JP7296120B2 - FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD - Google Patents

FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD Download PDF

Info

Publication number
JP7296120B2
JP7296120B2 JP2019223160A JP2019223160A JP7296120B2 JP 7296120 B2 JP7296120 B2 JP 7296120B2 JP 2019223160 A JP2019223160 A JP 2019223160A JP 2019223160 A JP2019223160 A JP 2019223160A JP 7296120 B2 JP7296120 B2 JP 7296120B2
Authority
JP
Japan
Prior art keywords
fastening
structural member
reinforcing fibers
fastener
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019223160A
Other languages
Japanese (ja)
Other versions
JP2021092274A (en
Inventor
哲也 森本
久弥 加藤
寿 熊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2019223160A priority Critical patent/JP7296120B2/en
Publication of JP2021092274A publication Critical patent/JP2021092274A/en
Application granted granted Critical
Publication of JP7296120B2 publication Critical patent/JP7296120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Connection Of Plates (AREA)
  • Insertion Pins And Rivets (AREA)

Description

本発明は、航空機などの構造物の構造部材を締結するのに好適な締結構造、構造部材、締結具、移動体及び締結方法に関する。 TECHNICAL FIELD The present invention relates to a fastening structure, a structural member, a fastener, a moving body, and a fastening method suitable for fastening structural members of structures such as aircraft.

航空機などの構造物の構造部材には、強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料が用いられる(特許文献1参照)。このような構造部材で構造物を構成する場合、接着による接合の信頼性が十分でないため、剥離の発生及び成長を抑制するよう、接着端部をボルトやリベットで締結する工法が多用される。 BACKGROUND ART Fiber-reinforced composite materials in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions are used for structural members of structures such as aircraft (see Patent Document 1). When constructing a structure using such structural members, since the reliability of bonding by bonding is not sufficient, a method of fastening bonded ends with bolts or rivets is often used in order to suppress the occurrence and growth of delamination.

特開2019-150953号公報JP 2019-150953 A

しかし、このような構造部材に円孔を開け、円断面のボルトやリベットで締結した場合に、強化繊維が直線状に配向している一層に着目してみると、せん断方向に負荷されたときに強化繊維を横向きに倒す力が円形の中心から荷重と直角方向に遠ざかるにつれて極度に増大していた。この結果、剛性が高く塑性変形できない複合材料では繊維の曲げ折れ、所謂微視的座屈(マイクロバックリング)が生じて荷重を支持する能力が大幅に減少し、荷重支持能力が損なわれてしまうことが課題として残されていた。 However, when a circular hole is made in such a structural member and it is fastened with a bolt or rivet with a circular cross section, if we focus on the single layer where the reinforcing fibers are oriented linearly, when a load is applied in the shear direction, In addition, the force that causes the reinforcing fibers to fall sideways increases extremely as the distance from the center of the circle increases in the direction perpendicular to the load. As a result, in a composite material that has high rigidity and cannot be plastically deformed, bending and breaking of fibers, so-called microscopic buckling (microbuckling) occurs, and the load-bearing capacity is greatly reduced and the load-bearing capacity is impaired. was left as an issue.

以上のような事情に鑑み、本発明の目的は、締結具から締結用の孔へのせん断負荷による孔付近の圧潰や繊維の座屈を回避することができる締結構造、構造部材、締結具、移動体及び締結方法を提供することにある。 In view of the circumstances as described above, the object of the present invention is to provide a fastening structure, structural member, fastener, It is to provide a moving body and a fastening method.

上記目的を達成するため、本発明に係る締結構造は、強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられた構造部材と、前記締結用の孔に係合する2×n角形の係合部を有する締結具とを具備する。 In order to achieve the above object, a fastening structure according to the present invention comprises a fiber-reinforced composite material in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions, and the number of orientation directions is n and a structural member provided with a fastening hole that is 2 × n square and each side of the 2 × n square is orthogonal to one of the reinforcing fibers in each of the layers; and a fastener having a 2 x n square engaging portion that engages the hole.

本発明では、荷重がかかった締結具から締結用の孔にかかる面圧は負荷方向に対して均一化する。これにより、締結具から締結用の孔へのせん断負荷による孔付近の圧潰や繊維の座屈を回避することができる。 In the present invention, the surface pressure applied from the loaded fastener to the fastening hole is made uniform in the loading direction. This makes it possible to avoid crushing near the holes and buckling of the fibers due to a shear load from the fastener to the fastening holes.

前記締結具は、前記締結用の孔の形状に対応して2×n角形の形状でかつ前記締結用の孔に実質的に係合するサイズの前記係合部としての多角形部と、ねじ部とを有するボルトを有し、前記ねじ部の最大直径は、前記締結用の孔の最小直径より小さく構成してもよい。 The fastener has a polygonal portion as the engaging portion that has a 2×n polygonal shape corresponding to the shape of the fastening hole and has a size that substantially engages with the fastening hole, and a screw. and a maximum diameter of the threaded portion may be smaller than the minimum diameter of the fastening hole.

