JP7285427B2 - ニッケル酸化鉱石の浸出処理方法 - Google Patents

ニッケル酸化鉱石の浸出処理方法 Download PDF

Info

Publication number
JP7285427B2
JP7285427B2 JP2019131004A JP2019131004A JP7285427B2 JP 7285427 B2 JP7285427 B2 JP 7285427B2 JP 2019131004 A JP2019131004 A JP 2019131004A JP 2019131004 A JP2019131004 A JP 2019131004A JP 7285427 B2 JP7285427 B2 JP 7285427B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
leaching
compartment
slurry
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019131004A
Other languages
English (en)
Other versions
JP2021014625A (ja
Inventor
範幸 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019131004A priority Critical patent/JP7285427B2/ja
Publication of JP2021014625A publication Critical patent/JP2021014625A/ja
Application granted granted Critical
Publication of JP7285427B2 publication Critical patent/JP7285427B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、ニッケル酸化鉱石の浸出処理方法に関し、特に、原料のニッケル酸化鉱石に水を加えて調製した鉱石スラリーに対して硫酸を添加して高温高圧下でニッケルを浸出させる浸出処理方法に関する。
ニッケル品位の低い低品位ニッケル酸化鉱石からニッケルやコバルト等の有価金属を回収する方法として、湿式製錬法が知られている。例えば特許文献1に示すように、低品位ニッケル酸化鉱石に水を加えて調製した鉱石スラリーに硫酸を添加し、高温高圧下で浸出処理する浸出工程を有する高圧酸浸出法(HPAL:High Pressure Acid Leach)が既に実用化されている。
上記のようにニッケル酸化鉱石を処理対象とする高圧酸浸出法では、該浸出工程で生成した浸出スラリーを固液分離して浸出液を回収する際に発生する浸出残渣は、最終的にスラリーの形態でテーリングダム(沈殿池)へ送液される。このため、実収率を向上させるには、該浸出残渣中のNi品位を低く管理することによって、下記式1で表されるNi浸出率を高く管理することが求められていた。
[式1]
Ni浸出率=(浸出工程への供給鉱石量×鉱石中Ni品位-浸出残渣発生量×浸出残渣中Ni品位)÷(浸出工程への供給鉱石量×鉱石中Ni品位)×100
上記した高温高圧下での浸出処理は、常温常圧下での浸出処理に比べてNiの浸出速度が著しく向上する。しかしながら、ニッケル酸化鉱石中にはNi、Coなどの有価金属のほか、Mg、Al、Fe、Cr等の不純物が含まれており、これら不純物成分も浸出される。NiやCoを浸出させるために必要な硫酸以外にこれら不純物の浸出用の硫酸が消費されてしまうため、経済的に好ましくない。
そこで、上記の硫酸の消費量を抑制しつつ高いNi浸出率を確保するため、例えば特許文献2には、低Mg鉱石を一次浸出として高温加圧下で硫酸浸出処理した後、得られた浸出スラリーを常温まで冷却してから、高Mg鉱石と接触させて二次浸出として常温常圧下で酸浸出処理する方法が提案されている。しかしながら、この方法は工程数が増加するため、高効率操業という観点では望ましくない。高温加圧下の硫酸浸出処理においてNi浸出率を向上させるには、反応温度を上昇させて反応速度を高めることが一般的に考えられるが、反応温度を上昇させるには蒸気の使用量が増加するため、経済的には好ましくなく、これ以外の手法が求められていた。
ところで、上記の高温加圧下の硫酸浸出処理においては、浸出液中の硫酸濃度が目標遊離硫酸濃度となるように、原料のニッケル酸化鉱石のニッケル含有率に対するマグネシウム含有率の比(Mg/Ni比)に応じて硫酸の供給量を調整する制御が行われることがある。この場合、例えば特許文献3、4に開示されているように、オートクレーブと称する内部が隔壁により複数の区画室に区画された横型円筒形状の圧力容器の最上流の区画室に硫酸を供給するのが一般的である。なお、近年、原料のニッケル酸化鉱石は、Mgに代表される不純物の品位が上昇する傾向にあり、これに伴い硫酸の添加量も増加する傾向にある。
