JP7292573B2 - Silicon carbide polycrystalline substrate and manufacturing method thereof - Google Patents

Silicon carbide polycrystalline substrate and manufacturing method thereof Download PDF

Info

Publication number
JP7292573B2
JP7292573B2 JP2018229635A JP2018229635A JP7292573B2 JP 7292573 B2 JP7292573 B2 JP 7292573B2 JP 2018229635 A JP2018229635 A JP 2018229635A JP 2018229635 A JP2018229635 A JP 2018229635A JP 7292573 B2 JP7292573 B2 JP 7292573B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
polycrystalline
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018229635A
Other languages
Japanese (ja)
Other versions
JP2020090421A (en
Inventor
崇志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018229635A priority Critical patent/JP7292573B2/en
Publication of JP2020090421A publication Critical patent/JP2020090421A/en
Application granted granted Critical
Publication of JP7292573B2 publication Critical patent/JP7292573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化珪素多結晶基板およびその製造方法に関する。 The present invention relates to a polycrystalline silicon carbide substrate and a method for manufacturing the same.

多結晶膜の材料として用いられる炭化珪素は、珪素と炭素で構成される化合物半導体材料である。絶縁破壊電界強度が珪素の10倍であり、バンドギャップが珪素の3倍と優れているだけでなく、デバイスの作製に必要なp型、n型の制御が広い範囲で可能であることなどから、珪素の限界を超えるパワーデバイス用材料として期待されている。 Silicon carbide, which is used as a material for polycrystalline films, is a compound semiconductor material composed of silicon and carbon. In addition to having a dielectric breakdown field strength 10 times that of silicon and a bandgap 3 times that of silicon, it is possible to control the p-type and n-type necessary for device fabrication in a wide range. , is expected as a material for power devices exceeding the limit of silicon.

また、炭化珪素は、より薄い厚さでも高い耐電圧が得られるため、薄く構成することにより、ON抵抗が小さく、低損失の半導体が得られることが特徴である。 In addition, since silicon carbide can provide a high withstand voltage even with a smaller thickness, it is characterized in that a semiconductor with a small ON resistance and a low loss can be obtained by making it thin.

しかしながら、炭化珪素半導体は、広く普及するSi半導体と比較し、大面積のウェハが得られず、製造工程も複雑であることから、Si半導体と比較して大量生産ができず、高価であった。 However, silicon carbide semiconductors cannot be obtained from large-area wafers and have a complicated manufacturing process as compared to widely spread Si semiconductors. .

そこで、炭化珪素半導体のコストを下げるため、様々な工夫が行われてきた。例えば、特許文献1には、炭化珪素基板の製造方法が開示されており、その特徴として、少なくとも、マイクロパイプの密度が30個/cm2以下の炭化珪素単結晶基板と炭化珪素多結晶基板とを貼り合わせる工程を行い、その後、炭化珪素単結晶基板を薄膜化する工程を行うことで、炭化珪素多結晶基板上に炭化珪素単結晶層を形成した基板を製造することが記載されている。 Various attempts have been made to reduce the cost of silicon carbide semiconductors. For example, Patent Document 1 discloses a method for manufacturing a silicon carbide substrate, which is characterized by at least a silicon carbide single crystal substrate and a silicon carbide polycrystal substrate having a micropipe density of 30/cm 2 or less. and then performing a step of thinning the silicon carbide single crystal substrate to manufacture a substrate in which a silicon carbide single crystal layer is formed on a silicon carbide polycrystalline substrate.

更に、特許文献1には、炭化珪素単結晶基板と炭化珪素多結晶基板とを貼り合わせる工程の前に、炭化珪素単結晶基板に水素イオン注入を行って水素イオン注入層を形成する工程を行い、炭化珪素単結晶基板と炭化珪素多結晶基板とを貼り合わせる工程の後、炭化珪素単結晶基板を薄膜化する工程の前に、350℃以下の温度で熱処理を行い、炭化珪素単結晶基板を薄膜化する工程を、水素イオン注入層にて機械的に剥離する工程とする炭化珪素基板の製造方法が記載されている。 Further, in Patent Document 1, a step of implanting hydrogen ions into the silicon carbide single crystal substrate to form a hydrogen ion implanted layer is performed before the step of bonding the silicon carbide single crystal substrate and the silicon carbide polycrystalline substrate together. After the step of bonding the silicon carbide single-crystal substrate and the silicon carbide polycrystalline substrate together and before the step of thinning the silicon carbide single-crystal substrate, heat treatment is performed at a temperature of 350° C. or less to form the silicon carbide single-crystal substrate. A method for manufacturing a silicon carbide substrate is described in which the step of thinning is a step of mechanically exfoliating a hydrogen ion implanted layer.

このような方法により、1つの炭化珪素の単結晶のインゴットから、より多くの炭化珪素ウェハが得られるようになった。 Such a method has made it possible to obtain a larger number of silicon carbide wafers from one silicon carbide single crystal ingot.

特開2009-117533号公報JP 2009-117533 A 特公昭57-18682号公報Japanese Patent Publication No. 57-18682 特開昭52-110499号公報JP-A-52-110499 特開2006-232614号公報JP 2006-232614 A

しかしながら、上記の炭化珪素ウェハの製造方法は、水素イオン注入を行って薄いイオン注入層が形成された炭化珪素単結晶基板と、炭化珪素多結晶基板と、を貼り合わせたのちに加熱して炭化珪素単結晶基板を剥離することによって製造されているので、炭化珪素ウェハは、厚さの大部分が炭化珪素多結晶基板である。このため、炭化珪素ウェハは、研磨などハンドリングの際に損傷しないよう機械的な強度が必要である。 However, in the above-described method for manufacturing a silicon carbide wafer, a silicon carbide single-crystal substrate having a thin ion-implanted layer formed by hydrogen ion implantation and a silicon carbide polycrystalline substrate are bonded together and then heated to be carbonized. Since the silicon carbide wafer is manufactured by peeling off a silicon single crystal substrate, most of the thickness of the silicon carbide wafer is the silicon carbide polycrystalline substrate. Therefore, silicon carbide wafers require mechanical strength so as not to be damaged during handling such as polishing.

ただし、炭化珪素多結晶基板では、所定の厚みで得られる炭化珪素半導体のON抵抗を小さくするためには、炭化珪素多結晶基板の抵抗値が低い必要がある。 However, in the polycrystalline silicon carbide substrate, the resistance value of the polycrystalline silicon carbide substrate needs to be low in order to reduce the ON resistance of the silicon carbide semiconductor obtained with a predetermined thickness.

従来、炭化珪素多結晶基板は、CVD法等の気相成長法を用いて、窒素等のドーパントを加えながら、所定の厚さまで成膜を実施することで得ていた。しかしながら、気相成長法での炭化珪素多結晶の成膜速度は、一時間あたり数μm~数十μmであり、機械的強度を有する厚み(例えば、6インチの場合はSiC基板の厚みの規格は390μm±20μm)の炭化珪素多結晶基板を得るためには、数十時間の成膜時間が必要となり、生産性の面で問題がある。 Conventionally, a polycrystalline silicon carbide substrate has been obtained by forming a film to a predetermined thickness using a vapor phase epitaxy method such as a CVD method while adding a dopant such as nitrogen. However, the deposition rate of polycrystalline silicon carbide in the vapor phase growth method is several μm to several tens of μm per hour, and the thickness having mechanical strength (for example, in the case of 6 inches, the thickness of the SiC substrate is standardized). In order to obtain a silicon carbide polycrystalline substrate having a thickness of 390 μm±20 μm), several tens of hours of film formation time are required, which poses a problem in terms of productivity.

