JP7285748B2 - water treatment equipment - Google Patents

water treatment equipment Download PDF

Info

Publication number
JP7285748B2
JP7285748B2 JP2019171684A JP2019171684A JP7285748B2 JP 7285748 B2 JP7285748 B2 JP 7285748B2 JP 2019171684 A JP2019171684 A JP 2019171684A JP 2019171684 A JP2019171684 A JP 2019171684A JP 7285748 B2 JP7285748 B2 JP 7285748B2
Authority
JP
Japan
Prior art keywords
flow rate
water
line
permeate
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019171684A
Other languages
Japanese (ja)
Other versions
JP2021045731A (en
Inventor
昌也 杉本
圭悟 佐藤
直幸 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2019171684A priority Critical patent/JP7285748B2/en
Publication of JP2021045731A publication Critical patent/JP2021045731A/en
Application granted granted Critical
Publication of JP7285748B2 publication Critical patent/JP7285748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、被処理水に含まれる懸濁物質を除去する除濁手段を有する水処理装置に関する。 TECHNICAL FIELD The present invention relates to a water treatment apparatus having clarification means for removing suspended solids contained in water to be treated.

被処理水に含まれる不純物を除去する水処理装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有するものが知られている。この装置では、所定の供給圧力でRO膜またはNF膜に供給された被処理水(原水)が、RO膜またはNF膜により透過水と濃縮水とに分離される。これにより、不純物が除去された処理水(透過水)を得ることができる。 As a water treatment apparatus for removing impurities contained in water to be treated, one having a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) is known. In this apparatus, water to be treated (raw water) supplied to the RO membrane or NF membrane at a predetermined supply pressure is separated into permeate water and concentrated water by the RO membrane or NF membrane. As a result, treated water (permeated water) from which impurities have been removed can be obtained.

RO膜またはNF膜を有する水処理装置では、多くの場合、水の有効利用(節水)の観点から、不純物を含む濃縮水の一部を濃縮排水として外部に排出し、残りを濃縮還流水としてRO膜またはNF膜の上流側に還流させる構成が採用されている。これにより、すべての濃縮水を濃縮排水として排出する場合に比べて、回収率(透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合)を向上させることができ、節水を実現することができる。これと同時に、このような水処理装置では、水温の変化(すなわち、水の粘性の変化)による透過水の流量変化に対応するために、加圧ポンプの回転数を制御することでRO膜またはNF膜への原水の供給圧力を調整して、透過水の流量を一定に維持する流量制御が行われている。 In water treatment equipment having RO membranes or NF membranes, in many cases, from the viewpoint of effective use of water (water saving), part of the concentrated water containing impurities is discharged to the outside as concentrated waste water, and the rest is discharged as concentrated reflux water. A configuration is adopted in which the gas is returned to the upstream side of the RO membrane or the NF membrane. As a result, the recovery rate (ratio of the permeate flow rate to the sum of the permeate flow rate and the concentrated waste water flow rate) can be improved compared to the case where all the concentrated water is discharged as concentrated waste water, resulting in water savings. can be realized. At the same time, in such water treatment equipment, in order to respond to changes in the flow rate of permeated water due to changes in water temperature (i.e., changes in water viscosity), the number of rotations of the pressure pump is controlled to Flow rate control is performed to maintain a constant flow rate of permeate by adjusting the supply pressure of raw water to the NF membrane.

また、RO膜またはNF膜を有する水処理装置では、RO膜またはNF膜の上流側に、例えば精密ろ過膜(MF膜)などの除濁膜が設けられていることがある。除濁膜は、原水に含まれる懸濁物質を捕捉して除去し、そのような懸濁物質によるRO膜またはNF膜の閉塞を抑制することができる。除濁膜は、一定量以上の懸濁物質を捕捉すると、表面または内部の細孔が懸濁物質で閉塞して膜間差圧が上昇し、場合によっては交換が必要になる。したがって、このような水処理装置では、除濁膜の閉塞状態をできるだけ正確に把握し、それに基づいて、除濁膜の交換が必要か否かを適切に判断することが求められる。 Further, in a water treatment apparatus having an RO membrane or an NF membrane, a clarification membrane such as a microfiltration membrane (MF membrane) may be provided upstream of the RO membrane or the NF membrane. The turbidity-removing membrane captures and removes suspended solids contained in raw water, and can suppress clogging of the RO membrane or NF membrane by such suspended solids. When the turbidity-removing membrane traps more than a certain amount of suspended solids, the pores on the surface or inside are clogged with the suspended solids, and the transmembrane pressure difference rises, sometimes requiring replacement. Therefore, in such a water treatment apparatus, it is required to grasp the clogging state of the turbidity removal membrane as accurately as possible and appropriately determine whether or not the turbidity removal membrane needs to be replaced.

特許文献1には、プレフィルタの交換の必要性を判断するために、プレフィルタの異なる位置に複数の流量センサを設置し、それら流量センサによる検出値に基づいて、プレフィルタの閉塞状態を推定する技術が記載されている。この技術によれば、プレフィルタ内での位置による流量の違いを経時的に観察することで、プレフィルタの閉塞状態を推定し、プレフィルタの交換の必要性が判断されている。 In Patent Document 1, a plurality of flow rate sensors are installed at different positions of the pre-filter in order to determine the necessity of replacement of the pre-filter, and based on the values detected by these flow rate sensors, the clogged state of the pre-filter is estimated. A technique to do so is described. According to this technique, the clogged state of the pre-filter is estimated by observing the difference in the flow rate depending on the position in the pre-filter over time, and the necessity of replacement of the pre-filter is determined.

特許第5457534号公報Japanese Patent No. 5457534

特許文献1に記載の技術は、プレフィルタの交換が必要か否かを判断するために利用されるものの、プレフィルタの閉塞状態を定量的に表すものではない。そのため、交換が必要なほどにプレフィルタが閉塞していない場合などに、その閉塞状態に応じて流量調整を行うような運転制御は想定されていない。これに対し、膜の閉塞による膜間差圧の上昇分を測定することで、膜の閉塞状態を定量的に把握することはできる。しかしながら、このような方法は、一定流量での通水が前提であり、流量そのものが変化する場合にそのまま適用することはできない。例えば、RO膜またはNF膜を有する水処理装置において上述した透過水の流量制御が行われる場合、水温の変化に応じてRO膜またはNF膜への供給水の供給圧力が調整されるが、それに応じて、その上流側に設けられた除濁膜における原水の通水流量も変化する。このような除濁膜では、膜間差圧の経時変化を単に観察しても、その閉塞状態を定量的に把握することは困難であり、その交換が必要か否かを適切に判断することも困難である。 Although the technology described in Patent Document 1 is used to determine whether or not the pre-filter needs to be replaced, it does not quantitatively represent the clogged state of the pre-filter. Therefore, when the pre-filter is not clogged to such an extent that it needs to be replaced, operation control is not assumed to adjust the flow rate according to the clogged state. On the other hand, by measuring the amount of increase in the transmembrane pressure difference due to membrane blockage, it is possible to quantitatively grasp the membrane blockage state. However, such a method is based on the assumption that the flow rate is constant, and cannot be applied as it is when the flow rate itself changes. For example, when the above-described permeate flow rate control is performed in a water treatment apparatus having an RO membrane or NF membrane, the supply pressure of the feed water to the RO membrane or NF membrane is adjusted according to the change in water temperature. Accordingly, the flow rate of the raw water through the turbidity removing membrane provided on the upstream side also changes. With such a turbidity-removing membrane, it is difficult to quantitatively grasp the clogging state simply by observing the change over time in the transmembrane pressure difference. is also difficult.

そこで、本発明の目的は、除濁手段の閉塞状態を定量的に把握可能な水処理装置を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a water treatment apparatus capable of quantitatively grasping the clogged state of the clarification means.

上述した目的を達成するために、本発明の水処理装置は、被処理水に含まれる懸濁物質を除去する除濁膜を有する除濁手段と、除濁手段の膜間差圧を測定する差圧測定手段と、除濁手段の通水流量を取得し、取得した通水流量と、通水流量を取得したときに差圧測定手段により測定された膜間差圧とに基づいて、除濁手段の閉塞状態を表す指標として、膜間差圧が除濁手段に供給可能な被処理水の最大圧力に応じて予め設定された上限値を超えない範囲で最大になるときの除濁手段の通水流量である最大通水流量を算出する算出手段と、を有し、除濁手段の閉塞状態に応じて変化する係数をα,βとしたとき、除濁手段の通水流量Qと膜間差圧ΔPとの関係を表す関係式は、ΔP=α×Q β で表され、算出手段は、取得した通水流量と測定された膜間差圧とから、異なる閉塞状態ごとに除濁手段の通水流量と膜間差圧との関係を予め測定することで得られた計算式を用いて、係数α,βを決定し、決定した係数α,βを含む関係式を用いて、上限値ΔP max に対応する最大通水流量Q max =(ΔP max /α) 1/β を算出するIn order to achieve the above object, the water treatment apparatus of the present invention comprises a clarification means having a clarification membrane for removing suspended solids contained in water to be treated, and a transmembrane pressure difference between the clarification means. Obtaining the water flow rate of the differential pressure measuring means and the clarification means, and removing based on the obtained water flow rate and the transmembrane pressure measured by the differential pressure measuring means when the water passing flow rate was obtained Clarification means when the transmembrane pressure difference reaches a maximum within a range not exceeding a preset upper limit value according to the maximum pressure of the water to be treated that can be supplied to the clarification means, as an index representing the clogging state of the clarification means. and a calculation means for calculating the maximum water flow rate, which is the water flow rate of the clarification means, and when the coefficients that change according to the clogging state of the clarification means are α and β, the water flow rate Q and The relational expression representing the relationship between the transmembrane pressure ΔP is expressed by ΔP=α×Qβ , and the calculation means subtracts each different blockage state from the obtained water flow rate and the measured transmembrane pressure. Determine the coefficients α and β using a formula obtained by previously measuring the relationship between the water flow rate of the turbidity means and the transmembrane pressure difference, and use the relational expression including the determined coefficients α and β , the maximum water flow rate Q max =(ΔP max /α) 1/β corresponding to the upper limit value ΔP max is calculated .

このような水処理装置によれば、除濁手段の通水流量と膜間差圧の1組のデータを用いるだけで、除濁手段の閉塞状態を表す指標を得ることができる。そのため、除濁手段を通過する被処理水の流量が時間的に変化する状況であっても、その時点での除濁手段の閉塞状態を定量的に把握することができる。その結果、除濁膜の交換が必要か否かを適切に判断することも可能になり、除濁膜の閉塞による水処理装置の緊急停止といった不具合が生じることなく適切な運転管理を行うことも可能になる。 According to such a water treatment apparatus, it is possible to obtain an index representing the clogging state of the clarification means only by using one set of data of the water flow rate of the clarification means and the transmembrane pressure difference. Therefore, even if the flow rate of the water to be treated that passes through the turbidity removing means changes with time, it is possible to quantitatively grasp the clogging state of the turbidity removing means at that time. As a result, it is possible to appropriately determine whether the turbidity removal membrane needs to be replaced, and to perform appropriate operation management without causing problems such as emergency stoppage of water treatment equipment due to clogging of the turbidity removal membrane. be possible.

以上、本発明によれば、除濁手段の閉塞状態を定量的に把握することができる。 As described above, according to the present invention, it is possible to quantitatively grasp the blocked state of the clarification means.

本発明の一実施形態に係る水処理装置の構成を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the structure of the water treatment apparatus which concerns on one Embodiment of this invention. 5つの異なる閉塞状態のそれぞれにおいて測定された、除濁手段の通水流量と膜間差圧との関係をプロットしたグラフである。Fig. 3 is a graph plotting the relationship between the water flow rate of the turbidity removing means and the transmembrane pressure difference measured in each of five different occlusion states; 基準流量を0.8m/hとしたときの基準差圧ΔPに対して、表1に示す係数αをプロットしたグラフである。2 is a graph plotting the coefficient α shown in Table 1 against the reference differential pressure ΔP s when the reference flow rate is 0.8 m 3 /h. 基準流量を0.8m/hとしたときの基準差圧ΔPに対して、表1に示す係数βをプロットしたグラフである。2 is a graph plotting the coefficient β shown in Table 1 against the reference differential pressure ΔP s when the reference flow rate is 0.8 m 3 /h. 図2に示す測定結果を用いて、除濁手段の膜間差圧と、除濁手段がその膜間差圧を測定したときと同じ閉塞状態にあるときの基準差圧との関係をプロットしたグラフである。Using the measurement results shown in FIG. 2, the relationship between the transmembrane pressure difference of the turbidity removing means and the reference differential pressure when the turbidity removing means is in the same blocked state as when the transmembrane pressure difference was measured was plotted. graph. 表2に示す除濁手段の通水流量と係数γとの関係をプロットしたグラフである。3 is a graph plotting the relationship between the water flow rate of the clarification means shown in Table 2 and the coefficient γ.

