JP7291008B2 - High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method - Google Patents

High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method Download PDF

Info

Publication number
JP7291008B2
JP7291008B2 JP2019110210A JP2019110210A JP7291008B2 JP 7291008 B2 JP7291008 B2 JP 7291008B2 JP 2019110210 A JP2019110210 A JP 2019110210A JP 2019110210 A JP2019110210 A JP 2019110210A JP 7291008 B2 JP7291008 B2 JP 7291008B2
Authority
JP
Japan
Prior art keywords
thermal expansion
less
modulus
corrosion resistance
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019110210A
Other languages
Japanese (ja)
Other versions
JP2020200523A (en
Inventor
卓雄 半田
志民 劉
伸幸 大山
勝 鷲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2019110210A priority Critical patent/JP7291008B2/en
Publication of JP2020200523A publication Critical patent/JP2020200523A/en
Application granted granted Critical
Publication of JP7291008B2 publication Critical patent/JP7291008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低温安定性および耐食性に優れた高ヤング率低熱膨張合金およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a high Young's modulus low thermal expansion alloy excellent in low temperature stability and corrosion resistance, and a method for producing the same.

各種先端分野の精密装置には、温度変化に伴う熱変形を抑える目的で低熱膨張合金部材が適用される。また、精密装置の精度に大きく影響する要因として、温度変化に伴う部材の熱変形の他に、応力に起因する部材の弾性変形がある。 Low thermal expansion alloy members are applied to precision devices in various advanced fields for the purpose of suppressing thermal deformation due to temperature changes. In addition to thermal deformation of members due to temperature changes, elastic deformation of members due to stress is also a factor that greatly affects the accuracy of precision devices.

一方、精密装置の使用環境は多岐にわたり、例えば航空・宇宙機器や計測機器等の部材には-100℃以下の環境で稼働するものや、研磨液や冷却液等の液体と接する環境で稼動するものがある。 On the other hand, precision equipment is used in a wide variety of environments. For example, parts such as aerospace equipment and measuring instruments operate in environments below -100°C, and in environments where they come into contact with liquids such as polishing liquids and cooling liquids. there is something

このように、精密装置に適用される低熱膨張合金部材には、低熱膨張であることに加え、高い剛性(ヤング率)、-100℃以下の低温安定性、ステンレス鋼に匹敵する耐食性が求められ、これらを併せ持つ合金が理想的な低熱膨張合金であり、その開発が望まれている。 In this way, low thermal expansion alloy members used in precision equipment are required to have low thermal expansion, high rigidity (Young's modulus), low temperature stability below -100°C, and corrosion resistance comparable to stainless steel. , and an alloy having these properties is an ideal low-thermal-expansion alloy, and its development is desired.

現在、工業的に利用されている代表的な低熱膨張合金として基本組成がFe-32%Ni-5%Coのスーパーインバー(SI)が知られる。SIは、組成範囲を適切に選択すれば室温付近で極めて小さい熱膨張係数を示す。例えば、特許文献1には、熱膨張係数が0.5ppm/℃以下のものが開示されており、このような低い熱膨張係数のSIは、熱変形が極めて少なく、精度低下を有効に抑えることができる。しかし、熱膨張係数が0.5ppm/℃以下のSIは、オーステナイトの安定性が小さく、-40℃前後でマルテンサイト生成するようになる。マルテンサイトの生成開始温度(以下、Ms点と記す)以下の温度ではマルテンサイト組織の生成により、熱膨張係数が急激に増加し、低熱膨張性を失う。したがって、SIは、低温域で稼働する航空・宇宙機器や計測機器等の部材への適用が制限される(特許文献2の段落0003、0024)。 At present, Super Invar (SI) having a basic composition of Fe-32%Ni-5%Co is known as a typical low thermal expansion alloy in industrial use. SI exhibits a very small coefficient of thermal expansion near room temperature if the composition range is appropriately selected. For example, Patent Document 1 discloses an SI with a thermal expansion coefficient of 0.5 ppm/° C. or less. can be done. However, SI with a thermal expansion coefficient of 0.5 ppm/°C or less has low austenite stability and forms martensite at around -40°C. At a temperature below the martensite formation start temperature (hereinafter referred to as the Ms point), the thermal expansion coefficient rapidly increases due to the formation of the martensite structure, and the low thermal expansion property is lost. Therefore, SI is limited in application to members of aerospace equipment, measuring equipment, etc. that operate in a low temperature range (paragraphs 0003 and 0024 of Patent Document 2).

また、SIのヤング率は、140GPa未満であり(非特許文献1のP33、Table2)、一般鋼の200~210GPaに対して小さく、弾性変形が一般鋼に比べて大きいため、精度低下を抑えるには部材断面積を大きくする必要があり、重量増加や材料コストアップ等を招く問題がある。 In addition, the Young's modulus of SI is less than 140 GPa (P33 of Non-Patent Document 1, Table 2), which is smaller than the 200 to 210 GPa of general steel, and elastic deformation is greater than that of general steel. However, it is necessary to increase the cross-sectional area of the member, which causes problems such as an increase in weight and material cost.

また、SIの耐候性は、Niを多く含むため比較的良好であるが、湿潤環境や接液に対する耐食性は不十分であり、部材表面にめっきや塗装を行って腐食を防止する必要がある。 In addition, SI has relatively good weather resistance because it contains a large amount of Ni, but its corrosion resistance against wet environments and contact with liquids is insufficient, and it is necessary to prevent corrosion by plating or painting the surface of the member.

