JP7290520B2 - ORC power generation system - Google Patents

ORC power generation system Download PDF

Info

Publication number
JP7290520B2
JP7290520B2 JP2019161162A JP2019161162A JP7290520B2 JP 7290520 B2 JP7290520 B2 JP 7290520B2 JP 2019161162 A JP2019161162 A JP 2019161162A JP 2019161162 A JP2019161162 A JP 2019161162A JP 7290520 B2 JP7290520 B2 JP 7290520B2
Authority
JP
Japan
Prior art keywords
working medium
heat
power generation
evaporator
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019161162A
Other languages
Japanese (ja)
Other versions
JP2021038714A (en
Inventor
俊一 三島
正人 遠藤
卓也 河合
敦史 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2019161162A priority Critical patent/JP7290520B2/en
Publication of JP2021038714A publication Critical patent/JP2021038714A/en
Application granted granted Critical
Publication of JP7290520B2 publication Critical patent/JP7290520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、汚泥焼却炉の排熱を熱源として利用するORC(Organic Rankine Cycle)発電システムに関するものである。 The present invention relates to an ORC (Organic Rankine Cycle) power generation system that utilizes exhaust heat from a sludge incinerator as a heat source.

ORC発電システムは、有機ランキンサイクル(Organic Rankine Cycle)を用いた発電システムである。有機ランキンサイクルは作動媒体として有機媒体を使用し、作動媒体を蒸発器で蒸発させて得られた高圧蒸気をタービンに供給して発電し、タービンの出側から回収した低圧蒸気を凝縮器で液化し、ポンプにより加圧して再び蒸発器に戻すサイクルである。 The ORC power generation system is a power generation system using the Organic Rankine Cycle. The organic Rankine cycle uses an organic medium as a working medium, evaporates the working medium in an evaporator, and supplies high-pressure steam to the turbine to generate power. It is a cycle in which the gas is pressurized by a pump and returned to the evaporator.

ORC発電システムは従来から地熱発電などに利用されてきたが、最近では焼却炉の排熱を利用したORC発電システムも提案されている。例えば特許文献1には、焼却炉から排出される高温の排ガスにより熱媒油を加熱し、その熱媒油により炭化水素系の作動媒体を加熱して蒸発させ、発電用のタービンを駆動するORC発電システムが記載されている。 The ORC power generation system has been used for geothermal power generation and the like, and recently, an ORC power generation system using waste heat from an incinerator has also been proposed. For example, in Patent Document 1, a thermal oil is heated by high-temperature exhaust gas discharged from an incinerator, and the thermal oil heats and evaporates a hydrocarbon-based working medium to drive a turbine for power generation. A power generation system is described.

この特許文献1の発電システムでは、焼却炉はバイオマスを燃焼する焼却炉であり、その高温の排ガスを唯一の熱源として作動媒体の予熱、蒸発を行う1熱源のORC発電システムとなっている。しかし高温熱源を液体状態にある作動媒体の予熱に使用しているため、予熱された作動媒体を蒸発させるための熱量が減少し、作動媒体の循環流量を十分に大きくして、発電量を増加することが困難である。 In the power generation system of Patent Document 1, the incinerator is an incinerator that burns biomass, and the high-temperature exhaust gas from the incinerator is a single heat source ORC power generation system that preheats and evaporates the working medium using the only heat source. However, since a high-temperature heat source is used to preheat the working medium in a liquid state, the amount of heat required to evaporate the preheated working medium is reduced. It is difficult to

一方、焼却炉が汚泥焼却炉である場合には、排ガス中にSOx等が含まれるため排煙処理塔が必要となり、ここから60~75℃程度の温水である洗煙排水が発生する。この洗煙排水は比較的低温であるが水の比熱が大きいために保有熱量は大きい。そこで本発明者等は洗煙排水と汚泥焼却炉の白煙防止空気とを利用して作動媒体を加熱する2熱源の排熱発電システムを開発し、特許文献2として提案した。 On the other hand, if the incinerator is a sludge incinerator, the flue gas contains SOx and the like, so a flue gas treatment tower is required, and smoke washing wastewater, which is hot water of about 60 to 75° C., is generated from this tower. Although the temperature of this smoke washing wastewater is relatively low, it has a large amount of heat due to the high specific heat of water. Therefore, the present inventors have developed a two-heat-source waste heat power generation system that heats a working medium using smoke washing wastewater and white smoke-preventing air from a sludge incinerator, and proposed it as Patent Document 2.

特開2013-76383号公報JP 2013-76383 A 特許第5271100号公報Japanese Patent No. 5271100

上記したORC発電システムにおいて発電量を増加させることが望まれる。
本発明の目的は、発電量を増加させたORC発電システムを提供することである。
It would be desirable to increase the amount of power generated in the ORC power generation system described above.
An object of the present invention is to provide an ORC power generation system with increased power generation.