以下、図面を参照して、本発明の実施の形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る水処理装置の構成を示す概略図である。 FIG. 1 is a schematic diagram showing the configuration of a water treatment apparatus according to one embodiment of the present invention.

本実施形態の水処理装置10は、原水(被処理水)に含まれる不純物を除去して処理水を生成する装置であり、除濁手段11とろ過手段12とを有している。除濁手段11は、原水に含まれる懸濁物質を捕捉して除去する除濁膜を有している。除濁膜としては、懸濁物質を除去できるものであれば特に制限はなく、例えば、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、円筒状に成形した粒状または繊維状の活性炭の周囲に不織布フィルターを巻きつけた構造の活性炭フィルターなどを用いることができる。ろ過手段12は、除濁手段11の下流側に設けられ、除濁手段11で懸濁物質が除去された除濁水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離するものであり、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。 A water treatment apparatus 10 of the present embodiment is an apparatus for removing impurities contained in raw water (water to be treated) to generate treated water, and has clarification means 11 and filtering means 12 . The turbidity removing means 11 has a turbidity removing membrane that captures and removes suspended solids contained in the raw water. The turbidity-removing membrane is not particularly limited as long as it can remove suspended solids. An activated carbon filter having a structure in which a non-woven fabric filter is wrapped around activated carbon can be used. The filtration means 12 is provided downstream of the turbidity removal means 11, and separates the turbidity-removed water from which suspended solids have been removed by the turbidity-removal means 11 into concentrated water containing impurities and permeated water from which impurities have been removed. It has a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane).

また、水処理装置10は、除濁手段11とろ過手段12に接続された複数のラインL0~L3を有している。すなわち、除濁手段11に接続され、除濁手段11に原水を供給する原水ラインL0と、除濁手段11とろ過手段12とを接続し、除濁手段11を通過した除濁水をろ過手段12に供給する供給ラインL1と、ろ過手段12からの透過水を流通させる透過水ラインL2と、ろ過手段12からの濃縮水を流通させる濃縮水ラインL3とを有している。加えて、水処理装置10は、濃縮水ラインL3から分岐した2つのライン、すなわち、濃縮水ラインL3を流れる濃縮水の一部を外部へ排出する排水ラインL4と、濃縮水の残りを供給ラインL1に還流させる還流水ラインL5とを有している。還流水ラインL5は、濃縮水ラインL3から分岐した後、後述する加圧ポンプ21の上流側で供給ラインL1に接続されている。なお、還流水ラインL5は、供給ラインL1に除濁水を貯留する貯留タンクが設けられている場合、供給ラインL1に直接接続される代わりに、その貯留タンクに接続されていてもよい。 The water treatment device 10 also has a plurality of lines L0 to L3 connected to the clarification means 11 and the filtration means 12. As shown in FIG. That is, a raw water line L0 connected to the turbidity removing means 11 and supplying raw water to the turbidity removing means 11 is connected to the turbidity removing means 11 and the filtering means 12, and the turbidity removing means 11 is filtered by the filtering means 12. , a permeated water line L2 through which the permeated water from the filtering means 12 is circulated, and a concentrated water line L3 through which the concentrated water from the filtering means 12 is circulated. In addition, the water treatment apparatus 10 has two lines branched from the concentrated water line L3, that is, a drain line L4 for discharging part of the concentrated water flowing through the concentrated water line L3 to the outside, and a supply line for the rest of the concentrated water. and a reflux water line L5 for refluxing to L1. After being branched from the concentrated water line L3, the reflux water line L5 is connected to the supply line L1 on the upstream side of the pressure pump 21, which will be described later. If the supply line L1 is provided with a storage tank for storing clarified water, the return water line L5 may be connected to the storage tank instead of being directly connected to the supply line L1.

さらに、水処理装置10は、透過水ラインL2を流れる透過水の流量を検出する透過水流量計(第1の流量検出手段)13と、その流量を設定流量に調整する透過水流量制御機構(第1の流量制御手段)20を有している。 Furthermore, the water treatment apparatus 10 includes a permeate flow meter (first flow rate detection means) 13 that detects the flow rate of the permeate flowing through the permeate line L2, and a permeate flow rate control mechanism ( It has a first flow control means) 20 .

透過水流量制御機構20は、供給ラインL1に設けられ、供給ラインL1を流れる除濁水の圧力(ろ過手段12への除濁水の供給圧力)を調整する加圧ポンプ(圧力調整手段)21と、透過水流量計13による透過水の検出流量(検出値)に基づいて、加圧ポンプ21を制御する透過水流量制御部22とを有している。 The permeated water flow rate control mechanism 20 is provided in the supply line L1, and a pressure pump (pressure adjustment means) 21 that adjusts the pressure of the clarified water flowing through the supply line L1 (supply pressure of the clarified water to the filtering means 12), It also has a permeate flow control unit 22 that controls the pressure pump 21 based on the permeate flow rate (detection value) detected by the permeate flow meter 13 .

透過水流量制御部22は、加圧ポンプ21の回転数を制御するインバータ(図示せず)を含み、透過水流量計13による透過水の検出流量が一定になるように、加圧ポンプ21の回転数を制御するものである。例えば、水温が変化すると、水の粘性が変化することで、RO膜またはNF膜で分離される透過水の流量も変化する。この変化に応じて、透過水流量制御部22は、加圧ポンプ21の回転数を制御するようになっている。すなわち、水温が低くなると、水の粘性は高くなり、その結果、RO膜またはNF膜で分離される透過水の流量は減少する。そのため、透過水流量制御部22は、この減少分を補うように、加圧ポンプ21の回転数を上げることで、除濁水の供給圧力を増加させる。また、水温が高くなると、水の粘性は低くなり、その結果、RO膜またはNF膜で分離される透過水の流量は増加する。そのため、透過水流量制御部22は、この増加分を打ち消すように、加圧ポンプ21の回転数を下げることで、除濁水の供給圧力を低下させる。なお、加圧ポンプ21の回転数は、予め設定された上限値を上回ったり、同じく予め設定された下限値を下回ったりしないように、透過水流量制御部22により制御される。そのため、加圧ポンプ21の回転数が下限値になるように制御された場合でも、透過水の流量が設定流量を上回ってしまう可能性があるが、このような場合を考慮して、加圧ポンプ21とろ過手段12との間に、除濁水の供給圧力を調整するための手動弁や比例制御弁が設けられていてもよい。 The permeate flow rate control unit 22 includes an inverter (not shown) that controls the rotation speed of the pressure pump 21, and the permeate flow rate of the pressure pump 21 is controlled so that the permeate flow rate detected by the permeate flow meter 13 is constant. It controls the number of revolutions. For example, when the water temperature changes, the flow rate of the permeate separated by the RO or NF membrane also changes due to the change in the viscosity of the water. The permeate water flow control unit 22 controls the rotation speed of the pressure pump 21 according to this change. That is, the lower the water temperature, the higher the viscosity of the water, resulting in a decrease in the flow rate of the permeate separated by the RO or NF membrane. Therefore, the permeate water flow rate control unit 22 increases the supply pressure of the clarified water by increasing the rotational speed of the pressure pump 21 so as to compensate for this decrease. Also, as the water temperature increases, the viscosity of the water decreases, resulting in an increase in the flow rate of the permeate separated by the RO or NF membrane. Therefore, the permeate water flow rate control unit 22 reduces the supply pressure of the clarified water by reducing the rotational speed of the pressure pump 21 so as to cancel out this increase. The rotation speed of the pressurizing pump 21 is controlled by the permeate flow control unit 22 so as not to exceed a preset upper limit value or fall below a preset lower limit value. Therefore, even if the rotation speed of the pressurizing pump 21 is controlled to the lower limit, the flow rate of the permeated water may exceed the set flow rate. A manual valve or a proportional control valve may be provided between the pump 21 and the filtering means 12 to adjust the supply pressure of the clarified water.

このように、本実施形態では、加圧ポンプ21の回転数、すなわち除濁水の供給圧力を調整することで、透過水の流量は一定(予め設定された目標流量)に維持されるが、その除濁水の供給圧力の変化に応じて、RO膜またはNF膜で分離される濃縮水の流量も変化することになる。このような濃縮水の流量変化そのものを抑制するために、濃縮水ラインL3には、濃縮水ラインL3を流れる濃縮水の流量を一定に保持する定流量弁14が設けられている。これにより、透過水流量制御部22により加圧ポンプ21の回転数が変化して、ろ過手段12への除濁水の供給圧力が変化した場合にも、濃縮水の流量を一定に保持することができる。 Thus, in the present embodiment, the flow rate of the permeated water is maintained constant (preset target flow rate) by adjusting the rotation speed of the pressure pump 21, that is, the supply pressure of the clarified water. The flow rate of the concentrated water separated by the RO membrane or the NF membrane also changes according to the change in the supply pressure of the clarified water. In order to suppress such a change in the flow rate of the concentrated water itself, the concentrated water line L3 is provided with a constant flow valve 14 that keeps the flow rate of the concentrated water flowing through the concentrated water line L3 constant. As a result, even when the rotation speed of the pressurizing pump 21 is changed by the permeated water flow rate control unit 22 and the supply pressure of the clarified water to the filtering means 12 is changed, the flow rate of the concentrated water can be kept constant. can.

ここで、定流量弁14の規定流量は、一方では、ファウリングやスケーリングによる膜の詰まりが発生しない程度であればよく、他方では、圧力損失の増大によって膜を破損させない程度であればよい。ただし、定流量弁14の規定流量を必要以上に大きくすることは、加圧ポンプ21に要求される流量が必要以上に大きくなり、結果的に加圧ポンプ21のサイズが大きくなるため、エネルギー消費の点で好ましくない。そのため、定流量弁14の規定流量は、ろ過手段12の透過流束とろ過手段12に要求される濃縮水の最低流量も考慮して設定され、例えば、ろ過手段12として直径が約20.32cm(8インチ)のRO膜を用いる場合、1~15m/hの範囲である。なお、ろ過手段12に要求される濃縮水の最低流量とは、ファウリングやスケーリングによる膜の詰まりが発生しないための濃縮水ラインL3に流すべき濃縮水の最低流量を意味する。 Here, the specified flow rate of the constant flow valve 14 should be such that clogging of the membrane due to fouling or scaling does not occur on the one hand, and that the membrane is not damaged due to an increase in pressure loss. However, if the specified flow rate of the constant flow valve 14 is increased more than necessary, the flow rate required of the pressure pump 21 will be increased more than necessary, and as a result the size of the pressure pump 21 will increase, resulting in energy consumption. It is not preferable in terms of Therefore, the specified flow rate of the constant flow valve 14 is set in consideration of the permeation flux of the filtration means 12 and the minimum flow rate of concentrated water required for the filtration means 12. For example, the diameter of the filtration means 12 is about 20.32 cm. (8 inch) RO membrane, it ranges from 1 to 15 m 3 /h. The minimum flow rate of concentrated water required for the filtering means 12 means the minimum flow rate of concentrated water that should flow through the concentrated water line L3 to prevent clogging of the membrane due to fouling or scaling.

ところで、定流量弁14には、定流量弁14を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されている。そのため、例えば、ろ過手段12として中高圧用のRO膜を使用する場合や、水温が極端に低下した場合など、条件によっては、除濁水の供給圧力が著しく上昇して濃縮水の圧力が上昇し、定流量弁14の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがある。その場合、濃縮水ラインL3を流れる濃縮水の流量が一定に保持されないおそれがある。 By the way, the constant flow valve 14 has an operating differential pressure range (permissible range of pressure difference between the primary side and the secondary side of the constant flow valve) for operating the constant flow valve 14 normally. Therefore, depending on the conditions, for example, when a medium- and high-pressure RO membrane is used as the filtration means 12, or when the water temperature drops significantly, the supply pressure of the clarified water increases significantly and the pressure of the concentrated water increases. , the pressure difference between the primary side and the secondary side of the constant flow valve 14 may exceed the operating differential pressure range. In that case, the flow rate of the concentrated water flowing through the concentrated water line L3 may not be kept constant.