一方、特許文献3には、重量%で、ニッケルが0.03%以上1.5%以下、ニッケルとコバルトの合計が53%以上55%以下、クロムが9%以上10%以下を含有し、残部が鉄と不可避不純物とから成るステンレスインバー合金(以下、STIと記すことがある)をベースにした組成の合金を焼鈍させた後、炉内にて冷却させる低熱膨張合金が記載されており(例えば請求項1)、その段落0013には、上記組成の合金が従来のSTIの耐食性を保持する点が記載されている。また、実施例の本発明材5は、0~60℃までの平均熱膨張係数が0.03×10-6/℃と極めて低い低熱膨張特性を示すことが記載されている。しかし、当該材料の低熱膨張性は、800℃に加熱後、徐冷して得られており、特許文献4(ページ(2)8~15行目)には、Cr含有ステンレスを550~800℃に加熱後、徐冷するとCr欠乏層を生じ、粒界腐食や応力腐食割れが発生することが記載されている。特許文献3には耐食性に関するデータは示されておらず、特許文献4の記載からすると、特許文献3の材料は焼鈍後徐冷することにより十分な耐食性は得られないと考えられる。また、特許文献3はヤング率について考慮していない。 On the other hand, in Patent Document 3, in terms of weight %, nickel contains 0.03% or more and 1.5% or less, the total of nickel and cobalt is 53% or more and 55% or less, and chromium contains 9% or more and 10% or less, A low thermal expansion alloy is described in which an alloy having a composition based on a stainless steel invar alloy (hereinafter sometimes referred to as STI), the balance of which is composed of iron and inevitable impurities, is annealed and then cooled in a furnace ( For example, claim 1), paragraph 0013 thereof, states that the alloy with the above composition retains the corrosion resistance of conventional STI. In addition, it is described that the present invention material 5 of the example exhibits an extremely low thermal expansion characteristic with an average thermal expansion coefficient of 0.03×10 -6 /°C from 0 to 60°C. However, the low thermal expansion property of the material is obtained by heating to 800 ° C. and then slowly cooling it. It is described that when the steel is slowly cooled after heating, a Cr-depleted layer is formed and intergranular corrosion and stress corrosion cracking occur. Patent document 3 does not show data on corrosion resistance, and based on the description in patent document 4, it is considered that sufficient corrosion resistance cannot be obtained by slow cooling the material of patent document 3 after annealing. Moreover, Patent Document 3 does not consider Young's modulus.

特許文献5には、熱膨張係数が0.5ppm/℃以下の高剛性低熱膨張鋳物が開示されているが、二点支持横共振法によるヤング率が140GPa未満で、Ms点が-30~-40℃で前記SIと同等レベルであり、また、耐食性に関する記載は見られない。 Patent Document 5 discloses a high-rigidity low-thermal-expansion casting having a thermal expansion coefficient of 0.5 ppm/°C or less, but the Young's modulus by the two-point support lateral resonance method is less than 140 GPa and the Ms point is -30 to -. At 40° C., the level is equivalent to that of SI, and there is no description regarding corrosion resistance.

特開2010-206615号公報JP 2010-206615 A 特開2011-174854号公報JP 2011-174854 A 特開2011-74454号公報JP 2011-74454 A 特開昭56-163437号公報JP-A-56-163437 特開2016-27187号公報JP 2016-27187 A

「Processing and characterization of Superinvar for space application」;Materials Science Forum Vols.830-831(2015)pp30-33"Processing and characterization of Superinvar for space application"; Materials Science Forum Vols.830-831(2015) pp30-33

以上のように、熱膨張係数が0.5ppm/℃以下のSIは-100℃のような低温においてはマルテンサイト組織を生成して熱膨張係数が急激に増加し、特許文献3の低熱膨張合金は、耐食性およびヤング率の開示がなく、また、特許文献5の低熱膨張鋳物は、ヤング率が140GPa未満、Ms点が-40℃で、かつ耐食性が開示されていない。 As described above, SI with a thermal expansion coefficient of 0.5 ppm/° C. or less generates a martensite structure at a low temperature such as −100° C., and the thermal expansion coefficient rapidly increases, and the low thermal expansion alloy of Patent Document 3 does not disclose corrosion resistance and Young's modulus, and the low thermal expansion casting of Patent Document 5 has a Young's modulus of less than 140 GPa, an Ms point of −40° C., and no disclosure of corrosion resistance.

すなわち、-70~100℃の範囲での熱膨張係数が0.5ppm/℃以下、Ms点が-100℃以下、曲げ共振法によるヤング率(以下、単にヤング率と記すことがある)が140GPa以上、かつ汎用ステンレスであるSUS430(以下、単に汎用ステンレスと記すことがある)と同等の耐食性を有する低熱膨張合金が求められているが、このような特性をすべて満足する低熱膨張合金は未だ得られていない。 That is, the thermal expansion coefficient in the range of -70 to 100 ° C. is 0.5 ppm / ° C. or less, the Ms point is -100 ° C. or less, and the Young's modulus according to the bending resonance method (hereinafter sometimes simply referred to as Young's modulus) is 140 GPa. In addition to the above, there is a demand for a low thermal expansion alloy that has corrosion resistance equivalent to that of general-purpose stainless steel SUS430 (hereinafter sometimes simply referred to as general-purpose stainless steel). Not done.

本発明は、-70~100℃の範囲での平均熱膨張係数が0.5ppm/℃以下、Ms点が-100℃以下、ヤング率が140GPa以上で、かつ汎用ステンレスと同等の耐食性を有する低熱膨張合金およびその製造方法を提供することを課題とする。 The present invention has an average thermal expansion coefficient in the range of -70 to 100 ° C. of 0.5 ppm / ° C. or less, an Ms point of -100 ° C. or less, a Young's modulus of 140 GPa or more, and a low heat with corrosion resistance equivalent to that of general-purpose stainless steel. An object of the present invention is to provide an expansion alloy and a method for producing the same.