特開2005-350766号公報 特表2003-514110号公報 特開2019-035113号公報 特開2018-145486号公報
上記のように、オートクレーブの最上流の区画室のみに硫酸を供給する場合、局所的な酸濃度の上昇や水と硫酸の接触による局所的な発熱により設備損耗が激しくなることがあった。一般的にはオートクレーブ本体や硫酸の供給管はチタン材が用いられるが、上記硫酸による局所的な損耗から設備を保護するため、タンタル材を使用したりチタン合金にグレードアップしたりすることがあり、設備コストが高くなることが問題になっていた。
本発明は上記の実情に鑑みてなされたものであり、原料のNi酸化鉱石に対して高温加圧下で硫酸浸出処理を行ってNiを含んだ浸出液を生成する浸出工程において、高いNi浸出率を効率良く安定的に得る方法を提供することを目的とする。
上記目的を達成するため、本発明に係る浸出処理方法は、隔壁により内部が3つ以上の複数の区画室に区画されたオートクレーブの最上流の区画室に原料のニッケル酸化鉱石に水を加えて調製した鉱石スラリーを装入し、最下流の区画室に向けて順次該鉱石スラリーを移送することで各区画室において高温高圧下で攪拌しながら硫酸により浸出処理を行うニッケル酸化鉱石の浸出処理方法であって、前記複数の区画室のうち最上流の区画室とこれに隣接する区画室のみに該硫酸を供給すべく、前記原料のニッケル酸化鉱石の組成に基づいて算出した硫酸の化学量論量に1.02~1.3倍の過剰率を乗じて硫酸の基準供給量を求め、該 し、該隣接する区画室に供給する硫酸の量は、該オートクレーブから抜き出される浸出スラリー中の遊離硫酸濃度が35~55g/Lの範囲となるように調整することを特徴とする。
本発明によれば、鉱石組成に変動が生じても、反応温度を過剰に上昇をさせることなく、高いNi浸出率を安定的に得ることができる。
本発明の実施形態に係る浸出処理方法が行われる浸出工程を含んだニッケル酸化鉱の湿式製錬方法の工程図である。 本発明の実施形態に係る浸出処理方法が行われるオートクレーブ及び硫酸添加設備を示す概略の構成図である。
以下、本発明の浸出処理方法の実施形態について詳細に説明する。先ず、本発明の実施形態の浸出処理方法を含んだニッケル酸化鉱石の湿式製錬方法について、図1を参照しながら説明する。なお、本明細書において、「X~Y」(X、Yは任意の数値)と表現する場合、特にことわらない限り「X以上Y以下」であることを意味する。
1.ニッケル酸化鉱石の湿式製錬方法
この図1の工程図に示すニッケル酸化鉱石の湿式製錬方法は、高圧酸浸出法(HPAL法)を用いた湿式製錬方法であり、ニッケル酸化鉱石に水を加えて調製した鉱石スラリーに硫酸を添加して高温高圧下で浸出処理を施すことで該ニッケル酸化鉱石からニッケル及びコバルトを浸出させる浸出工程S1と、浸出工程S1で得た浸出スラリーから浸出残渣を分離除去してニッケル及びコバルトを含む浸出液を回収する固液分離工程S2と、該浸出液のpHを調整することで生成した浸出液中の不純物元素からなる中和澱物をスラリーの形態で分離除去して中和終液としての母液を得る中和工程S3と、該母液に硫化水素ガス等の硫化剤を添加することにより、ニッケル及びコバルトを含む混合硫化物を生成する硫化工程S4とを有する。以下、各工程について詳細に説明する。
1.1浸出工程
浸出工程S1では、原料のニッケル酸化鉱石に水を加えて調製した鉱石スラリーを硫酸と共にオートクレーブに装入し、温度240~260℃程度、圧力3~5MPa程度の高温高圧条件下で攪拌しながら浸出処理を行う。これにより、浸出残渣と浸出液とからなる浸出スラリーが生成される。
上記のニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が用いられる。ラテライト鉱はニッケルの含有量が、通常0.8~2.5質量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含まれている。また、ラテライト鉱は鉄の含有量が10~50質量%であり、主として3価の水酸化物(ゲーサイト)の形態を有しているが、一部2価の鉄がケイ苦土鉱物に含まれている。
浸出工程S1においては、例えば、下記式2~式4で表される浸出反応と、下記式5~式6で表される高温熱加水分解反応とが生じる。これにより、ニッケル、コバルト等の硫酸塩としての浸出と、浸出した硫酸鉄のヘマタイトとしての固定化が行われる。ただし、鉄イオンの固定化は完全には進行しない。このため、浸出工程S1で得られる浸出スラリーの液相部分には、ニッケル、コバルト等の他に2価と3価の鉄イオンが通常含まれている。なお、この浸出工程S1では、次工程の固液分離工程S2で生成される、ヘマタイトを含む浸出残渣のろ過性の観点から、得られる浸出液のpHが0.1~1.0となるように調整することが好ましい。
