JP7292770B1 - Float collector - Google Patents

Float collector Download PDF

Info

Publication number
JP7292770B1
JP7292770B1 JP2022211371A JP2022211371A JP7292770B1 JP 7292770 B1 JP7292770 B1 JP 7292770B1 JP 2022211371 A JP2022211371 A JP 2022211371A JP 2022211371 A JP2022211371 A JP 2022211371A JP 7292770 B1 JP7292770 B1 JP 7292770B1
Authority
JP
Japan
Prior art keywords
water
guide plate
depth
recovery
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022211371A
Other languages
Japanese (ja)
Other versions
JP2024079522A (en
Inventor
寧 井芹
仁輝 李
愛民 ▲はお▼
草平 小林
智和 原口
真一郎 矢野
向勇 鄭
剣鷹 陳
敏 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Application granted granted Critical
Publication of JP7292770B1 publication Critical patent/JP7292770B1/en
Publication of JP2024079522A publication Critical patent/JP2024079522A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)

Abstract

【課題】浮遊物の効率的な回収を達成する。【解決手段】本開示の一側面に係る浮遊物回収装置は、装置本体に昇降可能に取り付けられ、浮遊物を回収する回収水槽であって、回収チャンバーと回収チャンバーの装置本体の前後方向の前方に配置され、回収チャンバーに接続された吸込み通路を備え、浮遊物を含む水が該吸込み通路を介して回収チャンバーに吸い込まれる回収水槽と、吸引管により回収水槽に接続され、回収水槽に回収された浮遊物を含む水を吸引する吸引ポンプと、浮遊物回収装置の航行速度と、吸引通路の先端口である吸込み口の底面の幅及び水深位置とに基づいて、吸込み口での吸込み流速が航行速度と一致するように、吸引ポンプの吸引量を制御する制御装置と、を備える。【選択図】図1An object of the present invention is to achieve efficient recovery of floating matter. SOLUTION: A flotage collecting device according to one aspect of the present disclosure is a collection tank attached to a device main body so as to be able to move up and down to collect flotation, and includes a collection chamber and a collection chamber in front of the device main body in the front-rear direction. a recovery water tank through which water containing suspended solids is sucked into the recovery chamber through the suction passage; Based on the suction pump that sucks water containing floating matter, the sailing speed of the floating matter recovery device, the width of the bottom of the suction port that is the tip of the suction passage, and the water depth position, the suction flow speed at the suction port is and a controller for controlling the suction amount of the suction pump to match the sailing speed. [Selection drawing] Fig. 1

Description

本開示は、水面処理分野に関し、特に浮遊物回収装置に関する。 TECHNICAL FIELD The present disclosure relates to the field of water surface treatment, and more particularly to flotage collectors.

現在、湖沼、河川、海域の浮遊物は、世界的な経済発展に伴い、急激に増加している。特に、プラスチックは分解せず、生物体絡まり、誤食、底質被覆等で水域の生物生態系に対しても大きな影響を及ぼしている。また、油類の浮遊液体も事故、不法廃棄による水汚染が頻繁に発生している。さらに、水面に浮遊する生物及びそれらの遺骸、例えば、浮き草、陸上草木の切断物、枯れ草、枯れ木、特に微生物(アオコ、赤潮)は毒性を含有し、それらが存在する水域を飲用源とする人や家畜の健康にも影響を及ぼしている。このような浮遊障害物質を効率的に回収する技術が求められている。 At present, suspended matter in lakes, rivers, and seas is rapidly increasing along with global economic development. In particular, plastics do not decompose, and have a great impact on aquatic ecosystems due to entanglement with living organisms, accidental ingestion, sediment coverage, and the like. In addition, water pollution due to accidents and illegal disposal of floating liquids such as oil frequently occurs. Furthermore, organisms floating on the surface of water and their remains, such as driftweed, cut terrestrial plants, dead grass, and dead trees, especially microorganisms (blue-green algae, red tide) contain toxicity, and people who drink water areas where they exist and affect the health of livestock. There is a demand for a technique for efficiently recovering such suspended substances.

従来の回収技術として、水中ポンプを用いて直接吸入し回収する装置、ポンプの末端に管路を取り付けて直接吸入し回収する装置、双胴船の間に網かごを設置しかつ船舶を介して前にドラッグすることにより回収する施設、及び船舶に取り付けられて水面を航行しながら回収する施設を含む。 As conventional recovery techniques, a device that directly sucks and recovers using a submersible pump, a device that directly sucks and recovers by attaching a pipe line to the end of the pump, and a net cage installed between catamarans and through ships Includes facilities for retrieval by dragging forward, and facilities for retrieval while sailing on the water surface attached to the vessel.

水面上に薄く分布する回収物に対して、吸水口での水面の水平安定性を維持することは水面上の回収物濃密層を効率的に吸引するために重要である。しかしながら、例えば回収装置が船舶に取り付けられる場合、波の影響を受けるため、船舶が浮動して水平に安定しにくく、それにより水面上の回収物の収集に影響を与える。 Maintaining the horizontal stability of the water surface at the water intake is important for efficiently sucking the collected material dense layer on the water surface for the collected material distributed thinly on the water surface. However, for example, when the recovery device is attached to a ship, it is affected by waves, making it difficult for the ship to float and stabilize horizontally, thereby affecting the collection of recovered materials on the surface of the water.

浮遊物の種類、水面近くの水温の階層化条件の差異、浮遊物の浮力、鉛直流動性、及び水流の水平集積作用などに基づいて、水面に近い浮遊物の高密度層厚さと鉛直分布が異なり、かつ時間の経過とともに変化する。これに対して、従来は浮遊物の高濃密度層厚さと鉛直分布を目視で確認するか又は事前に計測機等を利用し計測後人為的に判断し、かつ機械的操作により回収装置の吸込み口の鉛直位置を調整するため、最適な条件で効果的な回収を実現することが困難である。 The dense layer thickness and vertical distribution of the suspended matter near the water surface are determined based on the type of suspended matter, the difference in stratification conditions of water temperature near the water surface, the buoyancy of the suspended matter, the vertical fluidity, and the horizontal accumulation of water flow. different and change over time. On the other hand, conventionally, the thickness of the high density layer and the vertical distribution of floating matter are visually confirmed, or manually determined after measurement using a measuring instrument, etc., and the collection device is operated mechanically. Due to the adjustment of the vertical position of the suction port, it is difficult to achieve effective recovery under optimal conditions.

また、回収装置を載せた回収船で回収する場合、船速度、吸引速度などはいずれも吸引効率に影響を与える。 Moreover, when collecting by a collecting vessel on which the collecting device is mounted, both the ship speed and the suction speed affect the suction efficiency.

本開示は、上記課題を解決し、浮遊物の効率的な回収を達成する。 The present disclosure solves the above problems and achieves efficient recovery of suspended matter.

本開示の一側面に係る水面浮遊物回収装置は、水面を航行し、水面に浮遊する浮遊物を回収するものであって、装置本体に昇降可能に取り付けられ、浮遊物を回収する回収水槽であって、回収チャンバーと回収チャンバーの装置本体の前後方向の前方に配置され、回収チャンバーに接続された吸込み通路とを備え、浮遊物を含む水が該吸込み通路を介して回収チャンバーに吸い込まれる回収水槽と、吸引管により回収水槽に接続され、回収水槽に回収された浮遊物を含む水を吸引する吸引ポンプと、浮遊物回収装置の航行速度と、吸引通路の先端口である吸込み口の底面の幅及び水深位置とに基づいて、吸込み口での吸込み流速が航行速度と一致するように、吸引ポンプの吸引量を制御する制御装置と、を備える。 A floating matter recovery device according to one aspect of the present disclosure navigates on the water surface and recovers floating matter floating on the water surface. comprising a recovery chamber and a suction passage disposed in front of the recovery chamber in the longitudinal direction of the device body and connected to the recovery chamber, and water containing suspended matter is sucked into the recovery chamber through the suction passage. A water tank, a suction pump that is connected to the recovery water tank by a suction pipe and sucks the water containing suspended matter collected in the recovery water tank, the sailing speed of the floating matter recovery device, and the bottom of the suction port that is the tip of the suction passage. a control device for controlling the suction amount of the suction pump so that the suction flow speed at the suction port matches the sailing speed, based on the width and depth of the water.

本開示によれば、航行速度、回収水槽の吸込み口の水深に基づいて吸込み口の吸込み流速と航行速度を一致させるように制御するため、浮遊物の効率的な回収を達成することができる。 According to the present disclosure, since the suction flow speed of the suction port and the sailing speed are controlled to match based on the sailing speed and the water depth of the suction port of the recovery water tank, efficient collection of suspended matter can be achieved.

本発明の実施形態に係る浮遊物回収装置の構成を模式的に示す斜視模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective schematic diagram which shows typically the structure of the floating matter collection|recovery apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る浮遊物回収装置の構成を示す平面概略図である。1 is a schematic plan view showing the configuration of a floating matter recovery device according to an embodiment of the present invention; FIG. 本発明の実施形態に係る水質水温計測箱6を前方から観察した場合の構成を示す正面模式図である。Fig. 2 is a schematic front view showing the configuration of the water quality/water temperature measuring box 6 according to the embodiment of the present invention when viewed from the front; 上記水質水温計測箱6を側面から観察した場合の構成を示す側面模式図である。FIG. 3 is a schematic side view showing the configuration of the water quality/temperature measuring box 6 when viewed from the side; 上記水質水温計測箱6を上方から観察した場合の構成を示す上面模式図である。4 is a schematic top view showing the configuration of the water quality/temperature measuring box 6 when viewed from above. FIG. 水質水温計測箱6の変形例とする水質水温計測箱6’の構成を示す概略図である。FIG. 5 is a schematic diagram showing the configuration of a water quality and temperature measurement box 6' as a modified example of the water quality and temperature measurement box 6; 本発明の実施形態に係る浮遊物の濃密度と水温に基づく吸込み口底面の水深設定方法を示すフローチャートである。4 is a flow chart showing a water depth setting method for the bottom surface of the suction port based on the density of floating matter and water temperature according to the embodiment of the present invention. 本実施形態に係る導流板構造を示す概略図である。FIG. 3 is a schematic diagram showing a flow guide plate structure according to the embodiment; 本発明の実施形態に係る導流板構造の各動作モードでの変形様子を示す模式図である。4A and 4B are schematic diagrams showing how the flow guide plate structure according to the embodiment of the present invention is deformed in each operation mode; 本発明の実施形態に係る導流板構造の通常動作モードでの制御方法を示すフローチャートである。4 is a flow chart illustrating a control method in a normal operation mode of a flow guide plate structure according to an embodiment of the present invention; 本発明の実施形態に係る導流板構造の沿岸動作モードでの制御方法を示すフローチャートである。4 is a flow chart illustrating a method of controlling a waveguide structure in coastal operation mode according to an embodiment of the present invention;

以下、本発明を実施するための形態について図面を参照して説明する。
本発明の実施形態に係る浮遊物回収装置は、水面に浮遊する浮遊物を回収対象とし、例えば、水面に浮遊する油分、生物及びその遺骸、例えば、浮き草、陸上草木の切断物、枯れ草、枯れ木、特に藍藻類や赤潮藻類のような微生物などを回収するのに用いられる。以下、説明を容易にするために、藍藻及び植物プランクトンを主な回収対象として説明する。しかし、回収対象はこれに限定されず、他の浮遊物に対しても同様に適用される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
The floating matter recovery apparatus according to the embodiment of the present invention is intended to recover floating matter floating on the surface of water. It is used to collect micro-organisms such as cyanobacteria and red-tide algae, among others. In the following, for ease of explanation, blue-green algae and phytoplankton are mainly collected. However, objects to be collected are not limited to this, and are similarly applied to other floating matter.