SIはインバー(Fe-36%Ni合金)のNiの一部をCoに置き換えた合金で、Co量が多くなるほど熱膨張係数は低下するが、相対的にNi量が低下するためオーステナイトが不安定化し、Ms点が上昇する。熱膨張係数が0.5ppm/℃以下となる組成のSIは、Ms点が-40℃前後となり、さらにCoを増やし、Niを減らすとMs点が室温付近となって低熱膨張材料として適用できなくなる。 SI is an alloy in which a part of Ni in Invar (Fe-36% Ni alloy) is replaced with Co. The larger the amount of Co, the lower the coefficient of thermal expansion, but the relatively lower amount of Ni makes the austenite unstable. and the Ms point rises. SI with a composition having a coefficient of thermal expansion of 0.5 ppm/°C or less has an Ms point of around -40°C, and if Co is further increased and Ni is reduced, the Ms point is near room temperature and cannot be used as a low thermal expansion material. .

本発明者らは、このような点について検討した結果、ステンレスインバー合金(Co54%、Cr9.5%を含有し、残部が主にFeから成る組成に代表される合金)の組織微細化による特性改善が有効であり、STI組成の合金のミクロ組織を極めて小さくして、デンドライト2次アーム間隔を5μm以下とすることにより、-70~100℃の範囲での平均熱膨張係数が0.5ppm/℃以下、Ms点が-100℃以下、ヤング率が140GPa以上で、かつ汎用ステンレスと同等の耐食性を併せ持った低熱膨張合金が得られることを見出した。 As a result of examining such points, the present inventors have found that the characteristics of stainless steel invar alloys (alloys represented by compositions containing 54% Co and 9.5% Cr, with the balance mainly consisting of Fe) due to microstructure refinement The improvement is effective, and by making the microstructure of the alloy with the STI composition extremely small and making the dendrite secondary arm spacing 5 μm or less, the average thermal expansion coefficient in the range of -70 to 100 ° C. ° C. or lower, an Ms point of −100° C. or lower, a Young's modulus of 140 GPa or higher, and corrosion resistance equivalent to that of general-purpose stainless steel.

本発明はこれらの知見に基づいて完成されたものであり、以下の(1)~(4)を提供する。 The present invention was completed based on these findings, and provides the following (1) to (4).

(1)質量%で、
C:0.05%以下、
Si:0.20%以下、
Mn:0.50%以下、
Ni:6.0%以下、
Co:53.0~56.0%、
Cr:8.5~13.0%を含有し、
かつ、Ni+0.8Co-0.8Cr:35.0~37.0%であり、
残部がFeおよび不可避的不純物からなり、デンドライト2次アーム間隔が5μm以下である凝固組織を有し、-70~100℃の平均熱膨張係数が0.5ppm/℃以下、ヤング率が140GPa以上であることを特徴とする、低温安定性および耐食性に優れた高ヤング率低熱膨張合金。
(1) in mass %,
C: 0.05% or less,
Si: 0.20% or less,
Mn: 0.50% or less,
Ni: 6.0% or less,
Co: 53.0 to 56.0%,
Cr: containing 8.5 to 13.0%,
and Ni + 0.8Co-0.8Cr: 35.0 to 37.0%,
The remainder consists of Fe and unavoidable impurities, has a solidified structure with a dendrite secondary arm spacing of 5 μm or less, an average thermal expansion coefficient of −70 to 100° C. of 0.5 ppm/° C. or less, and a Young's modulus of 140 GPa or more. A high Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance, characterized by:

(2)C×10-Si+Mn×0.5+Ni+Co×0.15+Cr×2.6:30.0以上であることを特徴とする、(1)に記載の低温安定性および耐食性に優れた高ヤング率低熱膨張合金。 (2) C×10−Si+Mn×0.5+Ni+Co×0.15+Cr×2.6: High Young's modulus excellent in low-temperature stability and corrosion resistance according to (1), characterized by being 30.0 or more Low thermal expansion alloy.

(3)上記(1)または(2)に記載の組成を有する低熱膨張合金素材を、レーザーまたは電子ビームによって、溶融・凝固させて積層造形させ、-70~100℃の平均熱膨張係数が0.5ppm/℃以下、ヤング率が140GPa以上の低熱膨張合金を製造することを特徴とする、低温安定性および耐食性に優れた高ヤング率低熱膨張合金の製造方法。 (3) The low-thermal-expansion alloy material having the composition described in (1) or (2) above is melted and solidified by a laser or an electron beam and laminated, and the average thermal expansion coefficient at -70 to 100 ° C. is 0. A method for producing a high Young's modulus low thermal expansion alloy having excellent low temperature stability and corrosion resistance, characterized by producing a low thermal expansion alloy having a Young's modulus of 140 GPa or more and 5 ppm/°C or less.

(4)前記低熱膨張合金素材は、粉末であることを特徴とする、(3)に記載の低温安定性および耐食性に優れた高ヤング率低熱膨張合金の製造方法。 (4) The method for producing a high Young's modulus low thermal expansion alloy excellent in low temperature stability and corrosion resistance according to (3), wherein the low thermal expansion alloy material is powder.

本発明によれば、-70~100℃の平均熱膨張係数が0.5ppm/℃以下であり、Ms点が-100℃以下、ヤング率が140GPa以上で、かつ汎用ステンレスと同等の耐食性を有する低熱膨張合金およびその製造方法が提供される。本発明に係る低熱膨張合金は、従来の低膨張合金では適用が制限されていた、航空・宇宙等の低温域や、研磨・冷却液等の液体と接する環境で稼動する精密装置部材への適用が可能で、熱変形のみならず弾性変形も抑えることが可能になり、各種精密装置の高精度化に大きく貢献する。 According to the present invention, the average thermal expansion coefficient at −70 to 100° C. is 0.5 ppm/° C. or less, the Ms point is −100° C. or less, the Young’s modulus is 140 GPa or more, and the corrosion resistance is equivalent to that of general-purpose stainless steel. A low thermal expansion alloy and method of making the same are provided. The low-thermal-expansion alloy according to the present invention can be applied to precision equipment components that operate in low-temperature regions such as aerospace and in environments that come in contact with liquids such as polishing and cooling liquids, although the application of conventional low-thermal-expansion alloys has been limited. It is possible to suppress not only thermal deformation but also elastic deformation, which greatly contributes to the improvement of precision of various precision devices.