一方、バルクの材料を作成する方法として、気相成長法の他に、焼結による方法があるが、炭化珪素は、難焼結材に分類され、通常、ボロンやカーボンなどの焼結助剤を用いて焼結されるため、導電性が著しく低下する。焼結により得られた炭化珪素の電気比抵抗を低下させるために、炭化珪素の組織中に窒素を固溶させる試みは従来からなされており、数多く提案されている。例えば、特許文献2には炭化珪素を窒素雰囲気中で焼結する方法が示され、同様に特許文献3には炭化珪素を窒素雰囲気中でホットプレス焼結する方法が開示されている。しかしながら、単に窒素雰囲気中で炭化珪素を焼結処理するだけでは、窒素の固溶は円滑に進行せず、炭化珪素の比抵抗を十分に低減させることができない。 On the other hand, as a method for producing bulk materials, there is a method by sintering other than the vapor deposition method, but silicon carbide is classified as a difficult-to-sinter material, and sintering aids such as boron and carbon are usually used. is used to sinter, the electrical conductivity is significantly reduced. In order to reduce the electrical resistivity of silicon carbide obtained by sintering, attempts have been made to dissolve nitrogen into the structure of silicon carbide, and many proposals have been made. For example, Patent Document 2 discloses a method of sintering silicon carbide in a nitrogen atmosphere, and Patent Document 3 similarly discloses a method of hot press sintering silicon carbide in a nitrogen atmosphere. However, by simply sintering silicon carbide in a nitrogen atmosphere, solid solution of nitrogen does not proceed smoothly, and the specific resistance of silicon carbide cannot be sufficiently reduced.

一方、炭化珪素の焼結体を高密度化させる方法として、特許文献4では、平均粒径が100nm以下の炭化珪素粒子を利用し、熱間等方加圧焼結法、あるいはパルス通電焼結法による焼結が開示されている。この方法では、焼結助剤を用いず、相対密度は99%以上の値が示されているが、表面に空隙の発生がある。炭化珪素多結晶基板にこの空隙があると、炭化珪素単結晶基板との貼り合せにおいては、この空隙が、貼り合わせができない欠陥となるため、貼り合わせ不良となり、デバイスの歩留まりを低下させてしまう問題が発生する。 On the other hand, as a method for increasing the density of a sintered body of silicon carbide, in Patent Document 4, silicon carbide particles having an average particle size of 100 nm or less are used, and a hot isostatic pressure sintering method or a pulse current sintering method is used. sintering by the method is disclosed. In this method, no sintering aid is used and the relative density is shown to be 99% or more, but there are voids on the surface. If the silicon carbide polycrystalline substrate has such a gap, the gap will cause a defect that prevents the bonding with the silicon carbide single crystal substrate. a problem arises.

上記の問題点に鑑み、本発明では、炭化珪素単結晶基板と炭化珪素多結晶基板との貼り合せに支障が生じるような空隙がなく、低抵抗で、ハンドリングで損傷しにくい炭化珪素多結晶基板、およびその製造方法を提供することを目的とする。 In view of the above problems, the present invention provides a polycrystalline silicon carbide substrate that does not have gaps that may interfere with the bonding of a single crystal silicon carbide substrate and a polycrystalline silicon carbide substrate, has low resistance, and is less likely to be damaged by handling. , and a method for producing the same.

本発明者らは、炭化珪素に対する窒素の固溶度合を高めて導電性の向上を図る簡便な製造手段について鋭意研究を重ねた。その結果、まず、炭素珪素粉末を窒素ガス雰囲気内で加熱し、その後、この炭化珪素微粉末を焼結し、得られて焼結体の表面に化学蒸着により薄膜の炭化珪素多結晶膜を積層することで、表面に空隙が無く、優れた導電性を有する炭化珪素多結晶基板を容易に得られることを確認した。 The present inventors have extensively researched a simple manufacturing means for increasing the degree of solid solubility of nitrogen in silicon carbide to improve electrical conductivity. As a result, the silicon carbide powder is first heated in a nitrogen gas atmosphere, then the silicon carbide fine powder is sintered, and a thin polycrystalline silicon carbide film is laminated on the surface of the resulting sintered body by chemical vapor deposition. By doing so, it was confirmed that a silicon carbide polycrystalline substrate having no voids on the surface and having excellent conductivity can be easily obtained.

上記課題を解決するために、本発明の炭化珪素多結晶基板の製造方法は、炭化珪素粉末を窒素ガス雰囲気下で加熱処理する加熱処理工程と、前記加熱処理工程後の前記炭化珪素粉末を、窒素ガス雰囲気下で焼結する焼結工程と、前記焼結工程により得た焼結体の表面に、化学蒸着によって炭化珪素多結晶膜を成膜する成膜工程を含む。 In order to solve the above-described problems, the method for manufacturing a polycrystalline silicon carbide substrate of the present invention comprises a heat treatment step of heat-treating silicon carbide powder in a nitrogen gas atmosphere; It includes a sintering step of sintering in a nitrogen gas atmosphere and a film-forming step of forming a silicon carbide polycrystalline film on the surface of the sintered body obtained by the sintering step by chemical vapor deposition.

前記炭化珪素粉末の平均粒径が100nm以下であってもよい。 The silicon carbide powder may have an average particle size of 100 nm or less.

前記加熱処理の処理温度は1500~2000℃であってもよい。 The treatment temperature of the heat treatment may be 1500 to 2000.degree.

前記焼結工程は、温度条件が1800~2000℃、圧力条件が50~70MPaであり、放電プラズマ焼結法、ホットプレス焼結法、熱間等方加圧焼結法、またはパルス通電焼結法により焼結する工程であってもよい。 In the sintering process, the temperature condition is 1800 to 2000 ° C. and the pressure condition is 50 to 70 MPa, and a discharge plasma sintering method, a hot press sintering method, a hot isostatic pressure sintering method, or a pulse current sintering method. It may be a step of sintering by a method.

前記成膜工程は、平均膜厚が1~1000μmの炭化珪素多結晶膜を成膜する工程であってもよい。 The film forming step may be a step of forming a polycrystalline silicon carbide film having an average film thickness of 1 to 1000 μm.

また、上記課題を解決するために、本発明の炭化珪素多結晶基板は、炭化珪素の焼結体と、前記焼結体の表面に化学蒸着によって成膜した炭化珪素多結晶膜と、を備え、前記炭化珪素多結晶膜は、平均膜厚が1~1000μm、空隙が0個/μm2である、電気抵抗が3.05×10-5Ω・m~4.30×10-5Ω・mの炭化珪素多結晶基板である。 Further, in order to solve the above problems, the silicon carbide polycrystalline substrate of the present invention includes a silicon carbide sintered body and a silicon carbide polycrystalline film formed on the surface of the sintered body by chemical vapor deposition. , the silicon carbide polycrystalline film has an average film thickness of 1 to 1000 μm, 0 voids/μm 2 , and an electric resistance of 3.05×10 −5 Ω·m to 4.30×10 −5 Ω·m. It is a silicon carbide polycrystalline substrate of m.