図1は本発明の実施形態に係る浮遊物回収装置の構成を模式的に示す斜視図であり、図2は本発明の実施形態に係る浮遊物回収装置の構成を模式的に示す平面図である。 FIG. 1 is a perspective view schematically showing the configuration of the flotage recovery device according to the embodiment of the present invention, and FIG. 2 is a plan view schematically showing the configuration of the flotation recovery device according to the embodiment of the present invention. be.

本発明の実施形態に係る浮遊物回収装置は船型構造であり(以下、回収船と称する)、船体部1と、船体部1に取り付けられた回収水槽2とを備えている。 A floating object recovery apparatus according to an embodiment of the present invention has a ship-shaped structure (hereinafter referred to as a recovery ship) and includes a hull section 1 and a recovery water tank 2 attached to the hull section 1 .

浮遊物回収装置は、船体部1の対向する両側にそれぞれ浮子用ブラケット11が取り付けられ、左右の2つの浮子用ブラケット11にそれぞれ浮体12及び推進用スクリュー13が取り付けられ、両側の推進用スクリュー13の回転駆動により船体部1を水面に航行させ、また、両側の推進用スクリュー13が同一速度で回転することにより、船体部1の直進を推進し、一側の推進用スクリュー13の回転速度が他側の推進用スクリュー13の回転速度より大きい運行により船体部1の旋回動作を制御する。さらに、両スクリュー逆回転による後進も可能である。 Float brackets 11 are attached to both sides of the hull 1 facing each other, and a floating body 12 and propelling screws 13 are attached to the left and right two float brackets 11, respectively. The hull section 1 is caused to sail on the surface of the water by the rotational drive of , and the propelling screws 13 on both sides rotate at the same speed to propel the hull section 1 straight ahead, and the rotational speed of the propelling screw 13 on one side is The turning motion of the hull section 1 is controlled by operation with a speed greater than the rotational speed of the propelling screw 13 on the other side. In addition, reverse movement is also possible by reverse rotation of both screws.

船体部1には、回収水槽2が上下に昇降可能に取り付けられている。具体的には、船体部1の船首に切り欠き17が設けられ、該船首の上面に作業台15が固定され、該作業台15に昇降装置16が取り付けられ、回収水槽2は切り欠き17内に配置され、かつ昇降装置16に取り付けられて、昇降装置16により上昇するか又は下降する。昇降装置16は例えば鉛直昇降型電気シリンダを採用することができる。鉛直昇降型電気シリンダは4台採用可能で、それぞれ作業台15の前、後側両端に固定され、回収水槽2はボルト又は溶接により該4台の鉛直昇降型電気シリンダの伸縮ロッドに固定することができる。もちろん、昇降装置16は油圧シリンダや滑車昇降装置など、他の任意の昇降装置を利用してもよい。 A collection water tank 2 is attached to the hull part 1 so as to be vertically movable. Specifically, a notch 17 is provided in the bow of the hull portion 1 , a workbench 15 is fixed to the upper surface of the bow, a lifting device 16 is attached to the workbench 15 , and the recovery water tank 2 is placed in the notch 17 . and attached to a lifting device 16 to be raised or lowered by the lifting device 16 . The lifting device 16 can employ, for example, a vertical lifting type electric cylinder. Four vertical elevating electric cylinders can be employed, which are fixed to the front and rear ends of the workbench 15, respectively, and the recovery water tank 2 is fixed to the telescopic rods of the four vertical elevating electric cylinders by bolts or welding. can be done. Of course, the lifting device 16 may utilize any other lifting device such as a hydraulic cylinder or pulley lifting device.

回収水槽2は回収チャンバー21を備え、回収チャンバー21の上方に開口22が形成される。回収水槽2は、回収チャンバー21の開口22の縁部において前方に延びる延出板23と、延出板23の左右両側に位置する左右2つの遮断側板24とをさらに備える。延出板23と左右2つの遮断側板24は吸込み通路を囲み、延出板23は吸込み通路の底面となり、延出板23の先端は吸込み通路の先端口である吸込み口の底面となる。吸込み通路は開口22に接続され、藍藻、浮遊植物などの浮遊物及び水は吸込み口から吸込み通路及び開口22を介して回収チャンバー21内に吸い込まれる。左右2つの遮断側板24の一端部は、開口22の左右両側壁板に接続されている。左右2つの遮断側板24は、両者からなる外側の開口が内側の開口よりも大きくなるように八字状に配置され、よって、回収船の航行中に大量の浮遊物を回収チャンバー21内に案内し、浮遊物の回収効率を向上させる。 The recovery water tank 2 has a recovery chamber 21 with an opening 22 formed above the recovery chamber 21 . The collection water tank 2 further includes an extension plate 23 extending forward at the edge of the opening 22 of the collection chamber 21 and two blocking side plates 24 located on both left and right sides of the extension plate 23 . The extension plate 23 and the two right and left blocking side plates 24 surround the suction passage, the extension plate 23 is the bottom surface of the suction passage, and the tip of the extension plate 23 is the bottom surface of the suction port, which is the tip end of the suction passage. The suction passage is connected to the opening 22 , and suspended matter such as cyanobacteria, floating plants, and water are sucked into the collection chamber 21 from the suction port through the suction passage and the opening 22 . One ends of the left and right shielding side plates 24 are connected to the left and right side wall plates of the opening 22 . The two left and right shut-off side plates 24 are arranged in an eight shape so that the outer opening formed by both of them is larger than the inner opening. , to improve the collection efficiency of suspended matter.

延出板23は、回収チャンバー21の開口22の縁部から外側に向けて平行もしくは下方に傾斜して配置されてよい。これにより、浮遊物が回収チャンバー21内に迅速に入り、回収効率をさらに向上させることができる。 The extension plate 23 may be arranged parallel or downwardly inclined outward from the edge of the opening 22 of the collection chamber 21 . As a result, the floating matter quickly enters the recovery chamber 21, and the recovery efficiency can be further improved.

船体部1には、さらに、吸引ポンプ(図示せず)と吸引ポンプの出口端に接続された処理装置5とが設けられ、吸引ポンプは回収水槽2内に挿入された吸引管により回収水槽2内の浮遊物と水を吸引して処理装置5に抽出する。処理装置5は、吸引された浮遊物を脱水して圧縮する脱水圧縮装置であってもよく、吸引された浮遊物を粉砕して河川に排出する粉砕装置であってもよく、微生物を不活性化する装置であってもよい。本開示は処理装置5に関係がないため、ここで処理装置5の詳細な説明は省略する。 The hull portion 1 is further provided with a suction pump (not shown) and a processing device 5 connected to the outlet end of the suction pump. The floating matter and water inside are sucked and extracted to the processing device 5 . The processing device 5 may be a dehydration compression device for dehydrating and compressing the sucked floating matter, or may be a pulverizing device for pulverizing the sucked floating matter and discharging it into a river, inactivating microorganisms. It may be a device that converts Since the present disclosure does not relate to the processing device 5, a detailed description of the processing device 5 is omitted here.

水面上に薄く分布する回収物に対して、水面の濃密層を効果的に吸収するためには、水面の吸込み口の水平安定性が重要である。回収施設を船体部1に取り付ける場合、船上の作業者の動き、風や波等の影響で船が遊動し、吸い込み口等の回収設備を水平に保ちにくい。本発明の実施形態によれば、水を内部に大量に含む形で、吸込み口付き回収水槽を船体部1の切り欠き17に配置し、かつそれを水中に沈めることにより、回収水槽内の水の重量と慣性力を利用して吸込み口の位置を、周辺水面の変化に対応させ、かつ安定させる。 In order to effectively absorb the dense layer on the surface of the water, the horizontal stability of the suction port on the surface of the water is important. When the collection facility is attached to the hull portion 1, the movement of workers on board, the influence of wind and waves, etc. cause the ship to drift, making it difficult to keep the collection facility such as the suction port horizontal. According to the embodiment of the present invention, a recovery water tank with a suction port is arranged in the notch 17 of the hull part 1 in such a manner that a large amount of water is contained therein, and by submerging it in water, the water in the recovery water tank is The position of the suction port is adjusted to changes in the surrounding water surface and stabilized by utilizing the weight and inertial force of .

[水質水温計測箱]
図2及び図3A~図3Dに示すように、回収船は、さらに、浮遊物の濃密度と水温を計測する水質水温計測箱を備える。水質水温計測箱は、それぞれ回収水槽2の左右2つの遮断側板24の先端側に取り付けられ、回収船の回収作業の際に水に沈められ、所定の水深範囲における浮遊物の濃密度と水温を計測する。ここで、所定の水深範囲は、浮遊物が通常分布する水深範囲であって、回収水槽の吸い込み口が昇降可能な範囲に設定することが好ましい。
[Water quality and temperature measurement box]
As shown in Figures 2 and 3A-3D, the recovery vessel is further equipped with a water quality and temperature measuring box for measuring the concentration of suspended matter and water temperature. The water quality and temperature measurement boxes are attached to the tip side of the two shut-off side plates 24 on the left and right sides of the recovery tank 2, respectively, and are submerged in the water during the recovery operation of the recovery ship to measure the density and water temperature of floating matter in a predetermined water depth range. measure. Here, it is preferable that the predetermined water depth range is a water depth range in which floating matter is normally distributed, and is set within a range in which the suction port of the recovery water tank can be raised and lowered.

本実施形態では、回収水槽2の左右2つの遮断側板24の先端側にそれぞれ一つの水質水温計測箱が設置されるが、水質水温計測箱の設置位置及び個数はこれに限定されず、必要に応じて複数又は一つを設置することができる。例えば、回収水槽2の延出板23の先端部の中央位置に一つ設けてもよい。 In this embodiment, one water quality/temperature measuring box is installed on each of the tip sides of the left and right shielding side plates 24 of the recovery water tank 2, but the installation position and number of the water quality/temperature measuring boxes are not limited to this, and may be necessary. Multiple or one can be installed as required. For example, one may be provided at the central position of the tip of the extension plate 23 of the recovery water tank 2 .

水質水温計測箱の一例として、上下方向、つまり水深方向に複数の計測室を有する水質水温計測箱6であってもよい。図3A~図3Cに示すように、水質水温計測箱6は支持フレーム61と、複数の計測室62と、液面計63と、送信ユニット(図示せず)とを備える。 As an example of the water quality and temperature measurement box, the water quality and temperature measurement box 6 having a plurality of measurement chambers in the vertical direction, that is, in the water depth direction may be used. As shown in FIGS. 3A-3C, the water quality/temperature measuring box 6 includes a support frame 61, a plurality of measuring chambers 62, a liquid level gauge 63, and a transmission unit (not shown).

支持フレーム61には、複数の計測室62が上下方向に並んで設けられている。計測室62は前後に開口し、内部にセンサ64が設けられている。センサ64は、少なくとも浮遊物の濃密度を計測する水質センサと水温を計測する水温センサとを備える。水質水温計測箱6は、計測室62の前開口が船首に向き、後開口が船尾に向かう向きで取り付けられている。回収船が回収作業を行う場合、浮遊物を含む水流は計測室62の内部を通過し、各計測室62内の水質センサと水温センサはそれぞれ該計測室62内の浮遊物濃密度と水温を計測する。 A plurality of measurement chambers 62 are arranged vertically in the support frame 61 . The measurement chamber 62 is opened in the front and rear, and a sensor 64 is provided inside. The sensor 64 includes at least a water quality sensor that measures the density of floating matter and a water temperature sensor that measures water temperature. The water quality and temperature measuring box 6 is attached so that the front opening of the measuring chamber 62 faces the bow and the rear opening faces the stern. When the recovery ship performs recovery work, the water flow containing suspended solids passes through the interior of the measurement chamber 62, and the water quality sensor and water temperature sensor in each measurement room 62 measure the concentration of suspended solids and the water temperature in the measurement chamber 62, respectively. measure.

