JP7277744B2 - Hot Diagnosis Method for Refractories - Google Patents

Hot Diagnosis Method for Refractories Download PDF

Info

Publication number
JP7277744B2
JP7277744B2 JP2019127400A JP2019127400A JP7277744B2 JP 7277744 B2 JP7277744 B2 JP 7277744B2 JP 2019127400 A JP2019127400 A JP 2019127400A JP 2019127400 A JP2019127400 A JP 2019127400A JP 7277744 B2 JP7277744 B2 JP 7277744B2
Authority
JP
Japan
Prior art keywords
refractory
profile
dimension
remaining
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019127400A
Other languages
Japanese (ja)
Other versions
JP2021011993A (en
Inventor
雄史 筒井
光昭 久恒
誠 友瀬
匡輝 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019127400A priority Critical patent/JP7277744B2/en
Publication of JP2021011993A publication Critical patent/JP2021011993A/en
Application granted granted Critical
Publication of JP7277744B2 publication Critical patent/JP7277744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、耐火物の熱間診断方法に関し、特に、容器内部に内張りされた耐火物の残寸を高温下で診断する技術に関する。 TECHNICAL FIELD The present invention relates to a method for diagnosing a refractory while it is hot, and more particularly to a technique for diagnosing the remaining dimension of a refractory lined inside a container at a high temperature.

鉄鋼精錬容器では、鉄皮の内面に高温に耐える耐火物が内張りされているが、スラグへの溶損や熱衝撃による割れ等が起因して、使用回数を重ねることで耐火物の残寸が減少していく。耐火物の異常損耗や残寸減少に気付かずに操業を継続した場合、耐火物が完全に消失して鉄皮が溶損・破孔し、内容物である溶融金属やスラグが漏れ出す可能性があるため、適切なタイミングで耐火物の補修や交換作業を実施することが必要になる。 In steel smelting vessels, the inner surface of the steel shell is lined with refractories that can withstand high temperatures. Decreasing. If the operation is continued without noticing abnormal wear of the refractory or reduction of the remaining size, the refractory may completely disappear, the steel shell may be melted and ruptured, and the molten metal and slag contained in it may leak out. Therefore, it is necessary to repair or replace refractories at appropriate timing.

特に、鉄鋼精錬で用いられる真空脱ガス装置は、上部槽・下部槽・浸漬管に分かれており、このうち溶鋼を環流処理する下部槽に内張りされた耐火物が特に激しく損傷を生じる。しかしながら、真空脱ガス装置は密閉容器であるため、処理直後の高温下では耐火物を目視によって点検可能な箇所が少なく、耐火物の熱間診断が特に困難な設備と言える。 In particular, the vacuum degassing equipment used in iron and steel refining is divided into an upper tank, a lower tank, and a immersion pipe. Of these, the refractory lining the lower tank, in which the molten steel is refluxed, is particularly severely damaged. However, since the vacuum degassing apparatus is a closed container, there are few locations where the refractory can be visually inspected under high temperatures immediately after treatment, and it can be said that hot diagnosis of the refractory is particularly difficult.

上記課題に対して、耐火物の残寸や状況を診断するために以下の手法が提案されている。例えば、特許文献1および特許文献2では固定式プロフィールメーターを用いて精錬容器内の耐火物残寸を測定する手法が提案されているが、容器内部に地金等が付着したことによって死角が発生した場合に測定ができない課題がある。真空脱ガス装置のように開口部が小さい設備の場合は、槽内の地金付着により死角が発生しやすく、容器外に設置されたプロフィールメーターのみによって安定して耐火物残寸を測定することは困難である。 To solve the above problems, the following methods have been proposed for diagnosing the remaining dimensions and conditions of refractories. For example, Patent Document 1 and Patent Document 2 propose a method of measuring the residual size of refractories in a refining vessel using a fixed profile meter. There is a problem that cannot be measured when In the case of equipment with small openings such as vacuum degassing equipment, blind spots are likely to occur due to adhesion of bare metal inside the tank. It is difficult.