そこで、定流量弁14の上流側の濃縮水ラインL3に、濃縮水ラインL3を流れる濃縮水の圧力を減圧する(すなわち、二次側の圧力を一次側の圧力よりも低くすることができる)減圧弁が設けられていてもよい。これにより、ろ過手段12への除濁水の供給圧力が著しく上昇する場合であっても、定流量弁14の一次側と二次側の圧力差を作動差圧範囲内に収めて定流量弁14を正常に作動させることができ、濃縮水ラインL3を流れる濃縮水の流量を一定に保持することができる。また、減圧弁を設けることで、それよりも下流側の周辺部材(配管など)にそれほどの耐圧性能が要求されなくなる。そのため、減圧弁の設置は、安全面で有利であるだけでなく、耐圧性能がそれほど高くない安価な汎用品が利用可能になることで、コスト面でも有利である。なお、減圧弁の種類は、濃縮水の圧力を定流量弁14の作動差圧範囲内に減圧することができるものであれば特に限定されるものではないが、定流量弁14の規定流量以上の流量が流れるものや、二次側の圧力が排水ラインL4や還流水ラインL5の通水差圧よりも大きくなるものを選定する必要がある。 Therefore, the pressure of the concentrated water flowing through the concentrated water line L3 on the upstream side of the constant flow valve 14 is reduced (that is, the pressure on the secondary side can be made lower than the pressure on the primary side). A pressure reducing valve may be provided. As a result, even if the supply pressure of the clarified water to the filtration means 12 rises significantly, the pressure difference between the primary side and the secondary side of the constant flow valve 14 is kept within the operating differential pressure range. can be operated normally, and the flow rate of the concentrated water flowing through the concentrated water line L3 can be kept constant. In addition, by providing the pressure reducing valve, peripheral members (such as pipes) downstream of the pressure reducing valve are not required to have such a high pressure resistance performance. Therefore, installation of a pressure reducing valve is not only advantageous in terms of safety, but is also advantageous in terms of cost, since inexpensive general-purpose products with not so high pressure resistance can be used. The type of pressure reducing valve is not particularly limited as long as it can reduce the pressure of the concentrated water to within the operating differential pressure range of the constant flow valve 14. or the pressure on the secondary side is greater than the water flow differential pressure of the drainage line L4 and the recirculated water line L5.

上述したように、定流量弁14の設置により、透過水の流量制御が濃縮水の流量に影響を及ぼすことがなくなり、その結果、排水ラインL4または還流水ラインL5を流れる濃縮水の流量制御が容易に実行可能になる。そこで、本実施形態の水処理装置10は、排水ラインL4を流れる濃縮水(以下、「濃縮排水」という)の流量を検出する排水流量計(第2の流量検出手段)15と、その流量を設定流量に調整する排水流量制御機構(第2の流量制御手段)30とを有している。この排水流量制御機構30による濃縮排水の流量制御は、透過水流量制御機構20による透過水の流量制御とは独立して行われる。 As described above, the installation of the constant flow valve 14 prevents the flow rate control of the permeated water from affecting the flow rate of the concentrated water. easily feasible. Therefore, the water treatment apparatus 10 of the present embodiment includes a wastewater flow meter (second flow rate detection means) 15 for detecting the flow rate of concentrated water (hereinafter referred to as "concentrated wastewater") flowing through the wastewater line L4, and the flow rate and a drainage flow rate control mechanism (second flow rate control means) 30 for adjusting the set flow rate. The flow rate control of the concentrated waste water by the waste water flow rate control mechanism 30 is performed independently of the flow rate control of the permeated water by the permeated water flow rate control mechanism 20 .

排水流量制御機構30は、排水ラインL4に設けられた流量調整弁31と、排水流量計15による濃縮排水の検出流量(検出値)に基づいて、流量調整弁31の開度を調整する排水流量制御部32とを有している。 The drainage flow rate control mechanism 30 adjusts the opening degree of the flow rate adjustment valve 31 based on the flow rate adjustment valve 31 provided in the drainage line L4 and the detected flow rate (detection value) of the concentrated drainage by the drainage flow meter 15. and a control unit 32 .

排水流量制御部32は、透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合である回収率を考慮して濃縮排水の設定流量を決定し、排水流量計15による検出値がその設定流量となるように、流量調整弁31の開度を調整するようになっている。このときの回収率は、水の有効利用(節水)の観点から、できるだけ高いことが好ましい。すなわち、濃縮排水の流量はできるだけ少ないことが好ましい。しかしながら、定流量弁14により濃縮水の流量が一定に保持されているため、濃縮排水の流量が少なくなると、当然のことながら、還流水ラインL5から供給ラインL1に還流する濃縮水の流量が増加する。それにより、除濁水の不純物濃度が高まると、ろ過手段12のRO膜またはNF膜の膜面に不純物(特に、シリカまたはカルシウム)が析出するスケーリングが起こりやすくなってしまう。したがって、濃縮排水の流量は、濃縮水の不純物濃度が溶解度以上の濃度にならない範囲で回収率が最大になるように、すなわち、不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように設定される。 The wastewater flow rate control unit 32 determines the set flow rate of the concentrated wastewater in consideration of the recovery rate, which is the ratio of the flow rate of the permeated water to the sum of the flow rate of the permeated water and the flow rate of the concentrated wastewater, and the value detected by the wastewater flow meter 15 is the set flow rate, the opening degree of the flow control valve 31 is adjusted. The recovery rate at this time is preferably as high as possible from the viewpoint of effective use of water (water saving). That is, it is preferable that the flow rate of the concentrated waste water is as small as possible. However, since the flow rate of the concentrated water is kept constant by the constant flow valve 14, when the flow rate of the concentrated wastewater decreases, naturally, the flow rate of the concentrated water flowing back from the reflux water line L5 to the supply line L1 increases. do. As a result, when the concentration of impurities in the clarified water increases, scaling in which impurities (particularly silica or calcium) precipitate on the membrane surface of the RO membrane or NF membrane of the filtering means 12 is likely to occur. Therefore, the flow rate of the concentrated wastewater is set so that the recovery rate is maximized in a range in which the concentration of impurities in the concentrated water does not exceed the solubility, that is, the recovery rate is maximized in a range in which the impurities silica or calcium do not precipitate. is set to

ただし、不純物の溶解度は、水温に応じて変化する。例えば、シリカの場合、その溶解度は温度に比例して増加し、カルシウム(炭酸カルシウム)の場合、温度が上昇するにつれてその溶解度は減少する。そのため、水温が低い場合には、シリカの溶解度が相対的に低く、シリカが析出しやすい(シリカスケールが発生しやすい)が、水温が高くなると、カルシウムの溶解度が相対的に低くなるため、カルシウムが析出しやすく(カルシウムスケールが発生しやすく)なる。そこで、本実施形態では、図示していないが、(ろ過手段12に供給される)除濁水(被処理水)と透過水と濃縮水とのいずれかの水温を検出する温度センサ(水温検出手段)が設けられており、この温度センサで検出された水温に基づいて、濃縮排水の最適な設定流量が算出される。 However, the solubility of impurities varies depending on the water temperature. For example, for silica, its solubility increases proportionally with temperature, and for calcium (calcium carbonate), its solubility decreases with increasing temperature. Therefore, when the water temperature is low, the solubility of silica is relatively low, and silica tends to precipitate (silica scale is likely to occur). is likely to precipitate (calcium scale is likely to occur). Therefore, in the present embodiment, although not shown, a temperature sensor (water temperature detection means) that detects the water temperature of any one of the clarified water (water to be treated) (supplied to the filtering means 12), the permeated water, and the concentrated water ) is provided, and the optimum set flow rate of the concentrated waste water is calculated based on the water temperature detected by this temperature sensor.

具体的には、まず、検出された水温でシリカが析出する理論上の回収率(以下、「シリカの析出回収率」という)と、検出された水温でカルシウム(炭酸カルシウム)が析出する理論上の回収率(以下「カルシウムの析出回収率」という)が算出される。なお、シリカの析出回収率とカルシウムの析出回収率のそれぞれの算出方法については後述する。次に、シリカの析出回収率とカルシウムの析出回収率とが比較され、目標回収率として、より小さい方の析出回収率が設定される。そして、この目標回収率と、透過水流量計13による透過水の検出流量とに基づいて、以下の式(1)により、濃縮排水の目標流量が算出されて設定される。
(濃縮排水の目標流量)=
(透過水の検出流量/目標回収率)-(透過水の検出流量) (1)
Specifically, first, the theoretical recovery rate at which silica precipitates at the detected water temperature (hereinafter referred to as "silica precipitation recovery rate") and the theoretical recovery rate at which calcium (calcium carbonate) precipitates at the detected water temperature The recovery rate of (hereinafter referred to as "calcium deposition recovery rate") is calculated. Methods for calculating the silica precipitation recovery rate and the calcium precipitation recovery rate will be described later. Next, the silica deposition recovery rate and the calcium deposition recovery rate are compared, and the smaller deposition recovery rate is set as the target recovery rate. Then, based on this target recovery rate and the flow rate of permeated water detected by the permeated water flow meter 13, the target flow rate of concentrated waste water is calculated and set by the following equation (1).
(Target flow rate of concentrated wastewater) =
(Detected flow rate of permeated water/Target recovery rate) - (Detected flow rate of permeated water) (1)

スケーリングの発生を確実に抑制するという観点からは、安全率を加味し、上記式(1)で算出された目標流量を上回る流量を濃縮排水の設定流量として設定することもできるが、節水の観点からは、算出された目標流量を濃縮排水の設定流量として設定することが好ましい。なお、回収率(目標回収率)として、通常は、パーセントで表した値が用いられるが、上記式(1)では、小数で表した値が用いられることは言うまでもない。 From the viewpoint of reliably suppressing the occurrence of scaling, it is possible to set a flow rate that exceeds the target flow rate calculated by the above formula (1) as the set flow rate of the concentrated wastewater, considering the safety factor. , it is preferable to set the calculated target flow rate as the set flow rate of the concentrated waste water. As the recovery rate (target recovery rate), a value expressed in percent is usually used, but in the above formula (1), it goes without saying that a value expressed in decimals is used.

ここで、シリカの析出回収率とカルシウムの析出回収率の算出方法についてそれぞれ説明する。 Here, the methods for calculating the silica deposition recovery rate and the calcium deposition recovery rate will be described respectively.

(シリカの析出回収率の算出方法)
シリカの析出回収率Yは、検出された水温でのシリカの溶解度(mg/L)をCとし、予め測定された除濁水のシリカ濃度(mg/L)をFとしたとき、以下の式(2)から算出される。
=(C-F)/C (2)
(Method for calculating precipitation recovery rate of silica)
Silica deposition recovery rate YS is calculated as follows, where CS is the solubility of silica (mg/L) at the detected water temperature and FS is the silica concentration (mg/L) of the turbidity-removed water measured in advance. is calculated from the formula (2).
Y S =(C S −F S )/C S (2)

なお、シリカの溶解度の算出方法としては、ASTM(American Society for Testing and Materials)D4993-89などに規定された方法を用いることができる。 As a method for calculating the solubility of silica, a method specified in ASTM (American Society for Testing and Materials) D4993-89 or the like can be used.

(カルシウムの析出回収率の算出方法)
カルシウムの析出回収率は、濃縮水のランゲリア指数を算出する方法を利用して算出される。ここで、ランゲリア指数(飽和指数)とは、カルシウム(炭酸カルシウム)の析出の可能性を示す指標であり、水の実際のpHと、理論pH(pHs:水中の炭酸カルシウムが溶解も析出もしない平衡状態にあるときのpH)との差(pH-pHs)を意味する。すなわち、ランゲリア指数が正の値で絶対値が大きいほど炭酸カルシウムが析出しやすくなり、負の値では炭酸カルシウムは析出されない。そのため、カルシウムの析出回収率は、濃縮水のランゲリア指数がゼロになるときの回収率として算出される。なお、より安全側の値として設定するために、カルシウムの析出回収率は、濃縮水のランゲリア指数が負の値になるときの回収率であってもよい。
(Method for calculating precipitation recovery rate of calcium)
The precipitation recovery rate of calcium is calculated using a method for calculating the Langerier index of concentrated water. Here, the Langerier index (saturation index) is an index indicating the possibility of precipitation of calcium (calcium carbonate), and the actual pH of water and the theoretical pH (pHs: calcium carbonate in water neither dissolves nor precipitates It means the difference (pH - pHs) from the pH at equilibrium. That is, the larger the absolute value of the positive value of the Langerier index, the easier it is for calcium carbonate to precipitate, while the negative value does not precipitate calcium carbonate. Therefore, the precipitation recovery rate of calcium is calculated as the recovery rate when the Langelier index of the concentrated water becomes zero. In order to set a safer value, the recovery rate of calcium precipitation may be the recovery rate when the Langelier index of the concentrated water becomes a negative value.