本発明の実施例に用いたアトマイズ装置を示す概念図である。1 is a conceptual diagram showing an atomizing device used in an embodiment of the present invention; FIG. 図1のアトマイズ装置により得られた球状粉末を示すSEM写真である。FIG. 2 is an SEM photograph showing spherical powder obtained by the atomizing apparatus of FIG. 1. FIG. DASと冷却速度との関係を示す図である。FIG. 4 is a diagram showing the relationship between DAS and cooling rate; 本発明組成合金のレーザー積層造形物のDASを示すSEM写真である。1 is a SEM photograph showing a DAS of a laser additive manufacturing product of an alloy composition according to the present invention; 純銅鋳型鋳造物のDASを示す光学顕微鏡写真である。1 is an optical micrograph showing the DAS of a pure copper mold casting; 純銅鋳型を示す図である。FIG. 2 shows a pure copper mold;

以下、本発明の限定理由について、化学成分および製造条件に分けて説明する。
なお、以下の説明において、特に断わらない限り成分における%表示は質量%であり、αは-70~100℃の平均熱膨張係数である。
Hereinafter, the reasons for limitation of the present invention will be described separately for chemical components and production conditions.
In the following description, unless otherwise specified, the % display in the components is mass %, and α is the average coefficient of thermal expansion from -70 to 100°C.

[化学成分]
C:0.05%以下
Cは本発明に係る低熱膨張合金のαを著しく増加させる元素であり、低いことが望ましい。Cは0.05%を超えて含有すると、後述する他の元素の含有量によってもαが0±0.5ppm/℃の範囲を超えるため、C含有量を0.05%以下とする。
[Chemical composition]
C: 0.05% or less C is an element that significantly increases α of the low thermal expansion alloy according to the present invention, and is preferably low. If the C content exceeds 0.05%, α exceeds the range of 0±0.5 ppm/° C. due to the contents of other elements described later, so the C content is made 0.05% or less.

Si:0.20%以下
Siは合金中の酸素を低減する目的で添加する元素である。しかし、Siは本発明に係る低熱膨張合金のαを増加させる元素であり、低いことが望ましい。その含有量が0.20%超ではCと同様にαの増加が無視できなくなる。したがって、Si含有量を0.20%以下とする。
Si: 0.20% or less Si is an element added for the purpose of reducing oxygen in the alloy. However, Si is an element that increases α of the low thermal expansion alloy according to the present invention, and is preferably low. If the content exceeds 0.20%, similarly to C, the increase in α cannot be ignored. Therefore, the Si content is set to 0.20% or less.

Mn:0.50%以下
MnはSiと同様に脱酸に有効な元素である。しかし、Mnは本発明に係る低熱膨張合金において、αを増加させる元素であり、低いことが望ましい。その含有量が0.5%を超えるとCと同様にαの増加が無視できなくなる。したがって、Mn含有量を0.5%以下とする。
Mn: 0.50% or less Mn, like Si, is an element effective for deoxidation. However, Mn is an element that increases α in the low thermal expansion alloy according to the present invention, and is preferably low. When the content exceeds 0.5%, similarly to C, the increase in α cannot be ignored. Therefore, the Mn content is set to 0.5% or less.

Ni:6.0%以下
Niは、Ms点を低温側に下げて低温安定性を向上させるため、特に液体窒素温度(-196℃)より低温で適用する場合に添加する。しかし、Niが6%を超えると、後述の、Ni、Co、Crの各量で表わされる式を満足させても、αが0.5ppm/℃を超える。したがって、Niの含有量を6.0%以下とする。
Ni: 6.0% or less Ni lowers the Ms point to the low temperature side and improves the low temperature stability. However, if Ni exceeds 6%, α exceeds 0.5 ppm/° C. even if the expressions expressed by the amounts of Ni, Co, and Cr, which will be described later, are satisfied. Therefore, the Ni content is set to 6.0% or less.

Co:53.0~56.0%
CoはNiおよびCrとともにαを決定する重要な元素である。耐食性を得るために必要なCrを添加するとき、αを0.5ppm/℃以下にするためには、Coは53.0%以上必要であるが、56.0%を超えるとαが0.5ppm/℃を超える。したがって、Coの含有量を53.0~56.0%の範囲とする。
Co: 53.0-56.0%
Co is an important element that determines α together with Ni and Cr. When Cr necessary for obtaining corrosion resistance is added, Co must be 53.0% or more in order to reduce α to 0.5 ppm/°C or less. greater than 5 ppm/°C. Therefore, the Co content is set in the range of 53.0 to 56.0%.

Cr:8.5~13.0%
Crは耐食性の付与と低温安定性の向上を目的に添加する。Cr8.5%未満では汎用ステンレスに匹敵する耐食性が得られず、また、Ms点が-100℃より高温となり、Cr13.0%超では、αが0.5ppm/℃超となる。したがって、Crは8.5~13.0%の範囲とする。
Cr: 8.5-13.0%
Cr is added for the purpose of imparting corrosion resistance and improving low-temperature stability. If the Cr content is less than 8.5%, corrosion resistance comparable to that of general-purpose stainless steel cannot be obtained, and the Ms point becomes higher than -100°C. Therefore, Cr should be in the range of 8.5 to 13.0%.