複数の前記構造部材を相互の前記締結用の孔が連通するように重ね、前記締結具は、繊維強化複合材料からなり、連通する複数の前記締結用の孔に係合する2×n角形のリベットを有する構成としてもよい。 A plurality of structural members are stacked so that the fastening holes communicate with each other, and the fastener is made of a fiber-reinforced composite material and has a 2×n square shape that engages with the plurality of communicating fastening holes. It is good also as a structure which has a rivet.

前記締結用の孔は、正2×n角形であり、前記係合は、正2×n角形である構成としてもよい。 The fastening hole may be a regular 2×n square, and the engagement may be a regular 2×n square.

本発明に係る構造部材は、強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられている。この構造部材に用いられる、本発明に係る締結具は、前記締結用の孔に係合する2×n角形の係合部を有する。 The structural member according to the present invention is made of a fiber-reinforced composite material in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions, and when the number of orientation directions is n, 2 × n Fastening holes are provided which are square and each side of the 2×n square is orthogonal to one of the reinforcing fibers in each of the layers. The fastener according to the present invention used in this structural member has a 2×n-square engaging portion that engages with the fastening hole.

本発明に係る、航空機、ロケット、自動車、船舶等の移動体は、維強化複合材料からなる構造部材を用いた締結構造を有する移動体であって、前記締結構造は、強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられた前記構造部材と、前記締結用の孔に係合する2×n角形の係合部を有する締結具とを有する。 A moving body such as an aircraft, a rocket, an automobile, or a ship according to the present invention is a moving body having a fastening structure using a structural member made of a fiber-reinforced composite material. It is made of a fiber-reinforced composite material in which the layers to be oriented are laminated in different orientation directions, and is a 2 × n polygon when the number of orientation directions is n, and each side of the 2 × n polygon is It has the structural member provided with a fastening hole orthogonal to one of the reinforcing fibers of each of the layers, and a fastener having a 2×n square engaging portion that engages with the fastening hole. .

本発明に係る締結方法は、強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられた構造部材を準備し、前記締結用の孔に係合する2×n角形の係合部を有する締結具を、前記締結用の孔に係合し、かつ、被締結側に締結させるものである。 The fastening method according to the present invention comprises a fiber-reinforced composite material in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions, and when the number of orientation directions is n, 2 × n A structural member having a square shape and having fastening holes in which each side of the 2×n square is orthogonal to one of the reinforcing fibers in each of the layers is prepared, and engaged with the fastening holes. A fastener having a 2×n square engaging portion is engaged with the fastening hole and fastened to the side to be fastened.

本発明によれば、締結具から締結用の孔へのせん断負荷による孔付近の圧潰や繊維の座屈を回避することができる。 According to the present invention, it is possible to avoid crushing near the hole and buckling of the fibers due to shear load from the fastener to the fastening hole.

本発明の第1の実施形態に係る締結構造を示す平面図である。It is a top view showing the conclusion structure concerning a 1st embodiment of the present invention. 図1の断面A-Aを示す断面図である。FIG. 2 is a cross-sectional view showing a cross-section AA of FIG. 1; 図3は図2を分解して示した一部断面図である。FIG. 3 is a partial cross-sectional view showing FIG. 2 exploded. 疑似等方積層材[45/0/-45/90]2Sの構造の説明図である。FIG. 2 is an illustration of the structure of a pseudo-isotropic laminate [45/0/−45/90] 2S; 従来の締結構造の一例を示す概略的平面図である。FIG. 11 is a schematic plan view showing an example of a conventional fastening structure; 図5に対応する本実施形態に係る締結構造を示す概略的平面図である。FIG. 6 is a schematic plan view showing the fastening structure according to the present embodiment corresponding to FIG. 5; 本発明の第2の実施形態に係る締結構造を示す断面図である。It is a sectional view showing a fastening structure concerning a 2nd embodiment of the present invention. 航空機の主翼の構造の一例を示す図である。It is a figure which shows an example of the structure of the main wing of an aircraft. 図8に示したスパーとスキンとの連結に本発明に係る締結構造を適用した例を説明するための平面図(A)及び正面図(B)である。9 is a plan view (A) and a front view (B) for explaining an example in which the fastening structure according to the present invention is applied to the connection between the spar and the skin shown in FIG. 8; FIG.

以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1の実施形態に係る締結構造>
図1は本発明の第1の実施形態に係る締結構造を示す平面図、図2は図1の断面A-Aを示す断面図、図3は図2を分解して示した一部断面図である。
これらの図に示すように、締結構造1は、構造部材10と、構造部材20と、締結具30とを有する。
構造部材10は、繊維強化複合材料として炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)における代表的な疑似等方積層材[45/0/-45/90]2Sからなり、第1の層11、第2の層12、第3の層13及び第4の層14を積層した4層構造を有する(図4参照)。各層11~14は、それぞれ、強化繊維を直線状に配向し、配向する方向がそれぞれ異なる。水平面をZとしたとき、第1の層11の強化繊維の配向は水平面Zより90°をなし、第2の層12の強化繊維の配向は水平面Zより45°をなし、第3の層13の強化繊維の配向は水平面Zより0°をなし、第4の層14の強化繊維の配向は水平面Zより-45°をなしている。図1中各層11~14の表面に示された細線は、強化繊維の配向の方向を示している。
<Fastening structure according to the first embodiment>
1 is a plan view showing the fastening structure according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view showing the cross section AA of FIG. 1, and FIG. 3 is a partial cross-sectional view showing FIG. 2 exploded. is.
As shown in these figures, the fastening structure 1 has a structural member 10 , a structural member 20 and a fastener 30 .
The structural member 10 is made of a typical pseudo-isotropic laminated material [45/0/-45/90] 2S in carbon fiber reinforced plastics (CFRP: Carbon Fiber Reinforced Plastics) as a fiber reinforced composite material, and a first layer 11 , a second layer 12, a third layer 13 and a fourth layer 14 (see FIG. 4). Each of the layers 11 to 14 has reinforcing fibers linearly oriented, and the directions of orientation are different. When the horizontal plane is Z, the orientation of the reinforcing fibers of the first layer 11 is 90° from the horizontal plane Z, the orientation of the reinforcing fibers of the second layer 12 is 45° from the horizontal plane Z, and the third layer 13 The orientation of the reinforcing fibers of the fourth layer 14 is 0° from the horizontal plane Z, and the orientation of the reinforcing fibers of the fourth layer 14 is -45° from the horizontal plane Z. The fine lines shown on the surfaces of the layers 11 to 14 in FIG. 1 indicate the orientation directions of the reinforcing fibers.