濃縮水のランゲリア指数は、濃縮水のpHと、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、検出された水温とから算出される。ランゲリア指数の算出方法としては、例えば、特開平11-267687号公報(段落[0025]~[0027])などに記載された方法を用いることができる。また、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)は、予め測定された除濁水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、回収率とから算出される。したがって、カルシウムの析出回収率Yは、濃縮水のランゲリア指数がゼロになるときの濃縮水の不純物濃度(mg/L)をCとし、予め測定された除濁水の不純物濃度(mg/L)をFとしたとき、以下の式(3)の関係で表されることになる。
=(C-F)/C (3)
The Langerier index of the concentrate is calculated from the pH of the concentrate, the concentration of impurities in the concentrate (calcium concentration, total alkalinity, and evaporation residue concentration), and the detected water temperature. As a method for calculating the Langelier index, for example, the method described in Japanese Patent Application Laid-Open No. 11-267687 (paragraphs [0025] to [0027]) can be used. In addition, the concentration of impurities in the concentrated water (calcium concentration, total alkalinity, and evaporation residue concentration) is determined by the previously measured impurity concentration in the clarified water (calcium concentration, total alkalinity, and evaporation residue concentration), and the recovery rate is calculated from Therefore, the calcium deposition recovery rate Y C is the impurity concentration (mg / L ) of the concentrated water when the Langerier index of the concentrated water becomes zero, and the impurity concentration (mg / L) of the clarified water measured in advance. ) is represented by the following equation (3).
Y C =(C C −F C )/C C (3)

なお、透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合である回収率は、透過水の流量と濃縮排水の流量との和に対する濃縮水の流量の割合である濃縮倍率で表すことができる。すなわち、回収率Yは、濃縮倍率をNとしたとき、以下の式(4)で表すことができる。
Y=(N-1)/N (4)
The recovery rate, which is the ratio of the flow rate of permeated water to the sum of the flow rate of permeated water and the flow rate of concentrated waste water, is the concentration ratio, which is the ratio of the flow rate of concentrated water to the sum of the flow rate of permeated water and the flow rate of concentrated waste water. can be expressed as That is, the recovery rate Y can be expressed by the following formula (4), where N is the concentration ratio.
Y=(N−1)/N (4)

したがって、上記式(1)~(3)は、上記式(4)を用いて、それぞれ以下のように表すことができる。
(濃縮排水の目標流量)=(透過水の検出流量)/(濃縮倍率-1) (1’)
=C/F (2’)
=C/F (3’)
ここで、Nは、カルシウムの析出回収率に対応する許容濃縮倍率であり、Nは、シリカの析出回収率に対応する許容濃縮倍率である。
Therefore, the above formulas (1) to (3) can be expressed as follows using the above formula (4).
(Target flow rate of concentrated wastewater) = (Detected flow rate of permeated water) / (Concentration factor - 1) (1')
N S =C S /F S (2′)
N C =C C /F C (3′)
Here, N S is the permissible concentration ratio corresponding to the precipitation recovery rate of calcium, and N C is the permissible concentration ratio corresponding to the precipitation recovery rate of silica.

シリカおよびカルシウムの析出回収率の算出方法や濃縮排水の設定流量の算出方法は、例えば加圧ポンプの容量や除濁水の流量などの装置設計上の制約によって、予め回収率や流量に制約がある場合には、上述した限りではない。また、濃縮排水の設定流量の算出には、予め設定された透過水の目標流量を用いることもできるが、この方法は、透過水の目標流量と実際の流量が一致していない場合に、実際の回収率が目標回収率からずれる可能性があるため好ましくない。すなわち、透過水の実際の流量が目標流量よりも大きい場合には、実際の回収率が目標回収率を上回ることでスケーリングが発生したり、透過水の実際の流量が目標流量よりも小さい場合には、実際の回収率が目標回収率を下回ることで節水を図ることができなくなったりする。 The method of calculating the precipitation recovery rate of silica and calcium and the method of calculating the set flow rate of concentrated wastewater have restrictions on the recovery rate and flow rate in advance due to device design restrictions such as the capacity of the pressure pump and the flow rate of the clarified water. In some cases, it is not limited to the above. In addition, a preset target flow rate of permeate can be used to calculate the set flow rate of concentrated wastewater. This is not preferable because the recovery rate of the product may deviate from the target recovery rate. That is, if the actual permeate flow rate is greater than the target flow rate, scaling occurs due to the actual recovery exceeding the target recovery rate, or if the actual permeate flow rate is less than the target flow rate. If the actual recovery rate falls below the target recovery rate, it becomes impossible to save water.

したがって、濃縮排水の設定流量の算出には、上述したように、透過水流量計13による透過水の検出流量を用いることが好ましい。これにより、透過水の流量制御が適切に実施されない事態が発生しても、実際の回収率が目標の回収率からずれることを抑制することができる。なお、実際の算出には、透過水の検出流量のばらつきなどによる影響を最小限に抑えるために、所定検出時間や所定検出回数における平均流量を用いることが好ましい。 Therefore, as described above, it is preferable to use the detected flow rate of the permeated water by the permeated water flow meter 13 for calculating the set flow rate of the concentrated waste water. As a result, even if the flow rate control of the permeated water is not appropriately performed, it is possible to prevent the actual recovery rate from deviating from the target recovery rate. In actual calculation, it is preferable to use an average flow rate for a predetermined detection time or a predetermined number of times of detection in order to minimize the influence of variations in the detected flow rate of permeated water.

ただし、装置起動時や運転再開時など、透過水の流量が安定せず、検出流量のばらつきが非常に大きい場合には、透過水の流量が安定するまでの一定期間、予め設定された透過水の目標流量を用いて、濃縮排水の設定流量を算出するようになっていてもよい。また、透過水の目標流量と実際の流量との差に応じて、濃縮排水の設定流量の算出に用いる透過水の流量を切り替えるようになっていてもよい。すなわち、その差が所定範囲内にある場合には、目標流量を用いて算出し、その差が所定範囲を外れた場合には、実際の流量を用いて算出するようになっていてもよい。 However, if the flow rate of the permeate is not stable and the variation in the detected flow rate is very large, such as when starting up the device or restarting operation, the permeate Using the target flow rate of, the set flow rate of the concentrated waste water may be calculated. Further, the flow rate of the permeated water used for calculating the set flow rate of the concentrated waste water may be switched according to the difference between the target flow rate and the actual flow rate of the permeated water. That is, if the difference is within a predetermined range, the target flow rate may be used for calculation, and if the difference is outside the predetermined range, the actual flow rate may be used for calculation.

上述のように回収率制御を行う場合、流量調整弁31としては、電動比例制御弁を用いることが好ましい。これにより、電動比例制御弁の分解能に応じて開度調整を細かく行うことができ、電磁弁の組み合わせなどによる段階式での開度調整に比べて、回収率を滑らかに調整することができる。例えば、50~70%の範囲の回収率を5段階(50%、55%、60%、65%、70%)にしか制御できない段階式では、目標回収率が64%に設定された場合、回収率を60%にしか調整することができず、無駄な濃縮排水が発生してしまう。したがって、流量調整弁31として電動比例制御弁を用いることは、このような濃縮排水の無駄も削減することができるため、節水の観点からも有利である。 When performing recovery rate control as described above, it is preferable to use an electric proportional control valve as the flow control valve 31 . As a result, the degree of opening can be finely adjusted according to the resolution of the electric proportional control valve, and the recovery rate can be adjusted more smoothly than when adjusting the degree of opening in a stepwise manner using a combination of solenoid valves. For example, in a staged formula that can only control the recovery rate in the range of 50 to 70% in 5 stages (50%, 55%, 60%, 65%, 70%), when the target recovery rate is set to 64%, The recovery rate can only be adjusted to 60%, resulting in useless concentrated waste water. Therefore, the use of the electric proportional control valve as the flow control valve 31 is advantageous from the viewpoint of saving water because it is possible to reduce waste of such concentrated waste water.

ただし、流量調整弁31として電動比例制御弁を用いる場合には、その開閉速度と、排水流量制御部32による濃縮排水の設定流量の算出速度(演算速度)との関係に注意が必要である。例えば、2つの速度が大きく異なっている場合、電動比例制御弁の開閉が完了して濃縮排水の流量が安定する前に濃縮排水の設定流量が変更されると、ハンチングが発生する可能性がある。また、透過水流量計13による透過水の検出流量に基づいて濃縮排水の設定流量が決定されるため、濃縮排水の流量制御は、加圧ポンプ21の回転数を制御するインバータの応答速度にも影響を受ける可能性がある。したがって、排水流量制御部32による濃縮排水の設定流量の演算速度を決定する際には、電動比例制御弁の開閉速度とインバータの応答速度とを考慮することが好ましい。すなわち、電動比例制御弁の開閉速度が遅い場合は、インバータの応答速度を遅くし、電動比例制御弁の開閉速度が速い場合は、インバータの応答速度を速くすることが好ましい。なお、本実施形態では、上述したように、定流量弁14の設置により透過水の流量制御と濃縮水の流量制御とが独立して行われるため、互いの流量制御が干渉することを抑制することができる。その結果、上述のようなハンチングの発生を極力抑制することができ、実際の回収率が目標の回収率からずれることを抑制することができる。この点からも、濃縮水ラインL3に定流量弁14が設けられていることが好ましい。 However, when an electric proportional control valve is used as the flow control valve 31, it is necessary to pay attention to the relationship between the opening/closing speed and the calculation speed (computation speed) of the set flow rate of the concentrated waste water by the waste water flow control unit 32. For example, if the two speeds are significantly different, hunting may occur if the set flow rate of the concentrated waste water is changed before the electric proportional control valve is completely opened and closed and the flow rate of the concentrated waste water is stabilized. . In addition, since the set flow rate of the concentrated waste water is determined based on the flow rate of the permeated water detected by the permeated water flow meter 13, the flow rate control of the concentrated waste water is also affected by the response speed of the inverter that controls the rotation speed of the pressure pump 21. may be affected. Therefore, it is preferable to consider the opening/closing speed of the electric proportional control valve and the response speed of the inverter when determining the calculation speed of the set flow rate of the concentrated waste water by the waste water flow control unit 32 . That is, when the opening/closing speed of the electric proportional control valve is slow, it is preferable to slow down the response speed of the inverter, and when the opening/closing speed of the electric proportional control valve is fast, it is preferable to speed up the response speed of the inverter. In this embodiment, as described above, the flow control of the permeated water and the flow control of the concentrated water are performed independently by installing the constant flow valve 14, so that the mutual flow control is prevented from interfering with each other. be able to. As a result, the occurrence of hunting as described above can be suppressed as much as possible, and deviation of the actual recovery rate from the target recovery rate can be suppressed. Also from this point, it is preferable that the constant flow valve 14 is provided in the concentrated water line L3.

なお、本実施形態では、回収率の目標値をより高く設定して、さらなる節水を実現するために、上述の析出回収率をより高くすることを目的として、スケール防止剤を除濁水に添加するようになっていてもよい。この場合、定流量弁14の規定流量を小さくすることができ、結果として、より小さい容量の加圧ポンプ21を用いることで省エネルギー化を実現することもできる。スケール防止剤の添加は、薬注ポンプによって行うことができる。 In the present embodiment, the target value of the recovery rate is set higher, and in order to achieve further water saving, a scale inhibitor is added to the clarified water for the purpose of increasing the precipitation recovery rate described above. It can be like this. In this case, the specified flow rate of the constant flow valve 14 can be reduced, and as a result, energy can be saved by using the pressure pump 21 with a smaller capacity. The addition of scale inhibitor can be done by a dosing pump.

スケール防止剤は、シリカやカルシウムなどのスケール成分の析出を抑制可能な物質であれば、特定のものに限定されるものではない。その種類としては、例えば、1-ヒドロキシエチリデン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸などのホスホン酸とその塩類などのホスホン酸系化合物;正リン酸塩、重合リン酸塩などのリン酸系化合物;ポリマレイン酸、マレイン酸共重合物などのマレイン酸系化合物;アクリル酸系ポリマーなどが挙げられ、アクリル酸系ポリマーとしては、ポリ(メタ)アクリル酸、マレイン酸/(メタ)アクリル酸、(メタ)アクリル酸/スルホン酸、(メタ)アクリル酸/ノニオン基含有モノマーなどのコポリマーや、(メタ)アクリル酸/スルホン酸/ノニオン基含有モノマー、(メタ)アクリル酸/アクリルアミド-アルキルスルホン酸/置換(メタ)アクリルアミド、(メタ)アクリル酸/アクリルアミド-アリールスルホン酸/置換(メタ)アクリルアミドのターポリマーなどが挙げられる。ターポリマーを構成する(メタ)アクリル酸としては、例えば、メタアクリル酸およびアクリル酸と、それらのナトリウム塩などの(メタ)アクリル酸塩などが挙げられる。ターポリマーを構成するアクリルアミド-アルキルスルホン酸としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸とその塩などが挙げられる。また、ターポリマーを構成する置換(メタ)アクリルアミドとしては、例えば、t-ブチルアクリルアミド、t-オクチルアクリルアミド、ジメチルアクリルアミドなどが挙げられる。 The scale inhibitor is not particularly limited as long as it is a substance capable of suppressing precipitation of scale components such as silica and calcium. Examples thereof include phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, nitrilotrimethylphosphonic acid, and salts thereof. Phosphonic acid-based compounds; phosphoric acid-based compounds such as orthophosphates and polymerized phosphates; maleic acid-based compounds such as polymaleic acid and maleic acid copolymers; are copolymers such as poly(meth)acrylic acid, maleic acid/(meth)acrylic acid, (meth)acrylic acid/sulfonic acid, (meth)acrylic acid/nonionic group-containing monomers, and (meth)acrylic acid/sulfonic acid /nonionic group-containing monomer, (meth)acrylic acid/acrylamide-alkylsulfonic acid/substituted (meth)acrylamide, and (meth)acrylic acid/acrylamide-arylsulfonic acid/substituted (meth)acrylamide terpolymer. Examples of the (meth)acrylic acid constituting the terpolymer include methacrylic acid, acrylic acid, and (meth)acrylic acid salts such as sodium salts thereof. Examples of acrylamide-alkylsulfonic acids constituting the terpolymer include 2-acrylamido-2-methylpropanesulfonic acid and salts thereof. Examples of substituted (meth)acrylamides constituting the terpolymer include t-butylacrylamide, t-octylacrylamide and dimethylacrylamide.