本発明によれば、炭化珪素粉末を窒素処理し、これを焼結処理し、さらに表面に化学蒸着による被膜を形成する工程を経ることで、効率よく導電性およびハンドリングに優れた炭化珪素多結晶基板を製造することが可能となる。したがって、導電性が要求される各種の機械部品および電気部品を工業的に製造する技術としての有用性が期待される。 According to the present invention, silicon carbide polycrystals having excellent conductivity and handling are efficiently processed by nitrogen-treating silicon carbide powder, sintering it, and forming a film on the surface thereof by chemical vapor deposition. Substrates can be manufactured. Therefore, it is expected to be useful as a technique for industrially manufacturing various mechanical and electrical parts that require electrical conductivity.

本発明の炭化珪素多結晶基板の一例を示す側面断面図である。1 is a side sectional view showing an example of a polycrystalline silicon carbide substrate of the present invention; FIG.

以下、本発明の具体的な実施形態について、説明する。 Specific embodiments of the present invention are described below.

[炭化珪素多結晶基板]
本発明の炭化珪素多結晶基板は、炭化珪素の焼結体と、焼結体の表面に成膜した炭化珪素多結晶膜とを備える。炭化珪素単結晶基板を貼り合わせて得られる炭化珪素半導体のON抵抗を考慮して、炭化珪素多結晶基板の電気抵抗が3.05×10-5Ω・m~4.30×10-5Ω・mの範囲である。電気抵抗が3.05×10-5Ω・m未満の場合には、抵抗の観点からは問題ないが、抵抗を低くするために、機械的強度を満足するための十分な厚みがある基板とならないおそれがある。また、電気抵抗が4.30×10-5Ω・mよりも大きい場合には、炭化珪素半導体とした場合のON抵抗が大きくなることで、本来の炭化珪素半導体の特徴が充分に発揮できなくなるおそれがある。
[Silicon carbide polycrystalline substrate]
A silicon carbide polycrystalline substrate of the present invention includes a silicon carbide sintered body and a silicon carbide polycrystalline film formed on the surface of the sintered body. Considering the ON resistance of the silicon carbide semiconductor obtained by bonding the silicon carbide single crystal substrates together, the electrical resistance of the polycrystalline silicon carbide substrate is 3.05×10 −5 Ω·m to 4.30×10 −5 Ω.・It is a range of m. If the electrical resistance is less than 3.05×10 −5 Ω·m, there is no problem from the viewpoint of resistance. There is a risk that it will not. If the electric resistance is greater than 4.30×10 −5 Ω·m, the ON resistance of the silicon carbide semiconductor becomes large, and the inherent characteristics of the silicon carbide semiconductor cannot be fully exhibited. There is a risk.

〈焼結体〉
炭化珪素の粉末が熱により固まって緻密な状態となったものである。炭化珪素半導体の製造工程において、炭化珪素単結晶基板の損傷を防ぐためには、機械的強度を有するべく、炭化珪素多結晶基板としてある程度の厚みが必要である。この厚みを焼結体により確保することが重要であり、特に限定されないが、炭化珪素基板の厚みの規格値(390±20μm)から化学蒸着により成膜する炭化珪素多結晶膜の膜厚を減じた厚みであることが好ましく、例えば厚みを200μm~410μm程度とすることが好ましい。焼結体の厚みが200μm未満の場合には、機械的強度を満足しないことで、炭化珪素単結晶基板が損傷するおそれがある。また、焼結体の厚みが410μmよりも厚いと、炭化珪素基板の厚みの規格から大幅に外れてしまう場合があるのみならず、電気抵抗が大きくなり、炭化珪素半導体とした場合のON抵抗が大きくなることで、本来の炭化珪素半導体の特徴が充分に発揮できなくなるおそれがある。
<Sintered body>
Silicon carbide powder is hardened by heat to a dense state. In order to prevent the silicon carbide single-crystal substrate from being damaged in the manufacturing process of the silicon carbide semiconductor, the silicon carbide polycrystalline substrate needs to have a certain degree of thickness so as to have mechanical strength. It is important to ensure this thickness with the sintered body, and there is no particular limitation, but the thickness of the silicon carbide polycrystalline film formed by chemical vapor deposition is subtracted from the standard value (390±20 μm) of the thickness of the silicon carbide substrate. For example, the thickness is preferably about 200 μm to 410 μm. If the thickness of the sintered body is less than 200 μm, the silicon carbide single crystal substrate may be damaged due to insufficient mechanical strength. Further, when the thickness of the sintered body is thicker than 410 μm, not only the thickness of the silicon carbide substrate may greatly deviate from the standard, but also the electrical resistance becomes large, and the ON resistance when the silicon carbide semiconductor is used is low. If it becomes large, there is a possibility that the original characteristics of the silicon carbide semiconductor cannot be sufficiently exhibited.

〈炭化珪素多結晶膜〉
上記の焼結体の表面に化学蒸着(CVD)によって成膜した膜であり、平均膜厚が1~1000μmである。平均膜厚がこの範囲にあることで、炭化珪素多結晶膜が焼結体の表面を平滑に被覆することができるため、炭化珪素単結晶基板との貼り合せが容易となり、また、貼り合わせ不良といった問題も生じない。平均膜厚が1μm未満の場合、処理対象となる焼結体の表面において、炭化珪素多結晶膜が成膜せずに焼結体の表面が露出する部分が生じるおそれがあり、焼結体の表面に凹凸があることで炭化珪素単結晶基板との貼り合せに不具合が生じることにより、デバイスの歩留まりを低下させてしまうおそれがある。また、平均膜厚が1000μmより厚くても、平滑性に問題は無く、炭化珪素単結晶基板との貼り合せに支障は生じないが、成膜に時間がかかってしまうおそれがある。
<Silicon carbide polycrystalline film>
It is a film formed on the surface of the sintered body by chemical vapor deposition (CVD), and has an average film thickness of 1 to 1000 μm. When the average film thickness is within this range, the silicon carbide polycrystalline film can smoothly cover the surface of the sintered body, so that the bonding with the silicon carbide single crystal substrate is facilitated, and bonding failure is prevented. Such problems do not occur. If the average film thickness is less than 1 μm, there is a risk that the surface of the sintered body to be treated may not form a silicon carbide polycrystalline film and the surface of the sintered body may be exposed. The irregularities on the surface may cause problems in bonding with the silicon carbide single crystal substrate, which may reduce the yield of the device. Further, even if the average film thickness is thicker than 1000 μm, there is no problem in smoothness, and there is no problem in bonding with the silicon carbide single crystal substrate, but the film formation may take time.

平均膜厚は、例えば、炭化珪素多結晶基板を切断してSEM(走査型電子顕微鏡)等により断面観察することで測定可能であり、例えば炭化珪素多結晶基板の中央部分の1点と、両端の端部より10mm内側の2点の合計3点における炭化珪素多結晶膜の膜厚の平均を平均膜厚とすることができる。 The average film thickness can be measured, for example, by cutting the polycrystalline silicon carbide substrate and observing the cross section with a SEM (scanning electron microscope) or the like. The average film thickness of the silicon carbide polycrystalline film at a total of three points, ie, two points 10 mm inside from the end of , can be taken as the average film thickness.