上記の課題を解決するためになされた本発明は、汚泥焼却炉と、前記汚泥焼却炉の排ガスを処理する排煙処理塔と、発電用のタービンと、再生器と、凝縮器と、加熱器と、蒸発器とを備え、前記発電用のタービンから出た作動媒体は、前記再生器、前記凝縮器、前記加熱器、前記再生器、前記蒸発器、前記タービンの順に循環し、前記加熱器は、前記汚泥焼却炉の排ガスを処理する排煙処理塔から取り出された温水と、運転圧力において前記温水の温度よりも高温の沸点を持つ有機媒体である前記作動媒体とを熱交換して、液体状態の前記作動媒体を送り出し、前記再生器は、前記タービンから出た前記作動媒体と前記液体状態の作動媒体とを熱交換して、前記液体状態の作動媒体を送り出し、前記蒸発器は、前記温水よりも高温の、前記汚泥焼却炉の排熱と、前記液体状態の作動媒体とを熱交換し、蒸気状態の前記作動媒体を送り出すことを特徴とするものである。 The present invention, which has been made to solve the above problems , comprises a sludge incinerator, a flue gas treatment tower for treating exhaust gas from the sludge incinerator, a turbine for power generation, a regenerator, a condenser, and a heater. and an evaporator, wherein the working medium discharged from the turbine for power generation circulates in the order of the regenerator, the condenser, the heater, the regenerator, the evaporator, and the turbine, and the heater exchanges heat between hot water taken out from a flue gas treatment tower that treats exhaust gas from the sludge incinerator and the working medium, which is an organic medium having a boiling point higher than the temperature of the hot water at operating pressure, The working medium in liquid state is sent out, the regenerator exchanges heat between the working medium in liquid state and the working medium discharged from the turbine, and the working medium in liquid state is sent out, and the evaporator: The exhaust heat from the sludge incinerator, which has a higher temperature than the hot water, is heat-exchanged with the working medium in a liquid state, and the working medium in a vapor state is sent out.

なお、前記蒸発器は、前段の予熱器と後段の過熱器を備えたものとすることができ、前記発電用のタービンから出た作動媒体は、前記再生器、前記凝縮器、前記加熱器、前記再生器、前記予熱器、前記蒸発器、前記過熱器、前記タービンの順に循環し、前記排熱で熱媒を加熱し、前記熱媒は、前記過熱器、前記蒸発器、前記予熱器の順に循環することが好ましい。また、排煙処理塔と加熱器の間に、前記排煙処理塔から取り出された温水と、前記加熱器に送られる循環水との間で熱交換を行う熱交換器を配置することができる。更に、前記蒸発器は、前記排熱で加熱された熱媒と前記作動媒体とを向流で熱交換することが好ましく、前記蒸発器は、前記汚泥焼却炉からの排ガスの排熱と、前記液体状態の作動媒体とを熱交換することが好ましい。 The evaporator can be provided with a preheater at the front stage and a superheater at the rear stage. The regenerator, the preheater, the evaporator, the superheater, and the turbine are circulated in this order, and the exhaust heat heats a heat medium, and the heat medium is the superheater, the evaporator, and the preheater. It is preferable to cycle in order. Further, a heat exchanger can be arranged between the flue gas treatment tower and the heater to exchange heat between hot water taken out from the flue gas treatment tower and circulating water sent to the heater. . Furthermore, the evaporator preferably exchanges heat between the heat medium heated by the exhaust heat and the working medium in a countercurrent flow, and the evaporator preferably includes the exhaust heat of the exhaust gas from the sludge incinerator and the It is preferable to exchange heat with the liquid working medium.

本発明のORC発電システムにおいては、その運転圧力において温水の温度よりも高温の沸点を持つ有機媒体を作動媒体とし、作動媒体を加熱器から液体状態で送り出し、再生器においてタービンから出た作動媒体の蒸気と熱交換させる。このため作動媒体は加熱器及び再生器で昇温されたうえで蒸発器に供給され、高温熱源である汚泥焼却炉の排熱によりさらに加熱されて高温高圧の蒸気となる。このように排煙処理塔から取り出された温水と汚泥焼却炉の排熱を2熱源として利用することにより、作動媒体の循環流量を十分に大きくすることができる。 In the ORC power generation system of the present invention, an organic medium having a boiling point higher than the temperature of hot water at the operating pressure is used as the working medium, the working medium is sent out in a liquid state from the heater, and the working medium discharged from the turbine in the regenerator heat exchange with the steam of Therefore, the working medium is heated by the heater and the regenerator before being supplied to the evaporator, and further heated by the exhaust heat of the sludge incinerator, which is a high-temperature heat source, to form high-temperature, high-pressure steam. By using the hot water taken out from the flue gas treatment tower and the exhaust heat from the sludge incinerator as two heat sources, the circulation flow rate of the working medium can be sufficiently increased.

