式(B1)乃至一般式(B4)において、R10乃至R21、R30乃至R41、R50乃至R61、R70乃至R81で表す置換基の内、単結合であるもの以外は、水素である方が、合成が簡便で、昇華温度も低いため好ましい構成である。一方、水素以外の置換基を用いることで、耐熱性や溶剤への溶解性などを向上させることができ、発光波長を長波長にシフトさせることができる。
なお、上記一般式(G1)で表される有機化合物は、下記一般式(G1-1)で表される有機化合物であることが好ましい。
Figure 0007296953000030
但し上記一般式(G1-1)において、Bは下記一般式(B1-1)または(B3-1)で表される骨格である。また、Arは置換もしくは無置換の炭素数6乃至25の芳香族炭化水素基であり、Aは下記一般式(g0)で表される基である。また、mは0乃至2の整数を表す。また、αは置換または無置換の炭素数6乃至14の二価の芳香族炭化水素基である。
Figure 0007296953000031
但し、上記一般式(B1-1)または(B3-1)において、XおよびXはそれぞれ独立に酸素原子または硫黄原子を表す。また、R12、R18、R52およびR58は単結合を表す。
Figure 0007296953000032
また、上記一般式(g0)において、Xは酸素原子、硫黄原子または置換もしくは無置換のフェニル基が結合した窒素原子のいずれかである。Xは、合成が簡便であるため、酸素原子であることが好ましい。
また、R乃至Rのうち、Rは単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水基、置換または無置換の炭素数6乃至14の芳香族炭化水素基のいずれ一かを表す。なお、RおよびR乃至Rは水素であることが、合成が簡便であることから好ましい。
なお、上記一般式(g0)で表される基は、RおよびR、RおよびR、RおよびR、並びにRおよびRの少なくとも一つの組み合わせにおいて縮合してベンゼン環を形成した、縮合多環構造を有する基であるものとする。
また、上記一般式(g0)で表される基は、下記一般式(g0-1)乃至(g0-3)で表される基であることが好ましい。
Figure 0007296953000033
なお、上記一般式(G1)または(G1-1)で表される有機化合物の分子量は、昇華性を考慮すると1300以下、好ましくは1000以下であるとよい。膜質を考慮すると分子量が650以上である方が好ましい。
なお、上述の有機化合物に結合する骨格または基が置換基を有する場合、当該置換基としては、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、炭素数6乃至14の芳香族炭化水素基のいずれかであることが好ましい。
上記Rで表される置換基、または、置換基にさらに結合する置換基において、炭素数1乃至10の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などを挙げることができる。また、炭素数3乃至10の環式炭化水素基としては、シクロプロピル基、シクロヘキシル基、などを挙げることができる。また、炭素数6乃至14の芳香族炭化水素基としては、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオレニル基などを挙げることができる。
また、上記Rで表される置換基が炭素数12乃至32のジアリールアミノ基である場合、当該ジアリールアミノ基の有する二つのアリール基は、それぞれ独立に炭素数6乃至16の芳香族炭化水素基であることがより好ましい。当該芳香族炭化水素基としては、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオレニル基、ナフチルフェニル基などを挙げることができる。
なお、これらのうち、炭素数6乃至14の芳香族炭化水素基および炭素数12乃至32のジアリールアミノ基はさらに炭素数1乃至6の脂肪族炭化水素基、炭素数3乃至6の脂環式炭化水素基等を置換基として有していてもよい。
以上のような構成を有する本発明の有機化合物の例を以下に示す。
Figure 0007296953000034
Figure 0007296953000035
Figure 0007296953000036
Figure 0007296953000037
Figure 0007296953000038
Figure 0007296953000039
Figure 0007296953000040
Figure 0007296953000041
Figure 0007296953000042
Figure 0007296953000043
Figure 0007296953000044
Figure 0007296953000045
Figure 0007296953000046
Figure 0007296953000047
Figure 0007296953000048
Figure 0007296953000049
Figure 0007296953000050
Figure 0007296953000051
Figure 0007296953000052
Figure 0007296953000053
Figure 0007296953000054
Figure 0007296953000055
Figure 0007296953000056
Figure 0007296953000057
Figure 0007296953000058
一般式(B1)乃至一般式(B4)において、XおよびXは、化合物(238)のように、異なっていてもよい。ただし、XおよびXは同じである方が、一般式(G1)におけるBの骨格の合成が簡便であり、好ましい。
本発明の一態様は、二つのアリールアミノ基の一方が、ベンゼン環が縮合したジベンゾフラニル基、ベンゼン環が縮合したジベンゾチオフェニル基およびベンゼン環が縮合したカルバゾリル基のいずれかを有するアリールアミノ基であり、もう一方のアリールアミノ基がジアリールアミノ基である構成であってもよい。ただし、2つのアリールアミノ基が同じ基である有機化合物の方が合成が簡便となるため好ましい構成である。なお、2つのアリールアミノ基のうち、少なくとも1がベンゼン環が縮合したジベンゾフラニル基、ベンゼン環が縮合したジベンゾチオフェニル基およびベンゼン環が縮合したカルバゾリル基のいずれかを有するアリールアミノ基であると、当該有機化合物を発光材料として用いた発光素子の信頼性が良好となり好ましい。
また、一般式(G1)におけるlが2の場合、二つのαはそれぞれ異なる骨格であっても同じ骨格であってもよい。また、mが2である場合も、二つのαはそれぞれ異なる骨格であっても同じ骨格であってもよく、nが2である場合も同様に二つのαは異なる骨格であっても同じ骨格であってもよい。
続いて、上述したような本発明の有機化合物を合成する方法の一例について説明する。一般式(G1)で表される有機化合物を以下に示す。
Figure 0007296953000059
但し、式中Bは置換もしくは無置換のナフトビスベンゾフラン骨格、置換もしくは無置換のナフトビスベンゾチオフェン骨格またはナフトベンゾチエノベンゾフラン骨格を表す。また、Arは置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換のジベンゾフラニル基、置換または無置換のジベンゾチオフェニル基、および置換または無置換のカルバゾリル基のいずれかであり、これらはベンゼン環が縮合していてもよい。Aは置換または無置換の少なくとも1つのベンゼン環が縮環したジベンゾフラニル基、置換または無置換の少なくとも1つのベンゼン環が縮環したジベンゾチオフェニル基、および置換または無置換の少なくとも1つのベンゼン環が縮環したカルバゾリル基のいずれかであり、また、α乃至αはそれぞれ独立に置換または無置換の炭素数6乃至14の二価の芳香族炭化水素基である。また、l、m、nはそれぞれ独立に0乃至2の整数を表し、qは1又は2である。
一般式(G1)で表される有機化合物は、下記合成スキームに示すように、化合物(a1)と、アリールアミン化合物(a2)とをクロスカップリング反応させることで、得ることができる。Xの例としては塩素、臭素、ヨウ素などのハロゲンや、スルホニル基などがあげられる。Dはlが0(つまり化合物(a2)が二級アミン)の場合は水素を表し、1以上(つまり化合物(a2)が三級アミン)の場合はボロン酸やジアルコキシボロン酸、アリールアルミニウム、アリールジルコニウム、アリール亜鉛、又はアリールスズ等を表すものとする。
Figure 0007296953000060
この反応は様々な条件によって進行させることができ、その一例として、塩基存在下にて金属触媒を用いた合成方法を適用することができる。例えば、lが0の場合はウルマンカップリングやハートウィッグ・ブッフバルト反応を用いることができる。lが1以上の場合は鈴木・宮浦反応を用いることができる。
なお、ここでは化合物(a1)に対して化合物(a2)をq等量反応さ
せているが、qが2以上、つまり化合物(G1)中のBに対するqのカッコ内で表される置換基が2つ以上で、且つそれらの置換基が同じでない場合、化合物(a2)を1種類ずつ化合物(a1)に対して反応させてもよい。
以上のように、本発明の一態様の有機化合物を合成することができる。
なお、上記化合物(a1)として用いることができる物質としては下記一般式(B1-a1)乃至一般式(B4-a1)のようなものが挙げられる。これらは本発明の一態様の化合物を合成するのに有用な化合物である。また、その原料も同様に有用である。合成法に関しては、ハロゲンの置換位置を適宜変更することで、後述の各実施例と同様に合成できる。
Figure 0007296953000061
上記一般式(B1-a1)乃至一般式(B4-a1)において、XおよびXは、それぞれ独立に酸素原子または硫黄原子を表す。
また、上記一般式(B1-a1)においては、R10乃至R21のいずれか1または2がハロゲンを表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。なお、ハロゲンは、R10乃至R21のうちR11、R12、R17およびR18のいずれか1または2であることが合成が簡便であるため好ましい。
また、上記一般式(B1-a1)においてR10乃至R21のいずれか2がハロゲンである場合、R11またはR12、のいずれか一方、およびR17またはR18のいずれか一方がハロゲンであることが合成の容易さから好ましい。また、この場合、R11およびR17がハロゲンであることが好ましく、R12およびR18がハロゲンであることが好ましい。
また、上記一般式(B2-a1)においては、R30乃至R41のいずれか1または2がハロゲンを表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。なお、ハロゲンは、R30乃至R41のうちR31、R32、R37およびR38のいずれか1または2であることが合成が簡便であるため好ましい。
また、上記一般式(B2-a1)においてR30乃至R41のいずれか2がハロゲンである場合、R31またはR32、およびR37またはR38がハロゲンであることが合成の容易さから好ましい。また、この場合、R31およびR37がハロゲンであることが好ましく、R32およびR38がハロゲンであることが好ましい。
また、上記一般式(B3-a1)においては、R50乃至R61のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10ハロゲン炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換のジアリールアミノのいずれかを表す。なお、ハロゲンは、R50乃至R61のうちR51、R52、R57およびR58のいずれか1または2であることが好ましい。
また、上記一般式(B3-a1)においてR50乃至R61のいずれか2がハロゲンである場合、R51またはR52、およびR57またはR58がハロゲンであることが合成の容易さから好ましい。また、この場合、R51およびR57がハロゲンであることが好ましく、R52およびR58がハロゲンであることが好ましい。
また、上記一般式(B4-a1)においては、R70乃至R81のいずれか1または2がハロゲンを表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。なお、ハロゲンは、R70乃至R81のうちR71、R72、R77およびR78のいずれか1または2であることが好ましい。
また、上記一般式(B4-a1)においてR70乃至R81のいずれか2がハロゲンである場合、R71またはR72、およびR77またはR78がハロゲンであることが合成の容易さから好ましい。また、この場合、R71およびR78がハロゲンであることが好ましく、R72およびR77がハロゲンであることが好ましい。
(実施の形態2)
本発明の一態様である発光素子の例について図1(A)を用いて以下、詳細に説明する。
本実施の形態における発光素子は、陽極101と、陰極102とからなる一対の電極と、陽極101と陰極102との間に設けられたEL層103とから構成されている。EL層103は、少なくとも発光層113を含むいくつかの機能層が積層されることにより構成される。当該機能層としては、代表的には、正孔注入層111、正孔輸送層112、発光層113、電子輸送層114および電子注入層115等を挙げることができるが、その他、キャリアブロック層や、励起子ブロック層、電荷発生層などを含んでいてもよい。
陽極101は、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物からなる膜は、通常スパッタリング法により成膜されるが、ゾル-ゲル法などを応用して作製しても構わない。作製方法の例としては、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1wt%以上20wt%以下の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5wt%以上5wt%以下、酸化亜鉛を0.1wt%以上1wt%以下含有したターゲットを用いてスパッタリング法により形成することもできる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、アルミニウム(Al)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。また、グラフェンも用いることができる。なお、正孔注入層111に第1の物質と第2の物質とを含む複合材料を用いた場合には、仕事関数に関わらず、上述以外の電極材料を選択することもできる。
正孔注入層111はアクセプタ性の比較的高い第1の物質で形成すればよい。また、アクセプタ性を有する第1の物質と、正孔輸送性を有する第2の物質とが混合された複合材料により形成されていることが好ましい。複合材料を正孔注入層111の材料として用いる場合には、第1の物質は第2の物質に対してアクセプタ性を示す物質を用いる。第1の物質が第2の物質から電子を引き抜くことで第1の物質に電子が発生し、電子を引き抜かれた第2の物質には正孔が発生する。引き抜かれた電子と発生した正孔は、電界により電子が陽極101へ流れ、正孔が正孔輸送層112を介し発光層113へ注入されるため、駆動電圧の低い発光素子を得る事ができる。
第1の物質は、遷移金属酸化物又は元素周期表における第4族乃至第8族に属する金属の酸化物、電子吸引基(ハロゲン基やシアノ基)を有する有機化合物等が好ましい。
上記の遷移金属酸化物、元素周期表における第4族乃至第8族に属する金属の酸化物としては、バナジウム酸化物、ニオブ酸化物、タンタル酸化物、クロム酸化物、モリブデン酸化物、タングステン酸化物、マンガン酸化物、レニウム酸化物、チタン酸化物、ルテニウム酸化物、ジルコニウム酸化物、ハフニウム酸化物及び銀酸化物がアクセプタ性が高いため好ましい。中でも特に、モリブデン酸化物は大気中でも安定であり、吸湿性が低く、扱いやすいため好適である。
上記電子吸引基(ハロゲン基やシアノ基)を有する有機化合物としては7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F4-TCNQ)、クロラニル、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称:HAT-CN)、1,3,4,5,7,8-ヘキサフルオロテトラシアノ-ナフトキノジメタン(略称:F6-TCNNQ)等を挙げることができる。特に、HAT-CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。
第2の物質は、正孔輸送性を有する物質であり、10-6cm/Vs以上の正孔移動度を有することが好ましい。第2の物質として用いることのできる材料としては、N,N’-ジ(p-トリル)-N,N’-ジフェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)等の芳香族アミン、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、1,4-ビス[4-(N-カルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等のカルバゾール誘導体、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、2-tert-ブチル-9,10-ジ(1-ナフチル)アントラセン、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、2-tert-ブチル-9,10-ビス(4-フェニルフェニル)アントラセン(略称:t-BuDBA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラセン(略称:DPAnth)、2-tert-ブチルアントラセン(略称:t-BuAnth)、9,10-ビス(4-メチル-1-ナフチル)アントラセン(略称:DMNA)、2-tert-ブチル-9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、2,3,6,7-テトラメチル-9,10-ジ(1-ナフチル)アントラセン、2,3,6,7-テトラメチル-9,10-ジ(2-ナフチル)アントラセン、9,9’-ビアントリル、10,10’-ジフェニル-9,9’-ビアントリル、10,10’-ビス(2-フェニルフェニル)-9,9’-ビアントリル、10,10’-ビス[(2,3,4,5,6-ペンタフェニル)フェニル]-9,9’-ビアントリル、アントラセン、テトラセン、ペンタセン、コロネン、ルブレン、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン等の芳香族炭化水素が挙げられる。芳香族炭化水素はビニル骨格を有していてもよい。ビニル基を有している芳香族炭化水素としては、例えば、4,4’-ビス(2,2-ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10-ビス[4-(2,2-ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。また、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)-トリフェニルアミン(略称:PCBANB)、4、4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]スピロ-9,9’-ビフルオレン-2-アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)などのフラン骨格を有する化合物を用いることができる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。