これらの中でも、ホスホン酸系化合物とアクリル酸系ポリマーのうち少なくとも1種類を含むものを用いることが好ましい。また、カルシウムとシリカに由来するスケールを同時に抑制するためには、2-ホスホノブタン-1,2,4-トリカルボン酸と、アクリル酸と(メタ)アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸/置換(メタ)アクリルアミドのターポリマーとの混合物とからなるスケール防止剤を用いることが特に好ましい。 Among these, it is preferable to use one containing at least one of a phosphonic acid-based compound and an acrylic acid-based polymer. In order to simultaneously suppress scale derived from calcium and silica, 2-phosphonobutane-1,2,4-tricarboxylic acid, acrylic acid and (meth)acrylic acid/2-acrylamido-2-methylpropanesulfonic acid It is particularly preferred to use a scale inhibitor consisting of a mixture of /substituted (meth)acrylamide with a terpolymer.

なお、RO膜用の市販のスケール防止剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター(登録商標)」シリーズなどが挙げられる。 In addition, commercially available scale inhibitors for RO membranes include the "Orpersion" series manufactured by Organo Corporation, the "Flocon (registered trademark)" series manufactured by BWA Water Additives, and the "PermaTreat (registered trademark)" manufactured by Nalco. series, General Electric Company's "Hypersperse (registered trademark)" series, and Kurita Water Industries Ltd.'s "Kuriverter (registered trademark)" series.

上述したように、本実施形態では、定流量弁14により濃縮水の流量が一定に維持されるため、排水ラインL4および還流水ラインL5の一方を流れる濃縮水の流量を規定するだけで、他方を流れる濃縮水の流量も規定することができる。そのため、図示した実施形態では、排水ラインL4に排水流量計15と流量制御手段(流量調整弁31)が設けられ、還流水ラインL5には、排水ラインL4および還流水ラインL5を流れる濃縮水の圧力バランスを調整するための手動弁(圧力調整弁)16が設けられているが、その逆であってもよい。すなわち、還流水ラインL5に、流量計と流量制御手段としての流量調整弁(比例制御弁)とが設けられ、排水ラインL4に、圧力バランス調整のための手動弁が設けられていてもよい。あるいは、排水ラインL4および還流水ラインL5の両方に、流量計と流量制御手段としての流量調整弁(比例制御弁)とを設けることもできる。また、上述した実施形態では、透過水流量制御部と排水流量制御部とが別個に設けられているが、1つの流量制御部により、透過水の流量調整と濃縮排水の流量調整とが行われるようになっていてもよい。また、透過水流量制御部と排水流量制御部は、後述する閉塞判定部と一体のものであってもよい。 As described above, in the present embodiment, since the flow rate of concentrated water is maintained constant by the constant flow valve 14, the flow rate of the concentrated water flowing through one of the drainage line L4 and the recirculated water line L5 can be determined only by defining the flow rate of the concentrated water flowing through the other. A flow rate of the concentrate flowing through the can also be defined. Therefore, in the illustrated embodiment, the drain line L4 is provided with a drain flow meter 15 and a flow rate control means (flow control valve 31), and the reflux line L5 is provided with concentrated water flowing through the drain line L4 and the reflux water line L5. A manual valve (pressure regulating valve) 16 is provided for regulating the pressure balance, but the reverse is also possible. That is, the recirculated water line L5 may be provided with a flow meter and a flow control valve (proportional control valve) as flow control means, and the drainage line L4 may be provided with a manual valve for pressure balance adjustment. Alternatively, both the drain line L4 and the return water line L5 may be provided with flow meters and flow control valves (proportional control valves) as flow control means. Further, in the above-described embodiment, the permeate flow rate control unit and the waste water flow rate control unit are provided separately, but one flow control unit adjusts the flow rate of the permeated water and the concentrated waste water. It can be like this. Further, the permeated water flow rate control section and the drainage flow rate control section may be integrated with the blockage determination section to be described later.

また、ろ過手段の数は1つに限定されるものではなく、2つ以上のろ過手段が直列に接続されて設けられていてもよい。その場合にも、定流量弁は、2つ以上のろ過手段のうち最も上流側のろ過手段に接続された濃縮水ラインに設けられ、最も下流側のろ過手段で分離された透過水が設定流量(予め設定された目標流量)に調整されることになる。ただし、最も上流側のろ過手段を除いたすべてのろ過手段において、任意の流量調整手段により透過水と濃縮水の流量分配が適切に設定・調整される必要があることは言うまでもない。さらに、最も上流側のろ過手段からの濃縮排水の設定流量の算出には、最も下流側のろ過手段で分離された透過水ではなく、最も上流側のろ過手段で分離された透過水の流量(検出流量)が用いられることに留意されたい。なお、ここでいう「直列に接続される」とは、被処理水が複数のろ過手段で順次処理されることを意味し、隣接する2つのろ過手段において、上流側のろ過手段で分離された透過水が下流側のろ過手段に供給されることを意味する。また、各ろ過手段は、複数のRO膜またはNF膜から構成されていてもよい。この場合、複数のRO膜またはNF膜は、一次側(除濁水および濃縮水の流通側)が直列に接続されて最終的に濃縮水ラインに接続され、二次側(透過水の流通側)が並列に接続されて最終的に透過水ラインに接続されることになる。 Also, the number of filtering means is not limited to one, and two or more filtering means may be connected in series. Also in that case, the constant flow valve is provided in the concentrated water line connected to the most upstream filtering means among the two or more filtering means, and the permeated water separated by the most downstream filtering means is the set flow rate. (Preset target flow rate). However, it is needless to say that the flow rate distribution between the permeated water and the concentrated water needs to be appropriately set and adjusted by any flow rate adjusting means in all the filtering means except for the most upstream filtering means. Furthermore, in calculating the set flow rate of concentrated wastewater from the most upstream filtration means, the flow rate of the permeated water separated by the most upstream filtration means, not the permeate separated by the most downstream filtration means ( Note that the detected flow rate) is used. Here, "connected in series" means that the water to be treated is sequentially treated by a plurality of filtration means, and in two adjacent filtration means, separated by the upstream filtration means It means that the permeate is supplied to the downstream filtering means. Moreover, each filtering means may be composed of a plurality of RO membranes or NF membranes. In this case, the multiple RO membranes or NF membranes are connected in series on the primary side (distribution side of the clarified water and the concentrated water) and finally connected to the concentrated water line, and the secondary side (distribution side of the permeated water) are connected in parallel and finally connected to the permeate line.

ところで、除濁手段11に用いられる除濁膜は、一定量以上の懸濁物質を捕捉すると、表面または内部の細孔が懸濁物質で閉塞して膜間差圧(膜の一次側と二次側の圧力差)が上昇する。このときの上昇分は、除濁手段11の通水流量(除濁手段11を通過してろ過手段12に供給される除濁水の流量)が一定に維持されている場合には閉塞の度合いに対応する。そのため、この膜間差圧の上昇分を測定することで、膜の閉塞状態を定量的に把握することができ、膜の交換が必要か否かを適切に判断することができる。しかしながら、本実施形態の水処理装置10において上述した回収率制御が行われると、水温の変化に応じて濃縮排水の設定流量が変化するため、透過水の流量と濃縮排水の流量との和に対応する除濁手段11の通水流量も変化する。したがって、除濁手段11の膜間差圧の経時変化を単に観察するだけでは、その閉塞状態を定量的に把握することはできない。その結果、除濁手段11を早めに交換せざるを得なくなって交換頻度が増加したり、実際に通水できなくなるまで閉塞してしまい、無駄なダウンタイムが発生したりすることで、水処理装置10の運転状態を適切に管理することができなくなる。したがって、除濁手段11の交換が必要か否かを適切に判断して水処理装置10の運転管理を適切に行うためには、本実施形態のように除濁手段11の通水流量が時間的に変化する状況であっても、その閉塞状態を定量的に把握することが求められる。 By the way, when the turbidity removing membrane used for the turbidity removing means 11 captures more than a certain amount of suspended solids, the pores on the surface or inside are clogged with the suspended solids, and the transmembrane pressure difference (primary side and secondary side of the membrane) increases. pressure difference on the next side) increases. The amount of increase at this time depends on the degree of clogging when the water flow rate of the clarification means 11 (the flow rate of the clarified water that passes through the clarification means 11 and is supplied to the filtration means 12) is maintained constant. handle. Therefore, by measuring the amount of increase in the transmembrane pressure difference, it is possible to quantitatively grasp the clogging state of the membrane, and to appropriately determine whether or not the membrane needs to be replaced. However, when the recovery rate control described above is performed in the water treatment apparatus 10 of the present embodiment, the set flow rate of the concentrated wastewater changes according to the change in water temperature. The water flow rate of the corresponding turbidity removing means 11 also changes. Therefore, simply observing the temporal change in the transmembrane pressure of the turbidity removing means 11 cannot quantitatively grasp the clogging state. As a result, the turbidity removing means 11 has to be replaced early, which increases the replacement frequency, or clogs the turbidity removing means 11 until it becomes impossible to actually pass water, resulting in wasteful downtime. It becomes impossible to appropriately manage the operating state of the device 10 . Therefore, in order to appropriately determine whether or not the clarification means 11 needs to be replaced and to appropriately manage the operation of the water treatment device 10, it is necessary to increase the water flow rate of the clarification means 11 as in the present embodiment. Even if the situation changes dynamically, it is required to quantitatively grasp the blockage state.

また、除濁手段11の膜間差圧には、予め上限値(上限膜間差圧)が設定されており、それに対応して、除濁手段11の通水流量には、膜間差圧が上限膜間差圧を超えない範囲で最大になるときの通水流量として定義される最大通水流量が存在する。ここで、除濁手段11の上限膜間差圧が、除濁手段11に供給可能な原水の最大圧力に応じて定まる値であるに対し、最大通水流量は、除濁手段11の閉塞状態に応じて変化し、具体的には、除濁手段11の閉塞が進行するにつれて徐々に低下する。そのため、水処理装置10の運転は、除濁手段11の膜間差圧が上限膜間差圧を超えないように行われるが、上述したように、水温の変化に応じて除濁手段11に要求される通水流量が変化すると、その通水流量が最大通水流量を上回ることがあり、その場合、ろ過手段12に必要な流量の除濁水を供給できなくなる。したがって、除濁手段11の交換が必要か否かにかかわらず、水処理装置10の適切な運転制御を行うためにも、除濁手段11の閉塞状態を定量的に把握することが求められる。 An upper limit value (upper limit transmembrane pressure difference) is set in advance for the transmembrane pressure difference of the turbidity removing means 11. There is a maximum permeable flow rate defined as the permeable flow rate when the maximum transmembrane pressure does not exceed the upper limit transmembrane pressure. Here, while the upper limit transmembrane pressure of the clarification means 11 is a value determined according to the maximum pressure of the raw water that can be supplied to the clarification means 11, the maximum water flow rate is the Specifically, it gradually decreases as clogging of the turbidity removing means 11 progresses. Therefore, the water treatment apparatus 10 is operated so that the transmembrane pressure difference of the clarification means 11 does not exceed the upper limit transmembrane pressure difference. If the required flow rate of water flow changes, the flow rate of water flow may exceed the maximum flow rate of water flow. Therefore, regardless of whether or not the clarification means 11 needs to be replaced, it is required to quantitatively grasp the clogging state of the clarification means 11 in order to appropriately control the operation of the water treatment apparatus 10 .