構造部材10は、締結具30を構成するボルト31が挿通して係合する締結用の孔15が設けられている。孔15の形状は、円径ではなく、構造部材10の配向する方向の数をnとしたときに正2×n角形である。本実施形態では、構造部材10の配向する方向の数が4であるから、孔15は正8角形である。加えて、孔15の2×n角形の各辺は、各層11~14のうちいずれかの強化繊維と直交する。本実施形態では、8角形の孔15の辺15-1、15-5は第1の層11の強化繊維と直交し、辺15-2、15-6は第2の層12の強化繊維と直交し、辺15-3、15-7は第3の層13の強化繊維と直交し、辺15-4、15-8は第4の層14の強化繊維と直交している。孔15は典型的にはルーロー多角形断面ドリルを用いて8角形に穿孔する。 The structural member 10 is provided with a fastening hole 15 into which a bolt 31 constituting a fastener 30 is inserted and engaged. The shape of the hole 15 is not a circle, but a regular 2×n polygon where n is the number of directions in which the structural member 10 is oriented. In this embodiment, since the number of orientation directions of the structural member 10 is four, the hole 15 is a regular octagon. In addition, each side of the 2×n square of hole 15 is perpendicular to the reinforcing fibers of one of layers 11-14. In this embodiment, the sides 15-1 and 15-5 of the octagonal hole 15 are perpendicular to the reinforcing fibers of the first layer 11, and the sides 15-2 and 15-6 are perpendicular to the reinforcing fibers of the second layer 12. The sides 15-3 and 15-7 are perpendicular to the reinforcing fibers of the third layer 13, and the sides 15-4 and 15-8 are perpendicular to the reinforcing fibers of the fourth layer . Holes 15 are typically drilled octagonally using a Reuleaux polygonal section drill.

構造部材20は、例えば構造部材10を所定の位置に固定するための部材である。構造部材20は、ボルト31が螺着されるネジ孔21が設けられている。 The structural member 20 is, for example, a member for fixing the structural member 10 at a predetermined position. The structural member 20 is provided with a screw hole 21 into which a bolt 31 is screwed.

締結具30は、ボルト31と、ナット32とを有する。通常のボルトは、ヘッド部と、円筒部と、ねじ部とから構成されるが、本実施形態に係るボルト31は、ヘッド部31aと、円筒部でなく上記構造部材10の孔15の形状に対応して正8角形の形状でかつ孔15に実質的に係合するサイズの多角形部31bと、ねじ部31cとから構成される。ねじ部31cの最大直径は、構造部材10の孔15の最小直径より小さい。多角形部31bの長さは、構造部材10の厚さとほぼ等しい、乃至それ以上であることが好ましい。ボルト31の首下長さ(多角形部31b+ねじ部31c)は、構造部材10の厚さと構造部材20の厚さとナット32に高さとを加えた長さ以上であることが好ましい。 Fastener 30 has bolt 31 and nut 32 . A normal bolt is composed of a head portion, a cylindrical portion, and a threaded portion. Correspondingly, it comprises a polygonal portion 31b of regular octagonal shape and sized to substantially engage the hole 15, and a threaded portion 31c. The maximum diameter of threaded portion 31c is smaller than the minimum diameter of bore 15 of structural member 10 . The length of the polygonal portion 31b is preferably approximately equal to or greater than the thickness of the structural member 10. As shown in FIG. The length under the neck of the bolt 31 (polygonal portion 31b + threaded portion 31c) is preferably equal to or greater than the sum of the thickness of the structural member 10, the thickness of the structural member 20, and the height of the nut 32.

締結構造1では、締結具30を使って構造部材10と構造部材20とを以下のとおり締結する。 In the fastening structure 1, the fastener 30 is used to fasten the structural member 10 and the structural member 20 as follows.

作業者は、構造部材20のネジ孔21と構造部材10の締結用の孔15とが連通するように、構造部材10を構造部材20に重ねる。 The operator stacks the structural member 10 on the structural member 20 so that the screw holes 21 of the structural member 20 and the fastening holes 15 of the structural member 10 communicate with each other.