また本発明のORC発電システムにおいては、タービンを通過した作動媒体の蒸気は、凝縮器に入る前に再生器で液体状態の作動媒体との熱交換により効率よく冷却され、温度が下がる。このためタービンの背圧が低下してタービンの仕事量が大きくなる。よって本発明のORC発電システムは、汚泥焼却設備の排熱を有効に利用し、作動媒体の循環流量を十分に大きくすることにより、発電量を増加させることができる。 Further, in the ORC power generation system of the present invention, the vapor of the working medium that has passed through the turbine is efficiently cooled by heat exchange with the liquid working medium in the regenerator before entering the condenser, thereby lowering the temperature. This reduces the back pressure of the turbine and increases the work of the turbine. Therefore, the ORC power generation system of the present invention can increase the amount of power generation by effectively utilizing the exhaust heat from the sludge incineration facility and sufficiently increasing the circulation flow rate of the working medium.

本発明の実施形態を示す説明図である。It is an explanatory view showing an embodiment of the present invention. 本発明の他の実施形態を示す説明図である。It is an explanatory view showing other embodiments of the present invention. 作動媒体としてシリコンオイル(MM:ヘキサメチルジシロキサン)を用いた実施例を示す説明図である。FIG. 4 is an explanatory diagram showing an example using silicon oil (MM: hexamethyldisiloxane) as a working medium; 低温熱源を用いない比較例を示す説明図である。It is explanatory drawing which shows the comparative example which does not use a low-temperature heat source. 作動媒体として有機炭化水素(シクロペンタン)を用いた実施例を示す説明図である。FIG. 4 is an explanatory diagram showing an example using an organic hydrocarbon (cyclopentane) as a working medium; 低温熱源を用いない比較例を示す説明図である。It is explanatory drawing which shows the comparative example which does not use a low-temperature heat source.

以下に本発明の実施形態を説明する。
図1において、10は高温熱源である汚泥焼却炉の排ガスが供給される熱媒ヒータ、11はこの熱媒ヒータ10の後段に配置された集塵機、12は排煙処理塔である。汚泥焼却炉は図示されていないが、例えば下水脱水汚泥を焼却する流動焼却炉である。その焼却排ガスは850℃前後の高温であるが、流動用空気加熱器などの様々な熱交換器を通過する間に冷却され、500~700℃程度の温度で熱媒ヒータ10に入る。ここで焼却排ガスは後述する熱媒を加熱したうえ、集塵機11でダストを除去される。しかし排ガス中にはなおSOx等や微細なダストが含まれているため、排ガスは排煙処理塔12に送られる。
Embodiments of the present invention are described below.
In FIG. 1, 10 is a heat medium heater supplied with exhaust gas from a sludge incinerator, which is a high-temperature heat source, 11 is a dust collector disposed after the heat medium heater 10, and 12 is a flue gas treatment tower. The sludge incinerator is not shown, but is, for example, a fluidized bed incinerator for incinerating dehydrated sewage sludge. The combustion exhaust gas has a high temperature of around 850°C, but is cooled while passing through various heat exchangers such as a fluidizing air heater, and enters the heat medium heater 10 at a temperature of approximately 500 to 700°C. Here, the incineration flue gas is heated by a heating medium, which will be described later, and dust is removed by the dust collector 11 . However, since the flue gas still contains SOx and fine dust, the flue gas is sent to the flue gas treatment tower 12 .

排煙処理塔12は塔体の下部から排ガスを供給し、塔の上方のノズル13からスプレイされる洗浄水と接触させて洗煙する周知の構造である。塔内下部には排ガスとの接触により60~75℃に加熱された温水(洗煙排水)が溜まる。排煙処理塔12を通過した排ガスは排煙処理塔12の上端から排出される。本発明では、汚泥焼却炉の排熱を高温熱源として利用し、排煙処理塔12から取り出された温水を低温熱源として使用する。 The flue gas treatment tower 12 has a well-known structure in which the flue gas is supplied from the lower part of the tower body and is brought into contact with the washing water sprayed from the nozzle 13 above the tower to wash the smoke. Warm water (scouring waste water) heated to 60 to 75° C. by contact with exhaust gas accumulates in the lower part of the tower. Exhaust gas that has passed through the flue gas treatment tower 12 is discharged from the upper end of the flue gas treatment tower 12 . In the present invention, exhaust heat from the sludge incinerator is used as a high-temperature heat source, and hot water taken out from the flue gas treatment tower 12 is used as a low-temperature heat source.