このような要求に対し、本実施形態の水処理装置10は、除濁手段11の閉塞状態を定量的に把握するための構成として、差圧測定手段17と閉塞判定部40を有している。差圧測定手段17は、除濁手段11の上流側に設けられた第1の圧力計17aと、除濁手段11の下流側に設けられた第2の圧力計17bとから構成され、除濁手段11の膜間差圧を測定するものである。差圧測定手段17としては、2つの圧力計17a,17bの代わりに、1つの差圧計が設けられていてもよい。閉塞判定部40は、除濁手段11の流量を取得し、取得した通水流量と、通水流量を取得したときに差圧測定手段17により測定された膜間差圧とに基づいて、除濁手段11の閉塞状態を表す指標として、上述した最大通水流量を算出するものである。以下、閉塞判定部40による除濁手段11の最大通水流量の算出方法について説明する。 In response to such a request, the water treatment apparatus 10 of the present embodiment has a differential pressure measurement means 17 and a blockage determination section 40 as a configuration for quantitatively grasping the blockage state of the clarification means 11. . The differential pressure measuring means 17 is composed of a first pressure gauge 17a provided upstream of the turbidity removing means 11 and a second pressure gauge 17b provided downstream of the turbidity removing means 11. Means 11 measures the transmembrane pressure difference. As the differential pressure measuring means 17, one differential pressure gauge may be provided instead of the two pressure gauges 17a and 17b. The clogging determination unit 40 acquires the flow rate of the clarification means 11, and removes based on the acquired water flow rate and the transmembrane pressure difference measured by the differential pressure measurement means 17 when the water flow rate is acquired. As an index representing the clogging state of the turbidity means 11, the above-described maximum water flow rate is calculated. A method of calculating the maximum water flow rate of the clarification means 11 by the clogging determination unit 40 will be described below.

除濁手段11の閉塞状態が変化すると、除濁手段11の通水流量と膜間差圧との関係は変化し、それに伴い、除濁手段11の最大通水流量も変化する。したがって、除濁手段11の通水流量と膜間差圧との関係が閉塞状態に応じてどのように変化するかを予め調べておくことで、除濁手段11が任意の閉塞状態にあるときの通水流量と膜間差圧との関係を表す関係式を決定することができる。そして、決定した関係式を用いて、除濁手段11の膜間差圧が上限膜間差圧になるときの通水流量である最大通水流量を算出することができる。後述する実験結果によれば、除濁手段11の通水流量Qと膜間差圧ΔPとの関係は、除濁手段11の閉塞状態によらず同じ関数形(べき関数)で表すことができ、具体的には、以下の式(5)に示す関係式で表すことができる。
ΔP=α×Qβ (5)
ここで、係数α,βは共に、除濁手段11の閉塞状態によって決まる値であり、除濁手段11の通水流量と膜間差圧の1組のデータから、予め設定された計算式を用いて決定することができる。この計算式の詳細については後述する。なお、除濁手段11の膜間差圧のデータは、差圧測定手段17により測定されて閉塞判定部40に送信され、通水流量のデータは、透過水流量計13による透過水の検出流量と排水流量計15による濃縮排水の検出流量との和として、閉塞判定部40で取得される。そして、係数α,βが決定されると、その時点での除濁手段11の最大通水流量Qmaxは、上限膜間差圧をΔPmaxとしたとき、決定した係数α,βを含む上記式(5)を用いて、以下のように表すことができる。
max=(ΔPmax/α)1/β (6)
When the blocked state of the turbidity removing means 11 changes, the relationship between the water flow rate of the turbidity removing means 11 and the transmembrane pressure difference changes, and the maximum water flow rate of the turbidity removing means 11 also changes accordingly. Therefore, by investigating in advance how the relationship between the water flow rate of the clarification means 11 and the transmembrane pressure difference changes according to the clogging state, it is possible to determine whether the clarification means 11 is in an arbitrary clogging state. It is possible to determine a relational expression that expresses the relationship between the water flow rate and the transmembrane pressure difference. Then, using the determined relational expression, it is possible to calculate the maximum water flow rate, which is the water flow rate when the transmembrane pressure difference of the turbidity removing means 11 reaches the upper limit transmembrane pressure difference. According to the experimental results described later, the relationship between the water flow rate Q of the clarification means 11 and the transmembrane pressure difference ΔP can be expressed by the same functional form (power function) regardless of the clogging state of the clarification means 11. , specifically, can be represented by the relational expression shown in the following equation (5).
ΔP=α× (5)
Here, both the coefficients α and β are values determined by the clogged state of the turbidity removing means 11, and a predetermined calculation formula is calculated from a set of data of the water flow rate and the transmembrane pressure difference of the turbidity removing means 11. can be determined using The details of this calculation formula will be described later. The transmembrane pressure data of the turbidity removing means 11 is measured by the differential pressure measuring means 17 and transmitted to the clogging determination section 40, and the water flow rate data is the detected flow rate of the permeated water by the permeated water flowmeter 13. and the flow rate of concentrated waste water detected by the waste water flow meter 15 is obtained by the clogging determination unit 40 . Then, when the coefficients α and β are determined, the maximum water flow rate Q max of the clarification means 11 at that time is the above-mentioned Using equation (5), it can be expressed as follows.
Q max =(ΔP max /α) 1/β (6)

上記式(5)と係数α,βを決定するための後述する計算式は、異なる閉塞状態ごとに除濁手段11の通水流量と膜間差圧を測定する実験を予め行い、その結果に基づいて得られたものである。以下、この実験結果について説明する。 The above formula (5) and the calculation formulas described later for determining the coefficients α and β are obtained by conducting experiments in advance to measure the water flow rate and transmembrane pressure difference of the clarification means 11 for each different clogging state, and the results are It was obtained based on The results of this experiment will be described below.

本発明者らは、除濁手段(MF膜)の閉塞状態を変化させたときに通水流量と膜間差圧との関係がどのように変化するのかを調べた。具体的には、懸濁物質を含む原水を除濁手段に通水して除濁手段を閉塞させ、それがある程度進行するごとに、原水の通水を一旦停止し、清澄水を0.8~2.4m/hの範囲で0.4m/hごとに変化させて通水したときの膜間差圧を測定した。原水として、2NTU程度の懸濁物質を含む一般工業用水を用い、通水は流量1.4m/hで行った。原水の通水停止は、膜間差圧が約0.005MPa上昇するごとに合計5回行い、したがって、膜間差圧の測定は、閉塞の度合いが異なる5つの状態(閉塞状態1~5)について行った。通水流量は、除濁手段の下流側に設けられた流量計で確認し、膜間差圧は、除濁手段の入口側に設けられた圧力計による検出値と出口側に設けられた圧力計による検出値との差として測定した。除濁手段(MF膜)としては、公称孔径が1.0μmで長さが500mmのポリプロピレン製の積層型不織布フィルター(オルガノ株式会社製の「ミクロポアー(登録商標)」シリーズ)を用いた。 The present inventors investigated how the relationship between the water flow rate and the transmembrane pressure difference changes when the clogging state of the clarification means (MF membrane) is changed. Specifically, raw water containing suspended solids is passed through the turbidity removing means to block the turbidity removing means. The transmembrane pressure difference was measured when water was passed while changing it by 0.4 m 3 /h in the range of up to 2.4 m 3 /h. As raw water, general industrial water containing suspended solids of about 2 NTU was used, and the water was passed at a flow rate of 1.4 m 3 /h. The flow of raw water is stopped a total of 5 times each time the transmembrane pressure rises by about 0.005 MPa. followed. The water flow rate is confirmed by a flow meter provided downstream of the clarification means, and the transmembrane pressure is the value detected by the pressure gauge provided on the inlet side of the clarification means and the pressure provided on the outlet side. It was measured as a difference from the value detected by a meter. As the turbidity removing means (MF membrane), a polypropylene laminated nonwoven fabric filter (“Micropore (registered trademark)” series manufactured by Organo Co., Ltd.) having a nominal pore size of 1.0 μm and a length of 500 mm was used.

図2は、5つの異なる閉塞状態のそれぞれにおいて、除濁手段の通水流量と膜間差圧との関係をプロットしたグラフである。5つの閉塞状態1~5のそれぞれのデータに対して回帰分析を行ったところ、除濁手段の通水流量Qと膜間差圧ΔPとの関係は、図2に実線で示すように、いずれも同じ関数形、すなわち、上記式(1)で近似できることが確認された。このとき得られた係数α,βを表1に示す。

Figure 0007285748000001
FIG. 2 is a graph plotting the relationship between the water flow rate of the turbidity removing means and the transmembrane pressure difference in each of five different occlusion states. When regression analysis was performed on the data for each of the five blockage states 1 to 5, the relationship between the water flow rate Q of the turbidity removal means and the transmembrane pressure difference ΔP was can also be approximated by the same functional form, that is, the above equation (1). Table 1 shows the coefficients α and β obtained at this time.
Figure 0007285748000001

表1によれば、係数αは、除濁手段の閉塞が進行するにつれて増加し、係数βは、除濁手段の閉塞が進行するにつれて減少することが分かる。したがって、このような相関関係について、除濁手段の閉塞状態を規定する何らかのパラメータ(変数)を含む関数式で表すことができ、このパラメータを測定または算出することができれば、除濁手段が任意の閉塞状態にあるときでも、そのときの係数α,βが求められることが分かる。上述したように、除濁手段の閉塞状態は、一定流量で通水したときの除濁手段の膜間差圧を比較することで定量的に把握することができる。したがって、上述のパラメータとしては、ある基準流量で通水したときの除濁手段の膜間差圧(以下、「基準差圧」という)を用いることができる。 According to Table 1, it can be seen that the coefficient α increases as the clogging of the clarification means progresses, and the coefficient β decreases as the clogging of the clarification means progresses. Therefore, such a correlation can be represented by a functional expression including some parameter (variable) that defines the clogging state of the clarification means, and if this parameter can be measured or calculated, the clarification means can be any It can be seen that the coefficients α and β at that time can be obtained even in the closed state. As described above, the blocked state of the clarification means can be quantitatively grasped by comparing the transmembrane pressure difference of the clarification means when water is passed at a constant flow rate. Therefore, the transmembrane pressure difference (hereinafter referred to as "reference pressure difference") of the turbidity removing means when water is passed at a certain reference flow rate can be used as the above parameter.

図3および図4は、基準流量を0.8m/hとしたときの基準差圧に対して係数α,βをそれぞれプロットしたグラフである。係数α,βと基準差圧ΔPとの関係についてそれぞれ回帰分析を行ったところ、各図に実線で示すように、係数αは一次関数で近似することができ、係数βはべき関数で近似することができることが確認された。これらの近似式は、以下の式(7)、(8)のように表すことができる。
α=a×ΔP+b (7)
β=c×ΔP (8)
ここで、a=1.27、b=0.0001.c=0.574、d=-0.191である。なお、これらの値は、基準流量を0.8m/hとしたときの基準差圧に対して得られた値であり、基準流量をどのように設定するかによって変化することに留意されたい。
3 and 4 are graphs plotting the coefficients α and β with respect to the reference differential pressure when the reference flow rate is 0.8 m 3 /h. Regression analysis was performed on the relationship between the coefficients α, β and the reference differential pressure ΔP s . As shown by the solid lines in each figure, the coefficient α can be approximated by a linear function, and the coefficient β by a power function. confirmed that it can be done. These approximate expressions can be expressed as the following expressions (7) and (8).
α=a×ΔP s +b (7)
β=c×ΔP s d (8)
where a=1.27, b=0.0001. c=0.574 and d=−0.191. It should be noted that these values are values obtained for the reference differential pressure when the reference flow rate is 0.8 m 3 /h, and change depending on how the reference flow rate is set. .

除濁手段の通水流量が常に一定であり、その流量を基準流量として設定すれば、そのときに測定された膜間差圧を、基準差圧として上記式(7)、(8)にそのまま適用することができる。しかしながら、実際には、上述したように、除濁手段の通水流量は、例えば水温の変化に応じて変化することがあり、必ずしも一定であるわけではない。したがって、除濁手段の通水流量が任意の流量であるときに測定された膜間差圧を、除濁手段の通水流量が予め設定された基準流量であるときの膜間差圧(基準差圧)に変換する必要がある。以下、この変換式の導出について説明する。 If the water flow rate of the turbidity removal means is always constant and the flow rate is set as the reference flow rate, the transmembrane pressure difference measured at that time is used as the reference pressure difference in the above equations (7) and (8) as it is. can be applied. However, in practice, as described above, the water flow rate of the turbidity removing means may vary depending on, for example, changes in water temperature, and is not necessarily constant. Therefore, the transmembrane pressure difference (reference differential pressure). The derivation of this conversion formula will be described below.