作業者は、孔15にボルト31を挿入し、さらにネジ孔21に螺着し、構造部材20より突き出し、ボルト31の突き出した先端側よりボルト31にナット32を螺着する。 The operator inserts the bolt 31 into the hole 15 , further screws it into the screw hole 21 , protrudes from the structural member 20 , and screws a nut 32 onto the bolt 31 from the protruding tip side of the bolt 31 .

図5は従来の締結構造の一例を示し、図6はこれに対応する本実施形態に係る締結構造を示している。 FIG. 5 shows an example of a conventional fastening structure, and FIG. 6 shows a corresponding fastening structure according to the present embodiment.

図5に示すように、構造部材10'に円形の孔15'が設けられ、孔15'に断面円形のボルト31'が挿入されている従来の場合、ボルト31'の外周面が構造部材10'の各層の強化繊維18'と大きな角度で局所的に接する箇所が生じてしまう。この場合、例えばボルト31'にかかるせん断負荷の方向が強化繊維18'の方向と直交する方向Fのとき、強化繊維18'を横向きになぎ倒す大きな荷重が生じ(図中A)、強化繊維18'の曲げや折れが発生する。また、例えばボルト31'にかかるせん断負荷の方向が強化繊維18'の方向と同じ方向Fのとき、強化繊維18'を座屈させる荷重が生じ(図中A)、強化繊維18'の曲げが発生する。このような強化繊維の曲げや折れによって、構造部材10'の孔15'が塑性変形し、荷重支持能力が損なわれる。 As shown in FIG. 5, in the conventional case where a structural member 10' is provided with a circular hole 15' and a bolt 31' having a circular cross section is inserted into the hole 15', the outer peripheral surface of the bolt 31' is the structural member 10'. ', there will be a portion that is locally in contact with the reinforcing fibers 18' of each layer of ' at a large angle. In this case, for example, when the direction of the shear load applied to the bolt 31' is the direction F1 perpendicular to the direction of the reinforcing fiber 18', a large load ( A1 in the drawing) that knocks over the reinforcing fiber 18' is generated, causing the reinforcing fiber 18' bends and creases occur. Further, for example, when the direction of the shear load applied to the bolt 31' is the same direction F2 as the direction of the reinforcing fiber 18', a load that buckles the reinforcing fiber 18' is generated (A 2 in the figure), and the reinforcing fiber 18' Bending occurs. Such bending or breaking of the reinforcing fibers causes plastic deformation of the holes 15' of the structural member 10', impairing the load bearing capacity.

これに対して、図6に示すように、本実施形態に係る締結構造1の場合、ボルト31の外周面が構造部材10の各層の強化繊維18と大きな角度で局所的に接する箇所はなく、強化繊維18の方向とは所定の辺で均一に接触する。この場合、例えばボルト31にかかるせん断負荷の方向が強化繊維18の方向と直交する方向Fのとき、強化繊維18には局所的な荷重がかからず強化繊維18を横向きになぎ倒す大きな荷重が生じない(図中A)。従って、強化繊維18の曲げや折れが発生し難くなる。また、例えばボルト31にかかるせん断負荷の方向が強化繊維18の方向と同じ方向Fのとき、強化繊維18がボルト31の所定の辺で均一に接触するので、強化繊維18を座屈させる荷重が生じ難くなる(図中A)。従って、強化繊維18の曲げが発生し難くなる。よって、構造部材10の孔15が塑性変形し難くなり、荷重支持能力の低下を抑えることが可能となる。 On the other hand, as shown in FIG. 6, in the case of the fastening structure 1 according to the present embodiment, the outer peripheral surface of the bolt 31 does not locally contact the reinforcing fibers 18 of each layer of the structural member 10 at a large angle. In the direction of the reinforcing fibers 18, the predetermined sides are uniformly in contact with each other. In this case, for example, when the direction of the shear load applied to the bolt 31 is the direction F1 perpendicular to the direction of the reinforcing fibers 18, no local load is applied to the reinforcing fibers 18, and a large load that knocks over the reinforcing fibers 18 sideways is applied. does not occur (A 1 in the figure). Therefore, the reinforcing fibers 18 are less likely to be bent or broken. Further, for example, when the direction of the shear load applied to the bolt 31 is the same direction F2 as the direction of the reinforcing fiber 18, the reinforcing fiber 18 uniformly contacts with a predetermined side of the bolt 31, so the load that causes the reinforcing fiber 18 to buckle becomes difficult to occur (A 2 in the figure). Therefore, bending of the reinforcing fibers 18 is less likely to occur. Therefore, the holes 15 of the structural member 10 are less likely to be plastically deformed, and it is possible to suppress the deterioration of the load bearing capacity.

これにより、締結箇所における、せん断負荷に伴う繊維強化複合材料の圧潰や繊維の座屈を回避することができる。 This makes it possible to avoid crushing of the fiber-reinforced composite material and buckling of the fibers due to shear load at the fastening point.

また、繊維強化複合材料の孔側面が潰れないため「がたつき」がなく、長期寿命が改善する。 In addition, since the side surfaces of the holes of the fiber-reinforced composite material are not crushed, there is no rattling, and the long-term life is improved.