図1の右側の破線で囲んだ部分に本発明の有機ランキンサイクルの構成を示す。20は発電用のタービン、21はタービン20の出側に配置された再生器、22は凝縮器である。23は凝縮器22で液化された作動媒体を加圧して循環させるポンプ、24は加熱器、25は予熱器、26は蒸発器、27は過熱器である。本発明では、作動媒体は、タービン20、再生器21、凝縮器22、ポンプ23、加熱器24、再生器21、予熱器25、蒸発器26、過熱器27の順に循環している。 The structure of the organic Rankine cycle of the present invention is shown in the portion surrounded by the dashed line on the right side of FIG. 20 is a turbine for power generation, 21 is a regenerator arranged on the output side of the turbine 20, and 22 is a condenser. 23 is a pump for pressurizing and circulating the working medium liquefied in the condenser 22, 24 is a heater, 25 is a preheater, 26 is an evaporator, and 27 is a superheater. In the present invention, the working medium circulates through turbine 20 , regenerator 21 , condenser 22 , pump 23 , heater 24 , regenerator 21 , preheater 25 , evaporator 26 and superheater 27 in this order.

周知のように、ランキンサイクルの基本要素は、タービン20と凝縮器22とポンプ23と蒸発器26である。作動媒体の蒸気は高温高圧でタービン20の入側に供給され、タービン20を回転させつつタービン翼列の間を通過する間に断熱膨張し、低圧蒸気となる。この低圧蒸気は凝縮器22で冷却水により冷却されて液化し、ポンプ23で加圧されて蒸発器26に送り込まれる。そして蒸発器26で加熱されて高温高圧の蒸気となりタービン20の入側に供給される。 As is well known, the basic elements of a Rankine cycle are a turbine 20, a condenser 22, a pump 23 and an evaporator 26. The steam of the working medium is supplied to the inlet side of the turbine 20 at high temperature and high pressure, and adiabatically expands while passing between the turbine blade rows while rotating the turbine 20 to become low pressure steam. This low-pressure steam is cooled by cooling water in the condenser 22 to be liquefied, pressurized by the pump 23 and sent to the evaporator 26 . Then, it is heated by the evaporator 26 to become high-temperature and high-pressure steam, which is supplied to the inlet side of the turbine 20 .

上記のように蒸発器26はランキンサイクルの基本要素であるが、図1に示されるように、本実施形態では蒸発器26が、前段の予熱器25と後段の過熱器27を備えたものである。そして熱媒ヒータ10から供給される熱媒が、過熱器27、蒸発器26、予熱器25の順でこれらの内部を通過し、作動媒体を加熱蒸発させている。なお、過熱器27、蒸発器26、予熱器25は熱交換器として一体化することもできる。 As described above, the evaporator 26 is a basic element of the Rankine cycle, but as shown in FIG. be. The heat medium supplied from the heat medium heater 10 passes through the superheater 27, the evaporator 26, and the preheater 25 in this order to heat and evaporate the working medium. The superheater 27, the evaporator 26, and the preheater 25 can also be integrated as a heat exchanger.

熱媒としては、油または空気が用いられる。本実施形態では熱媒ヒータ10で約300℃に加熱された熱媒油が熱媒供給管28を通じて循環供給されている。熱媒の温度は200~500℃、好ましくは300℃以上である。実施形態においては、熱媒油を使用した場合には耐熱温度を考慮して熱媒油の温度は最大340℃、空気の場合には最大500℃である。 Oil or air is used as a heat medium. In this embodiment, the heat medium oil heated to about 300° C. by the heat medium heater 10 is circulated and supplied through the heat medium supply pipe 28 . The temperature of the heat medium is 200 to 500°C, preferably 300°C or higher. In the embodiment, when thermal oil is used, the maximum temperature of thermal oil is 340° C., and the maximum temperature of air is 500° C. in consideration of the heat resistance temperature.

加熱器24は、汚泥焼却炉の排ガスを処理する排煙処理塔12から取り出された、低温熱源として使用される洗煙排水(温水)と、運転圧力において温水の温度よりも高温の沸点を持つ有機媒体である作動媒体とを熱交換して、液体状態の作動媒体を再生器21に送り出す。この温水の温度は一般に60~75℃であり、この温水を利用してポンプ23から送り出された作動媒体を加熱器24で加熱する。この実施形態では図1に示すように温水を循環させているが、温水はワンパスで系外に放出してもよい。 The heater 24 has a boiling point higher than the temperature of the hot water at the operating pressure and the flue gas (hot water) taken out from the flue gas treatment tower 12 that treats the exhaust gas of the sludge incinerator and is used as a low-temperature heat source. It exchanges heat with the working medium, which is an organic medium, and sends out the working medium in a liquid state to the regenerator 21 . The temperature of this hot water is generally 60 to 75° C., and the working medium sent out from the pump 23 is heated by the heater 24 using this hot water. In this embodiment, hot water is circulated as shown in FIG. 1, but hot water may be discharged outside the system in one pass.