図5は、図2に示す測定結果を、縦軸および横軸として別の指標を用いてプロットしたグラフであり、横軸が膜間差圧の測定値を示し、縦軸が、除濁手段がその膜間差圧を測定したときと同じ閉塞状態にあるときの基準差圧の測定値を示している。なお、図5では、基準差圧として、基準流量を0.8m/hとしたときの膜間差圧をプロットしている。図5によれば、同じ通水流量で比較したときに、除濁手段の基準差圧ΔPは、除濁手段の閉塞が進行するにつれて増加し、すなわち、除濁手段の膜間差圧ΔPが増加するにつれて増加することが分かる。このような関係について回帰分析を行ったところ、図5に実線で示すように、除濁手段の通水流量がいずれの場合も、以下の式(9)に示す一次式で近似できることが確認された。
ΔP=γ×ΔP (9)
FIG. 5 is a graph plotting the measurement results shown in FIG. 2 using different indicators as the vertical and horizontal axes, the horizontal axis showing the measured value of the transmembrane pressure difference, and the vertical axis showing the clarification means. shows the measured value of the reference differential pressure in the same occlusive state as when the transmembrane differential pressure was measured. In FIG. 5, the transmembrane pressure difference when the reference flow rate is 0.8 m 3 /h is plotted as the reference pressure difference. According to FIG. 5, when compared at the same water flow rate, the reference differential pressure ΔP s of the clarification means increases as the clogging of the clarification means progresses, that is, the transmembrane pressure difference ΔP increases as . A regression analysis was performed on this relationship, and it was confirmed that, as shown by the solid line in FIG. rice field.
ΔP s =γ×ΔP (9)

このとき得られた係数γを表2に示し、この通水流量と係数γとの関係をプロットしたグラフを図6に示す。なお、表2に示す具体的な数値は、基準流量を0.8m/hとしたときの基準差圧に対して得られた値であり、基準流量をどのように設定するかによってそれぞれ変化することに留意されたい。すなわち、上記式(9)で示す除濁手段の膜間差圧ΔPと基準差圧ΔPとの線形関係は、基準流量をどのように設定するかによらずに成立する。そのため、係数γは、基準流量がどのように設定され、それに応じて基準差圧がどのような値になるかに基づいて決定されることに留意されたい。

Figure 0007285748000002
The coefficient γ obtained at this time is shown in Table 2, and a graph plotting the relationship between the water flow rate and the coefficient γ is shown in FIG. The specific numerical values shown in Table 2 are values obtained for the reference differential pressure when the reference flow rate is 0.8 m 3 /h, and vary depending on how the reference flow rate is set. Note that That is, the linear relationship between the transmembrane pressure difference ΔP of the turbidity removing means and the reference pressure difference ΔPs shown in the above equation (9) is established regardless of how the reference flow rate is set. Therefore, it should be noted that the coefficient γ is determined based on how the reference flow rate is set and what the reference differential pressure is accordingly.
Figure 0007285748000002

表2によれば、係数γは、除濁手段の通水流量Qが増加するにつれて減少することが分かる。このような関係について回帰分析を行ったところ、図6に実線で示すように、係数γはべき関数で近似することができ、その近似式は、以下の式(10)のように表されることが確認された。
γ=e×Q (10)
ここで、e=0.78、f=-1.28である。なお、これらの値は、係数γが表2に示すように具体的に与えられたときに得られた値であり、係数γと同様に、基準流量をどのように設定するかによって変化することに留意されたい。
According to Table 2, it can be seen that the coefficient γ decreases as the flow rate Q of the clarification means increases. When regression analysis was performed on such a relationship, the coefficient γ can be approximated by a power function, as shown by the solid line in FIG. was confirmed.
γ=e× Qf (10)
where e=0.78 and f=-1.28. These values are values obtained when the coefficient γ is specifically given as shown in Table 2, and like the coefficient γ, they change depending on how the reference flow rate is set. Please note.

こうして、上記式(10)を用いることで、除濁手段の通水流量が任意の流量Qであるときの係数γを決定することができ、こうして決定された係数γから、上記式(9)を用いて、そのときに測定された膜間差圧ΔPを基準差圧ΔPに変換することができる。そして、こうして変換された除濁手段の基準差圧ΔPを上記式(7)、(8)に代入することで、係数α,βを決定することができる。換言すると、除濁手段の通水流量が任意の流量Qであるときに、そのときの除濁手段の膜間差圧をΔPとすると、係数α,βは、上記式(7)~(10)を用いて、それぞれ以下のように表すことができる。
α=a×(e×ΔP×Q)+b (11)
β=c×(e×ΔP×Q (12)
ここで、係数a~fは、上述したように、基準流量をどのように設定するかに応じて決定される値であり、それぞれ上述した具体的な数値は、単なる一例に過ぎず、本発明の範囲を限定するものではない。また、係数a~fは、除濁手段としての除濁膜の孔径、寸法、材質、形状(プリーツ、積層、ワインドなど)に依存するため、実際に使用される除濁膜の孔径、寸法、材質、形状に応じて適宜決定されることが好ましい。
Thus, by using the above formula (10), it is possible to determine the coefficient γ when the water flow rate of the clarification means is an arbitrary flow rate Q, and from the thus determined coefficient γ, the above formula (9) can be used to convert the then measured transmembrane pressure ΔP to a reference differential pressure ΔP s . The coefficients α and β can be determined by substituting the converted reference differential pressure ΔP s of the turbidity removing means into the above equations (7) and (8). In other words, when the water flow rate of the turbidity removing means is an arbitrary flow rate Q, and the transmembrane pressure of the turbidity removing means at that time is ΔP, the coefficients α and β are given by the above equations (7) to (10 ) can be expressed as follows.
α=a×(e×ΔP×Q f )+b (11)
β=c×(e×ΔP×Q f ) d (12)
Here, the coefficients a to f are values determined according to how the reference flow rate is set as described above, and the specific numerical values described above are merely examples, and the present invention is not intended to limit the scope of In addition, since the coefficients a to f depend on the pore size, size, material, and shape (pleats, lamination, wind, etc.) of the turbidity removal membrane as the turbidity removal means, the pore size, size, It is preferable that it is appropriately determined according to the material and shape.

このように、閉塞判定部40は、除濁手段11の通水流量Qと膜間差圧ΔPの1組のデータから、上記式(11)、(12)を用いて係数α,βを決定し、決定した係数α,βを含む上記式(6)を用いて、除濁手段11の上限膜間差圧ΔPmaxに対応する最大通水流量Qmaxを算出する。そして、閉塞判定部40は、こうして算出した最大通水流量Qmaxに基づいて、水処理装置10の運転制御を行う。以下、閉塞判定部40による水処理装置10の運転制御の一例について説明する。 In this way, the clogging determination unit 40 determines the coefficients α and β using the above equations (11) and (12) from a set of data of the water flow rate Q and the transmembrane pressure difference ΔP of the turbidity removal means 11. Then, the maximum water flow rate Q max corresponding to the upper limit transmembrane pressure difference ΔP max of the turbidity removing means 11 is calculated using the above equation (6) including the determined coefficients α and β. Then, the clogging determination unit 40 controls the operation of the water treatment device 10 based on the maximum water flow rate Qmax thus calculated. An example of operation control of the water treatment device 10 by the blockage determination unit 40 will be described below.

水処理装置10の運転は、上述したように、節水の観点から、ろ過手段12のRO膜またはNF膜の膜面に不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように行われる。この最大の回収率が水温に応じて変化するため、そこから算出される濃縮排水の設定流量も水温に応じて変化する。したがって、透過水の設定流量と濃縮排水の設定流量との和として定義される除濁手段11の想定通水流量も水温に応じて変化する。このため、水温によっては、除濁手段11の想定通水流量が最大通水流量Qmaxを上回ることがあり、その場合、ろ過手段12に必要な流量の除濁水を供給できなくなる。除濁手段11の最大通水流量Qmaxは、除濁手段11の閉塞が進行するにつれて徐々に低下する。そのため、ろ過手段12に必要な流量の除濁水を供給できなくなるような状況は、除濁手段11の閉塞が進行するにつれてより頻繁に発生する可能性がある。 As described above, from the viewpoint of water saving, the water treatment apparatus 10 is operated so that the recovery rate is maximized in a range in which silica or calcium as impurities does not precipitate on the membrane surface of the RO membrane or NF membrane of the filtration means 12. done. Since this maximum recovery rate changes according to the water temperature, the set flow rate of the concentrated wastewater calculated therefrom also changes according to the water temperature. Therefore, the assumed water flow rate of the clarification means 11 defined as the sum of the set flow rate of the permeated water and the set flow rate of the concentrated waste water also changes according to the water temperature. Therefore, depending on the water temperature, the assumed water flow rate of the turbidity removal means 11 may exceed the maximum water flow rate Qmax , and in this case, the clarified water of the required flow rate cannot be supplied to the filtration means 12 . The maximum water flow rate Q max of the turbidity removing means 11 gradually decreases as the clogging of the turbidity removing means 11 progresses. Therefore, a situation in which the clarified water cannot be supplied to the filtering means 12 at a required flow rate may occur more frequently as the clogging of the clarifying means 11 progresses.

そこで、除濁手段11の最大通水流量Qmaxが算出されると、ろ過手段12に必要な流量の除濁水を供給できるかどうかを判断するために、算出された最大通水流量Qmaxと、除濁手段11の想定通水流量とが比較される。そして、除濁手段11の想定通水流量が最大通水流量Qmaxを上回る場合、あるいは、この先の水温変化によって、上回ることが予測される場合、除濁手段11の交換を行うことが好ましく、そのために、閉塞判定部40により警報が発せられる。ただし、除濁手段11の交換を行うには水処理装置10の運転を停止する必要があるが、状況によっては、それができないことがある。その場合には、除濁手段11の想定通水流量が最大通水流量Qmaxに等しくなるか、またはそれを下回るように、透過水の設定流量と濃縮排水の設定流量のうち少なくとも透過水の設定流量を低下させることが好ましい。例えば、透過水の設定流量を、現在の値から、算出された最大通水流量Qmaxから濃縮排水の設定流量を減じた値に変更することにより、除濁水中のシリカまたはカルシウムが析出しない最大の回収率を維持しながら、除濁手段11の想定通水流量を最も効率よく低下させることができる。 Therefore, when the maximum water flow rate Q max of the clarification means 11 is calculated, the calculated maximum water flow rate Q max and , is compared with the assumed water flow rate of the turbidity removing means 11 . Then, if the assumed water flow rate of the clarification means 11 exceeds the maximum water flow rate Q max , or if it is expected to exceed due to future water temperature changes, it is preferable to replace the clarification means 11. Therefore, the blockage determination unit 40 issues an alarm. However, although it is necessary to stop the operation of the water treatment apparatus 10 in order to replace the clarification means 11, this may not be possible depending on the situation. In that case, at least the set flow rate of the permeated water and the set flow rate of the concentrated wastewater are set so that the assumed water flow rate of the clarification means 11 is equal to or lower than the maximum water flow rate Q max . It is preferable to lower the set flow rate. For example, by changing the set flow rate of the permeated water from the current value to the value obtained by subtracting the set flow rate of the concentrated wastewater from the calculated maximum water flow rate Q max , the silica or calcium in the clarified water will not precipitate. While maintaining the recovery rate of , the assumed water flow rate of the clarification means 11 can be most efficiently reduced.

図示した実施形態では、除濁手段11は、供給ラインL1を介してろ過手段12に接続されているが、上述したように、供給ラインL1には、貯留タンクが設けられている場合がある。この場合、ろ過手段12には貯留タンクから除濁水が供給されるため、除濁手段11の通水流量は、ろ過手段12に供給される除濁水の流量と必ずしも一致せず、したがって、透過水流量計13による透過水の検出流量と排水流量計15による濃縮排水の検出流量との和に必ずしも一致しない。そのため、例えば、供給ラインL1のうち還流水ラインL5の接続部よりも上流側に流量計が設けられ、この流量計により検出された流量が、除濁手段11の通水流量として取得されることが好ましい。これにより、供給ラインL1に貯留タンクが設けられている場合にも、除濁手段11の正確な通水流量を取得することが可能になる。なお、この場合、除濁手段11に供給すべき原水の流量は、ろ過手段12に必要な除濁水の流量に左右されない。そのため、除濁手段11の閉塞状態に応じて、常に最適な流量の除濁水を除濁手段11に供給することが可能になる。すなわち、例えば、原水ラインL0に設けられた流量調整弁の開度を調整することで、除濁手段11の閉塞状態によらず、常に最大通水流量Qmaxを下回る流量の原水を除濁手段11に供給することが可能になる。 In the illustrated embodiment, the clarification means 11 is connected to the filtration means 12 via the supply line L1, but as described above, the supply line L1 may be provided with a storage tank. In this case, since the clarified water is supplied to the filtration means 12 from the storage tank, the water flow rate of the clarification means 11 does not necessarily match the flow rate of the clarified water supplied to the filtration means 12. The sum of the flow rate of permeate detected by the flowmeter 13 and the flow rate of concentrated wastewater detected by the wastewater flowmeter 15 does not necessarily match. Therefore, for example, a flow meter is provided on the upstream side of the connection part of the return water line L5 in the supply line L1, and the flow rate detected by this flow meter is acquired as the water flow rate of the clarification means 11. is preferred. Thereby, even when a storage tank is provided in the supply line L1, it is possible to obtain an accurate water flow rate of the turbidity removing means 11 . In this case, the flow rate of the raw water to be supplied to the turbidity removal means 11 is not affected by the flow rate of the turbidity-removed water required for the filtration means 12 . Therefore, depending on the clogged state of the turbidity removing means 11, it is possible to always supply the turbidity removing means 11 with the optimum flow rate of the turbidity removing means. That is, for example, by adjusting the opening degree of the flow rate adjustment valve provided in the raw water line L0, regardless of the clogging state of the clarification means 11, the raw water at a flow rate lower than the maximum water flow rate Q max is always removed by the clarification means. 11 can be supplied.