「浸出反応」
[式2]
MO+HSO→MSO+H
(式中Mは、Ni、Co、Fe、Zn、Cu、Mg、Cr、Mn等を表す。)
[式3]
2Fe(OH)+3HSO→Fe(SO)+6H
[式4]
FeO+HSO→FeSO+H
「高温熱加水分解反応」
[式5]
2FeSO+HSO+1/2O→Fe(SO)+H
[式6]
Fe(SO)+3HO→Fe+3HSO
上記オートクレーブに装入する鉱石スラリーのスラリー濃度は、特に限定するものではないが、浸出処理により得られる浸出スラリーのスラリー濃度が15~45質量%になるように調製することが好ましい。また、オートクレーブに装入する硫酸の供給量は、特に限定するものではなく、原料のニッケル酸化鉱石に含まれる鉄が浸出されるような過剰量が用いられる。具体的には、原料のニッケル酸化鉱石1トン当りの硫酸の添加量は、300~400kg程度が好ましい。
硫酸の添加量を上記の範囲内にすることで、浸出スラリー中の遊離硫酸濃度を好適な値にすることができる。ここで遊離硫酸濃度とは、浸出処理終了時の浸出スラリー中の遊離硫酸の濃度であり、特に限定するものではないが、25~55g/L程度が好ましく、35~55g/L程度がより好ましい。この程度の遊離硫酸濃度となるように硫酸の添加量を調整することで、マグネシウムを含むニッケル酸化鉱石から高いNi浸出率でニッケルを浸出させることが可能になる。また、上記の遊離硫酸濃度であれば、真密度の高い浸出残渣を安定的に生成することができるので、後工程の固液分離工程S2において浸出スラリーの固液分離性を高めることも可能になる。
1.2固液分離工程
固液分離工程S2では、上記浸出工程S1で生成した浸出スラリーを固液分離することで浸出残渣を除去し、ニッケル及びコバルトを含む浸出液を回収する。この固液分離工程S2では、シックナー等の固液分離装置に浸出スラリーを洗浄液と共に導入し、これらを混合した後に固液分離処理するのが好ましい。例えば低速回転するレーキを備えた沈殿槽からなるシックナーの場合は、該沈殿槽に導入された浸出スラリーは洗浄液により希釈された後、浸出スラリー中の浸出残渣が沈殿槽内で重力沈降し、底部中央から濃縮スラリーの形態で抜き出される。これにより、浸出残渣に付着するニッケル分をその希釈の度合に応じて減少させることができる。なお、実操業では、上記の機能を持つシックナーを複数基連続に連結し、最も上流側と最も下流側のシックナーにそれぞれ浸出スラリー及び洗浄液を導入することで多段洗浄しながら重力沈降分離を行うことにより、ニッケル及びコバルトの回収率を高めることができる。
1.3中和工程
中和工程S3では、上記固液分離工程S2で回収した浸出液に対して、その酸化を抑制しながら、pHが4以下となるように酸化マグネシウムや炭酸カルシウム等の中和剤を添加する。これにより、3価の鉄を含む中和澱物が生成される。この中和澱物を含むスラリーを好適にはシックナーに導入して重力沈降分離を行うことにより、ニッケル回収用の母液(中和終液)をオーバーフローにより回収することができる。
このように、中和工程S3では浸出液の中和処理を行うことにより、浸出工程S1で過剰に添加した硫酸を中和して中和終液を生成すると共に、浸出液中に残留する3価の鉄イオンやアルミニウムイオン等の不純物を中和澱物として除去することができる。なお、上記シックナーの底部から濃縮スラリーの形態で抜き出される中和澱物は、必要に応じて固液分離工程S2にリサイクルすることができる。これにより、該中和澱物に含まれるニッケルを効果的に回収することができる。
1.4硫化工程
硫化工程S4では、上記中和工程S3において回収したニッケル回収用の母液としての中和終液を加圧された反応槽に導入し、ここに硫化水素ガス等の硫化剤を吹き込んで硫化反応を生じさせる。これにより、ニッケル及びコバルトを含む混合硫化物を生成させる。この混合硫化物を含んだスラリーを固液分離することで該混合硫化物を回収する。その際、液相側にはニッケル濃度を低い水準で安定させた、硫化後の液体である貧液が排出される。この固液分離には、シックナー等の沈降分離装置を用いるのが好ましく、この場合は、シックナー底部から上記混合硫化物が回収され、該貧液はシックナーの上端部からオーバーフローにより排出される。なお、上記の中和終液中に亜鉛が含まれる場合は、この硫化工程S4の前に中和終液を微加圧された反応槽に導入し、ここに硫化剤を導入することで該亜鉛を硫化物として選択的に分離除去してもよい。
2.オートクレーブ及び硫酸添加設備