また、炭化珪素多結晶膜は、空隙が0個/μm2であり、すなわち表面に空隙が存在しない膜である。空隙が存在すると、炭化珪素単結晶基板との貼り合せにおいて、貼り合わせができない欠陥となることで、貼り合わせ不良となり、デバイスの歩留まりを低下させてしまうおそれがある。本発明であれば、空隙が存在しないために、炭化珪素単結晶基板の貼り合わせの不良に起因して歩留まりが低下する問題は生じない。なお、空隙の有無は、SEM等により炭化珪素多結晶膜の表面を観察することにより、確認することができる。 In addition, the silicon carbide polycrystalline film has 0 voids/μm 2 , that is, the film has no voids on the surface. The presence of voids may cause defects that prevent bonding with the silicon carbide single crystal substrate, resulting in defective bonding and a decrease in device yield. According to the present invention, since there are no gaps, the problem of yield reduction due to defective bonding of silicon carbide single crystal substrates does not occur. The presence or absence of voids can be confirmed by observing the surface of the polycrystalline silicon carbide film with an SEM or the like.

図1に、本発明の炭化珪素多結晶基板の一例についての側面断面図を示す。図1(a)に示す炭化珪素多結晶基板100は、例えば平板状の焼結体10の第1面11に炭化珪素多結晶膜20aが成膜している。また、図1(b)に示すように、第1面11に加え、第1面11とは反対の面である第2面12に炭化珪素多結晶膜20bが成膜した炭化珪素多結晶基板110や、図1(c)に示すように、さらに側面13にも成膜し、焼結体10の表面全体を炭化珪素多結晶膜20cが被覆した炭化珪素多結晶基板120も、本発明に含まれる。 FIG. 1 shows a side sectional view of an example of the polycrystalline silicon carbide substrate of the present invention. A polycrystalline silicon carbide substrate 100 shown in FIG. 1A has a polycrystalline silicon carbide film 20a formed on a first surface 11 of a sintered body 10 having a flat plate shape, for example. Further, as shown in FIG. 1(b), in addition to the first surface 11, a polycrystalline silicon carbide substrate having a polycrystalline silicon carbide film 20b formed on a second surface 12 opposite to the first surface 11. 110 and, as shown in FIG. 1(c), a polycrystalline silicon carbide substrate 120 in which a film is also formed on the side surface 13 and the entire surface of the sintered body 10 is covered with a silicon carbide polycrystalline film 20c is also applicable to the present invention. included.

炭化珪素多結晶基板が上記の構成であれば、焼結体によって機械的強度を満足する基板の厚さを確保しつつ、抵抗の上昇を抑えることができる。そして、炭化珪素多結晶膜によって、基板の表面の平滑性を確保し、炭化珪素単結晶基板の貼り合わせの不良を防止することができる。 If the silicon carbide polycrystalline substrate has the above configuration, the sintered body can ensure a thickness of the substrate that satisfies the mechanical strength, while suppressing an increase in resistance. The silicon carbide polycrystalline film can ensure the smoothness of the surface of the substrate and prevent defective bonding of the silicon carbide single-crystal substrate.

[炭化珪素多結晶基板の製造方法]
次に、上記の本発明の炭化珪素多結晶基板について、その製造方法の一例を説明する。
[Manufacturing method of polycrystalline silicon carbide substrate]
Next, an example of a method for manufacturing the polycrystalline silicon carbide substrate of the present invention will be described.

本発明の炭化珪素多結晶基板の製造方法は、加熱処理工程と、焼結工程と、成膜工程を含む。 A method of manufacturing a silicon carbide polycrystalline substrate of the present invention includes a heat treatment step, a sintering step, and a film forming step.

〈加熱処理工程〉
本工程は、炭化珪素粉末を窒素ガス雰囲気下で加熱処理する工程である。加熱処理によって、焼結する前の炭化珪素粉末に窒素を固溶させることで、焼結体の抵抗を下げることができ、炭化珪素多結晶基板としての抵抗の上昇を抑えることができる。また、窒素が焼結助剤として作用することで、焼結の難しい炭化珪素を一般的な条件により焼結させることができる。
<Heat treatment process>
This step is a step of heat-treating the silicon carbide powder in a nitrogen gas atmosphere. By causing nitrogen to form a solid solution in the silicon carbide powder before sintering by the heat treatment, the resistance of the sintered body can be lowered, and an increase in the resistance of the silicon carbide polycrystalline substrate can be suppressed. In addition, since nitrogen acts as a sintering aid, silicon carbide, which is difficult to sinter, can be sintered under general conditions.

加熱処理は、例えば炭化珪素粉末を密閉式の高周波誘導炉内にセットし、炉内に窒素ガスを導入し、加熱することにより行うことができる。窒素ガスの導入量は、適量に設定することができる。 The heat treatment can be performed, for example, by setting the silicon carbide powder in a closed high-frequency induction furnace, introducing nitrogen gas into the furnace, and heating. The amount of nitrogen gas to be introduced can be set appropriately.

加熱処理温度は、1500~2000℃の範囲であることが望ましい。この温度範囲であることで、炭化珪素が焼結することなく窒素を固溶させることが容易となる。加熱処理温度が1500℃以下では、炭化珪素への窒素の侵入が少ないことで、窒素が十分に固溶しないおそれがある。また、加熱処理温度が2000℃以上では、炭化珪素粉末の粒成長が発生し、後の焼結工程において焼結性が悪化するおそれがある。 The heat treatment temperature is desirably in the range of 1500 to 2000.degree. Within this temperature range, it becomes easy to dissolve nitrogen without sintering silicon carbide. If the heat treatment temperature is 1500° C. or lower, nitrogen may not sufficiently dissolve into the silicon carbide due to a small amount of nitrogen penetrating into the silicon carbide. Moreover, if the heat treatment temperature is 2000° C. or higher, grain growth of the silicon carbide powder may occur, and sinterability may deteriorate in the subsequent sintering step.

(炭化珪素粉末)
閃亜鉛鉱型構造のβ型炭化珪素や、閃亜鉛鉱型とこれと同形質であるウルツ鉱型の構造の組み合わせで示されるα型炭化珪素等が挙げられ、一般的にはβ型炭化珪素が焼結用として用いられるが、本発明では価格等も考慮していずれの型のものも用いることができる。炭化珪素は、工業的にはアチソン法や、固相反応、気相反応等による合成法により製造することができ、本発明ではいずれの方法により得られた炭化珪素粉末も使用することができる。
(Silicon carbide powder)
β-type silicon carbide having a sphalerite structure, α-type silicon carbide represented by a combination of a sphalerite structure and a wurtzite structure having the same characteristics as this, and the like, and generally β-type silicon carbide. is used for sintering, but in the present invention, any type can be used in consideration of cost and the like. Silicon carbide can be industrially produced by the Acheson method, a synthesis method using a solid phase reaction, a gas phase reaction, or the like, and silicon carbide powder obtained by any of these methods can be used in the present invention.

炭化珪素粉末の平均粒径は100nm以下であることが好ましい。このように細かい粉末であれば、加熱処理によって窒素の固溶を0.5質量%以上とすることが可能となり、抵抗の上昇を抑える点や焼結助剤としての役割の観点から、有効である。平均粒径は50nm以下であることがより好ましく、これにより、窒素の固溶を1質量%程度まで上げることが可能となる。なお、炭化珪素粉末の平均粒径は、レーザ回折法により測定することができる。 The average particle size of the silicon carbide powder is preferably 100 nm or less. With such a fine powder, it is possible to make the solid solution of nitrogen 0.5% by mass or more by heat treatment, and it is effective from the viewpoint of suppressing the increase in resistance and from the viewpoint of the role as a sintering aid. be. More preferably, the average particle diameter is 50 nm or less, which makes it possible to increase the solid solution of nitrogen to about 1% by mass. Note that the average particle size of the silicon carbide powder can be measured by a laser diffraction method.