本発明では運転圧力においてこの温水の温度よりも高温の沸点を持つ有機媒体を作動媒体として使用する。具体的には、シクロペンタン、MM(ヘキサメチルジシロキサン)、MDM(オクタメチルトリシロキサン)を使用することができる。大気圧下における沸点は、シクロペンタンが49.2℃、MMが100.5℃、MDMが152.5℃であるが、加熱器24の内部圧力下における沸点は、シクロペンタンが200℃、MMが223.9℃、MDMが249.4℃であり、加熱器24で蒸発することはない。特に作動媒体として潜熱の小さい液体を選択することで循環量が大きくなるため、温水からの熱供給を受けた時の温度上昇が小さくなり、温水から与えられる熱量が増える利点がある。 In the present invention, an organic medium having a boiling point higher than the temperature of the hot water at the operating pressure is used as the working medium. Specifically, cyclopentane, MM (hexamethyldisiloxane), and MDM (octamethyltrisiloxane) can be used. The boiling points under atmospheric pressure are 49.2°C for cyclopentane, 100.5°C for MM, and 152.5°C for MDM. is 223.9° C., MDM is 249.4° C., and does not evaporate in the heater 24 . In particular, by selecting a liquid with a small latent heat as the working medium, the amount of circulation increases, so there is an advantage that the temperature rise when receiving heat supply from hot water is small and the amount of heat given from hot water is increased.

再生器21は、タービン20から出た蒸気状態(気体)の作動媒体と、加熱器24で70℃程度に昇温された液体状態の作動媒体とを熱交換して、加熱器24からの液体状態の作動媒体を予熱器25に送り出し、タービン20から出た蒸気状態の作動媒体を凝縮器22に送り出す。すなわち、加熱器24で70℃程度に昇温された作動媒体は液体状態のまま再生器21に送られ、タービン20から出た作動媒体の蒸気と熱交換され予熱器25に送られる。再生器21に入る作動媒体の蒸気は200℃程度であるが、再生器21において液体状態の作動媒体により80℃前後まで効率よく冷却される。さらに入口温度が22℃の冷却水が供給される凝縮器22において、再生器21において冷却された作動媒体は、35℃程度まで冷却されて液化する。このように、タービン20から出た作動媒体の蒸気を、効率よく冷却して凝縮させることができる。 The regenerator 21 exchanges heat between the vapor state (gas) working medium discharged from the turbine 20 and the liquid state working medium heated to about 70° C. by the heater 24 to convert the liquid from the heater 24 into The working medium in vapor form is delivered to the preheater 25 and the working medium in vapor form from the turbine 20 is delivered to the condenser 22 . That is, the working medium heated to about 70° C. by the heater 24 is sent to the regenerator 21 in a liquid state, where it is heat-exchanged with the steam of the working medium emitted from the turbine 20 and sent to the preheater 25 . The vapor of the working medium entering the regenerator 21 has a temperature of about 200.degree. C., but is efficiently cooled to around 80.degree. Furthermore, in the condenser 22 to which cooling water having an inlet temperature of 22° C. is supplied, the working medium cooled in the regenerator 21 is cooled to about 35° C. and liquefied. In this manner, the working medium vapor emitted from the turbine 20 can be efficiently cooled and condensed.

蒸発器26は、温水よりも高温の、汚泥焼却炉の排熱と、液体状態の作動媒体とを熱交換し、蒸気状態の作動媒体を送り出す。図1の例では、再生器21において200℃程度の作動媒体の蒸気と熱交換した液体状態の作動媒体は、沸点よりやや低い温度にまで昇温され、予熱器25に送られる。そして予熱器25、蒸発器26を通過する間に前記した高温熱源から供給される高温の熱媒により加熱されて蒸気となり、さらに過熱器27で温度が250℃程度の高温高圧の過熱蒸気となってタービン20に入る。 The evaporator 26 exchanges heat between the exhaust heat of the sludge incinerator, which has a higher temperature than the hot water, and the working medium in liquid state, and delivers the working medium in vapor state. In the example of FIG. 1 , the working medium in a liquid state that has undergone heat exchange with the vapor of the working medium at about 200° C. in the regenerator 21 is heated to a temperature slightly lower than the boiling point and sent to the preheater 25 . Then, while passing through the preheater 25 and the evaporator 26, the steam is heated by the high-temperature heat medium supplied from the high-temperature heat source described above to become steam, and furthermore, in the superheater 27, the steam becomes high-temperature, high-pressure superheated steam having a temperature of about 250°C. to enter the turbine 20.

上記したように、凝縮器22で液化された作動媒体は、まず低温熱源から供給される温水により加熱器24で70℃程度に昇温され、次に再生器21で沸点よりやや低い温度にまで昇温され、さらに高温熱源により加熱されて250℃程度の高圧過熱蒸気となる。このように高温熱源と低温熱源と再生器21を組み合わせることによって、作動媒体により多くの熱量を与えることができ、作動媒体の循環量を増大させ、発電量も増加させることができる。 As described above, the working medium liquefied in the condenser 22 is first heated to about 70° C. in the heater 24 by hot water supplied from the low-temperature heat source, and then in the regenerator 21 to a temperature slightly lower than the boiling point. The temperature is raised and further heated by a high-temperature heat source to become high-pressure superheated steam of about 250°C. By combining the high-temperature heat source, the low-temperature heat source, and the regenerator 21 in this way, it is possible to give more heat to the working medium, increase the amount of circulation of the working medium, and increase the amount of power generation.