各計測室62で計測された浮遊物濃密度データ及び水温データは、送信ユニットにより有線又は無線で制御装置(図示せず)に送信される。 The data on the concentration of suspended matter and the data on the water temperature measured in each measuring room 62 are transmitted by wire or wirelessly to a control device (not shown) by a transmission unit.

ここで、回収対象の浮遊物としては、クロロフィル、油分、藍藻及び赤潮藻類などであってもよく、水質センサは例えば濁度、クロロフィル濃度、油分濃度、藍藻及び赤潮藻類の密度などを計測する任意のセンサ又はこれらのセンサの組み合わせであってもよく、主な回収対象によって適当なセンサを選択して使用することができる。濁度を計測するためのセンサは光学式濁度計、例えば積分球濁度計を採用することができる。クロロフィル、油分、藍藻、緑藻及び赤潮藻類を計測するためのセンサは多波長蛍光計などを採用することができる。 Here, the suspended matter to be collected may be chlorophyll, oil, blue-green algae, red-tide algae, and the like. or a combination of these sensors, and an appropriate sensor can be selected and used depending on the main recovery object. A sensor for measuring turbidity can employ an optical turbidity meter, such as an integrating sphere turbidity meter. A sensor for measuring chlorophyll, oil, cyanobacteria, green algae, and red-tide algae can employ a multi-wavelength fluorometer or the like.

水温センサは、サーミスタ温度計等のような水温を計測可能な任意の温度センサを採用することができる。 Any temperature sensor capable of measuring water temperature, such as a thermistor thermometer, can be used as the water temperature sensor.

水質水温計測箱6には、さらに、計測箱6の上面が水面に合っているかどうかを監視するための液面計63が設けられている。液面計63として超音波液面計を利用することができる。超音波液面計を利用する場合、超音波液面計を頂部計測室の上面から所定の距離離れた上方に取り付ける。液面計として、導電率センサを利用してもよい。導電率センサは水に接触すると、信号を出力し、接触しない場合は信号を出力しない。例えば、液面計として2つの導電率センサを利用する場合、そのうちの一つを頂部計測室の上面に設置し、もう一つを計測室上面の導電率センサから所定の距離離れた上方に設置することができる。計測室上面の導電率センサから信号出力があるが、その上方の導電率センサからは信号出力がない場合、計測箱6の上面が水面と同一平面にあり、計測箱6が適切な水深に位置すると確認することができる。 The water quality and temperature measuring box 6 is further provided with a liquid level gauge 63 for monitoring whether the top surface of the measuring box 6 is aligned with the water surface. An ultrasonic liquid level gauge can be used as the liquid level gauge 63 . When using an ultrasonic level gauge, the ultrasonic level gauge is mounted above the upper surface of the top measuring chamber at a predetermined distance. A conductivity sensor may be used as the liquid level gauge. The conductivity sensor outputs a signal when in contact with water, and does not output a signal when not in contact with water. For example, when using two conductivity sensors as a liquid level gauge, one of them is installed on the top surface of the top measurement chamber, and the other is installed on the top surface of the measurement chamber at a predetermined distance above the conductivity sensor. can do. If there is a signal output from the conductivity sensor on the top surface of the measurement chamber, but there is no signal output from the conductivity sensor above it, the top surface of the measurement box 6 is on the same plane as the water surface, and the measurement box 6 is positioned at an appropriate water depth. Then you can check.

液面計63から出力された信号も、送信ユニットにより制御装置に送信される。 A signal output from the liquid level gauge 63 is also transmitted to the control device by the transmission unit.

制御装置は、液面計63の検出信号をリアルタイムに受信し、かつ検出信号に基づいて水質水温計測箱6を所定の水深に位置させるようにその昇降を制御する。 The control device receives the detection signal of the liquid level gauge 63 in real time, and based on the detection signal, controls the elevation of the water quality/water temperature measuring box 6 so as to position it at a predetermined water depth.

水質水温計測箱6は、各計測室62の前開口の前面及び左右両側に水平に延在するように、各計測室の上面及び底面に設けられた鉛直層分離板65をさらに備える。鉛直層分離板65は計測室の前開口の上面及び底面より外向きに突出して延在するため、上下方向において計測室62の前開口における水を分離することができ、計測室62手前の水の上下乱れを回避して、異なる層の水をそれぞれ各層計測室62内に安定的に流せることにより、各層の計測室の計測正確度を向上させる。 The water quality and temperature measurement box 6 further includes vertical layer separation plates 65 provided on the top and bottom surfaces of each measurement chamber 62 so as to extend horizontally on the front and left and right sides of the front opening of each measurement chamber 62 . Since the vertical layer separation plate 65 protrudes and extends outward from the top and bottom surfaces of the front opening of the measurement chamber 65, it is possible to separate the water in the front opening of the measurement chamber 62 in the vertical direction. By avoiding vertical disturbance and stably flowing water of different layers into each layer measurement chamber 62, the measurement accuracy of each layer measurement chamber is improved.

藍藻と植物プランクトンは水面に数mmから1cm単位で濃密な密度層を形成することが多い。そのため、水質水温計測箱6は、鉛直方向における1cm~2cmの間隔で水を収集できる構成に形成されるのが好ましい。具体的には、船体部1の前後方向を長さ方向とし、船体部1の左右方向を幅方向とし、船体部1の上下方向を高さ方向とした場合、水質水温計測箱6は、例えば、長さ20cm、幅10cm、高さ20cmのサイズに形成し、上下方向において10層の計測室に水平板で均一に区分されてよい。この場合、水質水温計測箱6は、水面から水深20cmの範囲内で上下方向に沿って均一に区分された10層の水深層のそれぞれの浮遊物濃密度と水温を計測する。また、各計測室の前開口付近に上下に20cm角の水平区分板、すなわち鉛直層分離板が設けられて、計測室の前方に2cm単位で区分された鉛直層の水が各層計測室内に安定して流入することができる。 Blue-green algae and phytoplankton often form a dense layer on the surface of the water in units of several millimeters to 1 cm. Therefore, it is preferable that the water quality/temperature measuring box 6 is configured to collect water at intervals of 1 cm to 2 cm in the vertical direction. Specifically, when the longitudinal direction of the hull portion 1 is the length direction, the left-right direction of the hull portion 1 is the width direction, and the vertical direction of the hull portion 1 is the height direction, the water quality and temperature measurement box 6 is, for example, , 20 cm long, 10 cm wide, and 20 cm high, and may be evenly divided into 10 layers of measuring chambers by horizontal plates in the vertical direction. In this case, the water quality and temperature measurement box 6 measures the concentration of suspended solids and the water temperature in each of 10 deep water layers uniformly divided along the vertical direction within a range of 20 cm from the surface of the water. In addition, a 20 cm square horizontal partition plate, that is, a vertical layer separation plate is installed near the front opening of each measurement room, and the water in the vertical layer separated in 2 cm units in front of the measurement room is stabilized in each layer measurement room. can flow in.

水質水温計測箱の別の例として、図3Dに示す水質水温計測箱6’を採用してもよい。水質水温計測箱6’は、図3A~図3Cに示す水質水温計測箱6に比べて、主に、箱体内に層分離が行われず、鉛直レール66’等のような移動機構が設けられ、水質センサ及び水温センサ等のセンサ64’は該鉛直レール66’等の移動機構に沿って箱体62’内を上下に移動しながら、複数の所定の水深位置での浮遊物の濃密度及び水温を計測して出力する点で異なる。 As another example of the water quality and temperature measurement box, a water quality and temperature measurement box 6' shown in FIG. 3D may be employed. Compared to the water quality and temperature measurement box 6 shown in FIGS. 3A to 3C, the water quality and temperature measurement box 6' mainly does not separate layers in the box body, and is provided with a moving mechanism such as a vertical rail 66'. A sensor 64' such as a water quality sensor and a water temperature sensor moves up and down in the box 62' along a movement mechanism such as the vertical rail 66', and detects the concentration of floating matter and the water temperature at a plurality of predetermined water depth positions. is measured and output.

これに対して、図3A~図3Cに示す水質水温計測箱6は、上下方向に複数の計測室を区分し、計測室内のセンサにより各層の計測室内の水温と浮遊物濃密度を計測するため、計測正確度を向上させ、より正確な回収制御に役立つ。 On the other hand, the water quality and temperature measurement box 6 shown in FIGS. 3A to 3C divides a plurality of measurement chambers in the vertical direction, and the sensors in the measurement chambers measure the water temperature and the density of suspended matter in the measurement chambers of each layer. , which improves measurement accuracy and aids in more precise recovery control.

[浮遊物分布と水温分布に基づく回収制御]
本実施形態では、回収船の制御装置は回収対象水域の浮遊物の分布及び水温等の水域状況及び船速度等の航行状況に基づいて回収作業を制御することにより、回収効率を向上させる。
[Recovery control based on suspended matter distribution and water temperature distribution]
In this embodiment, the control device of the recovery ship improves the recovery efficiency by controlling the recovery operation based on the distribution of floating matter in the recovery target water area, water area conditions such as water temperature, and navigation conditions such as ship speed.

効率的に回収するために、好ましくは吸込み口の吸込み流速を制御してそれを船速度の大きさと等しくし、吸込み口の吸込み流速の制御は吸引ポンプの吸引量を制御することにより実現することができる。吸引ポンプの吸引量はリニアに制御してよい。吸引ポンプの単位時間当たりの吸引量は、下記公式で表すことができる。
Qp=V1×L23×H23
ここで、Qpは吸引ポンプの単位時間、例えば1秒当たりの吸引量であり、V1は船速度であり、L23は吸込み口の幅、すなわち吸込み口の底面を構成する延出板23の先端縁部の幅であり、H23は延出板23の先端縁部の位置する水深である。
For efficient recovery, it is preferable to control the suction flow rate of the suction port so that it is equal to the magnitude of the ship's speed, and the control of the suction flow rate of the suction port is realized by controlling the suction amount of the suction pump. can be done. The suction amount of the suction pump may be controlled linearly. The suction amount per unit time of the suction pump can be expressed by the following formula.
Qp = V1 x L23 x H23
Here, Qp is the suction amount per unit time of the suction pump, for example, per second, V1 is the boat speed, and L23 is the width of the suction port, that is, the tip edge of the extension plate 23 constituting the bottom surface of the suction port. H23 is the water depth at which the tip edge of the extension plate 23 is located.

船速度については、制御装置は、例えば、回収船の既存のGIS、船速計などにより取得することができる。船速計は、例えば、ソナーや電磁船速計であってもよい。例えば、回収船が河川で回収作業を行う場合、船が停止状態にあっても、水の流れに伴って移動する場合があり、この時、電磁船速計により船速度を測定することができる。 The ship speed can be obtained by the control device, for example, from the existing GIS of the recovery ship, a speedometer, or the like. The speedometer may be, for example, a sonar or an electromagnetic speedometer. For example, when a recovery vessel performs recovery work in a river, even if the vessel is in a stopped state, it may move with the flow of water. At this time, the vessel speed can be measured by an electromagnetic vessel speedometer. .

また、制御装置は回収水域の浮遊物の濃密度分布及び水温分布に基づいて吸込み口の底面の水深位置を決定し、かつ昇降装置16の昇降を制御して、回収水槽2の延出板23を決定された水深位置に設置する。 In addition, the control device determines the water depth position of the bottom surface of the suction port based on the density distribution and water temperature distribution of floating matter in the recovery water area, controls the elevation of the lifting device 16, and controls the extension plate 23 of the recovery water tank 2. is installed at the determined water depth position.