Ni+0.8Co-0.8Cr:35.0~37.0%
本発明のFe-Ni-Co-Cr合金において、Ni量、Co量およびCr量を上記範囲に規定した上で、Ni+0.8Co-0.8Crで表される式の値を35.0~37.0%とすることにより、所望の低熱膨張性が得られる。この式の値は35.0%未満でも、37.0%超でもαが0.5ppm/℃以下を満たすことが困難となる。したがって、Ni+0.8Co-0.8Crを35.0~37.0%とする。
Ni+0.8Co-0.8Cr: 35.0-37.0%
In the Fe-Ni-Co-Cr alloy of the present invention, the Ni content, the Co content and the Cr content are specified within the above ranges, and the value of the formula represented by Ni + 0.8Co-0.8Cr is 35.0 to 37 A desired low thermal expansion property can be obtained by adjusting the content to 0.0%. Even if the value of this formula is less than 35.0% or more than 37.0%, it is difficult to satisfy α of 0.5 ppm/°C or less. Therefore, Ni+0.8Co-0.8Cr is 35.0 to 37.0%.

C×10-Si+Mn×0.5+Ni+Co×0.15+Cr×2.6:30.0以上
本発明のFe-Ni-Co-Cr合金において、構成する各元素量を上記範囲に規定した上で、C×10-Si+Mn×0.5+Ni+Co×0.15+Cr×2.6で表される式の値を30.0以上とすることにより、Ms点をより低温にすることができる。したがって、C×10-Si+Mn×0.5+Ni+Co×0.15+Cr×2.6を30.0以上とすることが好ましい。
C×10-Si+Mn×0.5+Ni+Co×0.15+Cr×2.6: 30.0 or more By setting the value of the formula represented by ×10−Si+Mn×0.5+Ni+Co×0.15+Cr×2.6 to 30.0 or more, the Ms point can be made lower. Therefore, it is preferable to set C×10−Si+Mn×0.5+Ni+Co×0.15+Cr×2.6 to 30.0 or more.

本発明において、C、Si、Mn、Ni、Co、Cr以外の残部は、Feおよび不可避的不純物である。 In the present invention, the balance other than C, Si, Mn, Ni, Co and Cr is Fe and unavoidable impurities.

[凝固組織]
凝固組織を微細化することによりαを小さくすることができる。その理由は、前述のように、組織の微細化によって合金元素のミクロ偏析が軽減するためであると考えられる。本発明に係る低熱膨張合金は、デンドライト2次アーム間隔(以下、DASと記すことがある)が5μm以下となるように凝固組織を微細化する。上記組成の合金においてDASを5μm以下とすることにより、αを0.5ppm/℃以下とすることができる。
[Coagulation structure]
α can be reduced by refining the solidified structure. The reason for this is thought to be that micro-segregation of alloying elements is reduced due to the refinement of the structure, as described above. The low thermal expansion alloy according to the present invention refines the solidified structure so that the dendrite secondary arm spacing (hereinafter sometimes referred to as DAS) is 5 μm or less. By setting the DAS to 5 μm or less in the alloy having the above composition, α can be set to 0.5 ppm/° C. or less.

[Ms点]
本発明に係る低熱膨張合金は、Ms点を低温側に移動して低温安定性を向上させるCrおよびNiを含有し、かつ上述のような微細な凝固組織を有することから、Ms点が-100℃以下であり、従来のSIでは得られなかった優れた低温安定性が得られる。
[MS point]
The low thermal expansion alloy according to the present invention contains Cr and Ni that move the Ms point to the low temperature side to improve low temperature stability, and has a fine solidified structure as described above, so the Ms point is -100. °C or less, and excellent low-temperature stability that could not be obtained with conventional SI can be obtained.

[製造条件]
上記組成を有する低熱膨張合金素材を、レーザーまたは電子ビームによって、溶融・凝固させて積層造形させる。これにより低熱膨張合金素材が溶融された後、急冷され、DASを5μm以下の微細な組織とすることができる。これにより合金元素のミクロ偏析が軽減し、αを0.5ppm/℃以下とすることができる。ただし、DASが5μm以下の微細な凝固組織が得られる溶融・凝固条件を実現できれば、いずれの方法も適用可能である。
[Manufacturing conditions]
The low-thermal-expansion alloy material having the above composition is melted and solidified by a laser or an electron beam to laminate-molded. As a result, the low-thermal-expansion alloy material is melted and then quenched, so that the DAS can be made into a fine structure of 5 μm or less. As a result, the micro-segregation of the alloying elements is reduced, and α can be reduced to 0.5 ppm/°C or less. However, any method can be applied as long as melting and solidification conditions for obtaining a fine solidified structure with a DAS of 5 μm or less can be achieved.

具体的には、上記範囲内の組成を有する合金素材として合金粉末を準備し、レーザーまたは電子ビームによって、溶融・凝固させて積層造形させることによりDASを5μm以下の微細凝固組織の合金とすることができる。 Specifically, alloy powder is prepared as an alloy material having a composition within the above range, and the DAS is made into an alloy with a fine solidification structure of 5 μm or less by melting and solidifying with a laser or electron beam and laminating. can be done.

積層造形においては、合金の凝固時の冷却速度を3000℃/sec.以上とすることにより、DASが5μm以下の微細凝固組織を得ることができる。レーザーまたは電子ビームであれば、この冷却速度を満たす。 In additive manufacturing, the cooling rate during solidification of the alloy is 3000°C/sec. By doing the above, it is possible to obtain a finely solidified structure with a DAS of 5 μm or less. A laser or electron beam satisfies this cooling rate.