次に、上記の浸出工程S1において高温高圧下でニッケル酸化鉱石の浸出処理を行うオートクレーブ、及び該オートクレーブに硫酸を導入する硫酸添加設備について図2を参照しながら説明する。図2に示すように、オートクレーブ1は、両端部に半球状又は皿形形状の鏡板を有する略円筒状の圧力容器をその中心軸が水平方向を向くように据付けられた横型反応容器からなり、その内部が該中心軸に垂直な面を有する6枚の隔壁1a~1fによって7つの区画室2a~2gに区画されている。
上記の7つの区画室2a~2gには、7基の攪拌機3a~3gがそれぞれ設置されており、区画室2a~2g内のスラリーをそれぞれ攪拌できるようになっている。なお、区画室の数は3つ以上であればよく、上記7つに限定されるものではない。上記の7つの区画室2a~2gのうち、最上流の第1区画室2aには、原料の鉱石スラリーを供給するスラリー供給管4、及び液状の硫酸を供給する第1供給管5aが接続している。また、該第1区画室2aに隣接する第2区画室2bには、液状の硫酸を供給する第2供給管5bが接続している。更に、最下流の区画室2gには、該浸出処理により生成した浸出スラリーを排出するスラリー排出管6が接続している。
上記の第1供給管5a、及び第2供給管5bの上流側に、硫酸添加設備10が設けられている。この硫酸添加設備10は、液状の硫酸を貯留する硫酸供給槽11と、該硫酸供給槽11の底部から抜出管12を介して抜き出された液状の硫酸を昇圧する例えばダイヤフラムポンプからなる第1及び第2硫酸供給ポンプ13a、13bとから構成される。抜出管12は途中で2本に分岐しており、これら2本の分岐管に上記2基の第1及び第2硫酸供給ポンプ13a、13bがそれぞれ設けられている。なお、抜出管12は上記の途中で分岐する構造に限定されるものではなく、硫酸供給槽11の底部に2本の抜出管が接続する構造でもよい。
かかる構成により、オートクレーブ1の最上流の第1区画室2aには、スラリー供給管4から供給される原料の鉱石スラリーに加えて、硫酸供給槽11から抜出管12を介して抜き出された後、第1硫酸供給ポンプ13aで昇圧された硫酸が第1供給管5aから供給される。この第1区画室2aにおいて所定の滞留時間の間滞留する鉱石スラリーは、攪拌機3aで攪拌されながら高温加圧下で硫酸により浸出処理が施された後、隔壁1aの上端部をオーバーフローして下流側に隣接する第2区画室2bに移送される。
この第2区画室2bには上記第1区画室2aと同様に、硫酸供給槽11から抜出管12を介して抜き出された後、第2硫酸供給ポンプ13bで昇圧された硫酸が第2供給管5bから供給される。そして、上記第1区画室2aと同様に、この第2区画室2b内を滞留する鉱石スラリーも、攪拌機3bで攪拌されながら高温加圧下で硫酸により浸出処理が施された後、隔壁1bの上端部をオーバーフローして下流側に隣接する第3区画室2cに移送される。以降、硫酸の添加がないことを除いて上記と同様の浸出処理とオーバーフローによる移送が最下流の第7区画室2gまで順次行われる。
上記のようにして、最上流の第1区画室2aから最下流の第7区画室2gに向かって鉱石スラリーが移送される過程で有価金属の浸出が徐々に進行し、浸出スラリーが生成される。この浸出スラリーは、最下流の第7区画室2gにおいてスラリー排出管6を介して抜き出され、後工程の固液分離工程S2に送られる。なお、図2のオートクレーブ1では、第1区画室2a及び第2区画室2bの攪拌機3a、3bのみが2段インペラーになっているが、全ての区画室2a~2gの攪拌機3a~3gを同一仕様のインペラーにしてもよい。
3.第1区画室及び第2区画室への硫酸の供給比率
上記したように、本発明の実施形態の浸出処理方法では、オートクレーブ1の第1区画室2aと第2区画室2bに硫酸を供給しており、それらの供給比率は硫酸添加設備10で調整できるようになっている。これにより、第1区画室2a及び第2区画室2bへの各々の硫酸供給量を最適化することができ、高いNi浸出率を安定的に確保することができる。具体的に説明すると、上記浸出工程S1におけるNi、Mg、及びAlの浸出反応は下記式7~式9のように表すことができる。
[式7]
NiO+HSO=NiSO+H
[式8]
MgO+HSO=MgSO+H
[式9]
3Al+9HSO+5HO=3Al(SO)+14H
=2(Al(SO)(OH)・2HO)+5HSO
この場合、オートクレーブ1に供給する硫酸濃度が低いと、金属のイオン化傾向(Mg>Al(>Fe)>Ni)からも分かるように、上記式8や式9の反応が優先的に進行し、上記式7の反応が阻害される。その結果、Ni浸出率が低下すると考えられる。すなわち、遊離硫酸はMgやAlの溶解に主に消費され、該遊離硫酸濃度が見掛け上、上昇しない状態になる。