次に、制御装置は、船速度と吸込み口の底面の幅及び水深に基づいて、上記公式により吸引ポンプの吸引量を算出し、吸引ポンプを算出された吸引量になるように制御する。 Next, the control device calculates the suction amount of the suction pump according to the above formula based on the ship's speed, the width of the bottom surface of the suction port, and the water depth, and controls the suction pump to achieve the calculated suction amount.

本実施形態において、上記吸込み口の底面の水深位置の決定は図4の方法により行うことができる。以下、図4に基づいて、浮遊物濃密度と水温に基づく回収水槽2の吸込み口底面の水深制御を具体的に説明する。図4は浮遊物濃密度と水温に基づく吸込み口底面の水深設定方法を示すフローチャートである。 In this embodiment, the water depth position of the bottom surface of the suction port can be determined by the method shown in FIG. Hereinafter, based on FIG. 4, the water depth control of the bottom surface of the suction port of the recovery water tank 2 based on the density of suspended matter and the water temperature will be specifically described. FIG. 4 is a flow chart showing a water depth setting method for the bottom surface of the suction port based on the concentration of suspended matter and the water temperature.

本実施形態では、船体部1の先端部に設けられた水質水温計測箱6により水中の浮遊物濃密度と水温を計測する。 In this embodiment, a water quality and temperature measurement box 6 provided at the tip of the hull 1 measures the concentration of suspended matter in the water and the water temperature.

回収船の回収作業が開始された後、制御装置は、水質水温計測箱6の各層の検出室により計測された浮遊物濃密度データと水温データをリアルタイムに又は定期的に受信し、各水深層の浮遊物の濃密度と水温とする(ステップSX1)。 After the recovery operation of the recovery ship is started, the control device receives in real time or periodically the suspended matter concentration data and water temperature data measured by the detection chambers of each layer of the water quality and temperature measuring box 6, and and the water temperature (step SX1).

制御装置は、受信した浮遊物濃密度における最大濃密度と最小濃密度との差を求め、最大濃密度と最小濃密度との濃密度差が濃密度差閾値以上であるか否かを判断する(ステップSX2)。ここで、濃密度差閾値は必要に応じて設定することができ、例えば最大濃密度の20%に設定することができる。 The control device obtains the difference between the maximum density and the minimum density in the received suspension density, and determines whether the density difference between the maximum density and the minimum density is equal to or greater than the density difference threshold. (Step SX2). Here, the density difference threshold can be set as necessary, and can be set to 20% of the maximum density, for example.

濃密度差が濃密度差閾値より小さい場合(ステップSX2で「NO」)、浮遊物が所定の水深範囲内に均一に分布していると判断し、処理はステップSX3に移行して、所定の水深範囲内の最下層深さを吸込み口底面の深さ設定値dとする。 If the concentration difference is smaller than the concentration difference threshold ("NO" in step SX2), it is determined that the floating matter is uniformly distributed within the predetermined water depth range, the process proceeds to step SX3, and the predetermined The depth of the lowest layer within the water depth range is set as the depth set value d of the bottom surface of the suction port.

濃密度差が濃密度差閾値以上である場合(ステップSX2で「YES」)、浮遊物が集積していると判断し、処理はステップSX4に移行する。 If the density difference is greater than or equal to the density difference threshold ("YES" in step SX2), it is determined that floating matter has accumulated, and the process proceeds to step SX4.

ステップSX4において、制御装置は、各隣接する層の間の水温差を求め、ステップSX5において水温差が水温差閾値以上の隣接層が存在するか否かを判断する。水温差が水温差閾値以上の隣接層が存在する場合(ステップSX5で「YES」)、該隣接層に水温成層が発生したと判断し、処理はステップSX6に移行する。ここで、水温差閾値は水域環境等に応じて設定することができ、例えば0.5℃に設定することができる。 At step SX4, the control device obtains the water temperature difference between each adjacent layer, and at step SX5, determines whether or not there is an adjacent layer whose water temperature difference is equal to or greater than the water temperature difference threshold. If there is an adjacent layer with a water temperature difference equal to or greater than the water temperature difference threshold ("YES" in step SX5), it is determined that water temperature stratification has occurred in the adjacent layer, and the process proceeds to step SX6. Here, the water temperature difference threshold can be set according to the water area environment and the like, and can be set to 0.5° C., for example.

ステップSX6において、制御装置は、水温成層の隣接層境界から所定層数下の深さを吸込み口の底面の深さ設定値dとする。ここで、水温成層の隣接層境界から所定層数下の深さが所定の水深範囲を超え、即ち所定の水深範囲の最下層の深さより大きい場合、最下層の深さを深さ設定値dとする(ステップSX7及びステップSX3)。ここで、所定層数は、水質水温計測箱の計測層数、水域環境等に応じて設定することができ、例えば2層、1層、又は0層に設定することができる。本実施形態では、吸込み口の乱流を考慮して、2層に設定し、以下も同様である。 At step SX6, the control device sets the depth of the bottom surface of the suction port, which is a predetermined number of layers below the boundary of adjacent layers in the water temperature stratification, as the set value d of the depth of the bottom surface of the suction port. Here, when the depth below the predetermined number of layers from the adjacent layer boundary of the water temperature stratification exceeds the predetermined water depth range, that is, when it is greater than the depth of the lowest layer in the predetermined water depth range, the depth of the lowest layer is set to the depth set value d (step SX7 and step SX3). Here, the predetermined number of layers can be set according to the number of layers measured by the water quality/temperature measuring box, the environment of the water area, and the like, and can be set to 2 layers, 1 layer, or 0 layers, for example. In this embodiment, two layers are set in consideration of turbulent flow at the suction port, and the same applies to the following.

ステップSX5で「NO」と判断した場合、水温が均一であと考えられ、次に、濃密度の分布を分析し、分析結果により深さ設定値dを設定する。 If "NO" is determined in step SX5, it is considered that the water temperature is uniform. Next, the concentration distribution is analyzed, and the depth set value d is set according to the analysis result.

本実施形態では、処理はステップSX8に移行し、濃密度が最大の層が最上層であるか否かを判断する。「YES」と判断した場合、濃密度が上方ほど高くなり、浮遊物が水面に近い範囲に集まると考えられ、処理はステップSX9に移行する。 In this embodiment, the process proceeds to step SX8 to determine whether the layer with the highest density is the top layer. If "YES" is determined, the density increases upward, and it is considered that floating matter gathers in a range near the surface of the water, and the process proceeds to step SX9.

ステップSX9において、各隣接層の濃密度差を算出し、濃密度差が最も大きい隣接層を特定し、次にステップSX10において、濃密度差が最も大きい隣接層の境界から所定層数下の深さを深さ設定値dとする。ここで、濃密度差が最も大きい隣接層の境界から所定層数下の深さが所定の水深範囲を超えると、最下層の深さを深さ設定値dとする(ステップSX7及びステップSX3)。 In step SX9, the density difference of each adjacent layer is calculated, and the adjacent layer with the largest density difference is specified. Let the depth be the depth set value d. Here, when the depth of the predetermined number of layers below the boundary of the adjacent layers with the largest density difference exceeds the predetermined water depth range, the depth of the lowest layer is set as the depth set value d (steps SX7 and SX3). .

ステップSX8において、「NO」と判断する場合、処理はステップSX11に移行し、濃密度が最も大きい層が最下層であるか否かを判断する。「YES」と判断した場合、浮遊物濃密度が下方ほど高くなると考えられ、最下層の深さを深さ設定値dとする(ステップSX3)。 If "NO" is determined in step SX8, the process proceeds to step SX11 to determine whether or not the layer with the highest density is the bottom layer. If "YES" is determined, it is considered that the density of suspended matter increases downward, and the depth of the lowest layer is set as the depth set value d (step SX3).

ステップSX11で「NO」と判断すると、濃密度が所定の水深範囲における中間層が最大となる山形分布となっていると考えられ、処理はステップSX12に進み、濃密度が最大の層の底部から所定層数下の深さと深さ設定値dとする。ここで、濃密度が最大の層の底部から所定層数下の深さが所定の水深範囲を超えると、最下層の深さを深さ設定値dとする(ステップSX7及びステップSX3)。 If "NO" is determined in step SX11, it is considered that the concentration is a mountain-shaped distribution in which the middle layer in the predetermined water depth range is the largest, and the process proceeds to step SX12, and The depth below the predetermined number of layers and the depth set value d are set. Here, when the depth of the predetermined number of layers below the bottom of the layer with the highest density exceeds the predetermined water depth range, the depth of the lowest layer is set as the depth set value d (steps SX7 and SX3).

上記のように吸込み口の底面の深さ設定値dを決定した後、制御装置は、昇降装置16の昇降を制御することにより、回収水槽2の昇降を調整して吸込み口の底面23を該深さ設定値dの深さに設置する。 After determining the set depth d of the bottom surface of the suction port as described above, the control device controls the elevation of the lifting device 16 to adjust the elevation of the collection water tank 2 so that the bottom surface 23 of the suction port is aligned with the bottom surface 23 of the suction port. Install at the depth of the depth setting value d.

以上、濃密度の分布を分析する際に、具体的には、濃密度が最大の層が最上層であるか、最下層であるかによって、濃密度が上方ほど高くなる分布になるのか、下方ほど高くなる分布になるのか、中間層が最大となる山形分布になるのかを判断しているが、具体的な分析方法はこれに限定されず、上記した分布を判別できる他の任意の方法を利用してもよい。 As described above, when analyzing the density distribution, specifically, depending on whether the layer with the highest density is the top layer or the bottom layer, whether the density increases toward the top or the bottom However, the specific analysis method is not limited to this, and any other method that can discriminate the above distribution is used. may be used.

上記のように、本実施形態によれば、回収対象とする藻類などの有害微生物、油分等の浮遊物が広い範囲に分散している場合、吸込み口を分布範囲の下部に設置して回収処理を行う。また、浮遊物が水面付近に集まって広い範囲に分散していない場合、吸込み口を浮遊物集積層に設置し、高濃密度水を集中的に吸引する。この場合、鉛直方向に水温成層が発生した場合、浮遊物が水温成層の上部に集中し、上下に乱れにくいため、吸込み口を浮遊物集積層に設置して、高濃密度水を高速に吸引することができる。このように、浮遊物と水温との鉛直分布に基づいて吸込み口の位置を調整し、かつ船速度に合わせて吸込み口の吸込み量を調整することにより、浮遊物の回収を効率的に行うことができる。 As described above, according to the present embodiment, when harmful microorganisms such as algae to be collected and suspended matter such as oil are dispersed in a wide range, the suction port is installed at the bottom of the distribution range for collection processing. I do. In addition, when the suspended matter is gathered near the surface of the water and is not dispersed over a wide area, a suction port is installed in the suspended matter accumulation layer to intensively suck the highly concentrated water. In this case, when water temperature stratification occurs in the vertical direction, the suspended matter concentrates in the upper part of the water temperature stratification and is less likely to be disturbed vertically. can do. In this way, by adjusting the position of the suction port based on the vertical distribution of the suspended matter and the water temperature, and adjusting the suction amount of the suction port according to the ship's speed, it is possible to efficiently recover the suspended matter. can be done.

また、本発明の実施形態によれば、水中の浮遊物の鉛直分布と水温分布を自動的に計測する装置を設け、その計測結果に基づいて吸込み口の位置と浮遊物の吸込み流速を自動的に制御することにより、従来なかった高効率的な回収を行うことができる。 Further, according to the embodiment of the present invention, a device for automatically measuring the vertical distribution and water temperature distribution of suspended matter in water is provided, and based on the measurement results, the position of the suction port and the suction flow rate of suspended matter are automatically determined. By controlling to , it is possible to perform highly efficient recovery that has not been possible in the past.