図1に示した実施形態では、排煙処理塔12から取り出された温水を加熱器24に直接供給したが、図2に示す他の実施形態のように、排煙処理塔12と加熱器24との間に熱交換器30を介在させて、循環水で加温してもよい。この構成により排煙処理塔12から取り出された腐食成分を含む温水が加熱器24に供給されなくなるため、加熱器24の材質費用を下げることができる。このように、本発明の趣旨を逸脱しない範囲内で、各機器の間に更に機器を追加しても良い。更に、複数の機器を1つの機器としてまとめたり、1つの機器を複数の機器に分けても良い。また、凝縮器で作動媒体の冷却に使用した冷却水を排煙処理塔の補給水として使用してもよい。
以下に本発明の実施例と比較例を示す。
In the embodiment shown in FIG. 1, the hot water taken out from the flue gas treatment tower 12 is directly supplied to the heater 24, but like the other embodiment shown in FIG. A heat exchanger 30 may be interposed between and heated with circulating water. With this configuration, hot water containing corrosive components taken out from the flue gas treatment tower 12 is not supplied to the heater 24, so the material cost of the heater 24 can be reduced. In this manner, further devices may be added between each device without departing from the gist of the present invention. Furthermore, a plurality of devices may be combined into one device, or one device may be divided into a plurality of devices. Also, the cooling water used for cooling the working medium in the condenser may be used as make-up water for the flue gas treatment tower.
Examples of the present invention and comparative examples are shown below.

本発明の2熱源ORC発電システムと、1熱源ORC発電システムとの発電量の相違を説明するため、熱源、冷却、作動媒体の観点から、本発明の2熱源ORC発電システムと、比較例としての1熱源ORC発電システムとを対比した。表1に対比を示す。表1に示すように、低温熱源の有無が相違する。 In order to explain the difference in the amount of power generated between the two heat source ORC power generation system of the present invention and the one heat source ORC power generation system, from the viewpoint of the heat source, cooling, and working medium, the two heat source ORC power generation system of the present invention and the two heat source ORC power generation system as a comparative example This was compared with a single heat source ORC power generation system. Table 1 shows the comparison. As shown in Table 1, the presence or absence of a low-temperature heat source is different.

Figure 0007290520000001
Figure 0007290520000001

なお、表1における、2熱源ORC発電、1熱源ORC発電システムでは、凝縮器に供給される冷却水を排煙処理塔12の補給水として使用している。
以下に、本発明の2熱源ORC発電システムと、1熱源ORC発電システムとを70t/dの汚泥焼却設備に適用した場合の作動媒体毎の計算例を示す。
In the two-heat-source ORC power generation system and the one-heat-source ORC power generation system in Table 1, cooling water supplied to the condenser is used as make-up water for the flue gas treatment tower 12 .
An example of calculation for each working medium when the dual heat source ORC power generation system and the single heat source ORC power generation system of the present invention are applied to a 70 t/d sludge incineration facility will be shown below.

(実施例1)
作動媒体としてシリコンオイル(MM)を用いた実施例を図3に示し、低温熱源を省略した比較例を図4に示す。表2に、実施例と比較例との対比を示す。
高温熱源である熱媒油の温度はともに298℃であり、冷却水の条件も同一である。低温熱源を用いたことにより、再生器から予熱器に送り出された作動媒体の温度は、図3の実施例では163℃であって図4の比較例の147℃よりも高く、タービン入側の流量が8000kg/hから8900kg/hに増加し、熱量が999kWから1118kWに増加した。その結果、発電量も155kWから174kWまで約12%増加した。
(Example 1)
FIG. 3 shows an example using silicon oil (MM) as the working medium, and FIG. 4 shows a comparative example without a low-temperature heat source. Table 2 shows a comparison between Examples and Comparative Examples.
The temperature of the heat medium oil, which is a high-temperature heat source, is 298° C. in both cases, and the conditions of the cooling water are also the same. By using a low-temperature heat source, the temperature of the working medium sent from the regenerator to the preheater is 163° C. in the example of FIG. 3, which is higher than 147° C. in the comparative example of FIG. The flow rate increased from 8000 kg/h to 8900 kg/h and the heat output increased from 999 kW to 1118 kW. As a result, power generation also increased by about 12% from 155 kW to 174 kW.