そこで、原料のニッケル酸化鉱石に含まれるNi及びCoに加えて、Mg及びAlを浸出するのに必要な硫酸の化学量論量を上記式7~9などから求め、浸出スラリーに遊離硫酸が含まれるようにするため、上記にて求めた化学量論量に好ましくは1.02~1.3倍程度の過剰率を乗じて基準供給量を求める。そして、オートクレーブ1の第1区画室2aには、該基準供給量の好ましくは3/5~4/5程度を一定の供給量で供給すると共に、第2区画室2bへの硫酸の供給量は、上記基準供給量の1/5~2/5程度をベースとし、原料のニッケル酸化鉱石の組成の変動や、オートクレーブ1から抜き出される浸出スラリー中の遊離硫酸濃度の変動に応じて適宜調整する。これにより、第1区画室2aの遊離硫酸濃度を素早く上げることができ、優先的に進む反応性の高いMg、Alの浸出に加え、早い段階でNiの浸出を開始させることができる。その結果、オートクレーブ1内での滞留時間内に浸出されるNiを増加させることができ、Ni浸出率を効果的に向上させることができる。
また、高温高圧下では、上記式9に示すように、原料のニッケル酸化鉱石中に酸化物として存在するAlは、硫酸にて浸出された後、浸出に使用された硫酸のうちの約55%の硫酸を加水分解により再生成しつつ、アルナイトAl(SO)(OH)・2HOとして析出する。この反応は上記式8のMgの溶解に比べて遅いことから、オートクレーブ1の第2区画室2b以降では、上記の析出したアルナイト近傍において上記の再生成した硫酸によって硫酸濃度が上昇すると考えられ、これはNi浸出に有効な条件となる。よって、第2区画室2bへの硫酸の供給は、Ni浸出、Mg溶解及びAl溶解で消費された硫酸を補填することを主たる目的とする。これにより、浸出液中の遊離硫酸濃度を所定の値以上に保ちつつNiの浸出を継続させることが可能となる。
以上説明したように、本発明の実施形態の浸出処理方法は、原料のニッケル酸化鉱石に対して硫酸を添加して高温加圧下で浸出処理を施すニッケル湿式製錬法において、内部が隔壁で複数の区画室に仕切られ、該隔壁をオーバーフローすることにより各区画室の滞留時間を確保しながら浸出処理する方式のオートクレーブの第1及び第2区画室に供給比率が調整された硫酸を供給することで高いNi浸出率を安定的に確保することが可能になる。
以上、本発明の浸出処理方法の実施形態について説明を行ったが、本発明は上記実施形態に限定されるものではなく、本発明の主旨から逸脱しない範囲内で種々の変形例や変更例を含むことができる。すなわち、本発明の技術的範囲は、特許請求の範囲及びその均等の範囲に及ぶものである。
<実施例1>
粉砕したニッケル酸化鉱石に水を加えて調製したスラリー濃度約40質量%の鉱石スラリーを、250m/hの流量で図2に示すような7つの区画室2a~2gに内部が区画されたオートクレーブ1の第1区画室2aに供給し、各区画室において圧力約4500kPaG、温度約250℃の高温高圧条件下で攪拌しながら硫酸により浸出処理を行った。
この硫酸のオートクレーブ1への基準供給量は、上記ニッケル酸化鉱石のNi品位、Co品位、及びMg品位に基づいて上記式2の化学量論量関係から算出した値に過剰率として1.1倍を乗ずることで求め、その80%に相当する14.5m/hをオートクレーブ1の第1区画室2aに供給し、第2区画室2bには上記基準供給量の20%である3.5m/hをベースにしてオートクレーブ1から抜き出される浸出液中の遊離硫酸濃度が約45g/Lとなるように硫酸供給量を調整した。その結果、Ni浸出率の9日間の平均値は95.1%になった。なお、この時使用したニッケル酸化鉱石は各種鉱石種をブレンドしたものであり、Ni品位が1.05%、Mg品位が1.1%であった。
<実施例2>
オートクレーブ1の第1区画室2aへの硫酸の供給量を基準供給量の80%に代えて65%に相当する11.7m/hにし、第2区画室2bには該基準供給量の35%に相当する6.3m/hをベースにて調整した以外は上記実施例1と同様にして浸出処理を行った。その結果、Ni浸出率の9日間の平均は94.4%となった。上記実施例1及び2の結果を下記表1にまとめた。
Figure 0007285427000001
上記表1の結果から、3以上の区画室を内部に有するオートクレーブを用いて高温加圧下で硫酸によりニッケル酸化鉱石を浸出処理する場合において、該硫酸を第1区画室及び第2区画室に供給することで、高いNi浸出率が得られることが分かる。なお、上記浸出処理後にオートクレーブの内部を開放点検したところ、硫酸による局所的な損耗は認められなかった。
S1 浸出工程
S2 固液分離工程
S3 中和工程
S4 硫化工程
1 オートクレーブ
1a~1f 隔壁
2a~2g 区画室
3a~3g 攪拌機
4 スラリー供給管
5a 第1供給管
5b 第2供給管
6 スラリー排出管
10 硫酸添加設備
11 硫酸供給槽
12 抜出管
13a 第1硫酸供給ポンプ
13b 第2硫酸供給ポンプ