本発明合金のような高融点の鉄系合金を工業的に鋳造可能な銅合金鋳型鋳造法の場合、後掲の図5に示すように、DASを5μm以下にすることは到底できず、また、非鉄系合金を対象とするダイカスト法は、鋳造プロセスの中では最も冷却速度が大きいが、これによっても、後掲の図3から明らかなように、DASを5μm以下とするには冷却速度が不十分であり、所期の特性を得ることは不可能である。 In the case of a copper alloy mold casting method capable of industrially casting a high-melting iron-based alloy such as the alloy of the present invention, as shown in FIG. , The die casting method for non-ferrous alloys has the highest cooling rate among the casting processes. insufficient and it is impossible to obtain the desired properties.

以下、本発明の実施例について説明する。
表1に示す化学成分および組成の合金の積層造形、ならびに純銅鋳型への鋳造によって試料を作製した。
Examples of the present invention will be described below.
Samples were prepared by additive manufacturing of alloys of the chemical composition and composition shown in Table 1 and casting into pure copper molds.

積層造形の試料は、表1に示す化学組成の合金を高周波誘導炉で溶解し、図1に示すアトマイズ装置を用いて、1700℃の溶湯を滴下し、ノズルから不活性ガス(本例ではアルゴンガス)を噴霧して液滴に分断するとともに急速凝固させて球状粉末を得た。その後、ふるい分けして図2に示す粒径10~45μmの造形用粉末を得た。レーザー式積層造形装置を用いて、出力300W、レーザー移動速度1000mm/秒、レーザー走査ピッチ0.1mm、粉末積層厚さ0.04mmの条件で造形用粉末を積層造形し、φ10×L60の試料を造形した。 A sample for additive manufacturing is obtained by melting an alloy having the chemical composition shown in Table 1 in a high-frequency induction furnace, dropping molten metal at 1700 ° C. using the atomizing device shown in FIG. gas) was sprayed to break into droplets and rapidly solidify to obtain a spherical powder. Thereafter, the particles were sieved to obtain a modeling powder having a particle size of 10 to 45 μm as shown in FIG. Using a laser type additive manufacturing apparatus, the modeling powder is layered under the conditions of output 300 W, laser moving speed 1000 mm / second, laser scanning pitch 0.1 mm, powder layer thickness 0.04 mm, and a sample of φ10 × L60 modeled.

鋳造の試料は、高周波誘導炉で溶解した合金溶湯約100gを、鋳込み温度1650℃で図6に示す純銅鋳型に鋳造し、鋳型底の先端部から採取した。 About 100 g of molten alloy melted in a high-frequency induction furnace was cast into a pure copper mold shown in FIG.

図3は、本発明試料の光学顕微鏡組織観察によって実測したDASと、以下の文献1に記載のDASと冷却速度の関係の外挿線から、試料の冷却速度を推定するもので、以下の文献2~4の情報から得られた各種鋳型の冷却速度も併記した。
R=(DAS/709)1/-0.386 ・・・(1)
R:冷却速度(℃/min.)、DAS:デンドライト2次アーム間隔(μm)
文献1:「鋳鋼の生産技術」P378、素形材センタ―
文献2:「鋳物」、第63巻(1991)第11号、P915
文献3:「鋳造工学」、第68巻(1996)第12号、P1076
文献4:「素形材」、Vol.54(2013)No.1、P13
FIG. 3 shows the estimation of the cooling rate of the sample from the DAS actually measured by optical microscopic observation of the sample of the present invention and the extrapolation line of the relationship between the DAS and the cooling rate described in Document 1 below. The cooling rates of various molds obtained from the information in 2 to 4 are also shown.
R = (DAS/709) 1/-0.386 (1)
R: cooling rate (°C/min.), DAS: dendrite secondary arm spacing (μm)
Literature 1: "Cast Steel Production Technology" P378, Sokeizai Center
Reference 2: Casting, Vol. 63 (1991) No. 11, P915
Document 3: "Casting Engineering", Vol. 68 (1996) No. 12, P1076
Document 4: "Sokeizai", Vol.54 (2013) No.1, P13

試料は造形用ベースプレートから放電ワイヤーカットで切り離した後、φ6×50mmの熱膨張試験片に機械加工し、レーザー干渉式熱膨張計を用いて2℃/min.で昇温しながら熱膨張を測定し、得られた熱膨張曲線からαを求めた。 After cutting the sample from the modeling base plate by electric discharge wire cutting, it was machined into a thermal expansion test piece of φ6×50 mm, and measured at 2° C./min. The thermal expansion was measured while the temperature was raised at , and α was obtained from the obtained thermal expansion curve.

また、Ms点は前記熱膨張試験片を前記熱膨張計にセットし、液体窒素により3℃/min.で冷却しながら熱膨張を測定し、熱膨張曲線が急激に変化した温度から求めた。 Also, the Ms point was measured by setting the thermal expansion test piece in the thermal dilatometer and measuring it with liquid nitrogen at 3° C./min. The thermal expansion was measured while cooling at , and obtained from the temperature at which the thermal expansion curve abruptly changed.

前記の測定で熱膨張曲線の急激な変化が認められなかった試料については、液体窒素に15分間浸漬した後、ミクロ組織を観察し、マルテンサイト組織の有無を確認した。 For the samples for which no abrupt change in the thermal expansion curve was observed in the above measurement, the microstructure was observed after being immersed in liquid nitrogen for 15 minutes to confirm the presence or absence of the martensitic structure.

耐食性は、0.1molar NaCl水溶液に30日浸漬後の標準材(汎用ステンレスであるSUS430)の腐食減量と、試料の腐食減量との比(標準材減量/試料腐食減量)である減量比で評価した。 Corrosion resistance is evaluated by the weight loss ratio, which is the ratio of the corrosion weight loss of a standard material (general-purpose stainless steel SUS430) after immersion in a 0.1 molar NaCl aqueous solution for 30 days to the corrosion weight loss of a sample (standard material weight loss/sample corrosion weight loss). bottom.