特許文献3および特許文献4では真空脱ガス設備下部の浸漬管からカメラやレーザープロフィールメーターを挿入し点検する手法が提案されている。しかしこの方法では高温雰囲気中の下部槽内部に測定機器を挿入するため、熱負荷のために測定機器の寿命が短くなる課題がある。また、いくつもの駆動装置を組み合わせて槽内にレーザープロフィールメーターを挿入するため、レーザープロフィールメーター自体の位置に大きな誤差が生じ、測定したデータの精度が低いという課題もある。さらに、測定機器の移動や真空脱ガス槽自体の移動のための時間が必要になるため、点検頻度が限定されるという課題もある。 Patent Documents 3 and 4 propose a method of inspecting by inserting a camera or a laser profile meter from an immersion pipe at the bottom of the vacuum degassing equipment. However, in this method, since the measuring equipment is inserted inside the lower tank in a high-temperature atmosphere, there is a problem that the life of the measuring equipment is shortened due to the heat load. In addition, since the laser profile meter is inserted into the tank by combining a number of driving devices, there is a problem that the position of the laser profile meter itself has a large error, and the accuracy of the measured data is low. Furthermore, there is also the problem that the frequency of inspection is limited because it takes time to move the measuring equipment and the vacuum degassing tank itself.

一方、特許文献5および特許文献6では耐火物内部温度および鉄皮温度を測定し、間接的に槽内耐火物の残寸を把握する手法が提案されている。しかし、この方法では、下部槽の使用回数や処理時間・処理間隔などの稼働状況などによって温度がばらつき、予測残寸の精度が低いという課題がある。 On the other hand, Patent Literature 5 and Patent Literature 6 propose a method of measuring the internal temperature of the refractory and the temperature of the shell to indirectly grasp the remaining size of the refractory in the tank. However, this method has the problem that the accuracy of the predicted remaining dimension is low because the temperature varies depending on the number of times the lower tank is used and the operating conditions such as treatment time and treatment interval.

特開昭60-138407号公報JP-A-60-138407 特開2007-291435号公報JP 2007-291435 A 特開2006-299314号公報JP 2006-299314 A 特開平1-145514号公報JP-A-1-145514 特開2010-281515号公報JP 2010-281515 A 特開2013-147714号公報JP 2013-147714 A

本発明は上記課題を鑑みてなされたものであり、容器の外部に測定機器を配置することによって熱負荷を低減し測定頻度の制約を回避しながら、炉内に内張りされた耐火物の残寸を正確に把握することが可能な耐火物の熱間診断方法を提供することを課題とする。 The present invention has been made in view of the above problems. It is an object of the present invention to provide a hot diagnostic method for refractories that can accurately grasp the

本発明は以下の構成を要旨とする。
(1)鉄皮の内面に耐火物が内張りされた容器の外部に設置される一つ以上のレーザープロフィールメーターを用いて、前記容器内にレーザーを照射して前記耐火物のプロフィールを測定し、前記プロフィールに基づいて前記耐火物の残寸Aを算出する工程と、前記プロフィールの測定と同時に前記容器の外部から少なくとも前記鉄皮の表面温度を測定し、前記表面温度に基づいて前記耐火物の残寸Bを算出する工程と、を有し、前記プロフィールが測定可能であった場合には前記残寸Aを前記耐火物の残寸とし、前記プロフィールおよび前記表面温度がいずれも測定可能であった場合には、それぞれに基づいて算出された前記残寸Aと前記残寸Bとの差分を補正値として記録し、前記プロフィールが測定可能ではなく前記表面温度が測定可能であった場合には前記残寸Bを直近の前記補正値を用いて補正することによって前記耐火物の残寸を算出することを特徴とする、耐火物の熱間診断方法。
The gist of the present invention is the following configuration.
(1) Using one or more laser profile meters installed outside the container lined with the refractory on the inner surface of the steel shell, irradiating the container with a laser to measure the profile of the refractory, calculating the remaining dimension A of the refractory based on the profile; measuring the surface temperature of at least the steel shell from the outside of the container at the same time as measuring the profile; and calculating a remaining dimension B, wherein if the profile is measurable, the remaining dimension A is the remaining dimension of the refractory, and both the profile and the surface temperature are measurable. In this case, the difference between the remaining dimension A and the remaining dimension B calculated based on each is recorded as a correction value, and if the profile is not measurable and the surface temperature is measurable, A method for hot diagnostics of a refractory, wherein the residual dimension of the refractory is calculated by correcting the residual dimension B using the most recent correction value.