〈焼結工程〉
本工程は、加熱処理工程後の炭化珪素粉末を、窒素ガス雰囲気下で焼結する工程である。これにより、炭化珪素の粉末が熱により固まって緻密な状態となった焼結体を得ることができる。焼結は、固溶した窒素の含有用を安定させ、また、焼結に伴い副反応が生じないように、窒素ガス雰囲気下で行う。窒素ガスの導入量は、適量に調節することができる。
<Sintering process>
This step is a step of sintering the silicon carbide powder after the heat treatment step in a nitrogen gas atmosphere. This makes it possible to obtain a sintered body in which the silicon carbide powder is hardened by heat to form a dense state. Sintering is carried out in a nitrogen gas atmosphere so as to stabilize the content of dissolved nitrogen and to prevent side reactions from occurring during sintering. The amount of nitrogen gas introduced can be adjusted appropriately.

焼結方法は特に限定されないが、製造量やコストを考慮して、例えば、放電プラズマ焼結法、ホットプレス焼結法、熱間等方加圧焼結法、またはパルス通電焼結法を適宜用いることができる。また、焼結体の厚さも、適宜設定することができる。 The sintering method is not particularly limited, but in consideration of production volume and cost, for example, discharge plasma sintering method, hot press sintering method, hot isostatic pressure sintering method, or pulse current sintering method is appropriately used. can be used. Also, the thickness of the sintered body can be set as appropriate.

放電プラズマ焼結法(SPS:Spark Plasma Sintering)を一例として説明すると、この方法は、放電プラズマ焼結装置を使用して、焼結する方法である。具体的には、それぞれがカーボン(黒鉛)製の筒状のダイ一対と、ダイの上部および下部にあるパンチ(電極)とでキャビティを形成し、該キャビティに加熱処理工程後の炭化珪素粉末を充填する。そして、この状態で、ダイの上下間にパルス電流を流すとともに、ダイも抵抗発熱させ、さらに、上下のパンチで加圧して、焼結加工を行うものである。一般に放電プラズマ焼結法は、短時間での焼結が可能で、焼結助剤の添加が不要な焼結法であり、炭化珪素を焼結させることのできる有効な方法である。 Taking spark plasma sintering (SPS) as an example, this method is a method of sintering using a spark plasma sintering apparatus. Specifically, a pair of cylindrical dies each made of carbon (graphite) and punches (electrodes) at the top and bottom of the dies form a cavity. to fill. In this state, a pulse current is passed between the upper and lower dies, the die is also heated by resistance, and pressure is applied by the upper and lower punches to perform sintering. In general, spark plasma sintering is a sintering method that enables sintering in a short time and does not require the addition of a sintering aid, and is an effective method for sintering silicon carbide.

焼結の条件は、特に限定されないが、温度条件を1800~2000℃、圧力条件を50~70MPaとし、焼結時間を5分~1時間とすることが好ましい。 The sintering conditions are not particularly limited, but it is preferable to set the temperature condition to 1800 to 2000° C., the pressure condition to 50 to 70 MPa, and the sintering time to 5 minutes to 1 hour.

温度条件が上記の範囲であることにより、問題なく焼結が進行し、得られた焼結体の機械的強度や抵抗値に問題が生じない。1800℃未満の温度条件では、焼結が進まないことで焼結密度が上がらずに緻密な焼結体を得ることができず、機械的強度を満足できないおそれがある。また2000℃より高い温度条件では、固溶した窒素が分離してしまうことで焼結助剤としての効果が薄れてしまい、焼結が進まないことで焼結密度が上がらずに緻密な焼結体を得ることができず、機械的強度を満足できないおそれがある。 When the temperature condition is within the above range, sintering proceeds without problems, and no problem occurs in the mechanical strength and resistance value of the obtained sintered body. If the temperature condition is less than 1800° C., the sintering density does not increase and a dense sintered body cannot be obtained because the sintering does not proceed, and the mechanical strength may not be satisfied. In addition, under temperature conditions higher than 2000 ° C, the effect as a sintering aid is weakened due to the separation of dissolved nitrogen, and sintering does not proceed, so the sintering density does not increase and dense sintering occurs. It may not be possible to obtain the body and the mechanical strength may not be satisfied.

また、圧力条件が上記の範囲であることにより問題なく焼結が進行し、得られた焼結体の機械的強度や抵抗値に問題が生じない。50MPaより低い圧力条件の場合には、焼結密度が上がらずに緻密な焼結体を得ることができず、機械的強度を満足できないおそれがある。一方で、70MPaよりも高い圧力条件としなくても、性能を十分に満足する焼結体を得ることが可能であり、また、圧力を高くするための特別な設備が必要となるおそれがある。 Further, when the pressure condition is within the above range, sintering proceeds without problems, and no problem occurs in the mechanical strength and resistance value of the obtained sintered body. If the pressure condition is lower than 50 MPa, the sintered density cannot be increased and a dense sintered body cannot be obtained, and the mechanical strength may not be satisfied. On the other hand, it is possible to obtain a sintered body that fully satisfies the performance even if the pressure condition is not higher than 70 MPa, and there is a possibility that special equipment for increasing the pressure is required.

〈成膜工程〉
本工程は、焼結工程により得た焼結体の表面に、化学蒸着によって炭化珪素多結晶膜を成膜する工程である。化学蒸着の具体例としては、成膜装置を用いて、加熱した焼結体の表面に、炭化珪素多結晶膜の成分を含む原料ガスやキャリアガス等を供給し、1200℃以上の環境下で焼結体の表面や気相での化学反応により、炭化珪素多結晶膜を堆積する方法が挙げられる。
<Film formation process>
This step is a step of forming a silicon carbide polycrystalline film by chemical vapor deposition on the surface of the sintered body obtained by the sintering step. As a specific example of chemical vapor deposition, a film forming apparatus is used to supply a raw material gas, a carrier gas, or the like containing a component of a polycrystalline silicon carbide film to the surface of a heated sintered body, and the film is heated in an environment of 1200° C. or higher. A method of depositing a polycrystalline silicon carbide film by a chemical reaction on the surface of a sintered body or in a gas phase can be mentioned.

(原料ガス)
炭化珪素多結晶膜を成膜することができれば、特に限定されず、一般的に使用される原料ガスを用いることができる。例えば、SiCl4ガスやSiCl3CH3ガス等の珪素塩化物のガスや、CH4ガスやC38ガス等の炭化水素のガスを用いることができる。
(raw material gas)
As long as a polycrystalline silicon carbide film can be formed, the source gas is not particularly limited, and generally used raw material gases can be used. For example, silicon chloride gases such as SiCl 4 gas and SiCl 3 CH 3 gas, and hydrocarbon gases such as CH 4 gas and C 3 H 8 gas can be used.

(キャリアガス)
炭化珪素多結晶膜の成膜を阻害することなく、原料ガスを基板へ展開することができれば、一般的に使用されるキャリアガスを用いることができる。例えば、H2ガス等をキャリアガスとして用いることができる。
(carrier gas)
A generally used carrier gas can be used as long as the source gas can be spread over the substrate without interfering with the deposition of the silicon carbide polycrystalline film. For example, H2 gas or the like can be used as the carrier gas.