[導流板構造]
浮遊物の進入を導く吸込み口の形状が一定の場合、回収船の旋回際に吸引力の不均一さなどにより回収対象物が吸込み口から逸脱する。また、浮遊物は、風とそれにより形成される吹送流により、複雑な地形が多い岸辺に集積することが多い。従来の固定された吸い込み口では、船本体の航路を細かく調整しないかぎり、効率的な吸引は困難である。
[Drainage plate structure]
If the shape of the suction port, which guides the entry of floating matter, is constant, objects to be collected deviate from the suction port due to unevenness in the suction force when the recovery ship turns. In addition, floating matter often accumulates on banks with many complicated topography due to the wind and the blowing current formed by it. Efficient suction is difficult with conventional fixed suction ports unless the ship's main course is finely tuned.

上記従来の状況に鑑み、本実施形態では、回収船に水平方向に変形可能な導流板構造をさらに設ける。図1及び図2に示すように、導流板構造は、回収船の吸込み口の前方に取り付けられ、前方の浮遊物の吸込み口への進入をガイドする。 In view of the conventional situation described above, in this embodiment, the recovery ship is further provided with a guide plate structure that can be deformed in the horizontal direction. As shown in FIGS. 1 and 2, the baffle structure is mounted in front of the suction port of the recovery vessel and guides the entry of forward flotage into the suction port.

以下、図5を参照して導流板構造について説明する。導流板構造は、左右対称に配置された導流板を備える。図5は、導流板構造における回収船の前進方向の右側の導流板を例示して導流板構造を示す概略図で、そのうち、図5の(a)は上から下へ順に導流板の完全収縮、一部延伸、完全延伸の状態を示し、図5の(b)は図5の(a)のAA線に沿った断面図であり、図5の(c)は導流板の変角した様子を示している。 The flow guide plate structure will be described below with reference to FIG. The flow guide plate structure includes symmetrically arranged flow guide plates. 5A and 5B are schematic diagrams showing the flow guide plate structure by exemplifying the right side of the flow guide plate in the forward direction of the recovery ship in the structure of the flow guide plate, of which FIG. FIG. 5(b) is a cross-sectional view taken along line AA in FIG. 5(a), and FIG. 5(c) is a flow guide plate. It shows a distorted state of

図に示すように、導流板構造は、左右対称に配置された導流板を備え、各導流板は、水平方向に回転可能に吸込み口の一側に配置された第1導流板部71と、第1導流板部71に伸縮可能に接続された第2導流板部72と、第1導流板部71に駆動接続され、第1導流板部71を水平方向に回転するように駆動する回転駆動機構74と、第2導流板部72に駆動接続され、第2導流板部72が第1導流板部72に対して伸縮するように駆動する伸縮駆動機構75とを備える。 As shown in the figure, the baffle plate structure comprises bilaterally symmetrically arranged baffle plates, each baffle plate being horizontally rotatably arranged on one side of the suction port. a portion 71, a second guide plate portion 72 connected to the first guide plate portion 71 so as to be able to expand and contract, and a drive connection to the first guide plate portion 71 so that the first guide plate portion 71 moves horizontally. A rotation drive mechanism 74 that drives to rotate, and a telescopic drive that is drivingly connected to the second guide plate portion 72 and drives the second guide plate portion 72 to expand and contract with respect to the first guide plate portion 72. and a mechanism 75 .

具体的には、図5に示すように、第1導流板部71は、内部に第2導流板部72を収容可能な収容空間が形成された長い板状に形成されている。第1導流板部71の横断面は一辺が一部開いた形状となっている。なお、第1導流板部71は、横断面が全閉鎖状となる形状に形成されてもよい。第1導流板部71の基端部は回転駆動機構74に接続され、回転駆動機構74は遮断側板24の先端部に取り付けられている。回転駆動機構74は、第1導流板部71をその基端部を中心として水平方向に回転するように駆動する。ここで、回転駆動機構74は回転モータであってもよい。 Specifically, as shown in FIG. 5 , the first guide plate portion 71 is formed in a long plate shape with an accommodation space inside which can accommodate the second guide plate portion 72 . The cross section of the first guide plate portion 71 has a shape in which one side is partially open. It should be noted that the first guide plate portion 71 may be formed in a shape whose cross section is fully closed. A base end portion of the first flow guide plate portion 71 is connected to a rotation drive mechanism 74 , and the rotation drive mechanism 74 is attached to a tip end portion of the blocking side plate 24 . The rotation drive mechanism 74 drives the first guide plate portion 71 so as to horizontally rotate around its base end portion. Here, the rotary drive mechanism 74 may be a rotary motor.

第2導流板部72は、第1導流板部71の収容空間内に可動可能に収容され、長い板状に形成される。 The second guide plate portion 72 is movably accommodated in the accommodation space of the first guide plate portion 71 and formed in a long plate shape.

伸縮駆動装置75は、第1導流板部71の先端部に設けられ、第2導流板部72に駆動接続されている。例えば、伸縮駆動装置75は回転モータと歯車ラック伝動構造とを備えることができる。歯車は回転モータの出力軸に固定され、ラックは第2導流板部72の長手方向に沿って第2導流板部72の一側面に取り付けられ、歯車はラックと噛み合う。それにより第2導流板部72は回転モータの正逆回転の駆動により、その長さ方向に前後に移動することができる。 The expansion/contraction driving device 75 is provided at the tip of the first guide plate portion 71 and is drivingly connected to the second guide plate portion 72 . For example, the telescopic drive 75 can comprise a rotary motor and a gear rack transmission structure. The gear is fixed to the output shaft of the rotary motor, the rack is attached to one side surface of the second guide plate portion 72 along the longitudinal direction of the second guide plate portion 72, and the gear meshes with the rack. As a result, the second guide plate portion 72 can be moved back and forth in its longitudinal direction by driving the rotary motor to rotate forward and backward.

導流板は、離脱防止構造をさらに備えることが好ましい。離脱防止構造は、第2導流板部72の基端部の一側面に設置された凸条76と、第1導流板部71の先端部付近における上側壁及び下側壁のうちのいずれか一方から他方に突出する突出部77とにより構成されてもよい。図5の(a)における最下段の図に示すように、第2導流板部72が第1導流板部71から完全に延出し、すなわちその基端部が第1導流板部71の先端部に移動する場合、第2導流板部72上の凸条76が第1導流板部71上の突出部77に当接して、第2導流板部72の第1導流板部71からの脱出が阻止される。 It is preferable that the guide plate further includes a detachment prevention structure. The detachment prevention structure is one of a ridge 76 installed on one side surface of the base end of the second guide plate portion 72 and either an upper wall or a lower wall near the tip of the first guide plate portion 71. It may be configured by a protruding portion 77 that protrudes from one side to the other side. 5A, the second guide plate portion 72 completely extends from the first guide plate portion 71, that is, the base end of the second guide plate portion 72 extends from the first guide plate portion 71. , the projection 76 on the second guide plate portion 72 abuts on the projecting portion 77 on the first guide plate portion 71, and the first guide guide of the second guide plate portion 72 Escaping from the plate portion 71 is prevented.

第1導流板部71及び第2導流板部72は、例えば硬質プラスチック又はステンレス鋼等で製造されてもよく、上下幅は例えば藍藻等の浮遊物が一般的に集まる集積層の厚さより大きい幅とすることが好ましい。例えば30cm程度とすることができる。回収作業を行う際に、第1導流板部及び第2導流板部の少なくとも一部を水中に浸入させる。例えば水下10cm~30cmに入れる。 The first guide plate portion 71 and the second guide plate portion 72 may be made of, for example, hard plastic or stainless steel, and the vertical width is greater than the thickness of the accumulated layer where suspended matter such as blue-green algae generally gather. A large width is preferred. For example, it can be about 30 cm. At least a part of the first guide plate portion and the second guide plate portion is immersed in water when performing recovery work. For example, put it under water 10 cm to 30 cm.

また、左右の導流板は回収船の推進際に水圧を強く受ける。したがって、図1及び図2に示すように、回収船は、船体部1の左右両側に導流板の背面から該導流板を支持する減振装置14をさらに設けることが好ましい。減振装置14は、支持フレーム11に固定されたダンパーと、一端が該ダンパーに接続され、他端が第1導流板部71の背面に接続された支柱とを備え、当該支柱は、第1導流板部71の回転による変角につれて、前方に繰り出したり、後方に縮んだりする。減振装置14を設けることにより、導流板を後ろから支え前方からの水圧に耐えるとともに、上下のブレを抑制する。 Also, the left and right guide plates receive a strong water pressure when the recovery ship is propelled. Therefore, as shown in FIGS. 1 and 2, it is preferable that the recovery ship is further provided with vibration damping devices 14 on the left and right sides of the hull portion 1 to support the flow guide plate from the back surface thereof. The vibration damping device 14 includes a damper fixed to the support frame 11, and a strut having one end connected to the damper and the other end connected to the back surface of the first guide plate portion 71. 1. As the flow guide plate 71 rotates, it extends forward and contracts backward. By providing the vibration damping device 14, the guide plate is supported from behind to withstand the water pressure from the front and to suppress vertical shaking.

また、第2導流板72の先端には、前方の障害物との距離を計測する距離センサ73が取り付けられてもよい。距離センサ73は、例えばレーザセンサ、音波センサなどのような距離を計測可能な任意のセンサを利用することができる。 A distance sensor 73 for measuring the distance to an obstacle in front may be attached to the tip of the second guide plate 72 . As the distance sensor 73, any sensor capable of measuring distance, such as a laser sensor or a sound wave sensor, can be used.

[導流板構造の制御]
本実施形態によれば、制御装置は、回収船が通常の回収作業を行う場合、導流板構造に対して通常動作モードの制御を実行し、回収船が岸に沿って回収作業を行う場合、導流板構造に対して沿岸動作モードの制御を実行する。導流板構造が通常動作モードを実行するか、若しくは沿岸動作モードを実行するかは、作業者が回収作業に応じて指定することができる。
[Control of flow guide plate structure]
According to this embodiment, the control device controls the flow guide plate structure in the normal operation mode when the recovery vessel performs normal recovery work, and when the recovery vessel performs recovery work along the shore. , to carry out control of the coastal mode of operation for the waveguide structure. Whether the baffle plate structure executes the normal operation mode or the coastal operation mode can be designated by the operator depending on the recovery operation.

以下、図6~図8を参照して、導流板構造の動作モード及び制御方法を詳細に説明する。図6は、導流板構造の各動作モードでの変形の様子を示す模式図であり、図7は導流板構造の通常動作モードの制御方法を示すフローチャートであり、図8は導流板構造の沿岸動作モードの制御方法を示すフローチャートである。 Hereinafter, the operation mode and control method of the guide plate structure will be described in detail with reference to FIGS. 6 to 8. FIG. 6A and 6B are schematic diagrams showing deformation of the guide plate structure in each operation mode, FIG. 7 is a flow chart showing a control method of the guide plate structure in the normal operation mode, and FIG. Fig. 4 is a flow chart illustrating a method of controlling the structure's coastal mode of operation;

回収作業が行われていない場合、図6の(a)に示すように、導流板構造は、左右の導流板が完全に収縮し、つまり第2導流板部72が第1導流板部71内に退避し、かつ左右の導流板が船体部1の前後方向に対して内側(即ち、吸込み口に接近する方向)に回転して先端同士が閉じ合って吸込み口を塞ぐ初期形態にある。これにより、導流板が破壊されるリスクを減少させることができ、さらに吸い込みたくない浮遊物の進入を防止することができる。このとき、左右の導流板は閉じ合っている先端がやや前方に突出するように構成されることが好ましい。これにより強度を向上させることができる。 When the recovery operation is not performed, as shown in FIG. 6(a), the flow guide plate structure has the left and right guide plates completely contracted, that is, the second guide plate portion 72 becomes the first guide plate. At the initial stage when the left and right guide plates are retracted into the plate portion 71 and rotate inward (that is, in a direction approaching the suction port) with respect to the longitudinal direction of the hull portion 1, the tips close together to block the suction port. in the form. As a result, the risk of breaking the guide plate can be reduced, and the entry of floating matter that is not desired to be sucked can be prevented. At this time, it is preferable that the ends of the left and right guide plates that are closed to each other protrude slightly forward. This can improve the strength.