Claims (2)

  1. 隔壁により内部が3つ以上の複数の区画室に区画されたオートクレーブの最上流の区画室に原料のニッケル酸化鉱石に水を加えて調製した鉱石スラリーを装入し、最下流の区画室に向けて順次該鉱石スラリーを移送することで各区画室において高温高圧下で攪拌しながら硫酸により浸出処理を行うニッケル酸化鉱石の浸出処理方法であって、前記複数の区画室のうち最上流の区画室とこれに隣接する区画室のみに該硫酸を供給すべく、前記原料のニッケル酸化鉱石の組成に基づいて算出した硫酸の化学量論量に1.02~1.3倍の過剰率を乗じて硫酸の基準供給量を求め、該基準供給量の3/5~4/5を該最上流の区画室に一定の供給量で供給し、該隣接する区画室に供給する硫酸の量は、該オートクレーブから抜き出される浸出スラリー中の遊離硫酸濃度が35~55g/Lの範囲となるように調整することを特徴とするニッケル酸化鉱石の浸出処理方法。
  2. 前記オートクレーブ内の反応温度を240~260℃に維持することを特徴とする、請求項に記載のニッケル酸化鉱石の浸出処理方法。
JP2019131004A 2019-07-16 2019-07-16 ニッケル酸化鉱石の浸出処理方法 Active JP7285427B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131004A JP7285427B2 (ja) 2019-07-16 2019-07-16 ニッケル酸化鉱石の浸出処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131004A JP7285427B2 (ja) 2019-07-16 2019-07-16 ニッケル酸化鉱石の浸出処理方法