表1の本発明例No.1~7は、化学成分および組成が本発明の範囲内であり、かつ粉末積層造形により製造されたものであり、DASを実測した結果、いずれも、5μm以下であった。また、-70~100℃間の平均熱膨張係数であるαが0±0.5ppm/℃の範囲で、Ms点が-100℃以下、ヤング率が140GPa以上であった。さらに耐食性の指標である減量比が1以上であり、汎用ステンレスと同等以上の耐食性であることが確認された。 Example No. of the present invention in Table 1. Nos. 1 to 7 had chemical components and compositions within the scope of the present invention and were manufactured by powder additive manufacturing. As a result of actual measurement of DAS, all were 5 μm or less. In addition, the average thermal expansion coefficient α between −70 and 100° C. was in the range of 0±0.5 ppm/° C., the Ms point was −100° C. or less, and the Young's modulus was 140 GPa or more. Furthermore, the weight loss ratio, which is an index of corrosion resistance, was 1 or more, and it was confirmed that the corrosion resistance was equal to or higher than that of general-purpose stainless steel.

図4は本発明例No.5のSEM写真であるが、この写真からNo.5のDASを実測した結果、1.4μmと5μm以下であった。また、このDASの値から、冷却速度は0.95×10℃/sec.と推定した。 FIG. 4 shows Example No. of the present invention. No. 5 is an SEM photograph from this photograph. As a result of actually measuring the DAS of No. 5, it was 1.4 μm, which is less than 5 μm. Also, from this DAS value, the cooling rate is 0.95×10 5 ° C./sec. estimated.

以上の結果から、本発明例の合金は、いずれも、-70~100℃間の平均熱膨張係数であるαが0.5ppm/℃以下、Ms点が-100℃以下、ヤング率が140GPa以上で、かつ汎用ステンレスと同等以上の耐食性を示し、航空・宇宙分野の厳しい要求にも応えられる特性を持っていることが確認された。 From the above results, the alloys of the invention examples all have an average coefficient of thermal expansion α between −70 and 100° C. of 0.5 ppm/° C. or less, an Ms point of −100° C. or less, and a Young’s modulus of 140 GPa or more. It has been confirmed that it has corrosion resistance equal to or greater than that of general-purpose stainless steel, and that it has characteristics that can meet the strict requirements of the aerospace field.

一方、比較例のNo.8~15は、いずれも粉末積層造形により製造されたものであり、かつDASは5μm以下であるが、化学成分および組成が本発明の範囲外であり、比較例No.16は、本発明例No.1と近似した組成で、化学成分および組成は本発明の範囲内であるが、純銅鋳型に鋳造したものであり、DASが5μmを超えた本発明範囲外のものである。図5は比較例No.16の光学顕微鏡写真であるが、この写真からNo.16の純銅鋳型に鋳造した場合のDASを実測した結果15.3μmであった。 On the other hand, No. of the comparative example. Comparative Example Nos. 8 to 15 were all manufactured by powder additive manufacturing and had a DAS of 5 μm or less, but their chemical components and compositions were outside the scope of the present invention. 16 is present invention example No. 1, the chemical composition and composition are within the scope of the present invention, but it is cast in a pure copper mold and has a DAS exceeding 5 μm, which is outside the scope of the present invention. FIG. 5 shows comparative example no. 16 optical micrographs, from which No. The DAS measured when cast in 16 pure copper molds was 15.3 μm.

これらのうち、No.8~11および、No.13、15、16についてはαが0.5ppm/℃を超えた。また、No.16はヤング率が140GPa未満であった。 Among these, No. 8-11 and No. For 13, 15 and 16, α exceeded 0.5 ppm/°C. Also, No. 16 had a Young's modulus of less than 140 GPa.

また、No.12および14は、αが0.5ppm/℃以下であったが、Ms点が-100℃より高温であり、また、No.14はCrが下限未満であったため、耐食性の指標である減量比が1より低く、耐食性が汎用ステンレスのNo.17より低いことが確認された。 Also, No. Nos. 12 and 14 had an α of 0.5 ppm/°C or less, but an Ms point higher than -100°C. In No. 14, since Cr was less than the lower limit, the weight loss ratio, which is an index of corrosion resistance, was lower than 1, and the corrosion resistance was lower than that of general-purpose stainless steel. It was found to be lower than 17.

Figure 0007291008000001
Figure 0007291008000001

Claims (4)