さらに、孔面側が潰れ難いため公差が緩やかなボルトを押し込んでよく、公差管理に要するコストを削減できる。 Furthermore, since the hole surface side is less likely to be crushed, bolts with loose tolerances can be pushed in, and the cost required for tolerance control can be reduced.

<第2の実施形態に係る締結構造>
図7は、本発明の第2の実施形態に係る締結構造を示す断面図である。
図7に示すように、締結構造101は、構造部材110と、構造部材120と、締結具130とを有する。
構造部材110及び120は、それぞれ、繊維強化複合材料からなる疑似等方積層材[45/0/-45/90]2Sからなる(図4参照)。
<Fastening structure according to the second embodiment>
FIG. 7 is a cross-sectional view showing a fastening structure according to a second embodiment of the invention.
As shown in FIG. 7 , the fastening structure 101 has a structural member 110 , a structural member 120 and a fastener 130 .
Structural members 110 and 120 each consist of a quasi-isotropic laminate [45/0/-45/90] 2S of fiber reinforced composite material (see FIG. 4).

構造部材110及び120は、それぞれ、締結具130を構成するリベット131が挿通して係合する締結用の孔115、125が設けられている。孔115、125の形状及び大きさは等しく、それぞれ、正8角形であり、かつ、孔115、125の各辺は、それぞれ、各層のうちいずれかの強化繊維と直交する。孔115の開口端には、切り欠き116が設けられている。 Structural members 110 and 120 are provided with fastening holes 115 and 125, respectively, through which rivets 131 constituting fastener 130 are inserted and engaged. The holes 115 and 125 have the same shape and size, each being a regular octagon, and each side of the holes 115 and 125 is perpendicular to one of the reinforcing fibers in each layer. A notch 116 is provided at the open end of the hole 115 .

締結具130は、リベット131と、楔132とを有する。リベット131は、繊維強化複合材料からなるCFRP一方向材製棒であり、上記構造部材110、120の孔115、125の形状に対応して正8角形の形状でかつ孔115、125に実質的に係合するサイズである。 Fastener 130 has rivet 131 and wedge 132 . The rivet 131 is a CFRP unidirectional rod made of a fiber-reinforced composite material, and has a regular octagonal shape corresponding to the shape of the holes 115 and 125 of the structural members 110 and 120, and substantially fills the holes 115 and 125. It is sized to engage with

接着剤133は、リベット131と孔115、125との間及び切り欠き116による空間に充填される。 The adhesive 133 fills the spaces between the rivets 131 and the holes 115 and 125 and the spaces formed by the notches 116 .

締結構造101では、リベット131を使って構造部材110と構造部材120とを以下のとおり締結する。 In fastening structure 101, rivets 131 are used to fasten structural member 110 and structural member 120 as follows.

作業者は、構造部材120の孔125と構造部材110の締結用の孔115とが連通するように、構造部材110と構造部材120とを重ねる。構造部材110の切り欠き116は構造部材120と接する側と反対の側に位置するようにする。 The operator stacks the structural member 110 and the structural member 120 so that the hole 125 of the structural member 120 and the fastening hole 115 of the structural member 110 communicate with each other. The notch 116 of the structural member 110 is located on the side opposite to the side in contact with the structural member 120 .

作業者は、リベット131の表面に接着剤133を塗布し、孔115にリベット131を挿入し、さらに孔125に挿入し、構造部材120より突き出させる。 An operator applies an adhesive 133 to the surface of the rivet 131 , inserts the rivet 131 into the hole 115 , further inserts it into the hole 125 , and protrudes from the structural member 120 .

構造部材110の表面及び構造部材120の表面より突き出るリベット131を切断し、構造部材110の表面及び構造部材120の表面を平らにする。 Rivets 131 protruding from the surface of the structural member 110 and the surface of the structural member 120 are cut, and the surface of the structural member 110 and the surface of the structural member 120 are flattened.

構造部材110の表面に露出するリベット131の切断面に楔132を打ち込み、切り欠き116による空間に接着剤133を充填し、接着剤133の硬化を待つ。 A wedge 132 is driven into the cut surface of the rivet 131 exposed on the surface of the structural member 110, the space defined by the notch 116 is filled with the adhesive 133, and the curing of the adhesive 133 is waited.

以上により構造部材110と構造部材120とが強固に締結される。 As described above, the structural member 110 and the structural member 120 are firmly fastened.

<航空機への適用例>
図8に示すように、航空機の主翼201はスパン方向に延びる複数のスパー202に、コード方向に延びる複数のリブ203を所定の間隔で固定し、それらのスパー202及びリブ203の表裏をスキン204で覆った構造を有する。
<Example of application to aircraft>
As shown in FIG. 8, a main wing 201 of an aircraft has a plurality of spars 202 extending in the span direction and a plurality of ribs 203 extending in the chord direction fixed at predetermined intervals. It has a structure covered with

スパー202は、例えば、繊維強化複合材料からなる疑似等方積層材[45/0/-45/90]2Sが用いられる。スパー202は翼端205でスキン204と連結される。 The spar 202 uses, for example, a pseudo-isotropic laminate [45/0/-45/90] 2S made of a fiber-reinforced composite material. Spar 202 is connected with skin 204 at wing tip 205 .