また本発明の一態様の有機化合物も正孔輸送性を有する物質であり、第2の物質として用いることができる。
また、正孔注入層111は湿式法で形成することもできる。この場合、ポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)水溶液(PEDOT/PSS)、ポリアニリン/ショウノウスルホン酸水溶液(PANI/CSA)、PTPDES、Et-PTPDEK、またはPPBA、ポリアニリン/ポリ(スチレンスルホン酸)(PANI/PSS)等の酸を添加した導電性高分子化合物などを用いることができる。
正孔輸送層112は正孔輸送性を有する材料を含む層である。当該正孔輸送性を有する材料としては、上記正孔注入層111を構成する物質として挙げた第2の物質と同じ材料を用いることができる。正孔輸送層112は、単層で形成されていても、複数の層で形成されていてもよい。複数の層で形成されている場合、正孔の注入を容易に行うために、正孔注入層111側の層から発光層113側の層に向かい、そのHOMO準位が階段状に深くなってゆく構成であることが好ましい。このような構成は、発光層113におけるホスト材料のHOMO準位が深い青色蛍光発光素子に対して非常に好適である。
なお、上記正孔輸送層112をそのHOMO準位を発光層113に向けて階段状に深くした複数の層で形成する構成は、正孔注入層111を有機アクセプタ(上述の電子吸引基(ハロゲン基やシアノ基)を有する有機化合物)で形成した素子に特に好適であり、キャリア注入性が良く駆動電圧の低い特性の非常に良好な素子を得ることができる。
また本発明の一態様の有機化合物も正孔輸送性を有する物質であり、正孔輸送性を有する材料として用いることができる。
なお、正孔輸送層112は湿式法で形成することもできる。湿式法で正孔輸送層112を形成する場合は、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物を用いることができる。
発光層113は、蛍光発光物質を含む層、りん光発光物質を含む層、熱活性化遅延蛍光(TADF)を発する物質を含む層、量子ドット類を含む層および金属ハロゲンペロブスカイト類を含む層など、いずれの発光物質を含む層であってもよいが、実施の形態1で説明した本発明の一態様の有機化合物を発光物質として含むことが好ましい。本発明の一態様の有機化合物を発光物質として用いることによって、効率が良好で且つ、色度の非常に良好な発光素子を得ることが容易となる。
また、発光層113は単層であっても、複数の層からなっていてもよい。複数の層からなる発光層を形成する場合、りん光発光物質が含まれる層と蛍光発光物質が含まれる層が積層されていてもよい。この際、りん光発光物質が含まれる層では、後述の励起錯体を利用することが好ましい。
また本発明の一態様の有機化合物も良好な量子収率を有する物質であり、発光材料として用いることができる。
蛍光発光物質としては、例えば以下のような物質を用いることができる。また、これ以外の蛍光発光物質も用いることができる。5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリジン(略称:PAP2BPy)、5,6-ビス[4’-(10-フェニル-9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(略称:PAPP2BPy)、N,N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6FLPAPrn)、N,N’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン(略称:TBP)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン](略称:DPABPA)、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:2PCAPPA)、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン(略称:DBC1)、クマリン30、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、9,10-ビス(1,1’-ビフェニル-2-イル)-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)、クマリン545T、N,N’-ジフェニルキナクリドン(略称:DPQd)、ルブレン、5,12-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェニルテトラセン(略称:BPT)、2-(2-{2-[4-(ジメチルアミノ)フェニル]エテニル}-6-メチル-4H-ピラン-4-イリデン)プロパンジニトリル(略称:DCM1)、2-{2-メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)、2-{2-イソプロピル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTI)、2-{2-tert-ブチル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTB)、2-(2,6-ビス{2-[4-(ジメチルアミノ)フェニル]エテニル}-4H-ピラン-4-イリデン)プロパンジニトリル(略称:BisDCM)、2-{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:BisDCJTM)などが挙げられる。特に、1,6mMemFLPAPrnのようなピレンジアミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効率や信頼性に優れているため好ましい。
発光層113において、りん光発光物質として用いることが可能な材料としては、例えば以下のようなものが挙げられる。トリス{2-[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル)-4H-1,2,4-トリアゾール-3-イル-κN2]フェニル-κC}イリジウム(III)(略称:[Ir(mpptz-dmp)])、トリス(5-メチル-3,4-ジフェニル-4H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4-(3-ビフェニル)-5-イソプロピル-3-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz-3b)])のような4H-トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3-メチル-1-(2-メチルフェニル)-5-フェニル-1H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1-mp)])、トリス(1-メチル-5-フェニル-3-プロピル-1H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1-Me)])のような1H-トリアゾール骨格を有する有機金属イリジウム錯体や、fac-トリス[1-(2,6-ジイソプロピルフェニル)-2-フェニル-1H-イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3-(2,6-ジメチルフェニル)-7-メチルイミダゾ[1,2-f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt-Me)])のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2-[3’,5’-ビス(トリフルオロメチル)フェニル]ピリジナト-N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。これらは青色のりん光発光を示す化合物であり、440nmから520nmに発光スペクトルのピークを有する化合物である。
また、トリス(4-メチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4-t-ブチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6-メチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6-tert-ブチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6-(2-ノルボルニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5-メチル-6-(2-メチルフェニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-Me)(acac)])、(アセチルアセトナト)ビス(5-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2-フェニルキノリナト-N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2-フェニルキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。これらは主に緑色のりん光発光を示す化合物であり、500nm乃至600nmに発光スペクトルのピークを有する。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。
また、(ジイソブチリルメタナト)ビス[4,6-ビス(3-メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6-ビス(3-メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、ビス[4,6-ジ(ナフタレン-1-イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5-トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。これらは、赤色のりん光発光を示す化合物であり、600nmから700nmに発光スペクトルのピークを有する。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
また、以上で述べたりん光性化合物の他、様々なりん光性発光材料を選択し、用いてもよい。
TADF材料としてはフラーレン及びその誘導体、アクリジン及びその誘導体、エオシン誘導体等を用いることができる。またマグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンを用いることができる。該金属含有ポルフィリンとしては、例えば、以下の構造式に示されるプロトポルフィリン-フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン-フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン-フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル-フッ化スズ錯体(SnF(Copro III-4Me))、オクタエチルポルフィリン-フッ化スズ錯体(SnF(OEP))、エチオポルフィリン-フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン-塩化白金錯体(PtClOEP)等が挙げられる。
Figure 0007296953000062
また、以下の構造式に示される2-(ビフェニル4-イル)-4,6-ビス(12-フェニルインドロ[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(略称:PIC-TRZ)や、9-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:PCCzTzn)、2-{4-[3-(N-フェニル-9H-カルバゾール-3-イル)-9H-カルバゾール-9-イル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:PCCzPTzn)、2-[4-(10H-フェノキサジン-10-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:PXZ-TRZ)、3-[4-(5-フェニル-5,10-ジヒドロフェナジン-10-イル)フェニル]-4,5-ジフェニル-1,2,4-トリアゾール(略称:PPZ-3TPT)、3-(9,9-ジメチル-9H-アクリジン-10-イル)-9H-キサンテン-9-オン(略称:ACRXTN)、ビス[4-(9,9-ジメチル-9,10-ジヒドロアクリジン)フェニル]スルホン(略称:DMAC-DPS)、10-フェニル-10H,10’H-スピロ[アクリジン-9,9’-アントラセン]-10’-オン(略称:ACRSA)等のπ電子過剰型複素芳香環とπ電子不足型複素芳香環の両方を有する複素環化合物も用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が共に高く、好ましい。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、S1準位とT1準位のエネルギー差が小さくなるため、熱活性化遅延蛍光を効率よく得られることから特に好ましい。なお、π電子不足型複素芳香環の代わりに、シアノ基のような電子吸引基が結合した芳香環を用いてもよい。
Figure 0007296953000063
また、量子ドットとしては、第14族元素、第15族元素、第16族元素、複数の第14族元素からなる化合物、第4族から第14族に属する元素と第16族元素との化合物、第2族元素と第16族元素との化合物、第13族元素と第15族元素との化合物、第13族元素と第17族元素との化合物、第14族元素と第15族元素との化合物、第11族元素と第17族元素との化合物、酸化鉄類、酸化チタン類、カルコゲナイドスピネル類、各種半導体クラスター、金属ハロゲンペロブスカイト類などのナノサイズ粒子を挙げることができる。
具体的には、セレン化カドミウム(CdSe)、硫化カドミウム(CdS)、テルル化カドミウム(CdTe)、セレン化亜鉛(ZnSe)、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、テルル化亜鉛(ZnTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)、砒化インジウム(InAs)、リン化インジウム(InP)、砒化ガリウム(GaAs)、リン化ガリウム(GaP)、窒化インジウム(InN)、窒化ガリウム(GaN)、アンチモン化インジウム(InSb)、アンチモン化ガリウム(GaSb)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)、硫化鉛(II)(PbS)、セレン化インジウム(InSe)、テルル化インジウム(InTe)、硫化インジウム(In)、セレン化ガリウム(GaSe)、硫化砒素(III)(As)、セレン化砒素(III)(AsSe)、テルル化砒素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)、ケイ素(Si)、炭化ケイ素(SiC)、ゲルマニウム(Ge)、錫(Sn)、セレン(Se)、テルル(Te)、ホウ素(B)、炭素(C)、リン(P)、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、硫化アルミニウム(Al)、硫化バリウム(BaS)、セレン化バリウム(BaSe)、テルル化バリウム(BaTe)、硫化カルシウム(CaS)、セレン化カルシウム(CaSe)、テルル化カルシウム(CaTe)、硫化ベリリウム(BeS)、セレン化ベリリウム(BeSe)、テルル化ベリリウム(BeTe)、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)、硫化ゲルマニウム(GeS)、セレン化ゲルマニウム(GeSe)、テルル化ゲルマニウム(GeTe)、硫化錫(IV)(SnS)、硫化錫(II)(SnS)、セレン化錫(II)(SnSe)、テルル化錫(II)(SnTe)、酸化鉛(II)(PbO)、フッ化銅(I)(CuF)、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、酸化銅(I)(CuO)、セレン化銅(I)(CuSe)、酸化ニッケル(II)(NiO)、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)、四酸化三鉄(Fe)、硫化鉄(II)(FeS)、酸化マンガン(II)(MnO)、硫化モリブデン(IV)(MoS)、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タングステン(IV)(WO)、酸化タンタル(V)(Ta)、酸化チタン(TiO、Ti、Ti、Tiなど)、酸化ジルコニウム(ZrO)、窒化ケイ素(Si)、窒化ゲルマニウム(Ge)、酸化アルミニウム(Al)、チタン酸バリウム(BaTiO)、セレンと亜鉛とカドミウムの化合物(CdZnSe)、インジウムと砒素とリンの化合物(InAsP)、カドミウムとセレンと硫黄の化合物(CdSeS)、カドミウムとセレンとテルルの化合物(CdSeTe)、インジウムとガリウムと砒素の化合物(InGaAs)、インジウムとガリウムとセレンの化合物(InGaSe)、インジウムとセレンと硫黄の化合物(InSeS)、銅とインジウムと硫黄の化合物(例えばCuInS)およびこれらの組合せなどを挙げることができるが、これらに限定されない。また、組成が任意の比率で表される、いわゆる合金型量子ドットを用いてもよい。例えば、CdSSe1-x(xは0から1の任意の数)で表される合金型量子ドットは、xを変化させることで発光波長を変えることができるため、青色発光を得るには有効な手段の一つである。
量子ドットの構造としては、コア型、コア-シェル型、コア-マルチシェル型などがあり、そのいずれを用いてもよいが、コアを覆ってより広いバンドギャップを持つ別の無機材料でシェルを形成することによって、ナノ結晶表面に存在する欠陥やダングリングボンドの影響を低減することができる。これにより、発光の量子効率が大きく改善するためコア-シェル型やコア-マルチシェル型の量子ドットを用いることが好ましい。シェルの材料の例としては、硫化亜鉛(ZnS)や酸化亜鉛(ZnO)が挙げられる。