成膜工程によって、平均膜厚が1~1000μmの炭化珪素多結晶膜を成膜することが好ましい。平均膜厚がこの範囲にあることで、炭化珪素多結晶膜が焼結体の表面を平滑に被覆することができるため、炭化珪素単結晶基板との貼り合せが容易となり、また、貼り合わせ不良といった問題も生じない。平均膜厚が1μm未満の場合、処理対象となる焼結体の表面において、炭化珪素多結晶膜が成膜せずに焼結体の表面が露出する部分が生じるおそれがあり、焼結体の表面に凹凸があることで炭化珪素単結晶基板との貼り合せに不具合が生じることにより、デバイスの歩留まりを低下させてしまうおそれがある。また、平均膜厚が1000μmより厚くても、平滑性に問題は無く、炭化珪素単結晶基板との貼り合せに支障は生じないが、成膜に時間がかかってしまうおそれがある。 It is preferable to form a silicon carbide polycrystalline film having an average film thickness of 1 to 1000 μm by the film forming process. When the average film thickness is within this range, the silicon carbide polycrystalline film can smoothly cover the surface of the sintered body, so that the bonding with the silicon carbide single crystal substrate is facilitated, and bonding failure is prevented. Such problems do not occur. If the average film thickness is less than 1 μm, there is a risk that the surface of the sintered body to be treated may not form a silicon carbide polycrystalline film and the surface of the sintered body may be exposed. The irregularities on the surface may cause problems in bonding with the silicon carbide single crystal substrate, which may reduce the yield of the device. Further, even if the average film thickness is thicker than 1000 μm, there is no problem in smoothness, and there is no problem in bonding with the silicon carbide single crystal substrate, but the film formation may take time.

〈その他の工程〉
本発明の炭化珪素多結晶基板の製造方法は、上記した加熱処理工程、焼結工程および成膜工程以外にも、他の工程を含むことができる。例えば、焼結工程により10mm程度の厚みの焼結体を得てから、これをスライスして炭化珪素多結晶基板に適した厚みに調整する切断工程等を含むことができる。なお、焼結工程によって、炭化珪素多結晶基板に適した厚みの焼結体を得るのであれば、この切断工程は不要である。
<Other processes>
The method for manufacturing a silicon carbide polycrystalline substrate of the present invention can include other steps in addition to the heat treatment step, sintering step and film forming step described above. For example, after obtaining a sintered body having a thickness of about 10 mm by the sintering process, it can include a cutting process of slicing the sintered body to adjust the thickness to be suitable for the polycrystalline silicon carbide substrate. Note that this cutting step is not necessary if a sintered body having a thickness suitable for the polycrystalline silicon carbide substrate is obtained by the sintering step.

以下、実施例に基づいて本発明をさらに具体的に説明する。ただし、本発明は以下の実施例の内容に何ら限定されるものではない。 EXAMPLES The present invention will now be described more specifically based on examples. However, the present invention is by no means limited to the contents of the following examples.

〈実施例1〉
平均粒径30nmのβ型炭化珪素粉末を密閉式高周波誘導炉にセットし、炉内に窒素ガスを流入しながら15℃/分の昇温速度で2000℃まで上昇し、この温度で30分加熱処理を実施した(加熱処理工程)。その後、加熱処理後のβ型炭化珪素粉末をカーボン(黒鉛)製の筒状のキャビティに充填し、この状態で、窒素雰囲気の中で、上・下間にパルス電流を流すとともに、ダイも抵抗発熱させ、さらに、上・下パンチで加圧して、放電プラズマ焼結法による焼結加工を行った(焼結工程)。焼結の条件は、温度2000℃で圧力70MPaとし、1時間焼結処理した。得られた焼結体を厚さ390μmにスライスし(切断工程)、化学蒸着によってこれに炭化珪素多結晶膜を成膜させた(成膜工程)。成膜には成膜装置を使用し、1350度の環境の中で、SiCl4ガスとCH4ガスおよび窒素ガスを、キャリアガスの水素とともに装置内に導入し、20分間の成膜を実施することで、炭化珪素多結晶膜の被膜を焼結体の両面に付着させた炭化珪素多結晶基板を得た(図1(b))。なお、β型炭化珪素粉末の平均粒径は、レーザ回折式粒度分布測定装置(島津製作所製 SALD-7500nano)を使用し、レーザ回折式粒度分布測定法により測定した体積基準の粒度分布の平均値である。
<Example 1>
A β-type silicon carbide powder with an average particle size of 30 nm was set in a closed high-frequency induction furnace, and the temperature was raised to 2000° C. at a rate of 15° C./min while introducing nitrogen gas into the furnace, and heated at this temperature for 30 minutes. Treatment was performed (heat treatment step). After that, the β-type silicon carbide powder after the heat treatment is filled into a cylindrical cavity made of carbon (graphite), and in this state, a pulse current is passed between the upper and lower sides in a nitrogen atmosphere, and the die is also a resistance. Heat was generated and pressure was applied by upper and lower punches to carry out sintering by the discharge plasma sintering method (sintering step). The sintering conditions were a temperature of 2000° C. and a pressure of 70 MPa, and the sintering process was performed for 1 hour. The obtained sintered body was sliced to a thickness of 390 μm (cutting step), and a silicon carbide polycrystalline film was formed thereon by chemical vapor deposition (film forming step). A film forming apparatus is used for film formation, and SiCl 4 gas, CH 4 gas, and nitrogen gas are introduced into the apparatus together with hydrogen as a carrier gas in an environment of 1350 degrees, and film formation is performed for 20 minutes. As a result, a polycrystalline silicon carbide substrate having polycrystalline silicon carbide films attached to both surfaces of the sintered body was obtained (FIG. 1(b)). The average particle diameter of the β-type silicon carbide powder is the average value of the volume-based particle size distribution measured by the laser diffraction particle size distribution measurement method using a laser diffraction particle size distribution analyzer (SALD-7500nano manufactured by Shimadzu Corporation). is.

(電気抵抗の測定)
四端子法により、炭化珪素多結晶基板の電気抵抗を測定した。
(Measurement of electrical resistance)
The electric resistance of the polycrystalline silicon carbide substrate was measured by the four-probe method.

(炭化珪素多結晶膜の膜厚測定)
炭化珪素多結晶基板を切断してSEMにより断面観察し、炭化珪素多結晶基板の中央部分の1点と、両端の端部より10mm内側の2点の合計3点における炭化珪素多結晶膜の膜厚の平均を算出し、平均膜厚とした。
(Thickness measurement of silicon carbide polycrystalline film)
The silicon carbide polycrystalline substrate is cut and its cross section is observed by SEM, and the polycrystalline silicon carbide film is formed at a total of three points, one point in the central portion of the polycrystalline silicon carbide substrate and two points located 10 mm inside from both end portions. The average thickness was calculated and taken as the average film thickness.

(炭化珪素多結晶膜の表面の空隙の有無の確認)
SEMにより炭化珪素多結晶膜の表面を観察し、空隙の有無を確認した。
(Confirmation of presence or absence of voids on surface of silicon carbide polycrystalline film)
The surface of the silicon carbide polycrystalline film was observed by SEM to confirm the presence or absence of voids.

加熱処理工程、焼結工程および成膜工程の条件と、電気抵抗、膜厚および空隙の有無の確認結果について、表1に示す。 Table 1 shows the conditions of the heat treatment process, the sintering process, and the film formation process, and the results of confirming the electrical resistance, the film thickness, and the presence or absence of voids.