図9はスパー202とスキン204との連結に本発明に係る締結構造を適用した例を示す。
図9に示すように、スパー202の先端部はフランジ部202aを有する。フランジ部202aは同様に繊維強化複合材料からなる疑似等方積層材[45/0/-45/90]2Sである。フランジ部202aには、第1の実施形態に係る締結構造1で示したものと同様の正8角形の孔15が複数設けられている。スキン204にもこれらの孔15に対応する位置に正8角形のネジ孔(図示せず。第1の実施形態に係る締結構造1で示したネジ孔21と同様のもの)が設けられている。孔15にボルト(図示せず。第1の実施形態に係る締結構造1で示したボルト31と同様のもの)を挿入し、さらにスキン204のネジ孔に螺着し、スキン204より突き出し、ボルトの突き出した先端側よりボルトにナット(図示せず。第1の実施形態に係る締結構造1で示したナット32と同様のもの)を螺着する。
FIG. 9 shows an example of applying the fastening structure according to the present invention to the connection between the spar 202 and the skin 204. As shown in FIG.
As shown in FIG. 9, the tip of the spar 202 has a flange portion 202a. The flange portion 202a is a quasi-isotropic laminate [45/0/-45/90] 2S, also made of a fiber-reinforced composite material. A plurality of regular octagonal holes 15 similar to those shown in the fastening structure 1 according to the first embodiment are provided in the flange portion 202a. The skin 204 is also provided with regular octagonal screw holes (not shown, similar to the screw holes 21 shown in the fastening structure 1 according to the first embodiment) at positions corresponding to these holes 15 . . A bolt (not shown; similar to the bolt 31 shown in the fastening structure 1 according to the first embodiment) is inserted into the hole 15, screwed into the screw hole of the skin 204, projected from the skin 204, and bolt A nut (not shown, the same as the nut 32 shown in the fastening structure 1 according to the first embodiment) is screwed onto the bolt from the projecting tip side of the bolt.

これ以外にも航空機は、強固にして軽量な繊維強化複合材料を使った構造部材が多用される。これらの構造部材の締結に本発明に係る締結構造を適用できる。また、航空機以外のロケットや自動車などの移動体にも本発明に係る締結構造を適用できる。 In addition to this, aircraft use a lot of structural members using strong and lightweight fiber-reinforced composite materials. The fastening structure according to the present invention can be applied to fastening these structural members. Moreover, the fastening structure according to the present invention can also be applied to mobile objects other than aircraft such as rockets and automobiles.

<その他>
本発明は、上記の実施形態には限定されず、その技術思想の範囲内で様々な変形や応用も可能である。そのような変形や応用しての実施も本発明の技術的範囲に属する。
<Others>
The present invention is not limited to the above-described embodiments, and various modifications and applications are possible within the scope of its technical concept. Such modifications and application implementations also belong to the technical scope of the present invention.

上記の実施形態では、構造部材の繊維強化複合材料が疑似等方積層材[45/0/-45/90]2Sである場合を例にとり説明したが、他の積層材にも本発明を適用できる。 In the above embodiment, the case where the fiber-reinforced composite material of the structural member is the pseudo-isotropic laminate [45/0/-45/90] 2S has been described as an example, but the present invention can also be applied to other laminates. can.

例えば、0°、±60°積層材にも本発明を適用できる。0°、±60°積層材は、第1の層、第2の層及び第3の層の3層構造を有し、各層は、それぞれ、強化繊維を直線状に配向し、配向する方向がそれぞれ異なり、第1の層の強化繊維の配向は水平面より60°をなし、第2の層の強化繊維の配向は水平面より0°をなし、第3の層の強化繊維の配向は水平面より-60°をなしている。この場合に、ボルトの多角形部は正6角形とすればよい。また、0°、90°積層材にも本発明を適用できる。0°、90°積層材は、第1の層及び第2の層の2層構造を有し、各層は、それぞれ、強化繊維を直線状に配向し、配向する方向がそれぞれ異なり、第1の層の強化繊維の配向は水平面より90°をなし、第2の層の強化繊維の配向は水平面より0°をなしている。この場合に、ボルトの多角形部は正4角形とすればよい。勿論、本発明はこれ以外の繊維強化複合材料からなる積層材にも適用できる。 For example, the present invention can also be applied to 0° and ±60° laminated materials. The 0°, ±60° laminated material has a three-layer structure of a first layer, a second layer, and a third layer, and each layer linearly orients reinforcing fibers, and the direction of orientation is Differently, the orientation of the reinforcing fibers in the first layer is 60° from the horizontal plane, the orientation of the reinforcing fibers in the second layer is 0° from the horizontal plane, and the orientation of the reinforcing fibers in the third layer is - 60°. In this case, the polygonal portion of the bolt should be a regular hexagon. The present invention can also be applied to 0° and 90° laminated materials. The 0° and 90° laminates have a two-layer structure of a first layer and a second layer, and each layer has reinforcing fibers linearly oriented and the directions of orientation are different. The orientation of the reinforcing fibers of the layer is 90° from the horizontal plane, and the orientation of the reinforcing fibers of the second layer is 0° from the horizontal plane. In this case, the polygonal portion of the bolt should be a regular quadrangle. Of course, the present invention can also be applied to laminated materials made of other fiber-reinforced composite materials.