また、量子ドットは、表面原子の割合が高いことから、反応性が高く、凝集が起こりやすい。そのため、量子ドットの表面には保護剤が付着している又は保護基が設けられていることが好ましい。当該保護剤が付着している又は保護基が設けられていることによって、凝集を防ぎ、溶媒への溶解性を高めることができる。また、反応性を低減させ、電気的安定性を向上させることも可能である。保護剤(又は保護基)としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類、トリ(n-ヘキシル)アミン、トリ(n-オクチル)アミン、トリ(n-デシル)アミン等の第3級アミン類、トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類、また、ピリジン、ルチジン、コリジン、キノリン類等の含窒素芳香族化合物等の有機窒素化合物、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類、ジブチルスルフィド等のジアルキルスルフィド類、ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類、チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物、パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸、アルコール類、ソルビタン脂肪酸エステル類、脂肪酸変性ポリエステル類、3級アミン変性ポリウレタン類、ポリエチレンイミン類等が挙げられる。
なお、量子ドットは、棒状の量子ロッドであってもよい。量子ロッドはc軸方向に偏光した指向性を有する光を呈するため、量子ロッドを発光材料として用いることにより、より外部量子効率が良好な発光素子を得ることができる。
なお、当該量子ドットを発光材料としてホスト材料に分散した発光層を形成する場合は、ホスト材料に量子ドットを分散させる、またはホスト材料と量子ドットとを適当な液媒体に溶解または分散させてウェットプロセス(スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、ラングミュア・ブロジェット法など)により層を形成した後、液媒体を除去、または焼成することにより形成すればよい。
ウェットプロセスに用いる液媒体としては、たとえば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の有機溶媒を用いることができる。
発光層のホスト材料としては、蛍光発光物質を用いる場合は、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)、3-[4-(1-ナフチル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPN)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)-ビフェニル-4’-イル}アントラセン(略称:FLPPA)等のアントラセン骨格を有する材料が好適である。アントラセン骨格を有する物質を蛍光発光物質のホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現することが可能である。特に、CzPA、cgDBCzPA、2mBnfPPA、PCzPAは非常に良好な特性を示すため、好ましい選択である。
上記材料以外の材料をホスト材料として用いる場合、電子輸送性を有する材料や正孔輸送性を有する材料など様々なキャリア輸送材料を用いることができる。
電子輸送性を有する材料としては、例えば、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール(略称:CO11)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(略称:mDBTBIm-II)などのポリアゾール骨格を有する複素環化合物や、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、4,6-ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6-ビス[3-(4-ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm-II)などのジアジン骨格を有する複素環化合物や、3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
正孔輸送性を有する材料としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]スピロ-9,9’-ビフルオレン-2-アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。また、以上で述べた正孔輸送材料の他、様々な物質の中から正孔輸送材料を選択し、用いてもよい。
発光物質として蛍光発光物質を用いる場合は、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)、3-[4-(1-ナフチル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPN)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)-ビフェニル-4’-イル}-アントラセン(略称:FLPPA)等のアントラセン骨格を有する材料が好適である。アントラセン骨格を有する物質を蛍光発光物質のホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現することが可能である。特に、CzPA、cgDBCzPA、2mBnfPPA、PCzPAは非常に良好な特性を示すため、好ましい選択である。
なお、ホスト材料は複数種の物質を混合した材料であっても良く、混合したホスト材料を用いる場合は、電子輸送性を有する材料と、正孔輸送性を有する材料とを混合することが好ましい。電子輸送性を有する材料と、正孔輸送性を有する材料を混合することによって、発光層113の輸送性を容易に調整することができ、再結合領域の制御も簡便に行うことができる。正孔輸送性を有する材料と電子輸送性を有する材料の含有量の比は、正孔輸送性を有する材料:電子輸送性を有する材料=1:9乃至9:1(重量比)とすればよい。
また、これら混合されたホスト材料同士で励起錯体を形成してもよい。当該励起錯体は、蛍光発光物質、りん光発光物質及びTADF材料の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光が得られるようになる。また、当該構成は駆動電圧も低下させることができるため好ましい構成である。
以上のような構成を有する発光層113は、真空蒸着法での共蒸着や、混合溶液を用いた方法として、グラビア印刷法、オフセット印刷法、インクジェット法、スピンコート法やディップコート法などを用いて作製することができる。
電子輸送層114は、電子輸送性を有する物質を含む層である。電子輸送性を有する物質としては、上記ホスト材料に用いることが可能な電子輸送性を有する材料や、アントラセン骨格を有する材料を用いることができる。
また、電子輸送層と発光層との間に電子キャリアの移動を制御する層を設けてもよい。これは上述したような電子輸送性の高い材料に、電子トラップ性の高い物質を少量添加した層であって、電子キャリアの移動を抑制することによって、キャリアバランスを調節することが可能となる。このような構成は、発光層を電子が突き抜けてしまうことにより発生する問題(例えば素子寿命の低下)の抑制に大きな効果を発揮する。
また、電子輸送層114と陰極102との間に、陰極102に接して電子注入層115を設けてもよい。電子注入層115としては、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)等のようなアルカリ金属又はアルカリ土類金属又はそれらの化合物を用いることができる。例えば、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させた層を用いることができる。また、電子注入層115にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、電子注入層115として、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属を含有させた層を用いることにより、陰極102からの電子注入が効率良く行われるためより好ましい。
また、電子注入層115の代わりに電荷発生層116を設けてもよい(図1(B))。電荷発生層116は、電位をかけることによって当該層の陰極側に接する層に正孔を、陽極側に接する層に電子を注入することができる層のことである。電荷発生層116には、少なくともP型層117が含まれる。P型層117は、上述の正孔注入層111を構成することができる材料として挙げた複合材料を用いて形成することが好ましい。またP型層117は、複合材料を構成する材料として上述したアクセプター材料を含む膜と正孔輸送材料を含む膜とを積層して構成してもよい。P型層117に電位をかけることによって、電子輸送層114に電子が、陰極102に正孔が注入され、発光素子が動作する。この際、電子輸送層114の電荷発生層116に接する位置に、本発明の一態様の有機化合物を含む層が存在することによって、発光素子の駆動時間の蓄積に伴う輝度低下が抑制され、寿命の長い発光素子を得ることができる。
なお、電荷発生層116はP型層117の他に電子リレー層118及び電子注入バッファ層119のいずれか一又は両方が設けられていることが好ましい。
電子リレー層118は少なくとも電子輸送性を有する物質を含み、電子注入バッファ層119とP型層117との相互作用を防いで電子をスムーズに受け渡す機能を有する。電子リレー層118に含まれる電子輸送性を有する物質のLUMO準位は、P型層117におけるアクセプター性物質のLUMO準位と、電子輸送層114における電荷発生層116に接する層に含まれる物質のLUMO準位との間であることが好ましい。電子リレー層118に用いられる電子輸送性を有する物質におけるLUMO準位の具体的なエネルギー準位は-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下とするとよい。なお、電子リレー層118に用いられる電子輸送性を有する物質としてはフタロシアニン系の材料又は金属-酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
電子注入バッファ層119には、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファ層119が、電子輸送性を有する物質とドナー性物質を含んで形成される場合には、ドナー性物質として、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもできる。なお、電子輸送性を有する物質としては、先に説明した電子輸送層114を構成する材料と同様の材料を用いることができる。
陰極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、陰極102と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ等様々な導電性材料を陰極102として用いることができる。これら導電性材料は、真空蒸着法やスパッタリング法などの乾式法、インクジェット法、スピンコート法等を用いて成膜することが可能である。また、ゾル-ゲル法を用いて湿式法で形成してもよいし、金属材料のペーストを用いて湿式法で形成してもよい。
EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用いることができる。例えば、真空蒸着法やウェットプロセス法(スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法(グラビア印刷法、オフセット印刷法、スクリーン印刷法等)、スプレーコート法、カーテンコート法、ラングミュア・ブロジェット法など)などを用いても構わない。
また上述した各電極または各層を異なる成膜方法を用いて形成しても構わない。
ここで、液滴吐出法を用いて発光物質を含む層786を形成する方法について、図2を用いて説明する。図2(A)乃至図2(D)は、発光物質を含む層786の作製方法を説明する断面図である。
まず、平坦化絶縁膜770上に導電膜772が形成され、導電膜772の一部を覆うように絶縁膜730が形成される(図2(A)参照)。
次に、絶縁膜730の開口である導電膜772の露出部に、液滴吐出装置783より液滴784を吐出し、組成物を含む層785を形成する。液滴784は、溶媒を含む組成物であり、導電膜772上に付着する(図2(B)参照)。
なお、液滴784を吐出する工程を減圧下で行ってもよい。
次に、組成物を含む層785より溶媒を除去し、固化することによって発光物質を含む層786を形成する(図2(C)参照)。
なお、溶媒の除去方法としては、乾燥工程または加熱工程を行えばよい。
次に、発光物質を含む層786上に導電膜788を形成し、発光素子782を形成する(図2(D)参照)。
このように発光物質を含む層786を液滴吐出法で形成すると、選択的に組成物を吐出することができるため、材料のロスを削減することができる。また、形状を加工するためのリソグラフィ工程なども必要ないために工程も簡略化することができ、低コスト化が達成できる。
なお、上記説明した液滴吐出法とは、組成物の吐出口を有するノズル、あるいは1つ又は複数のノズルを有するヘッド等の液滴を吐出する手段を有するものの総称とする。
次に、液滴吐出法に用いる液滴吐出装置について、図3を用いて説明する。図3は、液滴吐出装置1400を説明する概念図である。
液滴吐出装置1400は、液滴吐出手段1403を有する。また、液滴吐出手段1403は、ヘッド1405と、ヘッド1412と、ヘッド1416とを有する。
ヘッド1405、ヘッド1412、およびヘッド1416は制御手段1407に接続され、それをコンピュータ1410で制御することにより予めプログラミングされたパターンを描画することができる。
また、描画するタイミングとしては、例えば、基板1402上に形成されたマーカー1411を基準に行えば良い。あるいは、基板1402の外縁を基準にして基準点を確定させてもよい。ここでは、マーカー1411を撮像手段1404で検出し、画像処理手段1409にてデジタル信号に変換したものをコンピュータ1410で認識して制御信号を発生させて制御手段1407に送る。
撮像手段1404としては、電荷結合素子(CCD)や相補型金属-酸化物-半導体(CMOS)を利用したイメージセンサなどを用いることができる。なお、基板1402上に形成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド1405、ヘッド1412、ヘッド1416を個別に制御することができる。吐出する材料は、材料供給源1413、材料供給源1414、材料供給源1415より配管を通してヘッド1405、ヘッド1412、ヘッド1416にそれぞれ供給される。
ヘッド1405の内部は、点線1406が示すように液状の材料を充填する空間と、吐出口であるノズルを有する構造となっている。図示しないが、ヘッド1412およびヘッド1416もヘッド1405と同様な内部構造を有する。ヘッド1405、ヘッド1412、およびヘッド1416のノズルを異なるサイズで設けると、異なる材料を異なる幅で同時に描画することができる。一つのヘッドで、複数種の発光材料などをそれぞれ吐出し、描画することができ、広領域に描画する場合は、スループットを向上させるため複数のノズルより同材料を同時に吐出し、描画することができる。大型基板を用いる場合、ヘッド1405、ヘッド1412、ヘッド1416は基板上を、図3中に示すX、Y、Zの矢印の方向に自在に走査し、描画する領域を自由に設定することができ、同じパターンを一枚の基板に複数描画することができる。
また、組成物を吐出する工程は、減圧下で行ってもよい。吐出時に基板を加熱しておいてもよい。組成物を吐出後、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、その目的、温度と時間が異なるものである。乾燥の工程、焼成の工程は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱炉などにより行う。なお、この加熱処理を行うタイミング、加熱処理の回数は特に限定されない。乾燥と焼成の工程を良好に行うためには、そのときの温度は、基板の材質及び組成物の性質に依存する。
以上のように、液滴吐出装置を用いて発光物質を含む層786を作製することができる。
液滴吐出装置を用いて発光物質を含む層786を作製する場合において、各種有機材料や有機無機ハロゲンペロブスカイト類を溶媒に溶解または分散させた組成物を用いて湿式法により形成する場合、種々の有機溶剤を用いて塗布用組成物とすることが出来る。前記組成物に用いることが出来る有機溶剤としては、ベンゼン、トルエン、キシレン、メシチレン、テトラヒドロフラン、ジオキサン、エタノール、メタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、クロロホルム、メチレンクロライド、四塩化炭素、酢酸エチル、ヘキサン、シクロヘキサン等種々の有機溶剤を用いることが出来る。特に、ベンゼン、トルエン、キシレン、メシチレン等の低極性なベンゼン誘導体を用いることで、好適な濃度の溶液を作ることができ、また、インク中に含まれる材料が酸化などにより劣化することを防止できるため好ましい。また、作製後の膜の均一性や膜厚の均一性などを考慮すると沸点が100℃以上であることが好ましく、トルエン、キシレン、メシチレンが更に好ましい。
なお、上記構成は、他の実施の形態や本実施の形態中の他の構成と適宜組み合わせることが可能である。
続いて、複数の発光ユニットを積層した構成の発光素子(積層型素子ともいう)の態様について、図1(C)を参照して説明する。この発光素子は、陽極と陰極との間に、複数の発光ユニットを有する発光素子である。一つの発光ユニットは、図1(A)で示したEL層103と同様な構成を有する。つまり、図1(A)又は図1(B)で示した発光素子は、1つの発光ユニットを有する発光素子であり、図1(C)で示した発光素子は複数の発光ユニットを有する発光素子であるということができる。
図1(C)において、第1の電極501と第2の電極502との間には、第1の発光ユニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511と第2の発光ユニット512との間には電荷発生層513が設けられている。第1の電極501と第2の電極502はそれぞれ図1(A)における陽極101と陰極102に相当し、図1(A)の説明を適用することができる。また、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異なる構成であってもよい。