〈実施例2〉
焼結工程において、焼結温度を1800℃にした以外は、実施例1と同じ条件で焼結を行い、炭化珪素多結晶基板を得た。
<Example 2>
In the sintering step, sintering was performed under the same conditions as in Example 1, except that the sintering temperature was changed to 1800° C. to obtain a polycrystalline silicon carbide substrate.

〈実施例3〉
加熱処理工程における処理温度を1800℃、焼結工程における圧力を50Mpa、成膜工程における成膜時間を10分間にした以外は、実施例1と同じ条件で処理を行い、炭化珪素多結晶基板を得た。
<Example 3>
The treatment was performed under the same conditions as in Example 1, except that the treatment temperature in the heat treatment step was set to 1800° C., the pressure in the sintering step was set to 50 MPa, and the film formation time in the film formation step was set to 10 minutes to form a polycrystalline silicon carbide substrate. Obtained.

〈実施例4〉
成膜工程における成膜時間を2分間にした以外は、実施例1と同じ条件で処理を行い、炭化珪素多結晶基板を得た。
<Example 4>
A silicon carbide polycrystalline substrate was obtained under the same conditions as in Example 1, except that the film formation time in the film formation step was changed to 2 minutes.

〈比較例1〉
加熱処理工程を行わなかった以外は、実施例1と同じ条件で処理を行い、炭化珪素多結晶基板を得た。
<Comparative Example 1>
A polycrystalline silicon carbide substrate was obtained by performing the treatment under the same conditions as in Example 1, except that the heat treatment step was not performed.

〈比較例2〉
焼結工程における雰囲気を大気にした以外は、実施例1を同じ条件で処理を行い、炭化珪素多結晶基板を得た。
<Comparative Example 2>
A silicon carbide polycrystalline substrate was obtained by performing the treatment under the same conditions as in Example 1 except that the atmosphere in the sintering step was changed to air.

〈比較例3〉
成膜工程における成膜時間を1分間にした以外は、実施例1と同じ条件で処理を行い、炭化珪素多結晶基板を得た。
<Comparative Example 3>
A silicon carbide polycrystalline substrate was obtained under the same conditions as in Example 1, except that the film formation time in the film formation step was changed to 1 minute.

〈比較例4〉
成膜工程を行わなかった以外は、実施例1と同じ条件で処理を行い、炭化珪素多結晶基板を得た。
<Comparative Example 4>
A polycrystalline silicon carbide substrate was obtained by performing the treatment under the same conditions as in Example 1, except that the film formation step was not performed.

Figure 0007292573000001
Figure 0007292573000001

表1の結果より、窒素ガス雰囲気下で加熱処理し、更に窒素ガス雰囲気下で焼結したものは、電気抵抗率は10-4台の値であり、炭化珪素半導体とした場合にON抵抗が大きくなることで、本来の炭化珪素半導体の特徴が充分に発揮できなくなるといったおそれがない、良好な低抵抗の特性を示した(実施例1~4)。また、成膜工程によって、1μm以上の炭化珪素多結晶膜を成膜したものは、炭化珪素多結晶基板の表面に空隙は認められなかった(実施例1~4、比較例1、2)。 From the results shown in Table 1, those heat-treated in a nitrogen gas atmosphere and further sintered in a nitrogen gas atmosphere had an electrical resistivity of the order of 10 −4 , and a silicon carbide semiconductor with an ON resistance of 10 −4 . Good low resistance characteristics were exhibited without fear that the original characteristics of the silicon carbide semiconductor could not be fully exhibited due to the increase in size (Examples 1 to 4). In addition, no voids were observed on the surface of the polycrystalline silicon carbide substrates on which polycrystalline silicon carbide films of 1 μm or more were formed by the film forming process (Examples 1 to 4, Comparative Examples 1 and 2).

これ対して、加熱処理工程を実施しなかった比較例1の炭化珪素多結晶基板は、電気抵抗を測定した結果、他の例と比べて高抵抗となった。また、比較例2に示すように、加熱処理工程を行った粉末であっても、大気雰囲気で焼結を行った結果、炭化珪素多結晶基板の抵抗値が、実施例1~4と比べて上昇した。 On the other hand, the silicon carbide polycrystalline substrate of Comparative Example 1, which was not subjected to the heat treatment step, showed a higher resistance than the other examples as a result of measuring the electrical resistance. Further, as shown in Comparative Example 2, even with the powder subjected to the heat treatment step, as a result of sintering in an air atmosphere, the resistance value of the silicon carbide polycrystalline substrate was lower than that of Examples 1 to 4. Rose.

更に、比較例3、比較例4のように化学蒸着による炭化珪素多結晶膜の被膜が薄いものや、成膜工程を実施しないことで炭化珪素多結晶膜の被膜の無いものでは、焼結体の表面に存在する空隙を埋めることができず、炭化珪素単結晶基板の貼り合わせに適した炭化珪素多結晶基板を得ることは出来なかった。 Furthermore, in Comparative Examples 3 and 4, in which the polycrystalline silicon carbide film formed by chemical vapor deposition is thin, or in which the polycrystalline silicon carbide film is not formed by not performing the film forming process, the sintered body Therefore, it was not possible to obtain a polycrystalline silicon carbide substrate suitable for bonding single-crystal silicon carbide substrates.

[まとめ]
本発明の炭化珪素多結晶基板であれば、焼結体によって機械的強度を満足する基板の厚さを確保しつつ、抵抗の上昇を抑えることができ、そして、炭化珪素多結晶膜によって、基板の表面の平滑性を確保し、炭化珪素単結晶基板の貼り合わせの不良を防止することができる。また、本発明であれば、このような炭化珪素多結晶基板を容易に製造することができる。
[summary]
According to the silicon carbide polycrystalline substrate of the present invention, the sintered body ensures a thickness of the substrate that satisfies the mechanical strength, while suppressing an increase in resistance. The surface smoothness of the silicon carbide single crystal substrate can be secured, and defective bonding of the silicon carbide single crystal substrate can be prevented. Moreover, according to the present invention, such a silicon carbide polycrystalline substrate can be easily manufactured.

10 焼結体
11 第1面
12 第2面
13 側面
20a 炭化珪素多結晶膜
20b 炭化珪素多結晶膜
20c 炭化珪素多結晶膜
100 炭化珪素多結晶基板
110 炭化珪素多結晶基板
120 炭化珪素多結晶基板
REFERENCE SIGNS LIST 10 sintered body 11 first surface 12 second surface 13 side surface 20a polycrystalline silicon carbide film 20b polycrystalline silicon carbide film 20c polycrystalline silicon carbide film 100 polycrystalline silicon carbide substrate 110 polycrystalline silicon carbide substrate 120 polycrystalline silicon carbide substrate

Claims (3)