(2)前記残寸Bを算出する工程では、前記鉄皮の表面温度に加えて前記耐火物の表面温度を測定することを特徴とする、(1)に記載の耐火物の熱間診断方法。 (2) The method for hot diagnosis of a refractory according to (1), wherein in the step of calculating the remaining dimension B, the surface temperature of the refractory is measured in addition to the surface temperature of the steel shell. .

(3)前記容器は、鉄鋼精錬で用いられる真空脱ガス装置であり、前記レーザープロフィールメーターは、前記真空脱ガス装置の炉外上方に配置されて炉頂開口部から前記真空脱ガス装置の内部に向けてレーザーを照射することを特徴とする、(1)または(2)に記載の耐火物の熱間診断方法。 (3) The vessel is a vacuum degassing device used in steel refining, and the laser profile meter is arranged above the furnace outside the vacuum degassing device, and the inside of the vacuum degassing device is measured from the top opening of the vacuum degassing device. The method for hot diagnosis of a refractory according to (1) or (2), characterized in that the laser is directed toward.

本発明によれば、プロフィールメーターを炉外に設置することでプロフィールメーターへの熱負荷が軽減されて測定精度が向上する。さらに、プロフィール測定と同時に鉄皮温度の測定を実施し、プロフィールによる正確な残寸と鉄皮温度よる予測残寸との差分を補正値として記録しておくことで、地金付着などによって死角が生じプロフィール測定ができなかった場合にも鉄皮温度による予測残寸を補正することで正確な残寸を把握できる。 According to the present invention, by installing the profile meter outside the furnace, the heat load on the profile meter is reduced and the measurement accuracy is improved. Furthermore, by measuring the shell temperature at the same time as the profile measurement, and recording the difference between the accurate remaining dimension from the profile and the estimated remaining dimension from the shell temperature as a correction value, blind spots due to adhesion of bare metal etc. can be recorded. Even if the profile cannot be measured due to the deformation, the correct residual dimension can be grasped by correcting the predicted residual dimension based on the steel shell temperature.

RH設備の下部槽耐火物の構造を示す図である。It is a figure which shows the structure of the lower tank refractory of RH equipment. RH設備外観とプロフィールメーター設置例を示す図である。It is a figure which shows the RH equipment external appearance and an example of a profile meter installation. RH設備の使用回数と下部槽耐火物残寸推移を示すグラフである。It is a graph which shows the frequency|count of use of RH equipment, and a lower tank refractory residual dimension transition. 従来技術における下部槽耐火物残寸測定例を示すグラフである。It is a graph which shows the lower tank refractory residual dimension measurement example in a prior art.

図1は、本発明の実施形態に係る耐火物の熱間診断方法が適用される容器の壁構造(RH下部槽側壁)を示す図である。図示された例において、容器1は、鉄皮2の内面に背面断熱材3を介して耐火物4が内張りされた壁構造を有し、耐火物4は鉄皮側の永久耐火物4Aと内側のウェア耐火物4Bとを含む。 FIG. 1 is a view showing the wall structure (RH lower tank side wall) of a container to which the hot diagnosis method for refractories according to the embodiment of the present invention is applied. In the illustrated example, the container 1 has a wall structure in which the inner surface of the steel shell 2 is lined with a refractory 4 via a back heat insulating material 3, and the refractory 4 is a permanent refractory 4A on the steel shell side and an inner and wear refractories 4B.