質量%で、
C:0.05%以下、
Si:0.20%以下、
Mn:0.50%以下、
Ni:6.0%以下、
Co:53.0~56.0%、
Cr:8.5~13.0%を含有し、
かつ、Ni+0.8Co-0.8Cr:35.0~37.0%であり、
残部がFeおよび不可避的不純物からなり、デンドライト2次アーム間隔が5μm以下である凝固組織を有し、-70~100℃の平均熱膨張係数が0.5ppm/℃以下、ヤング率が140GPa以上であることを特徴とする、低温安定性および耐食性に優れた高ヤング率低熱膨張合金。
in % by mass,
C: 0.05% or less,
Si: 0.20% or less,
Mn: 0.50% or less,
Ni: 6.0% or less,
Co: 53.0 to 56.0%,
Cr: containing 8.5 to 13.0%,
and Ni + 0.8Co-0.8Cr: 35.0 to 37.0%,
The remainder consists of Fe and unavoidable impurities, has a solidified structure with a dendrite secondary arm spacing of 5 μm or less, an average thermal expansion coefficient of −70 to 100° C. of 0.5 ppm/° C. or less, and a Young's modulus of 140 GPa or more. A high Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance, characterized by:
C×10-Si+Mn×0.5+Ni+Co×0.15+Cr×2.6:30.0以上であることを特徴とする、請求項1に記載の低温安定性および耐食性に優れた高ヤング率低熱膨張合金。 C × 10-Si + Mn × 0.5 + Ni + Co × 0.15 + Cr × 2.6: 30.0 or more, high Young's modulus low thermal expansion alloy excellent in low temperature stability and corrosion resistance according to claim 1 . 請求項1または請求項2に記載の組成を有する低熱膨張合金素材を、レーザーまたは電子ビームによって、溶融・凝固させて積層造形させ、-70~100℃の平均熱膨張係数が0.5ppm/℃以下、ヤング率が140GPa以上の低熱膨張合金を製造することを特徴とする、低温安定性および耐食性に優れた高ヤング率低熱膨張合金の製造方法。 The low thermal expansion alloy material having the composition according to claim 1 or claim 2 is melted and solidified by a laser or electron beam and laminated, and the average thermal expansion coefficient from -70 to 100 ° C. is 0.5 ppm / ° C. A method for producing a high Young's modulus, low thermal expansion alloy having excellent low temperature stability and corrosion resistance, characterized by producing a low thermal expansion alloy having a Young's modulus of 140 GPa or more. 前記低熱膨張合金素材は、粉末であることを特徴とする、請求項3に記載の低温安定性および耐食性に優れた高ヤング率低熱膨張合金の製造方法。 4. The method for producing a high Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance according to claim 3, wherein the low thermal expansion alloy material is powder.
JP2019110210A 2019-06-13 2019-06-13 High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method Active JP7291008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019110210A JP7291008B2 (en) 2019-06-13 2019-06-13 High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019110210A JP7291008B2 (en) 2019-06-13 2019-06-13 High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020200523A JP2020200523A (en) 2020-12-17
JP7291008B2 true JP7291008B2 (en) 2023-06-14

Family

ID=73741933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019110210A Active JP7291008B2 (en) 2019-06-13 2019-06-13 High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7291008B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic
CN115233041B (en) * 2021-12-20 2023-06-16 北京科技大学 Low-expansion alloy with tensile plasticity and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081647A (en) 2001-09-10 2003-03-19 Mitsubishi Materials Corp DIE MADE OF LOW THERMAL EXPANSION Co BASED ALLOY FOR PRESS-FORMING OPTICAL GLASS LENS HAVING EXCELLENT GLASS CORROSION RESISTANCE
JP2011074454A (en) 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
JP2011083822A (en) 2009-10-15 2011-04-28 Siemens Ag Method and apparatus for welding component made of heat-resistant superalloy
WO2018186417A1 (en) 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
WO2019044093A1 (en) 2017-08-31 2019-03-07 日本鋳造株式会社 Low thermal expansion alloy having excellent low-temperature stability, method for manufacturing same, low thermal expansion alloy powder, and lamination-molded member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591678A (en) * 1982-06-29 1984-01-07 Nippon Steel Corp Production of composite tool steel for hot working
JPS6245454A (en) * 1985-08-26 1987-02-27 Sumitomo Metal Ind Ltd Cooling body for molten metal quick cooler
JP3378651B2 (en) * 1994-06-08 2003-02-17 富士写真フイルム株式会社 Coating device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081647A (en) 2001-09-10 2003-03-19 Mitsubishi Materials Corp DIE MADE OF LOW THERMAL EXPANSION Co BASED ALLOY FOR PRESS-FORMING OPTICAL GLASS LENS HAVING EXCELLENT GLASS CORROSION RESISTANCE
JP2011074454A (en) 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
JP2011083822A (en) 2009-10-15 2011-04-28 Siemens Ag Method and apparatus for welding component made of heat-resistant superalloy
WO2018186417A1 (en) 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
WO2019044093A1 (en) 2017-08-31 2019-03-07 日本鋳造株式会社 Low thermal expansion alloy having excellent low-temperature stability, method for manufacturing same, low thermal expansion alloy powder, and lamination-molded member

Also Published As

Publication number Publication date
JP2020200523A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
KR100933849B1 (en) Composite material and its manufacturing method
JP6592222B2 (en) Low thermal expansion alloy excellent in low temperature stability, manufacturing method thereof, low thermal expansion alloy powder, and additive manufacturing member
EP3031569B1 (en) Cu-added ni-cr-fe-based alloy brazing material
JP6628902B2 (en) Low thermal expansion alloy
JP7291008B2 (en) High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method
US9994946B2 (en) High strength, homogeneous copper-nickel-tin alloy and production process
CN107523719B (en) A kind of novel high rigidity NiTi based alloy
KR20060056783A (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
JP2017145456A (en) Low thermal expansion cast steel article and manufacturing method therefor
CN103228805A (en) Amorphous metal alloy
JP7267566B2 (en) Low thermal expansion casting
WO2020195405A1 (en) Low thermal expansion alloy having excellent low temperature stability and method for producing same
JP7261728B2 (en) Low thermal expansion alloy and its manufacturing method
JP7246684B2 (en) Low thermal expansion alloy
JP7291164B2 (en) Low thermal expansion alloy with excellent low temperature stability and method for producing the same
JP6754027B1 (en) Low thermal expansion alloy with excellent low temperature stability and its manufacturing method
JP2778891B2 (en) High-strength low-expansion cast iron, method for producing the same, and sliding parts and machine parts using the same
JP6753850B2 (en) High-strength, low-heat expansion casting alloys for high temperatures, their manufacturing methods, and castings for turbines
JP2022035111A (en) Low-thermal expansion alloy excellent in low-temperature stability, and manufacturing method thereof
JP4278060B2 (en) Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same
KR20180023645A (en) Zirconium-based bulk amorphous alloy with high flowability
JP2024043238A (en) Low thermal expansion alloy
JP2019077940A (en) Rust resistant low thermal expansion alloy
JP2003096546A (en) Low thermal expansion alloy for thin casting, and method of producing casting obtained by suing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7291008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150