電荷発生層513は、第1の電極501と第2の電極502に電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入する機能を有する。すなわち、図1(C)において、第1の電極の電位の方が第2の電極の電位よりも高くなるように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を注入し、第2の発光ユニット512に正孔を注入するものであればよい。
電荷発生層513は、図1(B)にて説明した電荷発生層116と同様の構成で形成することが好ましい。有機化合物と金属酸化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。なお、発光ユニットの陽極側の面が電荷発生層513に接している場合は、電荷発生層513が発光ユニットの正孔注入層の役割も担うことができるため、発光ユニットは正孔注入層を設けなくとも良い。
また、電荷発生層513に電子注入バッファ層119を設ける場合、当該層が陽極側の発光ユニットにおける電子注入層の役割を担うため、当該発光ユニットには必ずしも重ねて電子注入層を形成する必要はない。
図1(C)では、2つの発光ユニットを有する発光素子について説明したが、3つ以上の発光ユニットを積層した発光素子についても、同様に上記構成を適用することが可能である。本実施の形態に係る発光素子のように、一対の電極間に複数の発光ユニットを電荷発生層513で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光素子全体として、所望の色の発光を得ることができる。
(実施の形態3)
本実施の形態では、実施の形態1に記載の発光素子を用いた発光装置について説明する。
本発明の一態様の発光装置について図4を用いて説明する。なお、図4(A)は、発光装置を示す上面図、図4(B)は図4(A)をA-BおよびC-Dで切断した断面図である。この発光装置は、発光素子の発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていてもよい。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
次に、断面構造について図4(B)を用いて説明する。素子基板610上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601と、画素部602中の一つの画素が示されている。
なお、ソース線駆動回路601はnチャネル型FET623とpチャネル型FET624とを組み合わせたCMOS回路が形成される。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成してもよい。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる。
また、画素部602はスイッチング用FET611と、電流制御用FET612とそのドレインに電気的に接続された第1の電極613とを含む複数の画素により形成されているが、これに限定されず、3つ以上のFETと、容量素子とを組み合わせた画素部としてもよい。
FETに用いる半導体の種類及び結晶性については特に限定されず、非晶質半導体を用いてもよいし、結晶性半導体を用いてもよい。FETに用いる半導体の例としては、第13族半導体、第14族半導体、化合物半導体、酸化物半導体、有機半導体材料を用いることができるが、特に、酸化物半導体を用いると好ましい。該酸化物半導体としては、例えば、In-Ga酸化物、In-M-Zn酸化物(Mは、Al、Ga、Y、Zr、La、Ce、またはNd)等が挙げられる。なお、エネルギーギャップが2eV以上、好ましくは2.5eV以上、さらに好ましくは3eV以上の酸化物半導体材料を用いることが、トランジスタのオフ電流を低減することができるため、好ましい構成である。
なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ型の感光性アクリル樹脂膜を用いることにより形成することができる。
また、被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アクリル樹脂を用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm乃至3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用することができる。
第1の電極613上には、EL層616及び第2の電極617がそれぞれ形成されている。これらはそれぞれ図1(A)(B)で説明した陽極101、EL層103及び陰極102又は図1(C)で説明した第1の電極501、EL層503及び第2の電極502に相当する。
EL層616には有機金属錯体が含まれることが好ましい。当該有機金属錯体は、発光層における発光中心物質として用いられることが好ましい。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素子618が備えられた構造になっている。なお、空間607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材605で充填される場合もある。封止基板には凹部を形成し、そこに乾燥材を設けると水分の影響による劣化を抑制することができ、好ましい構成である。
シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、素子基板610及び封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。
例えば、本明細書等において、様々な基板を用いて、トランジスタや発光素子を形成することが出来る。基板の種類は、特定のものに限定されることはない。その基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチックがある。または、一例としては、アクリル樹脂等の合成樹脂などがある。または、一例としては、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などがある。特に、半導体基板、単結晶基板、又はSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、又は形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、又は回路の高集積化を図ることができる。
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタや発光素子を形成してもよい。または、基板とトランジスタの間や、基板と発光素子の間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成等を用いることができる。
つまり、ある基板を用いてトランジスタや発光素子を形成し、その後、別の基板にトランジスタや発光素子を転置し、別の基板上にトランジスタや発光素子を配置してもよい。トランジスタや発光素子が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができる。
図5には白色発光を呈する発光素子を形成し、着色層(カラーフィルタ)等を設けることによってフルカラー化した発光装置の例を示す。図5(A)には基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光素子の第1の電極1024W、1024R、1024G、1024B、隔壁1025、EL層1028、発光素子の陰極1029、封止基板1031、シール材1032などが図示されている。
また、図5(A)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)は透明な基材1033に設けている。また、黒色層(ブラックマトリックス)1035をさらに設けてもよい。着色層及び黒色層が設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、着色層、及び黒色層は、オーバーコート層1036で覆われている。また、図5(A)においては、光が着色層を透過せずに外部へと出る発光層と、各色の着色層を透過して外部に光が出る発光層とがあり、着色層を透過しない光は白、着色層を透過する光は赤、青、緑となることから、4色の画素で映像を表現することができる。
図5(B)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示した。このように、着色層は基板1001と封止基板1031の間に設けられていてもよい。
また、以上に説明した発光装置では、FETが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション型)の発光装置としてもよい。トップエミッション型の発光装置の断面図を図6に示す。この場合、基板1001は光を通さない基板を用いることができる。FETと発光素子の陽極とを接続する接続電極を作製するまでは、ボトムエミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極1022を覆って形成する。この絶縁膜は平坦化の役割を担っていてもよい。第3の層間絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の様々な材料を用いて形成することができる。
発光素子の第1の電極1024W、1024R、1024G、1024Bはここでは陽極とするが、陰極であっても構わない。また、図6のようなトップエミッション型の発光装置である場合、第1の電極を反射電極とすることが好ましい。EL層1028の構成は、図1(A)、(B)のEL層103または図1(C)のEL層503として説明したような構成とし、且つ、白色の発光が得られるような素子構造とする。
図6のようなトップエミッションの構造では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するように黒色層(ブラックマトリックス)1035を設けてもよい。着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)や黒色層はオーバーコート層によって覆われていてもよい。なお封止基板1031は透光性を有する基板を用いることとする。
また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定されず、赤、緑、青の3色や赤、緑、青、黄の4色でフルカラー表示を行ってもよい。
図7には本発明の一態様であるパッシブマトリクス型の発光装置を示す。なお、図7(A)は、発光装置を示す斜視図、図7(B)は図7(A)をX-Yで切断した断面図である。図7において、基板951上には、電極952と電極956との間にはEL層955が設けられている。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光素子の不良を防ぐことが出来る。
以上、説明した発光装置は、マトリクス状に配置された多数の微小な発光素子を、画素部に形成されたFETでそれぞれ制御することが可能であるため、画像の表現を行う表示装置として好適に利用できる発光装置である。
≪照明装置≫
本発明の一態様である照明装置を図8を参照しながら説明する。図8(B)は照明装置の上面図、図8(A)は図8(B)におけるe-f断面図である。
当該照明装置は、支持体である透光性を有する基板400上に、第1の電極401が形成されている。第1の電極401は図1(A)、(B)の陽極101に相当する。第1の電極401側から発光を取り出す場合、第1の電極401は透光性を有する材料により形成する。
第2の電極404に電圧を供給するためのパッド412が基板400上に形成される。
第1の電極401上にはEL層403が形成されている。EL層403は図1(A)、(B)のEL層103又は図1(C)のEL層503などに相当する。なお、これらの構成については当該記載を参照されたい。
EL層403を覆って第2の電極404を形成する。第2の電極404は図1(A)、(B)の陰極102に相当する。発光を第1の電極401側から取り出す場合、第2の電極404は反射率の高い材料を含んで形成される。第2の電極404はパッド412と接続することによって、電圧が供給される。
第1の電極401、EL層403及び第2の電極404によって発光素子が形成される。当該発光素子を、シール材405、406を用いて封止基板407を固着し、封止することによって照明装置が完成する。シール材405、406はどちらか一方でもかまわない。また、内側のシール材406(図8(B)では図示せず)には乾燥剤を混ぜることもでき、これにより、水分を吸着することができ、信頼性の向上につながる。
また、パッド412と第1の電極401の一部をシール材405、406の外に伸張して設けることによって、外部入力端子とすることができる。また、その上にコンバータなどを搭載したICチップ420などを設けてもよい。
≪電子機器≫
本発明の一態様である電子機器の例について説明する。電子機器として、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。これらの電子機器の具体例を以下に示す。
図9(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体7101に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体7101を支持した構成を示している。表示部7103により、映像を表示することが可能であり、表示部7103は、発光素子をマトリクス状に配列して構成されている。
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7110により行うことができる。リモコン操作機7110が備える操作キー7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110から出力する情報を表示する表示部7107を設ける構成としてもよい。
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図9(B1)はコンピュータであり、本体7201、筐体7202、表示部7203、キーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。なお、このコンピュータは、発光素子をマトリクス状に配列して表示部7203に用いることにより作製される。図9(B1)のコンピュータは、図9(B2)のような形態であってもよい。図9(B2)のコンピュータは、キーボード7204、ポインティングデバイス7206の代わりに第2の表示部7210が設けられている。第2の表示部7210はタッチパネル式となっており、第2の表示部7210に表示された入力用の表示を指や専用のペンで操作することによって入力を行うことができる。また、第2の表示部7210は入力用表示だけでなく、その他の画像を表示することも可能である。また表示部7203もタッチパネルであってもよい。二つの画面がヒンジで接続されていることによって、収納や運搬をする際に画面を傷つける、破損するなどのトラブルの発生も防止することができる。
図9(C)(D)は、携帯情報端末の一例を示している。携帯情報端末は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯情報端末は、発光素子をマトリクス状に配列して作製された表示部7402を有している。
図9(C)及び(D)に示す携帯情報端末は、表示部7402を指などで触れることで、情報を入力することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
また、携帯情報端末内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯情報端末の向き(縦か横か)を判断して、表示部7402の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
なお、上記電子機器は、本明細書中に示した構成を適宜組み合わせて用いることができる。
また、表示部に本発明の一態様の発光素子を用いることが好ましい。当該発光素子は発光効率が良好な発光素子とすることが可能である。また、駆動電圧の小さい発光素子とすることが可能である。このため、本発明の一態様の発光素子を含む電子機器は消費電力の小さい電子機器とすることができる。
図10は、発光素子をバックライトに適用した液晶表示装置の一例である。図10に示した液晶表示装置は、筐体901、液晶層902、バックライトユニット903、筐体904を有し、液晶層902は、ドライバIC905と接続されている。バックライトユニット903には、発光素子が用いられており、端子906により、電流が供給されている。
発光素子には本発明の一態様の発光素子を用いることが好ましく、当該発光素子を液晶表示装置のバックライトに適用することにより、消費電力の低減されたバックライトが得られる。
図11は、本発明の一態様である電気スタンドの例である。図11に示す電気スタンドは、筐体2001と、光源2002を有し、光源2002として発光素子を用いた照明装置が用いられている。
図12は、室内の照明装置3001の例である。当該照明装置3001には本発明の一態様の発光素子を用いることが好ましい。
本発明の一態様である自動車を図13に示す。当該自動車はフロントガラスやダッシュボードに発光素子が搭載されている。表示領域5000乃至表示領域5005は発光素子を用いて設けられた表示領域である。本発明の一態様の発光素子を用いることが好ましく、これにより表示領域5000乃至表示領域5005は消費電力を抑えられるため、車載に好適である。
表示領域5000と表示領域5001は、自動車のフロントガラスに設けられた、発光素子を用いる表示装置である。この発光素子を、第1の電極と第2の電極を透光性を有する電極で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても、視界の妨げになることなく設置することができる。なお、駆動のためのトランジスタなどを設ける場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いると良い。
表示領域5002はピラー部分に設けられた発光素子を用いる表示装置である。表示領域5002には、車体に設けられた撮像手段からの映像を映し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に、ダッシュボード部分に設けられた表示領域5003は車体によって遮られた視界を、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。見えない部分を補完するように映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