Publications (2)

Publication Number Publication Date
JP2021014625A JP2021014625A (ja) 2021-02-12
JP7285427B2 true JP7285427B2 (ja) 2023-06-02

Family

ID=74531785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131004A Active JP7285427B2 (ja) 2019-07-16 2019-07-16 ニッケル酸化鉱石の浸出処理方法

Country Status (1)

Country Link
JP (1) JP7285427B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514110A (ja) 1999-11-03 2003-04-15 ビーエイチピー ミネラルズ インターナショナル インコーポレイテッド 含ニッケルラテライト鉱石の浸出法
JP2013241668A (ja) 2012-04-26 2013-12-05 Sumitomo Metal Mining Co Ltd 高圧酸浸出工程におけるオートクレーブへの原料スラリーと硫酸の添加方法及びオートクレーブ
JP2018145486A (ja) 2017-03-07 2018-09-20 住友金属鉱山株式会社 硫酸添加設備
JP2019035113A (ja) 2017-08-16 2019-03-07 住友金属鉱山株式会社 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
JP2019085620A (ja) 2017-11-08 2019-06-06 住友金属鉱山株式会社 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098870A (en) * 1977-07-22 1978-07-04 Amax Inc. Acid leaching of nickeliferous oxide ores with minimized scaling
US4399109A (en) * 1982-02-26 1983-08-16 Compagnie Francaise D'entreprises Minieres, Metallurgiques Et D'investissements Control of silica scaling during acid leaching of lateritic ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514110A (ja) 1999-11-03 2003-04-15 ビーエイチピー ミネラルズ インターナショナル インコーポレイテッド 含ニッケルラテライト鉱石の浸出法
JP2013241668A (ja) 2012-04-26 2013-12-05 Sumitomo Metal Mining Co Ltd 高圧酸浸出工程におけるオートクレーブへの原料スラリーと硫酸の添加方法及びオートクレーブ
JP2018145486A (ja) 2017-03-07 2018-09-20 住友金属鉱山株式会社 硫酸添加設備
JP2019035113A (ja) 2017-08-16 2019-03-07 住友金属鉱山株式会社 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
JP2019085620A (ja) 2017-11-08 2019-06-06 住友金属鉱山株式会社 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法

Also Published As

Publication number Publication date
JP2021014625A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
JP5572928B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP6213586B2 (ja) 硫化処理方法、硫化物の製造方法、及びニッケル酸化鉱石の湿式製錬方法
CN107429317B (zh) 镍和钴的混合硫化物的制造方法、镍氧化物矿石的湿式冶炼方法
WO2018155114A1 (ja) 硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP5359989B2 (ja) 生成硫化物の付着防止方法
AU2014227269A1 (en) Hydrometallurgical plant for nickel oxide ore and method for operating said hydrometallurgical plant
JP5892301B2 (ja) ニッケル酸化鉱石の湿式製錬における中和方法
WO2016194709A1 (ja) 遊離酸除去設備、遊離酸除去方法、ニッケル及びコバルト混合硫化物の製造方法
WO2019035319A1 (ja) 浸出処理方法、ニッケル酸化鉱石の湿式製錬方法
US10227675B2 (en) Wet smelting method for nickel oxide ore
JP7285427B2 (ja) ニッケル酸化鉱石の浸出処理方法
JP5500208B2 (ja) 中和処理方法
JP7293873B2 (ja) ニッケル硫化物の製造方法、ニッケル酸化鉱石の湿式製錬方法
JP7200698B2 (ja) ニッケル酸化鉱石の湿式製錬方法
JP5804147B2 (ja) ニッケル酸化鉱石の湿式製錬プラント
JP5652460B2 (ja) 中和処理方法及び中和剤
JP7277074B2 (ja) 残存硫化水素の除去方法及び硫化反応容器
JP6696189B2 (ja) 残存硫化水素の除去方法
JP2017061733A (ja) ニッケル酸化鉱石の湿式製錬方法、浸出処理設備
JP2020180314A (ja) 水硫化ナトリウム溶液の製造方法、硫化処理方法、ニッケル硫化物の製造方法、及びニッケル酸化鉱石の湿式製錬方法
JP7247729B2 (ja) ニッケル酸化鉱石の湿式製錬において発生する貧液の中和処理方法
JP2022150719A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2019157161A (ja) ニッケル酸化鉱石の湿式製錬方法
JP2019026868A (ja) 残留硫化水素の除去方法
JP2019171315A (ja) 湿式ニッケル製錬で生成される硫化後液の硫化水素除去方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7285427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150