回収作業が開始された後、通常動作モードが指定されると、制御装置は図7に示す制御方法を実行する。制御装置は船速度、旋回情報などの回収船の航行情報をリアルタイムに又は定期的に取得し(ステップST1)、これらの航行情報に基づいて回収船の航行状態を判断し、航行状態に基づいて導流板構造の変形を制御する。旋回情報は、少なくとも回収船が左旋回であるか右旋回であるかを示す情報を含む。旋回情報は、例えば、回収船の既存のGPSや船舶用磁石方位計等により取得することができる。 When the normal operation mode is designated after the collection work is started, the control device executes the control method shown in FIG. The control device acquires navigation information of the recovery vessel such as ship speed and turning information in real time or periodically (step ST1), determines the navigation condition of the recovery vessel based on the navigation information, Control the deformation of the waveguide structure. The turning information includes at least information indicating whether the recovery ship is turning left or right. The turning information can be acquired by, for example, the existing GPS of the recovery ship, the magnetic compass for ships, or the like.

制御装置は、船速度、旋回情報などを取得した後、ステップST2において、旋回情報に基づいて航行状態が旋回であるか否かを判断し、旋回ではなく直進であると判断した場合(「NO」)、ステップST3に移行して、船速度が高速であるか否かを判断する。航行状態が高速と判断された場合(「YES」)、処理はステップST4に移行して、制御装置は、左右の導流板が完全に収縮するとともに、水平方向において前後方向(図6において点線で図示)に対して外側に(即ち、吸込み口から離れる方向に)所定の第1角度を回転する、すなわち、左右の導流板のそれぞれにおいて、第2導流板部72が第2導流板部71内に完全に退避し、かつ第1導流板部71と第2導流板部72が外側に所定の第1角度を回転するように制御する。これにより、導流板構造は、図6の(b)に示す形状のように変形して、回収船が高速直進する時に相対的に狭い水域を集中的に吸引する。ここで、第1角度は例えば5°~30°の範囲内の任意の角度であってよい。 After acquiring the ship speed, turning information, etc., the control device determines whether or not the sailing state is turning based on the turning information in step ST2. ”), the process proceeds to step ST3, and it is determined whether or not the boat speed is high. If the cruising state is determined to be high speed ("YES"), the process proceeds to step ST4, and the control device causes the left and right guide plates to completely contract and the horizontal direction to move forward and backward (dotted line in FIG. 6). ) is rotated outward (that is, in a direction away from the suction port) by a predetermined first angle. It is controlled so that it completely retracts into the plate portion 71 and rotates the first guide plate portion 71 and the second guide plate portion 72 outward by a predetermined first angle. As a result, the flow guide plate structure is deformed into the shape shown in FIG. 6(b), and concentrates suction in a relatively narrow water area when the recovery ship travels straight at high speed. Here, the first angle may be any angle within the range of, for example, 5° to 30°.

ステップST3において高速ではないと判断された場合(「NO」)、処理はステップST5に移行して、船速度が底速であるか否かを判断する。低速であると判断された場合(「YES」)、処理はステップST6に移行して、制御装置は、左右の導流板が完全に延伸するとともに、前後方向に対して外側に所定の第2角度を回転する、すなわち、左右の導流板のそれぞれにおいて、第2導流板部72が第2導流板部71から完全に延出し、かつ第1導流板部71と第2導流板部72が外側に所定の第2角度を回転するように制御する。これにより、導流板構造は、図6の(c)に示す形状のように変形して、回収船が低速直進する時に分散させずにより広い水域を吸引する。ここで、第2角度は第1角度より大きく、例えば60°~70°の範囲内の任意の角度であってよい。 If it is determined in step ST3 that the boat speed is not high ("NO"), the process proceeds to step ST5 to determine whether the boat speed is the bottom speed. If it is determined that the speed is low ("YES"), the process proceeds to step ST6, and the control device causes the left and right guide plates to fully extend and extend outward in the front-rear direction by a predetermined second distance. Rotate the angle, that is, in each of the left and right guide plates, the second guide plate portion 72 extends completely from the second guide plate portion 71, and the first guide plate portion 71 and the second guide plate The plate portion 72 is controlled to rotate outward by a predetermined second angle. As a result, the flow guide plate structure is deformed into the shape shown in FIG. 6(c) and absorbs a wider area of water without scattering when the recovery ship travels straight at low speed. Here, the second angle is greater than the first angle, and may be any angle within the range of 60° to 70°, for example.

ステップST5で低速ではないと判断された場合(「NO」)、船速度は低速より大きく高速より小さい中速度であるため、処理はステップST7に移行して、制御装置は、左右の導流板が完全に延伸するとともに、前後方向に対して外側に所定の第三角度を回転するように制御する。このとき、導流板構造は、左右の導流板が回転により開く角度が異なる点以外、図6の(d)に示すような形状に変形する。ここで、第三角度は第1角度より大きくかつ第2角度よりも小さく、例えば30°~60°内の任意の角度であってよい。 If it is determined in step ST5 that the speed is not low ("NO"), the ship speed is medium speed that is higher than low speed and lower than high speed. is fully extended and rotated outward by a predetermined third angle with respect to the longitudinal direction. At this time, the flow guide plate structure is deformed into a shape as shown in FIG. Here, the third angle is larger than the first angle and smaller than the second angle, and may be any angle between 30° and 60°, for example.

ステップST2において旋回であると判断された場合(「YES」)、ステップST8に移行して、船速度が高速であるか否かを判断する。航行状態が高速であると判断された場合(「YES」)、処理はステップST9に移行して、制御装置は、左右の導流板のうちの旋回方向側の導流板である旋回側導流板が完全に収縮するとともに、前後方向に対して外側に所定の第1角度を回転するように制御し、同時に、旋回側導流板の反対側の導流板である非旋回側導流板が完全に延伸するとともに、前後方向に対して内側に旋回側導流板の回転角度の所定倍数の角度を回転するように制御する。ここで、所定倍数は1より小さい。例えば、1/2倍に設定することができ、以下も同様である。 If it is determined to be turning in step ST2 ("YES"), the process proceeds to step ST8 to determine whether the boat speed is high. If it is determined that the cruising state is high speed ("YES"), the process proceeds to step ST9, and the controller controls the turning side guide plate, which is the one of the left and right guide plates on the turning direction side. When the flow plate is completely contracted, it is controlled to rotate outward by a predetermined first angle with respect to the longitudinal direction, and at the same time, the non-swirling-side guide plate, which is the opposite side of the swirl-side guide plate, is controlled. Control is performed so that the plate is completely extended and rotates inwardly with respect to the front-rear direction by a predetermined multiple of the rotation angle of the orbiting-side guide plate. Here, the predetermined multiple is smaller than one. For example, it can be set to 1/2 times, and so on.

ステップST8において高速ではないと判断した場合(「NO」)、処理はステップST10に移行し、船速度が底速であるか否かを判断する。低速と判断した場合(「YES」)、処理はステップST11に移行して、制御装置は、旋回側導流板が完全に収縮するとともに、前後方向に対して外側に所定の第2角度を回転するように制御し、同時に、非旋回側導流板が完全に延伸するとともに、前後方向に対して内側に旋回側導流板の回転角度の所定倍数の角度を回転するように制御する。 If it is determined in step ST8 that the boat speed is not high ("NO"), the process proceeds to step ST10 to determine whether the boat speed is the bottom speed. If it is determined that the speed is low ("YES"), the process proceeds to step ST11, and the control device completely contracts the orbiting-side guide plate and rotates it outward by a predetermined second angle with respect to the front-rear direction. At the same time, the non-swirling-side flow guide plate is completely extended and is controlled to rotate inwardly with respect to the longitudinal direction by a predetermined multiple of the rotation angle of the swirling-side guide plate.

ステップST10において低速ではないと判断した場合(「NO」)、船速度は低速より大きく高速より小さい中速度であるため、処理はステップST12に移行して、制御装置は、旋回側導流板が完全に収縮するとともに、前後方向に対して外側に所定の第三角度を回転するように制御し、同時に、非旋回側導流板が完全に延伸するとともに、前後方向に対して内側に旋回側導流板の回転角度の所定倍数の角度を回転するように制御する。 If it is determined in step ST10 that the speed is not low ("NO"), the ship speed is medium speed higher than low speed and lower than high speed. While completely contracting, it is controlled to rotate outward by a predetermined third angle with respect to the front-rear direction, and at the same time, the non-swirl-side guide plate fully extends and turns inward with respect to the front-rear direction. It is controlled to rotate through an angle that is a predetermined multiple of the rotation angle of the flow guide plate.

これにより、導流板構造は、左旋回の時に、図6の(d)に示す形状のように変形し、右旋回の時に、図6の(e)に示すような形状のように変形する。従って、回収船が旋回する時、吸引力が不均一であることで回収物が吸込み口から離脱することを回避することができる。 As a result, the flow guide plate structure deforms into the shape shown in FIG. 6(d) when turning left, and deforms into the shape shown in FIG. 6(e) when turning right. do. Therefore, when the recovery ship turns, it is possible to avoid the separation of the recovered material from the suction port due to uneven suction force.

以上のように、本実施形態では、回収船の航行速度と航行方向に合わせて導流板構造を変形させることにより、浮遊物の進入を導く最先端の吸い込み口の形状を変更して、吸込み口の吸引力分布を最適な分布に調整して回収物が吸込み口から離脱することを防止することができる。 As described above, in this embodiment, the shape of the leading edge suction port that guides the entry of floating matter is changed by deforming the flow guide plate structure according to the navigation speed and navigation direction of the recovery ship. By adjusting the suction force distribution of the mouth to an optimum distribution, it is possible to prevent the collected material from leaving the suction mouth.

一方、回収船は、岸に沿って回収作業を行う時、一般的に、一定の速度で安定して前進する。このとき、導流板構造の開き角度、即ち左右導流板の回転角度もほとんど変わらない。この場合、導流板構造に対しては、図8に示す沿岸動作モードの制御方法に基づいて制御することができる。次は、図8に示す制御方法について説明する。
制御装置は、ステップSY1で左右の導流板のうちのより岸辺に近接する導流板である岸辺側導流板の先端部に設置された距離センサ73により測定された、距離センサ73から岸までの距離である離岸距離データをリアルタイムに取得する。
Recovery vessels, on the other hand, generally move steadily forward at a constant speed when performing recovery operations along the shore. At this time, the opening angle of the flow guide plate structure, that is, the rotation angle of the left and right flow guide plates is almost unchanged. In this case, the guide plate structure can be controlled based on the coastal operation mode control method shown in FIG. Next, the control method shown in FIG. 8 will be described.
In step SY1, the controller detects the distance from the distance sensor 73 to the shore measured by the distance sensor 73 installed at the tip of the shore-side flow guide plate, which is the flow guide plate closer to the shore than the left and right guide plates in step SY1. Acquire real-time berthing distance data, which is the distance to

次に、ステップSY2において離岸距離から基準離岸距離を引いた値である伸縮量Δdを求める。ここで、基準離岸距離は、河岸の状況や船の運行状況などを考慮して、適当な距離に設定してよい。例えば10cmに設定することができる。 Next, in step SY2, an expansion/contraction amount Δd, which is a value obtained by subtracting the standard shore-leaving distance from the shore-leaving distance, is obtained. Here, the reference unshore distance may be set to an appropriate distance in consideration of riverside conditions, ship operating conditions, and the like. For example, it can be set to 10 cm.