Figure 0007290520000002
Figure 0007290520000002

(実施例2)
同様に、作動媒体としてMMよりも沸点が低い有機炭化水素(シクロペンタン)を用いた実施例を図5に示し、低温熱源を省略した比較例を図6に示す。表3に、実施例と比較例との対比を示す。ここで、加熱器に供給可能な低温熱源は、加熱器における温水入口温度と作動媒体出口温度により決定される。このため、本実施例では加熱器において実施例1のMMと同じ作動媒体出口温度(67℃)となるように、低温熱源の供給条件を90kWとした。その他の外部条件は上記の実施例1と同一とした。作動媒体の特性の違いによりシステム内部における作動媒体の温度や圧力は相違するが、図6の比較例では発電量は187kWであったが、図5の実施例では199kWまで約6%増加した。
(Example 2)
Similarly, FIG. 5 shows an example using an organic hydrocarbon (cyclopentane) having a boiling point lower than that of MM as the working medium, and FIG. 6 shows a comparative example in which the low-temperature heat source is omitted. Table 3 shows a comparison between Examples and Comparative Examples. Here, the low-temperature heat source that can be supplied to the heater is determined by the hot water inlet temperature and the working medium outlet temperature of the heater. Therefore, in this example, the supply condition of the low-temperature heat source was set to 90 kW so that the working medium outlet temperature (67° C.) in the heater was the same as that of the MM of Example 1. Other external conditions were the same as in Example 1 above. Although the temperature and pressure of the working medium inside the system differ depending on the characteristics of the working medium, the power generation amount was 187 kW in the comparative example of FIG. 6, but increased by about 6% to 199 kW in the example of FIG.

Figure 0007290520000003
Figure 0007290520000003

10 熱媒ヒータ
11 集塵機
12 排煙処理塔
13 ノズル
20 タービン
21 再生器
22 凝縮器
23 ポンプ
24 加熱器
25 予熱器
26 蒸発器
27 過熱器
28 熱媒供給管
30 熱交換器
10 Heat medium heater 11 Dust collector 12 Flue gas treatment tower 13 Nozzle 20 Turbine 21 Regenerator 22 Condenser 23 Pump 24 Heater 25 Preheater 26 Evaporator 27 Superheater 28 Heat medium supply pipe 30 Heat exchanger

Claims (6)

汚泥焼却炉と、
前記汚泥焼却炉の排ガスを処理する排煙処理塔と、
発電用のタービンと、
再生器と、
凝縮器と、
加熱器と、
蒸発器とを備え、
前記発電用のタービンから出た作動媒体は、前記再生器、前記凝縮器、前記加熱器、前記再生器、前記蒸発器、前記タービンの順に循環し、
前記加熱器は、前記排煙処理塔から取り出された温水と、運転圧力において前記温水の温度よりも高温の沸点を持つ有機媒体である前記作動媒体とを熱交換して、液体状態の前記作動媒体を送り出し、
前記再生器は、前記タービンから出た前記作動媒体と前記液体状態の作動媒体とを熱交換して、前記液体状態の作動媒体を送り出し、
前記蒸発器は、前記温水よりも高温の、前記汚泥焼却炉の排熱と、前記液体状態の作動媒体とを熱交換し、蒸気状態の前記作動媒体を送り出す、ORC(Organic Rankine Cycle)発電システム。
a sludge incinerator;
A flue gas treatment tower for treating exhaust gas from the sludge incinerator;
a turbine for power generation;
a regenerator;
a condenser;
a heater;
and an evaporator,
The working medium discharged from the turbine for power generation circulates through the regenerator, the condenser, the heater, the regenerator, the evaporator, and the turbine in this order,
The heater exchanges heat between the hot water taken out from the flue gas treatment tower and the working medium, which is an organic medium having a boiling point higher than the temperature of the hot water at operating pressure, to heat the working medium in a liquid state. send out media
the regenerator exchanging heat between the working medium discharged from the turbine and the liquid working medium to deliver the liquid working medium;
An ORC (Organic Rankine Cycle) power generation system in which the evaporator exchanges heat between the exhaust heat of the sludge incinerator, which has a higher temperature than the hot water, and the working medium in a liquid state, and delivers the working medium in a vapor state. .
前記蒸発器が、前段の予熱器と後段の過熱器とを備えたものである請求項1に記載のORC発電システム。 2. The ORC power generation system according to claim 1, wherein the evaporator comprises a front preheater and a rear superheater. 前記発電用のタービンから出た作動媒体は、前記再生器、前記凝縮器、前記加熱器、前記再生器、前記予熱器、前記蒸発器、前記過熱器、前記タービンの順に循環し、前記排熱で熱媒を加熱し、前記熱媒は、前記過熱器、前記蒸発器、前記予熱器の順に循環する請求項2に記載のORC発電システム。 The working medium discharged from the turbine for power generation circulates through the regenerator, the condenser, the heater, the regenerator, the preheater, the evaporator, the superheater, and the turbine in this order, and the exhaust heat is 3. The ORC power generation system according to claim 2, wherein the heating medium is circulated through the superheater, the evaporator, and the preheater in this order . 更に、前記排煙処理塔と前記加熱器との間に、前記排煙処理塔から取り出された温水と、前記加熱器に送られる循環水との間で熱交換を行う熱交換器を配置した請求項1に記載のORC発電システム。 Furthermore, a heat exchanger is arranged between the flue gas treatment tower and the heater to exchange heat between hot water taken out from the flue gas treatment tower and circulating water sent to the heater. The ORC power generation system of claim 1. 前記蒸発器は、前記排熱で加熱された熱媒と前記作動媒体とを向流で熱交換する請求項1に記載のORC発電システム。The ORC power generation system according to claim 1, wherein the evaporator exchanges heat between the heat medium heated by the exhaust heat and the working medium in countercurrent flow. 前記蒸発器は、前記汚泥焼却炉からの排ガスの排熱と、前記液体状態の作動媒体とを熱交換する請求項1に記載のORC発電システム。2. The ORC power generation system according to claim 1, wherein the evaporator exchanges heat between exhaust heat of exhaust gas from the sludge incinerator and the liquid working medium.
JP2019161162A 2019-09-04 2019-09-04 ORC power generation system Active JP7290520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019161162A JP7290520B2 (en) 2019-09-04 2019-09-04 ORC power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161162A JP7290520B2 (en) 2019-09-04 2019-09-04 ORC power generation system