表示領域5004や表示領域5005はナビゲーション情報、速度計や回転数、走行距離、燃料計、ギア状態、空調の設定など表示することで、様々な情報を提供することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更することができる。なお、これら情報は表示領域5000乃至表示領域5003にも表示することができる。また、表示領域5000乃至表示領域5005は照明装置として用いることも可能である。
図14(A)及び図14(B)は2つ折り可能なタブレット型端末の一例である。図14(A)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a、表示部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省電力モード切り替えスイッチ9036、留め具9033、を有する。なお、当該タブレット型端末は、本発明の一態様の発光素子を備えた発光装置を表示部9631a、表示部9631bの一方又は両方に用いることにより作製される。
表示部9631aは、一部をタッチパネル領域9632aとすることができ、表示された操作キー9637にふれることでデータ入力をすることができる。なお、表示部9631aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部9631aの全ての領域がタッチパネルの機能を有する構成としてもよい。例えば、表示部9631aの全面をキーボードボタンを表示させてタッチパネルとし、表示部9631bを表示画面として用いることができる。
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一部をタッチパネル領域9632bとすることができる。また、タッチパネルのキーボード表示切り替えボタン9639が表示されている位置を指やスタイラスなどでふれることで表示部9631bにキーボードボタンを表示することができる。
また、タッチパネル領域9632aとタッチパネル領域9632bに対して同時にタッチ入力することもできる。
また、表示モード切り替えスイッチ9034は、縦表示または横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
また、図14(A)では表示部9631bと表示部9631aの表示面積が同じ例を示しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
図14(B)は、閉じた状態であり、本実施の形態におけるタブレット型端末では、筐体9630、太陽電池9633、充放電制御回路9634、バッテリー9635、DCDCコンバータ9636を備える例を示す。なお、図14(B)では充放電制御回路9634の一例としてバッテリー9635、DCDCコンバータ9636を有する構成について示している。
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態にすることができる。従って、表示部9631a、表示部9631bを保護できるため、耐久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
また、この他にも図14(A)及び図14(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、または映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の一面または二面に設けられていると効率的なバッテリー9635の充電を行う構成とすることができるため好適である。
また、図14(B)に示す充放電制御回路9634の構成、及び動作について図14(C)にブロック図を示し説明する。図14(C)には、太陽電池9633、バッテリー9635、DCDCコンバータ9636、コンバータ9638、スイッチSW1乃至SW3、表示部9631について示しており、バッテリー9635、DCDCコンバータ9636、コンバータ9638、スイッチSW1乃至SW3が、図14(B)に示す充放電制御回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、バッテリー9635を充電するための電圧となるようDCDCコンバータ9636で昇圧または降圧がなされる。そして、表示部9631の動作に太陽電池9633で充電された電力が用いられる際にはスイッチSW1をオンにし、コンバータ9638で表示部9631に必要な電圧に昇圧または降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバッテリー9635の充電を行う構成とすればよい。
なお、太陽電池9633については、発電手段の一例として示したが、発電手段は特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段によってバッテリー9635の充電を行う構成であってもよい。無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成としてもよく、発電手段を有さなくとも良い。
また、上記表示部9631を具備していれば、図14に示した形状のタブレット型端末に限定されない。
また、図15(A)~(C)に、折りたたみ可能な携帯情報端末9310を示す。図15(A)に展開した状態の携帯情報端末9310を示す。図15(B)に展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。図15(C)に折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示パネル9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示パネル9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示パネル9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示パネル9311に用いることができる。表示パネル9311における表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズに行うことができる。
また本発明の一態様の有機化合物は、有機薄膜太陽電池などの電子デバイスに用いることができる。より具体的には、キャリア輸送性があるため、キャリア輸送層、キャリア注入層に用いることができる。また、アクセプタ性物質との混合膜を用いることで、電荷発生層として用いることができる。また、光励起するため、発電層として用いることができる。
(合成例1)
本合成例では、本発明の一態様の有機化合物である、N,N’-ビス(ベンゾ[b]ナフト[1,2-d]フラン-9-イル)-N,N’-ジフェニルナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10BnfA2Nbf(IV)-02)の合成方法について詳細に説明する。3,10BnfA2Nbf(IV)-02の構造式を以下に示す。
Figure 0007296953000064
<ステップ1:3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジメトキシナフタレンの合成>
500mL三口フラスコに11g(24mmol)の3,7-ジヨード-2,6-ジメトキシナフタレンと、14g(78mmol)の4-クロロ-2-フルオロフェニルボロン酸と、22g(0.16mol)の炭酸カリウムと、0.74g(2.4mmol)のトリス(2-メチルフェニル)ホスフィンを入れた。この混合物に、120mLのトルエンを加えた。この混合物を減圧しながら攪拌することで脱気した。この混合物に0.11g(0.49mmol)の酢酸パラジウム(II)を加え、窒素気流下、110℃で50.5時間攪拌した。
撹拌後、この混合物にトルエンを加え、フロリジール(和光純薬工業株式会社、カタログ番号:540-00135)、セライト(和光純薬工業株式会社、カタログ番号:531-16855)、アルミナを通して吸引ろ過し、濾液を得た。濾液を濃縮して固体を得た。
得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン:ヘキサン=1:1)で精製した。得られた固体を酢酸エチルで再結晶し、白色固体を5.7g、収率53%で得た。ステップ1の合成スキームを以下に示す。
Figure 0007296953000065
<ステップ2:3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジヒドロキシナフタレンの合成>
200mL三口フラスコに5.7g(13mmol)の3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジメトキシナフタレンを入れ、フラスコ内を窒素置換した。このフラスコに32mLのジクロロメタンを加えた。この溶液に28mL(28mmol)の三臭化ホウ素(約1.0mol/Lジクロロメタン溶液)と20mLのジクロロメタンを滴下した。滴下終了後、この溶液を窒素気流下、室温で終夜攪拌した。
攪拌後、この溶液に氷冷下で約20mLの水を加えて、攪拌した。攪拌後、有機層と水層を分離し水層をジクロロメタン、酢酸エチルで抽出した。抽出溶液と有機層を合わせて、飽和食塩水、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を硫酸マグネシウムにより水分を吸着させ、乾燥後この混合物を自然ろ過した。得られた濾液を濃縮し、白色固体を5.4g得た。ステップ2の合成スキームを以下に示す。
Figure 0007296953000066
<ステップ3:3,10-ジクロロナフト[2,3-b;6,7-b’]ビスベンゾフランの合成>
200mLの三口フラスコに5.4g(13mmol)の3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジヒドロキシナフタレンと7.1g(52mmol)の炭酸カリウムを入れた。この混合物に、N-メチル-2-ピロリドン130mLを加え、この混合物を減圧しながら攪拌することで脱気した。脱気後、この混合物を、窒素気流下、120℃で7時間攪拌した。撹拌後、この混合物に水を加え、析出した固体を濾取した。この固体を水、エタノールで洗浄した。洗浄した固体にエタノールを加え、加熱撹拌後、濾過し固体を得た。得られた固体に酢酸エチルを加え、加熱撹拌後、濾過して淡黄色固体を4.5g、収率92%で得た。ステップ3の合成スキームを以下に示す。
Figure 0007296953000067
<ステップ4:N,N’-ビス(ベンゾ[b]ナフト[1,2-d]フラン-9-イル)-N,N’-ジフェニルナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10BnfA2Nbf(IV)-02)の合成>
200mL三口フラスコに1.0g(2.7mmol)の3,10-ジクロロナフト[2,3-b;6,7-b’]ビスベンゾフランと、2.1g(6.8mmol)のN-フェニルベンゾ[b]ナフト[1,2-d]フラン-9-アミン、97mg(0.27mmol)のジ(1-アダマンチル)-n-ブチルホスフィン、1.6g(16mmol)のナトリウム tert-ブトキシド、30mLのキシレンを加えた。この混合物を、減圧しながら攪拌することで脱気した。この混合物に31mg(54μmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加え、窒素気流下、150℃で21時間攪拌した。
撹拌後、この混合物を濾過し、固体を得た。得られた固体を水、エタノールで洗浄した。この固体をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、固体を得た。得られた固体をトルエンで2回再結晶し、黄色固体を1.9g、収率74%で得た。
得られた固体1.2gをトレインサブリメーション法により昇華精製した。圧力2.4×10-2Pa、アルゴン流量0mL/minの条件で、390℃で加熱して行った。昇華精製後、黄色固体を0.6g、回収率45%で得た。ステップ4の合成スキームを以下に示す。
Figure 0007296953000068
得られた固体のH NMRデータを図16に、数値データを以下に示す。これにより、本合成例において、本発明の一態様の有機化合物である3,10BnfA2Nbf(IV)-02が得られたことがわかった。
H NMR(CDCl,500MHz):δ=7.13-7.18(m,4H),7.25-7.37(m,12H),7.47(d,J1=1.5Hz,2H),7.55(t,J1=8.5Hz,2H),7.69-7.74(m,4H),7.90(d,J1=9.0Hz,2H),7.95(d,J1=8.5Hz,2H),8.00(s,2H),8.04(d,J1=8.0Hz,2H),8.29(d,J1=9.0Hz,2H),8.40(s,2H),8.57(d,J1=8.0Hz,2H).
次に、3,10BnfA2Nbf(IV)-02のトルエン溶液の吸収スペクトルおよび発光スペクトルを測定した結果を図17に示す。また、3,10BnfA2Nbf(IV)-02の薄膜の吸収スペクトルおよび発光スペクトルを図18に示す。固体薄膜は石英基板上に真空蒸着法にて作製した。トルエン溶液の吸収スペクトルは、紫外可視分光光度計((株)日本分光製 V550型)を用いて測定し、トルエンのみを石英セルに入れて測定したスペクトルを差し引いて示した。また、薄膜の吸収スペクトルの測定には、分光光度計((株)日立ハイテクノロジーズ製 分光光度計U4100)を用いた。また、薄膜の発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。溶液の発光スペクトルと発光量子収率の測定には絶対PL量子収率測定装置((株)浜松ホトニクス製 Quantaurus-QY)を用いた。
図17より、3,10BnfA2Nbf(IV)-02のトルエン溶液は430nm、408nm、382nmに吸収ピークが見られ、発光波長のピークは446nm、472nm(励起波長405nm)であった。また、図18より、3,10BnfA2Nbf(IV)-02の薄膜は、436nm、416nm、389nm、285nmおよび257nmに吸収ピークが見られ、発光波長のピークは473nm、495nm(励起波長375nm)に見られた。この結果から、3,10BnfA2Nbf(IV)-02が青色に発光することを確認し、発光物質や可視領域の蛍光発光物質のホストとして利用可能であることがわかった。
また、トルエン溶液での発光量子収率を測定したところ、96%と非常に高く、発光材料として好適であることがわかった。
次に、本実施例で得られた3,10BnfA2Nbf(IV)-02を液体クロマトグラフ質量分析(Liquid Chromatography Mass Spectrometry,略称:LC/MS分析)によって分析した。
LC/MS分析は、サーモフィッシャーサイエンティフィック社製Ultimate3000により液体クロマトグラフィー(LC)分離を行い、サーモフィッシャーサイエンティフィック社製Q Exactiveにより質量分析(MS分析)を行った。
LC分離は、任意のカラムを用いてカラム温度は40℃とし、送液条件は溶媒を適宜選択し、サンプルは任意の濃度となるよう3,10BnfA2Nbf(IV)-02を有機溶媒に溶かして調整し、注入量は5.0μLとした。
並列反応モニタリング(Parallel Reaction Monitoring(PRM))法により、3,10BnfA2Nbf(IV)-02由来のイオンであるm/z=922.28のMS測定を行なった。PRMの設定は、ターゲットイオンの質量範囲をm/z=922.28±2.0(isolation window=4)とし、検出はポジティブモードで行った。コリジョンセル内でターゲットイオンを加速するエネルギーNCE(Normalized Collision Energy)を60として測定した。得られたMSスペクトルを図19に示す。
図19の結果から、3,10BnfA2Nbf(IV)-02は、主としてm/z=844、703、613、537、397、307付近にプロダクトイオンが検出されることがわかった。なお、図に示す結果は、3,10BnfA2Nbf(IV)-02に由来する特徴的な結果を示すものであることから、混合物中に含まれる3,10BnfA2Nbf(IV)-02を同定する上での重要なデータであるといえる。
なお、m/z=844付近のプロダクトイオンは、3,10BnfA2Nbf(IV)-02におけるフェニル基が離脱した状態のカチオンと推定され、3,10BnfA2Nbf(IV)-02が、フェニル基を含んでいることを示唆するものである。
なお、m/z=703付近のプロダクトイオンは、3,10BnfA2Nbf(IV)-02におけるベンゾ[b]ナフト[1,2-d]フラニル基が離脱した状態のカチオンと推定され、3,10BnfA2Nbf(IV)-02が、ベンゾ[b]ナフト[1,2-d]フラニル基を含んでいることを示唆するものである。
なお、m/z=613付近のプロダクトイオンは、3,10BnfA2Nbf(IV)-02におけるN-(ベンゾ[b]ナフト[1,2-d]フラン-9-イル)-N-フェニルアミノ基が離脱した状態のカチオンと推定され、3,10BnfA2Nbf(IV)-02が、N-(ベンゾ[b]ナフト[1,2-d]フラン-9-イル)-N-フェニルアミノ基を含んでいることを示唆するものである。
(合成例2)
本合成例では、本発明の一態様の有機化合物である、N,N’-ビス(ベンゾ[b]ナフト[2,1-d]フラン-9-イル)-N,N’-(ジフェニル)ナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10aBnfA2Nbf(IV)-02)の合成方法について詳細に説明する。3,10aBnfA2Nbf(IV)-02の構造式を以下に示す。
Figure 0007296953000069
<ステップ1:3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジメトキシナフタレンの合成>
実施例1の合成例1におけるステップ1と同様に合成した。
<ステップ2:3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジヒドロキシナフタレンの合成>
実施例1の合成例1におけるステップ2と同様に合成した。
<ステップ3:3,10-ジクロロナフト[2,3-b;6,7-b’]ビスベンゾフランの合成>
実施例1の合成例1におけるステップ3と同様に合成した。
<ステップ4:N,N’-ビス(ベンゾ[b]ナフト[2,1-d]フラン-9-イル)-N,N’-ジフェニルナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10aBnfA2Nbf(IV)-02)の合成>
200mL三口フラスコに0.84g(2.2mmol)の3,10-ジクロロナフト[2,3-b;6,7-b’]ビスベンゾフランと、1.7g(5.3mmol)のN-フェニルベンゾ[b]ナフト[2,1-d]フラン-9-アミン、80mg(0.22mmol)のジ(1-アダマンチル)-n-ブチルホスフィン、1.3g(13mmol)のナトリウム tert-ブトキシドを入れた。この混合物に、25mLのキシレンを加えた。この混合物を減圧しながら攪拌することで脱気した。この混合物に25mg(44μmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加え、窒素気流下、150℃で15時間攪拌した。