次に、ステップSY3では、ステップSY2で求めた伸縮量Δdを0と比較する。伸縮量Δdが0より小さい場合、ステップSY4に移行し、制御装置は岸辺側導流板を制御して、岸辺側の第2導流板部72を岸辺側の第1導流板部71に該伸縮量Δdと等しい距離を退避させる。 Next, in step SY3, the expansion/contraction amount Δd obtained in step SY2 is compared with zero. When the expansion/contraction amount Δd is smaller than 0, the control device moves to step SY4 and controls the bank side guide plate to change the bank side second guide plate portion 72 to the bank side first guide plate portion 71. A distance equal to the expansion/contraction amount Δd is retracted.

伸縮量Δdが0より大きい場合、ステップSY5に移行し、制御装置は岸辺側導流板を制御して、岸辺側の第2導流板部72を岸辺側の第1導流板部71から該伸縮量Δdと等しい距離だけ伸び出させる。 When the expansion/contraction amount Δd is greater than 0, the control device moves to step SY5, and controls the bank side guide plate to move the bank side second guide plate portion 72 from the bank side first guide plate portion 71. It is extended by a distance equal to the extension/retraction amount Δd.

伸縮量Δdが0の場合、現在の離岸距離が適切であると判断し、導流板構造の形状はそのまま保持する。 When the expansion/contraction amount Δd is 0, it is determined that the current offshore distance is appropriate, and the shape of the guide plate structure is maintained as it is.

上記のように、本実施形態では、岸に沿って回収作業を行う場合、岸辺側の導流板に対して、図6の(f)に示すように岸との距離を一定に保つ制御を行うことにより、岸の形状に合わせて効率的に導流、吸引し、河岸の隅々まで回収することができる。従って、浮遊物がより密集して堆積している河岸に対しても効率的に回収することができる。 As described above, in the present embodiment, when recovery work is performed along the shore, control is performed to keep the distance from the shore constant for the guide plates on the shore side as shown in FIG. By doing so, it is possible to efficiently guide and suck the water according to the shape of the bank, and collect every corner of the river bank. Therefore, it is possible to efficiently collect floating matter even from riverbanks where floating matter is accumulated more densely.

以上、導流板構造の変形制御において、制御装置による第1導流板部71の回転制御は、制御指令で回転駆動機構74を制御して第1導流板部72の回転を駆動することにより実現してよく、制御装置による第2導流板部72の伸縮制御は、制御指令で回転駆動機構75を制御して第2導流板部72の伸縮を駆動することにより実現してよい。 As described above, in the deformation control of the flow guide plate structure, the rotation control of the first flow guide plate portion 71 by the control device is performed by controlling the rotation driving mechanism 74 with a control command to drive the rotation of the first flow guide plate portion 72 . The expansion and contraction control of the second guide plate portion 72 by the control device may be realized by controlling the rotation drive mechanism 75 with a control command to drive the expansion and contraction of the second guide plate portion 72. .

以上、本発明の実施形態を示したが、本発明は、上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で様々な変更、変形を行うことができ、これら変更、変形して得られる実施形態はいずれも本発明の保護範囲に含まれることは言うまでもない。 Although the embodiments of the present invention have been shown above, the present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the technical idea of the present invention. It goes without saying that all of the embodiments obtained by these changes and modifications are included in the protection scope of the present invention.

1 船体部、
2 回収水槽、
5 処理装置、
6、6’ 水質水温計測箱、
11 浮子用ブラケット、
12 浮子、
13 推進用スクリュー、
14 減振装置、
15 作業台、
16 昇降装置、
17 切り欠け、
21 回収チャンバー、
22 開口、
23 延出板、
24 遮断側板、
61、61’ 支持フレーム、
62、62’ 計測室、
63、63’ 液面計、
64、64’ 水温、水質センサ、
65鉛直層分離板、
66’ 鉛直レール、
71 第1導流板部、
72、第2導流板部、
73、 距離センサ、
74 回転駆動機構、
75 伸縮駆動機構、
76 凸条、
77 突出部。

1 hull section,
2 collection water tank,
5 processor,
6, 6' water quality and temperature measuring box,
11 float bracket,
12 floats,
13 propulsion screw,
14 damping device,
15 workbench,
16 lifting device,
17 Notch,
21 collection chamber,
22 aperture,
23 extension plate,
24 blocking side plate,
61, 61' support frame,
62, 62' measurement room,
63, 63' liquid level gauge,
64, 64' water temperature, water quality sensor,
65 vertical layer separator,
66' vertical rail,
71 first guide plate portion,
72, second guide plate portion,
73, distance sensor,
74 rotary drive mechanism,
75 telescopic drive mechanism,
76 ridges,
77 protrusion.

Claims (13)