Publications (2)

Publication Number Publication Date
JP2021038714A JP2021038714A (en) 2021-03-11
JP7290520B2 true JP7290520B2 (en) 2023-06-13

Family

ID=74848442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161162A Active JP7290520B2 (en) 2019-09-04 2019-09-04 ORC power generation system

Country Status (1)

Country Link
JP (1) JP7290520B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864011A (en) * 2021-10-27 2021-12-31 安徽晋煤中能化工股份有限公司 Low-quality emptying steam power generation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174845A (en) 2009-02-02 2010-08-12 Metawater Co Ltd Waste heat power generation method by exhaust gas of incinerator
WO2012130419A1 (en) 2011-03-25 2012-10-04 Caterpillar Motoren Gmbh & Co. Kg Modular heat rejection system, direct organic rankine cycle system, and biomass combined cycle power generating system
JP2013007356A (en) 2011-06-27 2013-01-10 Kobelco Eco-Solutions Co Ltd Power generation system and power generation method
JP2013076383A (en) 2011-09-30 2013-04-25 Toshiba Corp Binary power generation system
JP2013213658A (en) 2012-03-09 2013-10-17 Metawater Co Ltd System and method for recovering exhaust heat
JP2015031268A (en) 2013-08-07 2015-02-16 日立造船株式会社 Waste heat recovery device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174845A (en) 2009-02-02 2010-08-12 Metawater Co Ltd Waste heat power generation method by exhaust gas of incinerator
WO2012130419A1 (en) 2011-03-25 2012-10-04 Caterpillar Motoren Gmbh & Co. Kg Modular heat rejection system, direct organic rankine cycle system, and biomass combined cycle power generating system
JP2013007356A (en) 2011-06-27 2013-01-10 Kobelco Eco-Solutions Co Ltd Power generation system and power generation method
JP2013076383A (en) 2011-09-30 2013-04-25 Toshiba Corp Binary power generation system
JP2013213658A (en) 2012-03-09 2013-10-17 Metawater Co Ltd System and method for recovering exhaust heat
JP2015031268A (en) 2013-08-07 2015-02-16 日立造船株式会社 Waste heat recovery device

Also Published As

Publication number Publication date
JP2021038714A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP4891369B2 (en) Power generation equipment using geothermal fluid
JP7173245B2 (en) power generation system
TW449642B (en) Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
US6347520B1 (en) Method for Kalina combined cycle power plant with district heating capability
JP5459353B2 (en) Waste heat recovery system, energy supply system, and waste heat recovery method
US9671138B2 (en) Cascaded power plant using low and medium temperature source fluid
RU2570131C2 (en) Operating method of thermal power plant
US9784248B2 (en) Cascaded power plant using low and medium temperature source fluid
JP6819323B2 (en) Thermal cycle equipment
JP7290520B2 (en) ORC power generation system
JP3905967B2 (en) Power generation / hot water system
JP7328101B2 (en) cogeneration system
US9857074B2 (en) Boiler water supply preheater system and boiler water supply preheating method
JP4542171B2 (en) Waste liquid combustion method and combustion apparatus therefor
JP5988320B2 (en) Power generation system and power generation method
CN116447572B (en) Coal-fired boiler starting device and method based on fused salt heat storage
JPS58214606A (en) Two fluid cycle
JP2004092400A (en) Exhaust heat recovery gas preheater
JP2022170473A (en) Incineration system
KR100426848B1 (en) Preheating Equipment of Fuel Using Vacuum Radiation Collector
JP6776190B2 (en) Thermal energy recovery device and thermal energy recovery method
JP5292347B2 (en) Power plant and power plant operation method
JP2022074702A (en) Waste heat power generation method
JPH0763303A (en) System for utilizing combustion exhaust gas of boiler
RU2560621C1 (en) Heat power plant operation mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230601

R150 Certificate of patent or registration of utility model

Ref document number: 7290520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150