10 水処理装置
12 ろ過手段
13 透過水流量計
14 定流量弁
15 排水流量計
16 手動弁
17 差圧測定手段
17a 第1の圧力計
17b 第2の圧力計
20 透過水流量制御機構
21 加圧ポンプ
22 透過水流量制御部
30 排水流量制御機構
31 流量調整弁
32 排水流量制御部
40 閉塞判定部
L0 原水ライン
L1 供給ライン
L2 透過水ライン
L3 濃縮水ライン
L4 排水ライン
L5 還流水ライン
REFERENCE SIGNS LIST 10 water treatment equipment 12 filtration means 13 permeate flow meter 14 constant flow valve 15 drain flow meter 16 manual valve 17 differential pressure measuring means 17a first pressure gauge 17b second pressure gauge 20 permeate flow rate control mechanism 21 pressure pump 22 Permeated water flow rate control unit 30 Waste water flow rate control mechanism 31 Flow rate adjustment valve 32 Waste water flow rate control unit 40 Blockage determination unit L0 Raw water line L1 Supply line L2 Permeated water line L3 Concentrated water line L4 Drainage line L5 Reflux water line

Claims (8)

水処理装置であって、
被処理水に含まれる懸濁物質を除去する除濁膜を有する除濁手段と、
前記除濁手段の膜間差圧を測定する差圧測定手段と、
前記除濁手段の通水流量を取得し、該取得した通水流量と、前記通水流量を取得したときに前記差圧測定手段により測定された前記膜間差圧とに基づいて、前記除濁手段の閉塞状態を表す指標として、前記膜間差圧が前記除濁手段に供給可能な被処理水の最大圧力に応じて予め設定された上限値を超えない範囲で最大になるときの前記除濁手段の通水流量である最大通水流量を算出する算出手段と、を有し、
前記除濁手段の閉塞状態に応じて変化する係数をα,βとしたとき、前記除濁手段の通水流量Qと膜間差圧ΔPとの関係を表す関係式は、ΔP=α×Q β で表され、
前記算出手段は、前記取得した通水流量と前記測定された膜間差圧とから、異なる閉塞状態ごとに前記除濁手段の通水流量と膜間差圧との関係を予め測定することで得られた計算式を用いて、前記係数α,βを決定し、該決定した係数α,βを含む前記関係式を用いて、前記上限値ΔP max に対応する前記最大通水流量Q max =(ΔP max /α) 1/β を算出する、水処理装置。
A water treatment device,
a turbidity removing means having a turbidity removing film for removing suspended solids contained in the water to be treated;
a differential pressure measuring means for measuring the transmembrane pressure of the clarification means;
Acquiring the water flow rate of the clarification means, and based on the acquired water flow rate and the transmembrane pressure difference measured by the differential pressure measuring means when the water flow rate was acquired, the removal As an index representing the blockage state of the turbidity means, the transmembrane differential pressure is maximized within a range that does not exceed an upper limit preset according to the maximum pressure of the water to be treated that can be supplied to the turbidity removal means. a calculation means for calculating a maximum water flow rate, which is the water flow rate of the turbidity removal means ;
When α and β are coefficients that change according to the clogged state of the clarification means, the relational expression representing the relationship between the water flow rate Q of the clarification means and the transmembrane pressure difference ΔP is ΔP=α×Q represented by β ,
The calculation means measures in advance the relationship between the water flow rate and the transmembrane pressure difference of the clarification means for each different blockage state from the acquired water flow rate and the measured transmembrane pressure difference. Using the obtained formula, the coefficients α and β are determined, and using the relational expression including the determined coefficients α and β, the maximum water flow rate Q max = (ΔP max /α) A water treatment device that calculates 1/β .
前記除濁手段の下流側に設けられ、前記除濁手段を通過した被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、
前記除濁手段と前記ろ過手段とを接続し、前記除濁手段を通過した被処理水を前記ろ過手段に供給する供給ラインと、
前記ろ過手段に接続され、前記ろ過手段からの透過水を流通させる透過水ラインと、
前記ろ過手段に接続され、前記ろ過手段からの濃縮水を流通させる濃縮水ラインと、
前記濃縮水ラインから分岐し、前記濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
前記透過水ラインを流れる透過水の流量を検出する第1の流量検出手段と、
前記排水ラインを流れる濃縮水の流量を検出する第2の流量検出手段と、を有し、
前記算出手段は、前記第1の流量検出手段による検出値と前記第2の流量検出手段による検出値との和を、前記除濁手段の通水流量として取得する、請求項1に記載の水処理装置。
Filtration means provided downstream of the turbidity removal means and having a reverse osmosis membrane or a nanofiltration membrane for separating the water to be treated that has passed through the turbidity removal means into permeated water and concentrated water;
a supply line that connects the clarification means and the filtration means and supplies the water to be treated that has passed through the clarification means to the filtration means;
a permeated water line connected to the filtering means for circulating the permeated water from the filtering means;
a concentrated water line connected to the filtering means and for circulating the concentrated water from the filtering means;
a drainage line branching from the concentrated water line and discharging a part of the concentrated water flowing through the concentrated water line to the outside;
a first flow rate detection means for detecting the flow rate of the permeate flowing through the permeate line;
a second flow rate detection means for detecting a flow rate of concentrated water flowing through the drainage line;
2. The water according to claim 1, wherein the calculation means acquires the sum of the detection value by the first flow rate detection means and the detection value by the second flow rate detection means as the water flow rate of the clarification means. processing equipment.
前記透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、
前記排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、前記排水ラインに設けられた流量調整弁と、前記第2の流量検出手段による検出値に基づいて、前記流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、を有し、
前記第2の流量制御手段の前記制御部は、前記透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記透過水ラインを流れる透過水の流量の割合である回収率の目標値と、前記第1の流量検出手段による検出値とに基づいて、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項に記載の水処理装置。
a first flow rate control means for adjusting the flow rate of the permeate flowing through the permeate line to a set flow rate;
Second flow rate control means for adjusting the flow rate of concentrated water flowing through the drainage line to a set flow rate, based on a flow rate adjustment valve provided in the drainage line and a value detected by the second flow rate detection means , and a second flow control means having a control unit that adjusts the opening degree of the flow control valve,
The control unit of the second flow control means controls the ratio of the flow rate of the permeate flowing through the permeate line to the sum of the flow rate of the permeate flowing through the permeate line and the flow rate of the concentrated water flowing through the drain line. 3. The water treatment apparatus according to claim 2 , wherein said set flow rate of concentrated water flowing through said drainage line is determined based on a target value of a recovery rate and a value detected by said first flow rate detection means.
前記第2の流量制御手段の前記制御部は、前記第1の流量検出手段による検出値を前記回収率の目標値で除した値から、前記第1の流量検出手段による検出値を減じた値を、前記排水ラインを流れる濃縮水の前記設定流量として決定する、請求項に記載の水処理装置。 The control unit of the second flow control means subtracts the value detected by the first flow rate detection means from the value obtained by dividing the value detected by the first flow rate detection means by the target value of the recovery rate. is determined as the set flow rate of the concentrated water flowing through the drainage line. 前記ろ過手段に供給される被処理水と前記ろ過手段からの透過水と前記ろ過手段からの濃縮水とのいずれかの水温を検出する水温検出手段を有し、
前記第2の流量制御手段の前記制御部は、前記水温検出手段で検出された前記水温に基づいて、前記ろ過手段の前記逆浸透膜またはナノろ過膜の膜面にシリカまたはカルシウムが析出しない最大の回収率を算出し、該算出した値を前記回収率の目標値として設定する、請求項またはに記載の水処理装置。
water temperature detecting means for detecting the water temperature of any one of the water to be treated supplied to the filtering means, the permeated water from the filtering means, and the concentrated water from the filtering means;
The control unit of the second flow rate control means controls the water temperature detected by the water temperature detection means to determine the maximum temperature at which silica or calcium does not precipitate on the membrane surface of the reverse osmosis membrane or nanofiltration membrane of the filtration means. The water treatment device according to claim 3 or 4 , wherein the recovery rate of is calculated, and the calculated value is set as the target value of the recovery rate.
前記算出手段は、前記透過水ラインを流れる透過水の前記設定流量と前記排水ラインを流れる濃縮水の前記設定流量との和を、前記最大通水流量と比較し、前記和が前記最大通水流量を上回る場合または上回ることが予測される場合、前記除濁手段の交換を促す警報を発するか、あるいは、前記第1の流量制御手段に前記透過水ラインを流れる透過水の前記設定流量を変更させる、請求項に記載の水処理装置。 The calculating means compares the sum of the set flow rate of the permeate flowing through the permeate line and the set flow rate of the concentrated water flowing through the drainage line with the maximum water flow rate, and the sum is the maximum water flow rate. When the flow rate exceeds or is predicted to exceed, an alarm prompting replacement of the clarification means is issued, or the set flow rate of the permeate flowing through the permeate water line is changed to the first flow control means. The water treatment device according to claim 5 , wherein 前記算出手段は、前記第1の流量制御手段に、前記透過水ラインを流れる透過水の前記設定流量を、現在の値から、前記最大通水流量から前記排水ラインを流れる濃縮水の前記設定流量を減じた値に変更させる、請求項に記載の水処理装置。 The calculation means causes the first flow rate control means to change the set flow rate of the permeate flowing through the permeate line from the current value to the set flow rate of the concentrated water flowing through the drainage line from the maximum water flow rate. 7. The water treatment device according to claim 6 , wherein the value is changed to a value that is less than . 第1の流量制御手段が、前記供給ラインに設けられ、該供給ラインを流れる被処理水の圧力を調整する圧力調整手段と、前記第1の流量検出手段による検出値に基づいて、前記圧力調整手段を制御する制御部と、を有する、請求項からのいずれか1項に記載の水処理装置。 A first flow rate control means is provided in the supply line, and pressure adjustment means for adjusting the pressure of the water to be treated flowing through the supply line, and the pressure adjustment based on a value detected by the first flow rate detection means. 8. The water treatment apparatus according to any one of claims 3 to 7 , comprising a control unit for controlling the means.
JP2019171684A 2019-09-20 2019-09-20 water treatment equipment Active JP7285748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171684A JP7285748B2 (en) 2019-09-20 2019-09-20 water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171684A JP7285748B2 (en) 2019-09-20 2019-09-20 water treatment equipment

Publications (2)

Publication Number Publication Date
JP2021045731A JP2021045731A (en) 2021-03-25
JP7285748B2 true JP7285748B2 (en) 2023-06-02

Family

ID=74877244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171684A Active JP7285748B2 (en) 2019-09-20 2019-09-20 water treatment equipment

Country Status (1)

Country Link
JP (1) JP7285748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346910B2 (en) 2019-05-28 2023-09-20 三菱電機ビルソリューションズ株式会社 How to measure clearance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018186A (en) 2017-07-21 2019-02-07 オルガノ株式会社 Membrane filtration device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570020B2 (en) * 1995-07-24 2004-09-29 東北電力株式会社 Membrane separation equipment for water treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019018186A (en) 2017-07-21 2019-02-07 オルガノ株式会社 Membrane filtration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346910B2 (en) 2019-05-28 2023-09-20 三菱電機ビルソリューションズ株式会社 How to measure clearance

Also Published As

Publication number Publication date
JP2021045731A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP4831480B2 (en) Membrane filtration system
JP7045814B2 (en) Membrane filtration device
JP6891121B2 (en) Water purification system and method
JP5067299B2 (en) Membrane filtration system and method of operating membrane filtration system
WO2012173988A1 (en) Control system for wastewater treatment plants with membrane bioreactors
JP3570020B2 (en) Membrane separation equipment for water treatment
WO2020152100A1 (en) Fouling type detection
JP2018167146A (en) Membrane filtration device
JP7285748B2 (en) water treatment equipment
CN108380051B (en) Stable energy-saving reverse osmosis system and control method thereof
JP6381007B2 (en) Membrane filtration device
JP5782931B2 (en) Water treatment method and water treatment apparatus
JP2020535961A (en) Multivariate automatic cross-flow filtration control
JP7181809B2 (en) Membrane filtration device
JP7106283B2 (en) Membrane filtration device
JP7017365B2 (en) Membrane filtration device
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP7045870B2 (en) Membrane filtration device
JP7289257B2 (en) MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF
JP7307665B2 (en) MEMBRANE FILTRATION DEVICE AND METHOD OF OPERATION THEREOF
JP7106395B2 (en) Membrane filtration device
JP7364451B2 (en) Water treatment equipment and water treatment equipment operation management method
JP2019000804A (en) Membrane separator
JP2023032684A (en) Membrane filtration apparatus
JP2007245104A (en) Method for detecting membrane damage in membrane filtration process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230523

R150 Certificate of patent or registration of utility model

Ref document number: 7285748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150