撹拌後、この混合物をろ過し、固体を回収した。回収した固体をエタノール、水で洗浄した。得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、固体を得た。
得られた固体をトルエンで2回再結晶し、黄色固体を1.6g、収率79%で得た。得られた固体1.2gをトレインサブリメーション法により昇華精製した。圧力2.4×10-2Pa、アルゴン流量0mL/minの条件で、400℃で加熱して行った。昇華精製後、黄色固体を0.95g、回収率81%で得た。ステップ4の合成スキームを以下に示す。
Figure 0007296953000070
得られた固体のH NMRデータを図20に、数値データを以下に示す。これにより、本合成例において、本発明の一態様の有機化合物である3,10aBnfA2Nbf(IV)-02が得られたことがわかった。
H NMR(CDCl,500MHz):δ=7.14-7.19(m,4H),7.26-7.39(m,12H),7.52(d,J1=1.5Hz,2H),7.57(t,J1=8.0Hz,2H),7.63(t,J1=8.0Hz,2H),7.82(d,J1=8.5Hz,2H),7.93-8.03(m,10H),8.35(d,J1=8.0Hz,2H),8.42(s,2H).
次に、3,10aBnfA2Nbf(IV)-02のトルエン溶液の吸収スペクトルおよび発光スペクトルを測定した結果を図21に、薄膜状態の吸収スペクトルおよび発光スペクトルを図22に示す。装置および測定方法については実施例1と同様であるため記載を省略する。
図21より、3,10aBnfA2Nbf(IV)-02のトルエン溶液は429nm、407nm、356nmに吸収ピークが見られ、発光波長のピークは445nm、472nm(励起波長408nm)。また、図22より、3,10aBnfA2Nbf(IV)-02の薄膜は、435nm、414nm、361nmおよび254nmに吸収ピークが見られ、発光波長のピークは474nm、502nm(励起波長410nm)に見られた。この結果から、3,10aBnfA2Nbf(IV)-02が青色に発光することを確認し、発光物質や可視領域の蛍光発光物質のホストとして利用可能であることがわかった。
また、トルエン溶液での発光量子収率を測定したところ、96%と非常に高く、発光材料として好適であることがわかった。
次に、本実施例で得られた3,10aBnfA2Nbf(IV)-02をLC/MS分析した。装置および測定方法については実施例1と同様であるため説明を省略する。得られたMSスペクトルを図23に示す。
図23の結果から、3,10aBnfA2Nbf(IV)-02は、主としてm/z=844、704、613、537、397、307付近にプロダクトイオンが検出されることがわかった。なお、図に示す結果は、3,10aBnfA2Nbf(IV)-02に由来する特徴的な結果を示すものであることから、混合物中に含まれる3,10aBnfA2Nbf(IV)-02を同定する上での重要なデータであるといえる。
なお、m/z=844付近のプロダクトイオンは、3,10aBnfA2Nbf(IV)-02におけるフェニル基が離脱した状態のカチオンと推定され、3,10aBnfA2Nbf(IV)-02が、フェニル基を含んでいることを示唆するものである。
なお、m/z=704付近のプロダクトイオンは、3,10aBnfA2Nbf(IV)-02におけるベンゾ[b]ナフト[2,1-d]フラニル基が離脱した状態のカチオンと推定され、3,10aBnfA2Nbf(IV)-02が、ベンゾ[b]ナフト[2,1-d]フラニル基を含んでいることを示唆するものである。
なお、m/z=613付近のプロダクトイオンは、3,10aBnfA2Nbf(IV)-02におけるN-(ベンゾ[b]ナフト[2,1-d]フラン-9-イル)-N-フェニルアミノ基が離脱した状態のカチオンと推定され、3,10aBnfA2Nbf(IV)-02が、N-(ベンゾ[b]ナフト[2,1-d]フラン-9-イル)-N-フェニルアミノ基を含んでいることを示唆するものである。
(合成例3)
本合成例では、本発明の一態様の有機化合物である、N,N’-ビス(ベンゾ[b]ナフト[2,3-d]フラン-3-イル)-N,N’-ジフェニルナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10Bnf(II)A2Nbf(IV)-02)の合成方法について詳細に説明する。3,10Bnf(II)A2Nbf(IV)-02の構造式を以下に示す。
Figure 0007296953000071
<ステップ1:3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジメトキシナフタレンの合成>
実施例1の合成例1におけるステップ1と同様に合成した。
<ステップ2:3,7-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジヒドロキシナフタレンの合成>
実施例1の合成例1におけるステップ2と同様に合成した。
<ステップ3:3,10-ジクロロナフト[2,3-b;6,7-b’]ビスベンゾフランの合成>
実施例1の合成例1におけるステップ3と同様に合成した。
<ステップ4:N,N’-ビス(ベンゾ[b]ナフト[2,3-d]フラン-3-イル)-N,N’-ジフェニルナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10Bnf(II)A2Nbf(IV)-02)の合成>
200mL三口フラスコに1.0g(2.7mmol)の3,10-ジクロロナフト[2,3-b;6,7-b’]ビスベンゾフランと、2.0g(6.5mmol)のN-フェニル-ベンゾ[b]ナフト[2,3-d]フラン-3-アミンと、97mg(0.27mmol)のジ(1-アダマンチル)-n-ブチルホスフィンと、1.6g(16mmol)のナトリウム tert-ブトキシドを入れた。この混合物に、30mLのキシレンを加え、減圧しながら攪拌することで脱気した。この混合物に31mg(54μmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加え、窒素気流下、150℃で22時間攪拌した。
撹拌後、この混合物をろ過し、固体を回収した。回収した固体をエタノール、水で洗浄した。得られた固体にトルエンを加え、加熱撹拌後、固体を回収した。再度同様の操作を行い、黄色固体を1.9g、収率77%で得た。ステップ4の合成スキームを以下に示す。
Figure 0007296953000072
得られた黄色固体のEI-MS測定(Electron Impact-Mass Spectrometry)を行った。イオン化には70eVの加速電子を用いた。質量スペクトルを図38に示す。なお、図38において、横軸はm/z(質量電荷比)を、縦軸は強度(任意単位)をそれぞれ表す。図38に示すスペクトルより、m/z=922が分子イオンに由来する。このことから、本合成例において、本発明の一態様の有機化合物である3,10Bnf(II)A2Nbf(IV)-02が得られたことがわかった。
(合成例4)
本合成例では、本発明の一態様の有機化合物である、N,N’-ジフェニル-N,N’-(7-フェニルベンゾ[c]カルバゾール-10-イル)ナフト[2,1-b;6,5-b’]ビスベンゾフラン-2,9-ジアミン(略称:2,9PcBCA2Nbf(III))の合成方法について詳細に説明する。2,9PcBCA2Nbf(III)の構造式を以下に示す。
Figure 0007296953000073
<ステップ1:1,5-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジヒドロキシナフタレンの合成>
500mL三口フラスコに6.2g(19mmol)の1,5-ジブロモ-2,6-ジヒドロキシナフタレンと、7.5g(43mmol)の5-クロロ-2-フルオロフェニルボロン酸と、25g(78mmol)の炭酸セシウムと、0.80g(1.9mmol)の2-ジシクロヘキシルホスフィノ-2’-6’-ジメトキシ-1,1’-ビフェニル(略称:SPhos)を入れた。この混合物に、195mLのトルエンを加えた。この混合物を減圧しながら攪拌することで脱気した。この混合物に0.17g(0.78mmol)の酢酸パラジウム(II)を加え、窒素気流下、110℃で7時間攪拌した。撹拌後、混合物にトルエンを加え、セライト(和光純薬工業株式会社、カタログ番号:531-16855)を通して吸引ろ過し、濾液を得た。得られた濾液を濃縮し固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(中性シリカゲル、展開溶媒:トルエン)で精製し、固体を得た。
得られた固体をトルエンで再結晶して白色固体を2.9g、収率35%で得た。ステップ1の合成スキームを以下に示す。
Figure 0007296953000074
<ステップ2:2,9-ジクロロナフト[2,1-b;6,5-b’]ビスベンゾフランの合成>
200mLの三口フラスコに2.8g(6.8mmol)の1,5-ビス(4-クロロ-2-フルオロフェニル)-2,6-ジヒドロキシナフタレンと、3.7g(27mmol)の炭酸カリウムを入れた。この混合物に、N-メチル-2-ピロリドン70mLを加え、この混合物を減圧しながら攪拌することで脱気した。脱気後、この混合物を、窒素気流下、120℃で7.5時間攪拌した。撹拌後、この混合物に水を加え、析出した固体を濾取した。この固体を水、エタノールで洗浄した。得られた固体にエタノールを加え、加熱撹拌後、固体を回収した。得られた固体にトルエンを加え、加熱撹拌後、析出した固体を回収し、白色固体を2.3g、収率91%で得た。ステップ2の合成スキームを以下に示す。
Figure 0007296953000075
<ステップ3:N,N’-ジフェニル-N,N’-(7-フェニルベンゾ[c]カルバゾール-10-イル)ナフト[2,1-b;6,5-b’]ビスベンゾフラン-2,9-ジアミン(略称:2,9PcBCA2Nbf(III))の合成>
200mL三口フラスコに0.88g(2.3mmol)の2,9-ジクロロナフト[2,1-b;6,5-b’]ビスベンゾフランと、2.2g(5.8mmol)のN-フェニル-N-(7-フェニル-7H-ベンゾ[c]カルバゾール-10-イル)アミン、83mg(0.23mmol)のジ(1-アダマンチル)-n-ブチルホスフィン、1.3g(14mmol)のナトリウム tert-ブトキシドを入れた。この混合物に、25mLのキシレンを加えた。この混合物を減圧しながら攪拌することで脱気した。この混合物に27mg(46μmol)のビス(ジベンジリデンアセトン)パラジウム(0)を加え、窒素気流下、150℃で10時間攪拌した。
撹拌後、この混合物にトルエンを加え、フロリジール、セライト、アルミナを通して吸引ろ過し、濾液を得た。得られた濾液を濃縮して油状物を得た。この油状物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン:ヘキサン=1:2、次いでトルエン:ヘキサン=2:3)で精製し、固体を得た。
得られた固体をトルエンで再結晶し、黄色固体を1.7g、収率68%で得た。ステップ3の合成スキームを以下に示す。
Figure 0007296953000076
得られた固体1.1gをトレインサブリメーション法により昇華精製した。圧力2.7×10-2Pa、アルゴン流量0mL/minの条件で、420℃で加熱して行った。昇華精製後、黄色固体を0.74g、回収率67%で得た。
得られた固体のH NMRデータを図39に、数値データを以下に示す。これにより、本合成例において、本発明の一態様の有機化合物である2,9PcBCA2Nbf(III)が得られたことがわかった。
H NMR(CDCl,300MHz):δ=7.01-7.07(m,2H),7.25-7.35(m,12H),7.39-7.44(m,4H),7.49-7.70(m,16H),7.83-7.89(m,4H),7.97(d,J1=8.4Hz,2H),8.25(d,J1=8.4Hz,2H),8.51-8.58(m,6H).
次に、2,9PcBCA2Nbf(III)のトルエン溶液の吸収スペクトルおよび発光スペクトルを測定した結果を図40に、薄膜状態の吸収スペクトルおよび発光スペクトルを図41に示す。装置および測定方法については実施例1と同様であるため記載を省略する。
測定結果より、2,9PcBCA2Nbf(III)のトルエン溶液は422nm、402nm、350nm、295nmに吸収ピークが見られ、発光波長のピークは445nm、473nm(励起波長399nm)であった。また、図より、2,9PcBCA2Nbf(III)の薄膜は、428nm、411nm、356nm、300nmおよび274nmに吸収ピークが見られ、発光波長のピークは527nm(励起波長415nm)に見られた。この結果から、2,9PcBCA2Nbf(III)が青色に発光することを確認し、発光物質や可視領域の蛍光発光物質のホストとして利用可能であることがわかった。
また、トルエン溶液での量子収率を測定したところ、91%と非常に高く、2,9PcBCA2Nbf(III)は発光材料として好適であることがわかった。
次に、本実施例で得られた2,9PcBCA2Nbf(III)のLC/MS分析を行った。装置および測定方法については実施例1と同様である部分は説明を省略する。PRMの設定は、ターゲットイオンの質量範囲をm/z=1072.38±2.0(isolation window=4)、NCEを60として測定した。得られたMSスペクトルを図42に示す。
図の結果から、2,9PcBCA2Nbf(III)は、主としてm/z=994、918、779、702、382、306付近にプロダクトイオンが検出されることがわかった。なお、図に示す結果は、2,9PcBCA2Nbf(III)に由来する特徴的な結果を示すものであることから、混合物中に含まれる2,9PcBCA2Nbf(III)を同定する上での重要なデータであるといえる。
なお、m/z=994付近のプロダクトイオンは、2,9PcBCA2Nbf(III)におけるフェニル基が離脱した状態のカチオンと推定され、2,9PcBCA2Nbf(III)が、フェニル基を含んでいることを示唆するものである。
なお、m/z=918付近のプロダクトイオンは、2,9PcBCA2Nbf(III)におけるフェニル基が2つ離脱した状態のカチオンと推定され、2,9PcBCA2Nbf(III)が、フェニル基を含んでいることを示唆するものである。
なお、m/z=779付近のプロダクトイオンは、2,9PcBCA2Nbf(III)における7-フェニル-7H-ベンゾ[c]カルバゾールが離脱した状態のカチオンと推定され、2,9PcBCA2Nbf(III)が、7-フェニル-7H-ベンゾ[c]カルバゾールを含んでいることを示唆するものである。
なお、m/z=382付近のプロダクトイオンは、2,9PcBCA2Nbf(III)におけるN-(7-フェニル-7H-ベンゾ[c]カルバゾール-10-イル)-N-フェニルナフト[2,1-b;6,5-b‘]ビスベンゾフラン-2-アミンが離脱した状態のカチオンと推定され、2,9PcBCA2Nbf(III)が、N-(7-フェニル-7H-ベンゾ[c]カルバゾール-10-イル)-N-フェニルナフト[2,1-b;6,5-b‘]ビスベンゾフラン-2-アミンを含んでいることを示唆するものである。
本実施例では、実施の形態で説明した本発明の一態様の発光素子である発光素子1および比較例の発光素子である比較発光素子1について詳細に説明する。発光素子1および比較発光素子1で用いた有機化合物の構造式を以下に示す。
Figure 0007296953000077
(発光素子1の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表される9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)と酸化モリブデン(VI)とを重量比4:2(=PCzPA:酸化モリブデン)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、PCzPAを30nm蒸着して正孔輸送層112を形成した。
続いて、上記構造式(ii)で表される7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式(iii)で表されるN,N’-ビス(ベンゾ[b]ナフト[1,2-d]フラン-9-イル)-N,N’-(ジフェニル)ナフト[2,3-b;6,7-b’]ビスベンゾフラン-3,10-ジアミン(略称:3,10BnfA2Nbf(IV)-02)とを重量比1:0.01(=cgDBCzPA:3,10BnfA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、cgDBCzPAを膜厚15nmとなるように蒸着し、上記構造式(iv)で表される2,9-ジ(2-ナフチル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して発光素子1を作製した。
(比較発光素子1の作製方法)
比較発光素子1は、発光素子1における発光層113に用いた3,10BnfA2Nbf(IV)-02を上記構造式(v)で表される3,10-ビス(ジフェニルアミノ)ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10DPhA2Nbf(IV))に変えて発光層113を形成し、また、cgDBCzPAを膜厚10nmとなるよう蒸着した後、上記構造式(vi)で表されるバソフェナントロリン(略称:BPhen)を膜厚15nmとなるように蒸着して電子輸送層114を形成することにより作製した。比較発光素子1で用いた3,10DPhA2Nbf(IV)と、発光素子1で用いた3,10BnfA2Nbf(IV)-02は、主骨格であるナフトビスベンゾフランの構造は同一であるが、結合するアミンの構造が異なる物質である。
発光素子1および比較発光素子1の素子構造を以下の表にまとめる。
Figure 0007296953000078
発光素子1および比較発光素子1を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光素子の初期特性について測定を行った。なお、測定は室温で行った。
発光素子1および比較発光素子1の輝度-電流密度特性を図24に、電流効率-輝度特性を図25に、輝度-電圧特性を図26に、電流-電圧特性を図27に、外部量子効率-輝度特性を図28に、発光スペクトルを図29に示す。また、輝度1000cd/m付近における素子特性を表2にまとめる。
Figure 0007296953000079
図24乃至図29及び表2より、発光素子1は、1000cd/mにおける外部量子効率が9.3%と良好な結果を示した。また、発光素子1は、比較発光素子1よりも効率の良好な発光素子であることがわかった。