炭化珪素粉末を窒素ガス雰囲気下で加熱処理する加熱処理工程と、
前記加熱処理工程後の前記炭化珪素粉末を、窒素ガス雰囲気下で焼結する焼結工程と、
前記焼結工程により得た焼結体の表面に、化学蒸着によって炭化珪素多結晶膜を成膜する成膜工程を含
前記加熱処理工程は、密閉式の高周波誘導炉を使用し、前記高周波誘導炉の炉内に窒素ガスを導入して1500~2000℃の加熱処理温度で前記炭化珪素粉末を焼結することなく窒素を固溶させる工程であり、
前記成膜工程は、成膜時間を2分以上とし、厚みが1μm以上の前記炭化珪素多結晶膜を成膜する工程である、
貼り合わせ基板用の炭化珪素多結晶基板の製造方法。
a heat treatment step of heat-treating the silicon carbide powder in a nitrogen gas atmosphere;
a sintering step of sintering the silicon carbide powder after the heat treatment step in a nitrogen gas atmosphere;
a film-forming step of forming a silicon carbide polycrystalline film by chemical vapor deposition on the surface of the sintered body obtained in the sintering step;
In the heat treatment step, a closed high-frequency induction furnace is used, nitrogen gas is introduced into the high-frequency induction furnace, and the silicon carbide powder is heated at a heat treatment temperature of 1500 to 2000 ° C. without sintering nitrogen gas. is a step of solid solution,
The film forming step is a step of forming the silicon carbide polycrystalline film having a thickness of 1 μm or more with a film forming time of 2 minutes or more.
A method for manufacturing a silicon carbide polycrystalline substrate for a bonded substrate .
前記炭化珪素粉末の平均粒径が100nm以下である、請求項1に記載の炭化珪素多結晶基板の製造方法。 2. The method for manufacturing a silicon carbide polycrystalline substrate according to claim 1, wherein said silicon carbide powder has an average particle size of 100 nm or less. 前記焼結工程は、温度条件が1800~2000℃、圧力条件が50~70MPaであり、放電プラズマ焼結法、ホットプレス焼結法、熱間等方加圧焼結法、またはパルス通電焼結法により焼結する工程である、請求項1または2に記載の炭化珪素多結晶基板の製造方法。 In the sintering process, the temperature condition is 1800 to 2000 ° C. and the pressure condition is 50 to 70 MPa, and a discharge plasma sintering method, a hot press sintering method, a hot isostatic pressure sintering method, or a pulse current sintering method. 3. The method for producing a silicon carbide polycrystalline substrate according to claim 1, wherein the step of sintering by a method.
JP2018229635A 2018-12-07 2018-12-07 Silicon carbide polycrystalline substrate and manufacturing method thereof Active JP7292573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018229635A JP7292573B2 (en) 2018-12-07 2018-12-07 Silicon carbide polycrystalline substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229635A JP7292573B2 (en) 2018-12-07 2018-12-07 Silicon carbide polycrystalline substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020090421A JP2020090421A (en) 2020-06-11
JP7292573B2 true JP7292573B2 (en) 2023-06-19

Family

ID=71012390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229635A Active JP7292573B2 (en) 2018-12-07 2018-12-07 Silicon carbide polycrystalline substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7292573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171270A1 (en) 2022-03-07 2023-09-14 東海カーボン株式会社 Polycrystalline sic molded article and method for producing same
JP2024025064A (en) * 2022-08-10 2024-02-26 株式会社サイコックス SiC single crystal transfer composite substrate, SiC single crystal transfer composite substrate manufacturing method, and SiC bonded substrate manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232614A (en) 2005-02-24 2006-09-07 Riyuukoku Univ Ultrahigh density sintered compact of silicon carbide and method of manufacturing the same
JP2007277030A (en) 2006-04-04 2007-10-25 Bridgestone Corp Silicon carbide sintered compact for heater and method of manufacturing the same
JP2008150257A (en) 2006-12-19 2008-07-03 Bridgestone Corp Method of manufacturing silicon carbide sintered compact
JP2009117533A (en) 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd Manufacturing method of silicon carbide substrate
JP2010235392A (en) 2009-03-31 2010-10-21 Bridgestone Corp Support substrate, bonded substrate, method of manufacturing support substrate and method of manufacturing bonded substrate
JP2010251109A (en) 2009-04-15 2010-11-04 Bridgestone Corp Heater, heating element used for the heater, and method for manufacturing the heating element
JP2012146695A (en) 2011-01-06 2012-08-02 Denso Corp Silicon carbide semiconductor substrate, silicon carbide semiconductor device, method of manufacturing silicon carbide semiconductor substrate, and method of manufacturing silicon carbide semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1497871A (en) * 1974-01-21 1978-01-12 Carborundum Co Electrical igniter elements
US4120827A (en) * 1976-03-12 1978-10-17 The Carborundum Company Fuel igniter comprising a novel silicon carbide composition and process for preparing the composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232614A (en) 2005-02-24 2006-09-07 Riyuukoku Univ Ultrahigh density sintered compact of silicon carbide and method of manufacturing the same
JP2007277030A (en) 2006-04-04 2007-10-25 Bridgestone Corp Silicon carbide sintered compact for heater and method of manufacturing the same
JP2008150257A (en) 2006-12-19 2008-07-03 Bridgestone Corp Method of manufacturing silicon carbide sintered compact
JP2009117533A (en) 2007-11-05 2009-05-28 Shin Etsu Chem Co Ltd Manufacturing method of silicon carbide substrate
JP2010235392A (en) 2009-03-31 2010-10-21 Bridgestone Corp Support substrate, bonded substrate, method of manufacturing support substrate and method of manufacturing bonded substrate
JP2010251109A (en) 2009-04-15 2010-11-04 Bridgestone Corp Heater, heating element used for the heater, and method for manufacturing the heating element
JP2012146695A (en) 2011-01-06 2012-08-02 Denso Corp Silicon carbide semiconductor substrate, silicon carbide semiconductor device, method of manufacturing silicon carbide semiconductor substrate, and method of manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP2020090421A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
KR101797428B1 (en) Single-crystal diamond growth base material and method for manufacturing single-crystal diamond substrate
US9200379B2 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
US20130220214A1 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
TWI668198B (en) Gallium nitride-based sintered body and method of manufacturing the same
JPH09315867A (en) Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck
WO2021020574A1 (en) Semiconductor substrate, semiconductor device, and methods for producing same
JP7292573B2 (en) Silicon carbide polycrystalline substrate and manufacturing method thereof
JP2005132637A (en) SiC-COATED CARBONACEOUS MATERIAL AND CARBONACEOUS MATERIAL TO BE COATED WITH SiC
WO2021230148A1 (en) Base substrate for group iii-v compound crystals and production method for same
US20210408242A1 (en) Semiconductor film
JP2024051069A (en) Gallium nitride sintered body and method for producing same
EP2296169B1 (en) Method for manufacturing nitrogen compound semiconductor substrate, nitrogen compound semiconductor substrate, method for manufacturing single crystal sic substrate, and single crystal sic substrate
KR20140019726A (en) Method of manufacturing diamond and dc plasma cvd apparatus
Vikharev et al. Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics
Chen et al. The interface microstructure and band alignment of hexagonal boron nitride/diamond heterojunctions
JP6481603B2 (en) Bonded wafer manufacturing method and bonded wafer
KR20230169109A (en) How to Grow High-Quality Single Crystal Silicon Carbide
JP7400389B2 (en) Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus
JP2018043891A (en) Production method of gallium nitride laminate
WO2023100540A1 (en) Nitride semiconductor substrate and method for producing same
WO2021210396A1 (en) Manufacturing method of modified aluminum nitride raw material, modified aluminum nitride raw material, manufacturing method of aluminum nitride crystals, and downfall defect prevention method
JP7415680B2 (en) Method for sintering nitrogen solid solution silicon carbide powder and method for manufacturing silicon carbide polycrystalline substrate
WO2023067876A1 (en) Method for producing polycrystalline silicon carbide substrate
Biard et al. Tailored Polycrystalline Substrate for SmartSiCTM Substrates Enabling High Performance Power Devices
JP2006041544A (en) Heat treatment method and heat treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7292573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150