また、上記の実施形態では、構造部材の孔の形状を正8角形等の正2×n角形としていたが、8角形等の2×n角形であっても構わない。 Further, in the above embodiment, the shape of the hole of the structural member is a regular 2×n polygon such as a regular octagon, but it may be a 2×n polygon such as an octagon.

上記の実施形態では、締結具としてボルトやリベットを用いた例を説明したが、鋲螺、釘などのファスナー類全般に本発明を適用することができる。 In the above-described embodiments, examples using bolts and rivets as fasteners have been described, but the present invention can be applied to general fasteners such as rivets and nails.

上記の実施形態では、構造部材の繊維強化複合材料として炭素繊維強化プラスチックを用いていたが、ガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)を用いた場合にも本発明を適用できる。
なお、本発明において用いる繊維強化複合材料は、強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料である。ここで、直線状の配向とは、実施形態として図示したような配向方向が一方向のみである場合に限定されない。繊維強化複合材料は、微視的にみると配向方向に多少のばらつきを有する。従って直線状の配向には、配向方向の平均値が一方向である場合も含まれる。繊維強化複合材料の微視的な配向方向は、X線を用いた透視画像や、X線CT、光学顕微鏡等によって確認することができる。
In the above embodiments, carbon fiber reinforced plastic is used as the fiber reinforced composite material of the structural members, but the present invention can also be applied when glass fiber reinforced plastics (GFRP) is used.
The fiber-reinforced composite material used in the present invention is a fiber-reinforced composite material in which layers in which reinforcing fibers are linearly oriented are laminated in different directions. Here, the linear orientation is not limited to the case where the orientation direction is only one direction as illustrated in the embodiment. Microscopically, the fiber-reinforced composite material has some variation in the orientation direction. Therefore, linear orientation includes the case where the average value of the orientation directions is in one direction. The microscopic orientation direction of the fiber-reinforced composite material can be confirmed by a transparent image using X-rays, an X-ray CT, an optical microscope, or the like.

本発明は、航空機以外に、繊維強化複合材料を使用するあらゆる分野で使用可能であり、例えばFRPを使用する輸送機器、製造業、メンテナンス、修理、オーバーホールなどの現場で利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in all fields other than aircraft where fiber-reinforced composite materials are used, such as transportation equipment using FRP, manufacturing, maintenance, repair, and overhaul.

1 :締結構造
10 :構造部材
15 :孔
15-1~15-8 :辺
18 :強化繊維
20 :構造部材
30 :締結具
31 :ボルト
31b :多角形部
31c :ねじ部
101 :締結構造
110 :構造部材
115 :孔
120 :構造部材
125 :孔
130 :締結具
131 :リベット
1: Fastening structure 10: Structural member 15: Holes 15-1 to 15-8: Side 18: Reinforcing fiber 20: Structural member 30: Fastener 31: Bolt 31b: Polygonal portion 31c: Screw portion 101: Fastening structure 110: Structural member 115 : Hole 120 : Structural member 125 : Hole 130 : Fastener 131 : Rivet

Claims (8)

強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられた構造部材と、
前記締結用の孔に係合する2×n角形の係合部を有する締結具と
を具備する締結構造。
Composed of a fiber-reinforced composite material in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions, and are 2 × n squares when the number of orientation directions is n, and the 2 × a structural member provided with a fastening hole in which each side of the n-sided polygon is orthogonal to one of the reinforcing fibers in each of the layers;
A fastening structure comprising: a fastener having a 2×n square engaging portion that engages with the fastening hole.
請求項1に記載の締結構造であって、
前記締結具は、前記締結用の孔の形状に対応して2×n角形の形状でかつ前記締結用の孔に実質的に係合するサイズの前記係合部としての多角形部と、ねじ部とを有するボルトを有し、
前記ねじ部の最大直径は、前記締結用の孔の最小直径より小さい
締結構造。
The fastening structure according to claim 1,
The fastener has a polygonal portion as the engaging portion that has a 2×n polygonal shape corresponding to the shape of the fastening hole and has a size that substantially engages with the fastening hole, and a screw. a bolt having a portion and
The fastening structure, wherein the maximum diameter of the threaded portion is smaller than the minimum diameter of the fastening hole.
請求項1に記載の締結構造であって、
複数の前記構造部材を相互の前記締結用の孔が連通するように重ね、
前記締結具は、繊維強化複合材料からなり、連通する複数の前記締結用の孔に係合する2×n角形のリベットを有する
締結構造。
The fastening structure according to claim 1,
stacking a plurality of structural members such that the fastening holes communicate with each other;
The fastener is made of a fiber-reinforced composite material and has a 2×n square rivet that engages with the plurality of communicating fastening holes.
請求項1乃至3に記載の締結構造であって、
前記締結用の孔は、正2×n角形であり、
前記係合部は、正2×n角形である
締結構造。
The fastening structure according to any one of claims 1 to 3,
The fastening hole is a regular 2×n polygon,
The fastening structure, wherein the engaging portion is a regular 2×n polygon.
強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられた構造部材。 Composed of a fiber-reinforced composite material in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions, and are 2 × n squares when the number of orientation directions is n, and the 2 × A structural member provided with a fastening hole in which each side of an n-sided polygon is orthogonal to one of the reinforcing fibers in each of the layers. 請求項5に記載の構造部材に用いられる締結具であって、
前記締結用の孔に係合する2×n角形の係合部を有する締結具。
A fastener for use in the structural member of claim 5, comprising:
A fastener having a 2×n square engaging portion that engages with the fastening hole.
維強化複合材料からなる構造部材を用いた締結構造を有する移動体であって、
前記締結構造は、強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられた前記構造部材と、前記締結用の孔に係合する2×n角形の係合部を有する締結具とを有する
移動体。
A moving body having a fastening structure using a structural member made of a fiber-reinforced composite material,
The fastening structure is made of a fiber-reinforced composite material in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions, and is a 2 × n square when the number of orientation directions is n, and the structural member provided with a fastening hole in which each side of the 2×n polygon is orthogonal to one of the reinforcing fibers in each of the layers, and the 2×n polygon that engages with the fastening hole. and a fastener having an engaging portion.
強化繊維が直線状に配向する層を、配向する方向が異なるように積層した繊維強化複合材料からなり、前記配向する方向の数をnとしたときに2×n角形で、かつ、前記2×n角形の各辺が各前記層のうちいずれかの強化繊維と直交する締結用の孔が設けられた構造部材を準備し、
前記締結用の孔に係合する2×n角形の係合部を有する締結具を、前記締結用の孔に係合し、かつ、被締結側に締結させる
締結方法。
Composed of a fiber-reinforced composite material in which layers in which reinforcing fibers are oriented linearly are laminated in different orientation directions, and are 2 × n squares when the number of orientation directions is n, and the 2 × preparing a structural member provided with a fastening hole in which each side of the n-sided polygon is orthogonal to one of the reinforcing fibers in each of the layers;
A fastening method comprising: engaging a fastener having a 2×n-square engaging portion that engages with the fastening hole and fastening it to the fastening side.
JP2019223160A 2019-12-10 2019-12-10 FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD Active JP7296120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019223160A JP7296120B2 (en) 2019-12-10 2019-12-10 FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223160A JP7296120B2 (en) 2019-12-10 2019-12-10 FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD

Publications (2)

Publication Number Publication Date
JP2021092274A JP2021092274A (en) 2021-06-17
JP7296120B2 true JP7296120B2 (en) 2023-06-22

Family

ID=76312092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223160A Active JP7296120B2 (en) 2019-12-10 2019-12-10 FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD

Country Status (1)

Country Link
JP (1) JP7296120B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961546B2 (en) 2005-12-07 2012-06-27 国立大学法人東北大学 Solar spectrum tracker
WO2016006598A1 (en) 2014-07-07 2016-01-14 株式会社NejiLaw Male screw body, coupling member, female screw body, and screw body fastening structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037341B2 (en) * 1972-10-11 1975-12-02
JPH0338414U (en) * 1989-08-24 1991-04-15
JP6872286B2 (en) * 2017-06-13 2021-05-19 三菱電機株式会社 FRP fastening method, FRP fastening structure and structural members for elevators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961546B2 (en) 2005-12-07 2012-06-27 国立大学法人東北大学 Solar spectrum tracker
WO2016006598A1 (en) 2014-07-07 2016-01-14 株式会社NejiLaw Male screw body, coupling member, female screw body, and screw body fastening structure

Also Published As

Publication number Publication date
JP2021092274A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US6110567A (en) Composite structural panel having a face sheet reinforced with a channel stiffener grid
US9592650B2 (en) Composite laminate including beta-reinforcing fibers
JP6786256B2 (en) Systems and methods for forming composites
JP6247048B2 (en) Aircraft bonded composite wing
US9302427B2 (en) Aeropspace structure including composite beam chord clamped between reinforcement plates
JP6132764B2 (en) Composite beam chord material between reinforcing plates and associated manufacturing method
US20100233424A1 (en) Composite structures employing quasi-isotropic laminates
WO2012105415A1 (en) Composite material structure, and aircraft wing and fuselage provided therewith
JP5308533B2 (en) Composite structure, aircraft main wing and aircraft fuselage provided with the same
US10094405B2 (en) Joint structure for composite member
CA2207403A1 (en) Reduced amplitude corrugated web spar
JP2014111437A (en) Vertically integrated stringers
EP0293320A2 (en) Two-step composite joint
EP2700574B1 (en) Passive load alleviation for a fiber reinforced wing box of an aircraft with a stiffened shell structure
JP2015189082A (en) Composite material structure, aircraft wing and aircraft fuselage provided with the same, and method for manufacturing composite material structure
KR20150128665A (en) Triaxial fiber-reinforced composite laminate
JP5129827B2 (en) Shock absorbing structure, shock absorbing structure manufacturing method, and moving body
US8679616B2 (en) Skew-angle radius filler
EP3450302B1 (en) Energy-absorbing under-floor airframe
JP7296120B2 (en) FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD
JP6732626B2 (en) Corner tension fitting
JP5920979B2 (en) Aircraft components
US9150299B2 (en) Shell component for an aircraft or spacecraft
WO2019131893A1 (en) Composite material, layered structure, aircraft wing, and composite material manufacturing method
JP5665573B2 (en) Fiber-reinforced plastic plate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7296120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150