また、電流値を2mAとし、電流密度一定の条件における駆動時間に対する輝度の変化を表すグラフを図30に示す。図30に示すように、発光素子1は、250時間駆動後にも初期輝度の90%以上を保っており、寿命の良好な発光素子であることがわかった。また、発光素子1は、比較発光素子1よりも寿命の良好な発光素子であることがわかった。
本実施例では、実施の形態で説明した本発明の一態様の発光素子である発光素子2および比較例の発光素子である比較発光素子2について詳細に説明する。発光素子2および比較発光素子2で用いた有機化合物の構造式を以下に示す。
Figure 0007296953000080
(発光素子2の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(vi)で表される3-[4-(9-フェナントリル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPPn)と酸化モリブデン(VI)とを重量比4:2(=PCPPn:酸化モリブデン)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、PCPPnを30nm蒸着して正孔輸送層112を形成した。
続いて、上記構造式(ii)で表される7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式(iii)で表されるN,N’-ビス(ベンゾ[b]ナフト[1,2-d]フラン-9-イル)-N,N’-(ジフェニル)ナフト[2,3-b;6,7-b’]ビスベンゾフラン-3,10-ジアミン(略称:3,10BnfA2Nbf(IV)-02)とを重量比1:0.01(=cgDBCzPA:3,10BnfA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、cgDBCzPAを膜厚15nmとなるように蒸着し、上記構造式(iv)で表される2,9-ジ(2-ナフチル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して本実施例の発光素子2を作製した。
(比較発光素子2の作製方法)
比較発光素子2は、発光素子2における発光層113に用いた3,10BnfA2Nbf(IV)-02を上記構造式(v)で表される3,10-ビス(ジフェニルアミノ)ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10DPhA2Nbf(IV))に変えて発光層113を形成し、また、cgDBCzPAを膜厚10nmとなるよう蒸着した後、上記構造式(vi)で表されるバソフェナントロリン(略称:BPhen)を膜厚15nmとなるように蒸着して電子輸送層114を形成することにより作製した。比較発光素子2で用いた3,10DPhA2Nbf(IV)と、発光素子2で用いた3,10BnfA2Nbf(IV)02は、主骨格であるナフトビスベンゾフランの構造は同一であるが、結合するアミンの構造が異なる物質である。
発光素子2および比較発光素子2の素子構造を以下の表にまとめる。
Figure 0007296953000081
発光素子2および比較発光素子2を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光素子の初期特性について測定を行った。なお、測定は室温で行った。
発光素子2および比較発光素子2の輝度-電流密度特性を図31に、電流効率-輝度特性を図32に、輝度-電圧特性を図33に、電流-電圧特性を図34に、外部量子効率-輝度特性を図35に、発光スペクトルを図36に示す。また、輝度1000cd/m付近における素子特性を表4にまとめる。
Figure 0007296953000082
図31乃至図36及び表4より、発光素子2は、1000cd/mにおける外部量子効率が11.9%と良好な特性を示す発光素子であることがわかった。また、発光素子2は、比較発光素子2よりも良好な効率で発光する素子であることもわかった。
また、電流値を2mAとし、電流密度一定の条件における駆動時間に対する輝度の変化を表すグラフを図37に示す。図37に示すように、発光素子2は、100時間駆動後にも初期輝度の90%以上を保っており、非常に寿命の良好な発光素子であることがわかった。また、発光素子2は比較発光素子2よりも寿命の良好な発光素子であることもわかった。
このことから、ベンゾナフトフラニル基を含むアミノ基を置換基としてもつ、本発明の一態様のナフトビスベンゾフラン化合物は、寿命が良好な材料であることがわかった。
本実施例では、実施の形態で説明した本発明の一態様の発光素子である発光素子3および比較例の発光素子である比較発光素子3について詳細に説明する。発光素子3および比較発光素子3で用いた有機化合物の構造式を以下に示す。
Figure 0007296953000083
(発光素子3の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(vi)で表される3-[4-(9-フェナントリル)フェニル]-9-フェニル-9H-カルバゾール(略称:PCPPn)と酸化モリブデン(VI)とを重量比4:2(=PCPPn:酸化モリブデン)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、PCPPnを30nm蒸着して正孔輸送層112を形成した。
続いて、上記構造式(ii)で表される7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式N,N’-ビス(ベンゾ[b]ナフト[2,1-d]フラン-9-イル)-N,N’-(ジフェニル)ナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10aBnfA2Nbf(IV)-02)とを重量比1:0.01(=cgDBCzPA:3,10aBnfA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、cgDBCzPAを膜厚15nmとなるように蒸着し、上記構造式(iv)で表される2,9-ジ(2-ナフチル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して本実施例の発光素子3を作製した。
(比較発光素子3の作製方法)
比較発光素子3は、発光素子3における発光層113に用いた3,10aBnfA2Nbf(IV)-02を上記構造式(v)で表される3,10-ビス(ジフェニルアミノ)ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10DPhA2Nbf(IV))に変えて発光層113を形成し、また、cgDBCzPAを膜厚10nmとなるよう蒸着した後、上記構造式(vi)で表されるバソフェナントロリン(略称:BPhen)を膜厚15nmとなるように蒸着して電子輸送層114を形成することにより作製した。比較発光素子3で用いた3,10DPhA2Nbf(IV)と、発光素子3で用いた3,10aBnfA2Nbf(IV)-02は、主骨格であるナフトビスベンゾフランの構造は同一であるが、結合するアミンの構造が異なる物質である。
発光素子3および比較発光素子3の素子構造を以下の表にまとめる。
Figure 0007296953000084
発光素子3および比較発光素子3を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光素子の初期特性について測定を行った。なお、測定は室温で行った。
発光素子3および比較発光素子3の輝度-電流密度特性を図43に、電流効率-輝度特性を図44に、輝度-電圧特性を図45に、電流-電圧特性を図46に、外部量子効率-輝度特性を図47に、発光スペクトルを図48に示す。また、輝度1000cd/m付近における素子特性を表6にまとめる。
Figure 0007296953000085
図43乃至図48及び表6より、発光素子3は、実用輝度である1000cd/m付近における外部量子効率が11.3%と良好な特性を示す発光素子であることがわかり、発光素子3は、比較発光素子3よりも良好な効率で発光する素子であることもわかった。
また、電流値を2mAとし、電流密度一定の条件における駆動時間に対する輝度の変化を表すグラフを図49に示す。図49に示すように、発光素子3は、100時間駆動後にも初期輝度の90%程度の輝度を保っており、非常に寿命の良好な発光素子であることがわかった。発光素子3は比較発光素子よりも寿命の良好な発光素子であることもわかった。
このことから、ベンゾナフトフラニル基を含むアミノ基を置換基としてもつ、本発明の一態様のナフトビスベンゾフラン化合物を用いた発光素子は、効率良く発光する発光素子とすることができ、且つ寿命が良好な発光素子であることがわかった。
本実施例では、実施の形態で説明した本発明の一態様の発光素子である発光素子4および比較例の発光素子である比較発光素子4について詳細に説明する。発光素子4および比較発光素子4で用いた有機化合物の構造式を以下に示す。
Figure 0007296953000086
(発光素子4の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(vi)で表される3-[4-(9-フェナントリル)フェニル]-9-フェニル-9H-カルバゾール(略称:PCPPn)と酸化モリブデン(VI)とを重量比4:2(=PCPPn:酸化モリブデン)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、PCPPnを30nm蒸着して正孔輸送層112を形成した。
続いて、上記構造式(ii)で表される7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式(ix)で表されるN,N’-ビス(ベンゾ[b]ナフト[2,3-d]フラン-3-イル)-N,N’-ジフェニルナフト[2,3-b;6,7-b’’]ビスベンゾフラン-3,10-ジアミン(略称:3,10Bnf(II)A2Nbf(IV)-02)とを重量比1:0.015(=cgDBCzPA:3,10Bnf(II)A2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、cgDBCzPAを膜厚15nmとなるように蒸着し、上記構造式(iv)で表される2,9-ジ(2-ナフチル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して本実施例の発光素子4を作製した。
(比較発光素子4の作製方法)
比較発光素子4は、発光素子4における発光層113に用いた3,10Bnf(II)A2Nbf(IV)-02を上記構造式(v)で表される3,10-ビス(ジフェニルアミノ)ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10DPhA2Nbf(IV))に変えて発光層113を形成し、また、cgDBCzPAを膜厚10nmとなるよう蒸着した後、上記構造式(vi)で表されるバソフェナントロリン(略称:BPhen)を膜厚15nmとなるように蒸着して電子輸送層114を形成することにより作製した。比較発光素子4で用いた3,10DPhA2Nbf(IV)と、発光素子4で用いた3,10Bnf(II)A2Nbf(IV)-02は、主骨格であるナフトビスベンゾフランの構造は同一であるが、結合するアミンの構造が異なる物質である。
発光素子4および比較発光素子4の素子構造を以下の表にまとめる。
Figure 0007296953000087
発光素子4および比較発光素子4を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光素子の初期特性について測定を行った。なお、測定は室温で行った。
発光素子4および比較発光素子4の輝度-電流密度特性を図50に、電流効率-輝度特性を図51に、輝度-電圧特性を図52に、電流-電圧特性を図53に、外部量子効率-輝度特性を図54に、発光スペクトルを図55に示す。また、輝度1000cd/m付近における素子特性を表8にまとめる。
Figure 0007296953000088
図50乃至図55及び表8より、発光素子4は、実用輝度である1000cd/m付近における外部量子効率が11.4%と良好な特性を示す発光素子であることがわかり、発光素子4は、比較発光素子4よりも良好な効率で発光する素子であることもわかった。
本実施例では、実施の形態で説明した本発明の一態様の発光素子である発光素子5について詳細に説明する。発光素子5で用いた有機化合物の構造式を以下に示す。
Figure 0007296953000089
(発光素子5の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、陽極101を形成した。なお、その膜厚は70nmとし、電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、抵抗加熱を用いた蒸着法により上記構造式(vi)で表される3-[4-(9-フェナントリル)フェニル]-9-フェニル-9H-カルバゾール(略称:PCPPn)と酸化モリブデン(VI)とを重量比4:2(=PCPPn:酸化モリブデン)となるように、10nm共蒸着して正孔注入層111を形成した。
次に、正孔注入層111上に、PCPPnを30nm蒸着して正孔輸送層112を形成した。
続いて、上記構造式(ii)で表される7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)と、上記構造式(x)で表されるN,N’-ジフェニル-N,N’-(7-フェニルベンゾ[c]カルバゾール-10-イル)ナフト[2,1-b;6,5-b’]ビスベンゾフラン-2,9-ジアミン(略称:2,9PcBCA2Nbf(III))とを重量比1:0.03(=cgDBCzPA:2,9PcBCA2Nbf(III))となるように25nm共蒸着して発光層113を形成した。
その後、発光層113上に、cgDBCzPAを膜厚15nmとなるように蒸着し、上記構造式(iv)で表される2,9-ジ(2-ナフチル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBPhen)を膜厚10nmとなるように蒸着し、電子輸送層114を形成した。
電子輸送層114を形成した後、フッ化リチウム(LiF)を膜厚1nmとなるように蒸着して電子注入層115を形成し、続いてアルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して本実施例の発光素子5を作製した。
発光素子5の素子構造を以下の表にまとめる。
Figure 0007296953000090
発光素子5を、窒素雰囲気のグローブボックス内において、発光素子が大気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、封止時にUV処理、80℃にて1時間熱処理)を行った後、これら発光素子の初期特性について測定を行った。なお、測定は室温で行った。
発光素子5の輝度-電流密度特性を図56に、電流効率-輝度特性を図57に、輝度-電圧特性を図58に、電流-電圧特性を図59に、外部量子効率-輝度特性を図60に、発光スペクトルを図61に示す。また、輝度1000cd/m付近における素子特性を表10にまとめる。
Figure 0007296953000091
図56乃至図61及び表10より、発光素子5は、輝度1000cd/m付近における外部量子効率が10.5%と良好な特性を示す発光素子であることがわかった。
101:陽極、102:陰極、103:EL層、111:正孔注入層、112:正孔輸送層、113:発光層、114:電子輸送層、115:電子注入層、116:電荷発生層、117:P型層、118:電子リレー層、119:電子注入バッファ層、400:基板、401:第1の電極、403:EL層、404:第2の電極、405:シール材、406:シール材、407:封止基板、412:パッド、420:ICチップ、501:第1の電極、502:第2の電極、503:EL層、511:第1の発光ユニット、512:第2の発光ユニット、513:電荷発生層、601:駆動回路部(ソース線駆動回路)、602:画素部、603:駆動回路部(ゲート線駆動回路)、604:封止基板、605:シール材、607:空間、608:配線、609:FPC(フレキシブルプリントサーキット)、610:素子基板、611:スイッチング用FET、612:電流制御用FET、613:第1の電極、614:絶縁物、616:EL層、617:第2の電極、618:発光素子、623:nチャネル型FET、624:pチャネル型FET、730:絶縁膜、770:平坦化絶縁膜、772:導電膜、782:発光素子、783:液滴吐出装置、784:液滴、785:層、786:発光物質を含む層、788:導電膜、901:筐体、902:液晶層、903:バックライトユニット、904:筐体、905:ドライバIC、906:端子、951:基板、952:電極、953:絶縁層、954:隔壁層、955:EL層、956:電極、1001 基板、1002 下地絶縁膜、1003 ゲート絶縁膜、1006 ゲート電極、1007 ゲート電極、1008 ゲート電極、1020 第1の層間絶縁膜、1021 第2の層間絶縁膜、1022 電極、1024W 発光素子の第1の電極、1024R 発光素子の第1の電極、1024G 発光素子の第1の電極、1024B 発光素子の第1の電極、1025 隔壁、1028 EL層、1029 陰極、1031 封止基板、1032 シール材、1033 透明な基材、1034R 赤色の着色層、1034G 緑色の着色層、1034B 青色の着色層、1035 黒色層(ブラックマトリックス)、1036 オーバーコート層、1037 第3の層間絶縁膜、1040 画素部、1041 駆動回路部、1042 周辺部、1400:液滴吐出装置、1402:基板、1403:液滴吐出手段、1404:撮像手段、1405:ヘッド、1406:点線、1407:制御手段、1408:記憶媒体、1409:画像処理手段、1410:コンピュータ、1411:マーカー、1412:ヘッド、1413:材料供給源、1414:材料供給源、1415:材料供給源、1416:ヘッド、2001:筐体、2002:光源、3001:照明装置、5000:表示領域、5001:表示領域、5002:表示領域、5003:表示領域、5004:表示領域、5005:表示領域、7101:筐体、7103:表示部、7105:スタンド、7107:表示部、7109:操作キー、7110:リモコン操作機、7201:本体、7202:筐体、7203:表示部、7204:キーボード、7205:外部接続ポート、7206:ポインティングデバイス、7210:第2の表示部、7401:筐体、7402:表示部、7403:操作ボタン、7404:外部接続ポート、7405:スピーカ、7406:マイク、9033:留め具、9034:スイッチ、9035:電源スイッチ、9036:スイッチ、9310:携帯情報端末、9311:表示パネル、9312:表示領域、9313:ヒンジ、9315:筐体、9630:筐体、9631:表示部、9631a:表示部、9631b:表示部、9632a:タッチパネル領域、9632b:タッチパネル領域、9633:太陽電池、9634:充放電制御回路、9635:バッテリー、9636:DCDCコンバータ、9637:操作キー、9638:コンバータ、9639:ボタン