水面を航行し、水面に浮遊する浮遊物を回収する浮遊物回収装置であって、
装置本体に昇降可能に取り付けられ、前記浮遊物を回収する回収水槽であって、回収チャンバーと前記回収チャンバーの前記装置本体の前後方向の前方に配置され、前記回収チャンバーに接続された吸込み通路とを備え、前記浮遊物を含む水が該吸込み通路を介して前記回収チャンバーに吸い込まれる回収水槽と、
吸引管により前記回収水槽に接続され、前記回収水槽に回収された前記浮遊物を含む水を吸引する吸引ポンプと、
前記浮遊物回収装置の航行速度と、前記吸込み通路の先端口である吸込み口の底面の幅及び水深位置とに基づいて、前記吸込み口での吸込み流速が前記航行速度と一致するように、前記吸引ポンプの吸引量を制御する制御装置と、
前記吸込み口の前記前後方向の前方に配置され、水面から所定の深さまでの水深範囲における複数の水深層の水温と浮遊物の濃密度を計測する水質水温計測箱と、
を備え、
制御装置は、前記水質水温計測箱により測定された前記複数の水深層の前記水温と前記浮遊物の濃密度とに基づいて前記吸込み口の底面の深さ設定値を決定し、前記回収水槽の昇降を制御して前記吸込み口の底面を前記深さ設定値に設置する
ことを特徴とする浮遊物回収装置。
A floating matter collection device that navigates on the water surface and collects floating matter floating on the water surface,
A recovery water tank attached to an apparatus main body so as to be able to move up and down to recover the floating matter, comprising a recovery chamber and a suction passage disposed in front of the recovery chamber in the front-rear direction of the apparatus main body and connected to the recovery chamber. a recovery water tank in which the water containing the floating matter is sucked into the recovery chamber through the suction passage;
a suction pump that is connected to the recovery water tank by a suction pipe and sucks the water containing the floating matter that has been recovered in the recovery water tank;
Based on the sailing speed of the floating matter collecting device and the width and water depth of the bottom surface of the suction port, which is the tip end of the suction passage, so that the suction flow speed at the suction port matches the sailing speed, a control device for controlling the suction amount of the suction pump;
a water quality and temperature measuring box disposed in front of the suction port in the front-rear direction for measuring the water temperature and density of suspended matter in a plurality of deep water layers in a water depth range from the surface of the water to a predetermined depth;
with
The control device determines a depth setting value of the bottom surface of the suction port based on the water temperature of the plurality of deep water layers and the density of the floating matter measured by the water quality and temperature measuring box, Controlling up and down to set the bottom surface of the suction port at the depth set value ;
A floating matter collection device characterized by:
前記制御装置は、
前記複数の水深層の前記浮遊物の濃密度に基づいて前記浮遊物が上下方向に均一に分布しているか否かを判断し、前記複数の水深層の前記水温に基づいて水温成層が発生したがどうかを判断し、
前記浮遊物の分布が均一であると判断した場合、前記水深範囲内の最層の深さを前記深さ設定値とし、
前記浮遊物の分布が不均一であり、かつ水温成層が発生したと判断した場合、前記水温成層が発生した位置から所定層数下の深さと前記最下層の深さのうちのより浅い深さを前記深さ設定値とし、
前記浮遊物の分布が不均一であり、かつ水温成層が発生していないと判断した場合、濃密度の分布を分析し、前記濃密度の分布に基づいて前記深さ設定値を設定する、
ことを特徴とする請求項に記載の浮遊物回収装置。
The control device is
Determining whether the floating matter is uniformly distributed in the vertical direction based on the density of the floating matter in the plurality of deep water layers, and determining whether water temperature stratification has occurred based on the water temperatures in the plurality of deep water layers. determine whether
When it is determined that the distribution of the floating matter is uniform, the depth of the lowest layer in the water depth range is set as the depth setting value,
When it is determined that the distribution of the suspended matter is uneven and that water temperature stratification has occurred, the shallower of the depth of a predetermined number of layers below the position where the water temperature stratification has occurred and the depth of the lowest layer is the depth setting value, and
If it is determined that the distribution of the floating matter is uneven and that water temperature stratification has not occurred, analyzing the density distribution and setting the depth setting value based on the density distribution.
The flotage collecting device according to claim 1 , characterized in that:
前記した濃密度の分布を分析し、前記濃密度の分布に基づいて前記深さ設定値を設定することにおいて、
前記濃密度が上方ほど高くなる場合、前記濃密度差が最大の隣接層を特定し、前記濃密度差が最大の隣接層の境界から所定層数下の深さと最下層の深さのうちのより浅い深さを前記深さ設定値とし、
前記濃密度が下方ほど高くなる場合、前記最下層の深さを前記深さ設定値とし、
前記濃密度が前記水深範囲における中間層が最大となる山形状の分布になる場合、前記中間層から前記所定層数下の深さと前記最下層の深さのうちのより浅い深さを前記深さの設定値とする、
ことを特徴とする請求項に記載の浮遊物回収装置。
In analyzing the density distribution and setting the depth setting value based on the density distribution,
When the density increases upward, the adjacent layer with the largest density difference is specified, and the depth of a predetermined number of layers below the boundary of the adjacent layer with the maximum density difference and the depth of the lowest layer The depth setting value is the shallower depth of
When the density increases toward the bottom, the depth of the lowest layer is set as the depth setting value,
When the density has a mountain-shaped distribution in which the intermediate layer is the largest in the water depth range, the shallower of the depth of the predetermined number of layers below the intermediate layer and the depth of the lowest layer is the depth. set value of
The flotage collecting device according to claim 1 , characterized in that:
前記制御装置は、前記複数の水深層の前記濃密度における最大濃密度と最小濃密度との差を濃密度差閾値と比較し、前記最大濃密度と最小濃密度との差が前記濃密度差閾値以上である場合、前記浮遊物の上下方向の分布が不均一であると判断する、
ことを特徴とする請求項又はに記載の浮遊物回収装置。
The control device compares a difference between a maximum density and a minimum density in the density of the plurality of deep water layers with a density difference threshold, and determines a difference between the maximum density and the minimum density as the density difference. If it is equal to or greater than the threshold, it is determined that the vertical distribution of the floating matter is uneven;
The flotage collecting device according to claim 2 or 3 , characterized in that:
前記制御装置は、各隣接層の間の水温差を算出し、前記水温差が水温差閾値以上の隣接層が存在するか否かを判断し、存在する場合、前記水温差が水温差閾値以上の隣接層の境界に水温成層が発生したと判断する、
ことを特徴とする請求項又はに記載の浮遊物回収装置。
The control device calculates the water temperature difference between each adjacent layer, determines whether or not there is an adjacent layer whose water temperature difference is equal to or greater than the water temperature difference threshold, and if it exists, the water temperature difference is equal to or greater than the water temperature difference threshold. Judging that thermal stratification occurred at the boundary of the adjacent layer of
The flotage collecting device according to claim 2 or 3 , characterized in that:
前記装置体は先端側に切り欠きが形成され、前記回収水槽は前記切り欠き内に配置されている、
ことを特徴とする請求項1に記載の浮遊物回収装置。
A notch is formed on the tip side of the device main body , and the recovery water tank is arranged in the notch.
The flotage collecting device according to claim 1, characterized in that:
前記水質水温計測箱は、
前記回収水槽の前記吸込み通路の先端に昇降可能に取り付けられた支持フレームと、
前記支持フレームに下方向に並んで設置され、前後に開口し、前記水温を計測する水温センサと前記浮遊物の濃密度を計測する水質センサとを内蔵する複数の計測室と、
を備え、
前記水質水温計測箱は、各前記水深層の前記水温と前記浮遊物の濃密度として、各前記計測室における前記水温センサと前記水質センサにより計測された前記水温と前記浮遊物の濃密度を出力する、
ことを特徴とする請求項に記載の浮遊物回収装置。
The water quality and temperature measuring box is
a support frame attached to the tip of the suction passage of the recovery water tank so as to be able to move up and down;
a plurality of measurement chambers arranged vertically on the support frame, open to the front and rear, and containing a water temperature sensor for measuring the water temperature and a water quality sensor for measuring the density of the floating matter;
with
The water quality and temperature measurement box outputs the water temperature and the density of floating matter measured by the water temperature sensor and the water quality sensor in each of the measurement chambers as the water temperature and the density of the floating matter in each of the deep water layers. do,
The flotage collecting device according to claim 1 , characterized in that:
前記水質水温計測箱は、さらに、少なくとも前記各計測室の前開口の前方及び左右両側に水平に延在するように、前記各計測室の上面及び底面に設けられた鉛直層分離板を備える、
ことを特徴とする請求項に記載の浮遊物回収装置。
The water quality and temperature measurement box further comprises a vertical layer separation plate provided on the top and bottom of each measurement chamber so as to extend horizontally at least in front of the front opening of each measurement chamber and on both left and right sides.
The flotage collecting device according to claim 7 , characterized in that:
前記吸込み口の左右両側に取り付けられ、前記吸込み口の前方の前記浮遊物の前記吸込み口への流入を導流する導流板構造であって、
水平方向に回転可能に前記吸込み口の一側に配置された第1導流板部と、
前記第1導流板部に伸縮可能に接続された第2導流板部と、
前記第1導流板部に駆動接続され、前記第1導流板部を水平方向に回転するように駆動する回転駆動機構と、
前記第2導流板部に駆動接続され、前記第2導流板部が前記第1導流板部に対して伸縮するように駆動する伸縮駆動機構と、
をそれぞれ備える左右の導流板を備える導流板構造をさらに備える、
ことを特徴とする請求項1に記載の浮遊物回収装置。
A flow guide plate structure that is attached to both the left and right sides of the suction port and guides the flow of the floating matter in front of the suction port into the suction port,
a first guide plate portion horizontally rotatably disposed on one side of the inlet;
a second guide plate portion connected to the first guide plate portion so as to be expandable;
a rotation drive mechanism that is drivingly connected to the first guide plate portion and drives the first guide plate portion to rotate in a horizontal direction;
an expansion/contraction driving mechanism that is drivingly connected to the second guide plate portion and drives the second guide plate portion to expand and contract with respect to the first guide plate portion;
further comprising a flow guide plate structure comprising left and right flow guide plates each comprising
The flotage collecting device according to claim 1, characterized in that:
通常の回収作業を行う場合、前記制御装置は、
前記浮遊物回収装置の航行速度と旋回情報を取得し、前記航行速度と前記旋回情報に基づいて前記浮遊物回収装置の航行状態を判断し、かつ
前記航行状態が高速での直進と判断した場合、前記左右の導流板が完全収縮するとともに、前記前後方向に対して外側に第1角度を回転するように制御し、
前記航行状態が低速での直進であると判断した場合、前記左右の導流板が完全延伸するとともに、前記外側に前記第1角度より大きい第2角度を回転するように制御し、
前記航行状態が前記低速より大きく前記高速より小さい中速度での直進であると判断した場合、前記左右の導流板が完全延伸するとともに、前記外側に前記第1角度より大きく、前記第2角度より小さい第3角度を回転するように制御し、
前記航行状態が前記高速での旋回であると判断した場合、前記左右の導流板のうちの旋回方向側の導流板である旋回側導流板が完全収縮するとともに、前記外側に前記第1角度を回転するように制御し、同時に、前記旋回側導流板の反対側の導流板である非旋回側導流板が完全延伸するとともに、前記前後方向に対して内側に前記第1角度の所定倍数の角度を回転するように制御し、
前記航行状態が前記低速での旋回であると判断した場合、前記旋回側導流板が完全収縮するとともに、前記外側に前記第2角度を回転するように制御し、同時に、前記非旋回側導流板が完全延伸するとともに、前記内側に前記第2角度の前記所定倍数の角度を回転するように制御し、
前記航行状態が前記中速度での旋回であると判断した場合、前記旋回側導流板が完全収縮するとともに、前記外側に前記第3角度を回転するように制御し、同時に、前記非旋回側導流板が完全延伸するとともに、前記内側に前記第3角度の前記所定倍数の角度を回転するように制御する、
ことを特徴とする請求項の浮遊物回収装置。
When performing normal recovery work, the control device
When the navigation speed and turning information of the flotage collection device are acquired, the navigation state of the flotage collection device is determined based on the navigation speed and the turning information, and the navigation state is determined to be straight ahead at high speed. , controlling the left and right flow guide plates to completely contract and rotate outward by a first angle with respect to the front-rear direction;
controlling the left and right flow guide plates to fully extend and to rotate outward at a second angle larger than the first angle when determining that the sailing state is straight travel at low speed;
When it is determined that the sailing state is straight ahead at a medium speed higher than the low speed and lower than the high speed, the left and right guide plates are fully extended, and the second angle is larger than the first angle and outward to the second angle. control to rotate a third angle smaller than
When it is determined that the sailing state is a turn at the high speed, the turning-side flow guide plate, which is the flow guide plate on the turning direction side of the left and right flow guide plates, completely contracts and moves outward to the outside. At the same time, the non-swirling-side baffle plate, which is the baffle plate on the opposite side of the swirl-side baffle plate, is fully extended, and the first baffle plate is directed inwardly with respect to the front-rear direction. control to rotate an angle that is a predetermined multiple of the angle;
When it is determined that the cruising state is a turn at a low speed, the turning-side guide plate is fully contracted and controlled to rotate outward by the second angle, and at the same time, the non-turning-side guide plate controlling the flow plate to fully extend and rotate inwardly by the predetermined multiple of the second angle;
When it is determined that the cruising state is a turn at a medium speed, the turning-side flow guide plate is completely contracted and controlled to rotate outward by the third angle, and at the same time, the non-turning side controlling the flow guide plate to fully extend and rotate inwardly by the predetermined multiple of the third angle;
The flotage collecting device according to claim 9 , characterized in that:
前記導流板構造は、それぞれ前記左右の導流板の前記第2導流板部の先端に取り付けられ、前方障害物との間の距離を測定する距離センサをさらに備え、
岸に沿って回収作業を行う場合、前記制御装置は、
前記左右の導流板のうちのより岸辺に近接する導流板である岸辺側導流板上の前記距離センサにより測定された離岸距離を取得し、前記離岸距離と所定の基準離岸距離との差に基づいて前記岸辺側導流板の前記第2導流板部の伸縮を制御する、
ことを特徴とする請求項又は10に記載の浮遊物回収装置。
The flow guide plate structure further includes a distance sensor attached to the tip of the second flow guide plate portion of each of the left and right flow guide plates and measuring a distance to an obstacle in front,
When performing recovery work along the shore, the control device
Acquiring the berthing distance measured by the distance sensor on the shore-side guide plate, which is the guide plate closer to the shore than the left and right guide plates, and obtains the berthing distance and a predetermined reference berthing distance. controlling expansion and contraction of the second guide plate portion of the bank side guide plate based on the difference from the distance;
The flotage collecting device according to claim 9 or 10 , characterized in that:
前記導流板構造は、回収作業が行われない場合、前記左右の導流板が完全収縮しているとともに、先端同士が閉じ合って吸込み口を塞ぐ初期形態にある、
ことを特徴とする請求項又は10に記載の浮遊物回収装置。
The flow guide plate structure is in an initial state in which the left and right flow guide plates are completely contracted when recovery work is not performed, and the tips close together to block the suction port.
The flotage collecting device according to claim 9 or 10 , characterized in that:
前記初期形態において、前記左右の導流板の先端は前方に突出している、ことを特徴とする請求項12に記載の浮遊物回収装置。 13. The flotage collecting device according to claim 12 , wherein in the initial configuration, the tips of the left and right guide plates protrude forward.
JP2022211371A 2022-11-30 2022-12-28 Float collector Active JP7292770B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211520754.0A CN115949044A (en) 2022-11-30 2022-11-30 Suspended matter recovery device
CN202211520754.0 2022-11-30

Publications (2)

Publication Number Publication Date
JP7292770B1 true JP7292770B1 (en) 2023-06-19
JP2024079522A JP2024079522A (en) 2024-06-11

Family

ID=85891748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022211371A Active JP7292770B1 (en) 2022-11-30 2022-12-28 Float collector

Country Status (2)

Country Link
JP (1) JP7292770B1 (en)
CN (1) CN115949044A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190338481A1 (en) * 2014-10-16 2019-11-07 Ocean Cleaner, LLC Systems, apparatus and methods for collecting and separating floating debris and water from a body of water
CN210047602U (en) * 2019-05-06 2020-02-11 重庆机电职业技术学院 Robot for collecting floating objects on water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190338481A1 (en) * 2014-10-16 2019-11-07 Ocean Cleaner, LLC Systems, apparatus and methods for collecting and separating floating debris and water from a body of water
CN210047602U (en) * 2019-05-06 2020-02-11 重庆机电职业技术学院 Robot for collecting floating objects on water

Also Published As

Publication number Publication date
CN115949044A (en) 2023-04-11
JP2024079522A (en) 2024-06-11

Similar Documents

Publication Publication Date Title
CN111806632B (en) Measuring ship for underwater topography mapping
KR101325692B1 (en) Water purification apparatus
JP6329969B2 (en) Conveyor suitable for lifting floating waste or other waste directly under water
JP4627494B2 (en) Aquatic plant intake machine
US3731813A (en) Floating debris recovery apparatus
RU2494000C2 (en) Device, method and ship to prevent and decrease harmful effects of oil spillage
CN105424412A (en) Underwater water sample collecting apparatus based on autonomous underwater vehicle
CN114593952A (en) Water body micro-plastic collecting device and three-dimensional collecting system
JP7292770B1 (en) Float collector
CN208346787U (en) Unmanned oil receiving equipment
RU2462555C1 (en) Floating device for collection of oil spilled on water
CN106370477A (en) Seaborne deep seawater intaking and temperature measuring circulation system
US11261105B1 (en) Oil skimmer
Miller A quantitative push‐net system for transect studies of larval fish and macrozooplankton 1, 2
CN209833919U (en) Autonomous cruising robot on water surface
CN102490873A (en) Water surface operating ship capable of moving up and down
CN217419545U (en) Quick collection device of marine oil pollution
CN116142396A (en) Water quality sampling and garbage recycling mobile platform and working method
JP4445635B2 (en) Unmanned submersible navigation method and unmanned submersible
KR20200112000A (en) collecting apparatus for sedimentation of marine pollution
CN109826265B (en) Single-unit hydraulic dredger
CN214374731U (en) Ocean water quality multi-parameter comprehensive on-line automatic monitoring device
CN114633840A (en) Marine organism monitoring system and measuring ship
CN109826266B (en) Double-unit hydraulic dredger
CN216762074U (en) Cabin body drainage device for marine environment detection buoy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230531

R150 Certificate of patent or registration of utility model

Ref document number: 7292770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150