Claims (13)

  1. 下記一般式(G1)で表される有機化合物。
    Figure 0007296953000092

    (但し、式中Bは置換または無置換のナフトビスベンゾフラン骨格、置換または無置換のナフトビスベンゾチオフェン骨格および置換または無置換のナフトベンゾチエノベンゾフラン骨格のいずれかである。また、Arは置換または無置換の炭素数6乃至25の芳香族炭化水素基、置換または無置換のジベンゾフラニル基、置換または無置換のジベンゾチオフェニル基、および置換または無置換のカルバゾリル基のいずれか一であり、前記置換または無置換のジベンゾフラニル基、前記置換または無置換のジベンゾチオフェニル基および前記置換または無置換のカルバゾリル基はベンゼン環が縮合した構造であってもよい。Aは置換または無置換の少なくとも1つのベンゼン環が縮合したジベンゾフラニル基、置換または無置換の少なくとも1つのベンゼン環が縮合したジベンゾチオフェニル基、および置換または無置換の少なくとも1つのベンゼン環が縮合したカルバゾリル基のいずれかである。また、α乃至αはそれぞれ独立に置換または無置換の炭素数6乃至25の二価の芳香族炭化水素基であり、l、m、nはそれぞれ独立に0乃至2の整数のいずれかを表し、qは1又は2である。)
  2. 下記一般式(G1)で表される有機化合物。
    Figure 0007296953000093

    (但し、式中Bは置換または無置換のナフトビスベンゾフラン骨格、置換または無置換のナフトビスベンゾチオフェン骨格および置換または無置換のナフトベンゾチエノベンゾフラン骨格のいずれかである。Arは置換もしくは無置換の炭素数6乃至25の芳香族炭化水素基または下記一般式(g1)乃至(g3)で表される基のいずれかであり、Aは下記一般式(g1)乃至(g3)で表される基のいずれかである。α乃至αはそれぞれ独立に置換または無置換の炭素数6乃至14の二価の芳香族炭化水素基のいずれかである。l、m、nはそれぞれ独立に0乃至2の整数のいずれかを表し、qは1または2である。)
    Figure 0007296953000094

    (一般式(g1)乃至(g3)において、R乃至Rは、そのいずれか1が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基のいずれかを表す。
    なお、Aは、R乃至Rのうち、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、並びにRおよびRの少なくとも一つの組み合わせにおいて縮合してベンゼン環を形成した構造を有する。また、Aが一般式(g3)で表され、且つ(g3)におけるRが単結合を表す場合、nは1または2であるものとする。
    また、Arが上記一般式(g1)乃至(g3)で表される基である場合、R乃至Rのうち、RおよびR、RおよびR、RおよびR、RおよびR、RおよびR、並びにRおよびRは、互いに縮合してベンゼン環を形成した構造であってもよい。また、Arが一般式(g3)で表され、かつ(g3)においてRが単結合を表す場合、mは1または2であるものとする。)
  3. 請求項1または請求項2において、
    前記Bが、下記一般式(B1)乃至一般式(B4)で表される骨格のいずれかである有機化合物。
    Figure 0007296953000095

    (但し、式中XおよびXはそれぞれ独立に酸素原子または硫黄原子を表す。なお、上記一般式(B1)において、R10乃至R21のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。また、上記一般式(B2)において、R30乃至R41のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。また、上記一般式(B3)において、R50乃至R61のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。また、上記一般式(B4)において、R70乃至R81のいずれか1または2が単結合を表し、残りがそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。)
  4. 請求項1乃至請求項3のいずれか一において、
    前記一般式(G1)におけるqが2である有機化合物。
  5. 請求項1または請求項2において、
    前記一般式(G1)におけるqが2であり、前記Bが、下記一般式(B1)乃至一般式(B4)で表される骨格のいずれかである有機化合物。
    Figure 0007296953000096

    (但し、式中XおよびXはそれぞれ独立に酸素原子または硫黄原子を表す。なお、上記一般式(B1)において、R12およびR18が単結合を表し、R10、R11、R13乃至R17、R19乃至R21がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。また、上記一般式(B2)において、R32およびR38が単結合を表し、R30、R31、R33乃至R37、R39乃至R41がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。また、上記一般式(B3)において、R52およびR58が単結合を表し、R50、R51、R53乃至R57、R59乃至R61がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。また、上記一般式(B4)において、R72およびR77が単結合を表し、R70、R71、R73乃至R76、R78乃至R81がそれぞれ独立に水素、炭素数1乃至10の炭化水素基、炭素数3乃至10の環式炭化水素基、置換または無置換の炭素数6乃至14の芳香族炭化水素基、置換または無置換の炭素数12乃至32のジアリールアミノ基のいずれかを表す。)
  6. 下記一般式(G1-1)で表される有機化合物。
    Figure 0007296953000097

    (但し上記一般式(G1-1)において、Bは下記一般式(B1-1)または(B3-1)を表す。Arは置換もしくは無置換の炭素数6乃至25の芳香族炭化水素基であり、Aは下記一般式(g0)で表される基である。mは0乃至2の整数を表す。αは置換または無置換の炭素数6乃至14の二価の芳香族炭化水素基である。)
    Figure 0007296953000098

    (但し、上記一般式(B1-1)または(B3-1)において、XおよびXはそれぞれ独立に酸素原子または硫黄原子を表す。R12、R18、R52およびR58は単結合を表す。)
    Figure 0007296953000099

    (但し、上記一般式(g0)において、Xは酸素原子または硫黄原子、または、置換もしくは無置換のフェニル基が結合した窒素原子である。また、R乃至Rのうち、Rは単結合を表し、RおよびR、RおよびR、RおよびR、並びにRおよびRは、その少なくとも一つの組み合わせにおいて縮合してベンゼン環を形成し、残りは水素原子を表す。)
  7. 請求項1乃至請求項6のいずれか一項において、
    分子量が1300以下である前記有機化合物。
  8. 下記構造式のいずれか一で表される有機化合物。
    Figure 0007296953000100

    Figure 0007296953000101

    Figure 0007296953000102

    Figure 0007296953000103
  9. 請求項1乃至請求項8のいずれか一項に記載の有機化合物を含む発光素子。
  10. 請求項9に記載の発光素子と、トランジスタ、または、基板と、を有する発光装置。
  11. 請求項10に記載の発光装置と、センサ、操作ボタン、スピーカ、または、マイクと、
    を有する電子機器。
  12. 請求項10に記載の発光装置と、筐体と、を有する照明装置。
  13. 請求項1乃至請求項8のいずれか一項に記載の有機化合物を含む電子デバイス。
JP2020517626A 2018-05-11 2019-04-30 有機化合物、発光素子、発光装置、電子機器、照明装置、及び電子デバイス Active JP7296953B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018092186 2018-05-11
JP2018092186 2018-05-11
PCT/IB2019/053511 WO2019215540A1 (ja) 2018-05-11 2019-04-30 有機化合物、発光素子、発光装置、電子機器、表示装置及び照明装置

Publications (3)

Publication Number Publication Date
JPWO2019215540A1 JPWO2019215540A1 (ja) 2021-07-15
JPWO2019215540A5 JPWO2019215540A5 (ja) 2022-04-28
JP7296953B2 true JP7296953B2 (ja) 2023-06-23

Family

ID=68467884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020517626A Active JP7296953B2 (ja) 2018-05-11 2019-04-30 有機化合物、発光素子、発光装置、電子機器、照明装置、及び電子デバイス

Country Status (5)

Country Link
US (1) US20210139445A1 (ja)
JP (1) JP7296953B2 (ja)
KR (1) KR20210008832A (ja)
CN (1) CN112424206A (ja)
WO (1) WO2019215540A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659440A (zh) * 2018-12-04 2019-04-19 惠科股份有限公司 发光器件
WO2023096426A1 (ko) * 2021-11-26 2023-06-01 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN116218285B (zh) * 2022-12-30 2023-10-03 广东普加福光电科技有限公司 一种蓝光吸收墨水、蓝光吸收涂层的制备方法和显示结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059147A (ja) 2008-07-14 2010-03-18 Gracel Display Inc 新規の有機電界発光化合物およびこれを使用する有機電界発光素子
JP2013232521A (ja) 2012-04-27 2013-11-14 Udc Ireland Ltd 有機電界発光素子、有機電界発光素子用材料並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置
WO2014092362A1 (ko) 2012-12-11 2014-06-19 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017030307A1 (ko) 2015-08-20 2017-02-23 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101900287B1 (ko) 2012-12-11 2018-09-19 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20230008239A (ko) * 2017-04-07 2023-01-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
US11618757B2 (en) * 2017-10-20 2023-04-04 Lg Chem, Ltd. Polycyclic compound and organic light emitting element comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059147A (ja) 2008-07-14 2010-03-18 Gracel Display Inc 新規の有機電界発光化合物およびこれを使用する有機電界発光素子
JP2013232521A (ja) 2012-04-27 2013-11-14 Udc Ireland Ltd 有機電界発光素子、有機電界発光素子用材料並びに該有機電界発光素子を用いた発光装置、表示装置及び照明装置
WO2014092362A1 (ko) 2012-12-11 2014-06-19 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017030307A1 (ko) 2015-08-20 2017-02-23 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Also Published As

Publication number Publication date
JPWO2019215540A1 (ja) 2021-07-15
US20210139445A1 (en) 2021-05-13
WO2019215540A1 (ja) 2019-11-14
CN112424206A (zh) 2021-02-26
KR20210008832A (ko) 2021-01-25

Similar Documents

Publication Publication Date Title
JP7143279B2 (ja) 発光素子用材料、発光材料、発光素子、発光装置、電子機器、及び照明装置
JP7278449B2 (ja) 発光素子、発光装置、電子機器、表示装置及び照明装置
US11985890B2 (en) Organic compound, light-emitting element, light-emitting device, electronic device, display device, and lighting device
JP6339749B1 (ja) 有機化合物、発光素子、発光装置、電子機器、照明装置、及び電子デバイス
JP7296953B2 (ja) 有機化合物、発光素子、発光装置、電子機器、照明装置、及び電子デバイス
JP7086944B2 (ja) 有機化合物、発光素子、発光装置、電子機器、照明装置および電子デバイス
JP2018131407A (ja) 発光素子、発光装置、電子機器及び照明装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230613

R150 Certificate of patent or registration of utility model

Ref document number: 7296953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150