本実施形態では、容器1の外部に設置される一つ以上のレーザープロフィールメーターを用いてウェア耐火物の残寸(残寸A)を測定する。レーザープロフィールメーターはウェア耐火物のプロフィールおよび鉄皮の少なくとも一部のプロフィールを測定する。設計図面などから鉄皮形状とウェア耐火物との位置関係が既知であれば、上記のプロフィール測定結果から鉄皮プロフィールを基準としてウェア耐火物の残寸を算出することができる。ここで、レーザープロフィールメーターは、耐火物の損耗が激しく残寸を測定する必要がある部位を観察可能な位置に設置する。装置の取り合い上、そのような位置への固定設置が困難な場合でも、例えば容器内にレーザープロフィールメーターを挿入する場合に比べて移動時間は大幅に短くなる。また、レーザープロフィールメーターで測定するウェア耐火物の残寸値は、その都度鉄皮プロフィールを基準として算出されるので、レーザープロフィールメーターを固定設置しない場合であっても良好な精度で測定できる。 In this embodiment, one or more laser profile meters installed outside the container 1 are used to measure the residual dimension (remaining dimension A) of the wear refractory. A laser profile meter measures the profile of the wear refractory and the profile of at least a portion of the steel skin. If the positional relationship between the shell shape and the wear refractory is known from a design drawing or the like, the residual dimension of the wear refractory can be calculated from the above-described profile measurement results with the shell profile as a reference. Here, the laser profile meter is installed at a position where it is possible to observe the portion where the wear of the refractory is severe and the residual dimension needs to be measured. Even if it is difficult to fix the device in such a position due to equipment constraints, the travel time is much shorter than when a laser profilometer is inserted into the container, for example. In addition, since the residual dimension value of the wear refractory measured by the laser profile meter is calculated based on the steel shell profile each time, it can be measured with good accuracy even if the laser profile meter is not fixedly installed.

一方、温度測定による残寸の予測では、放射温度計、熱電対または光ファイバー等を用いて鉄皮または耐火物背面の温度を測定し、槽内の温度や耐火物の物性値などを用いて、下記の多層平板の熱流束Qを表す式1を用いてウェア耐火物の残寸を算出する。 On the other hand, in the prediction of remaining dimension by temperature measurement, the temperature of the steel shell or the back of the refractory is measured using a radiation thermometer, thermocouple, optical fiber, etc., and the temperature inside the tank and the physical properties of the refractory are used to The residual dimension of the wear refractory is calculated using Equation 1 representing the heat flux Q of the multi-layer flat plate below.

Figure 0007277744000001
Figure 0007277744000001

ここで、tはウェア耐火物稼働面の温度[K]、tはウェア耐火物背面および永久耐火物稼働面温度[K]、tは永久耐火物背面および背面断熱材稼働面温度[K]、tは背面断熱材背面および鉄皮温度[K]、tは大気の温度[K]、hは鉄皮-大気間の熱伝達係数[W/mK]、λはウェア耐火物の熱伝導率[W/mK]、λは永久耐火物の熱伝導率[W/mK]、λは背面断熱材の熱伝導率[W/mK]、lはウェア耐火物の厚み[mm]、lは永久耐火物の厚み[mm]、lは背面耐火物の厚み[mm]である。 Here, t1 is the temperature of the working surface of the wear refractory [K], t2 is the temperature of the back of the wear refractory and the working surface of the permanent refractory [K], and t3 is the temperature of the back of the permanent refractory and the back insulation working surface [K]. K], t 4 is the temperature of the back of the back insulation material and the steel shell [K], t 5 is the temperature of the atmosphere [K], h a is the heat transfer coefficient between the steel shell and the atmosphere [W / mK 2 ], λ 1 is Thermal conductivity of wear refractory [W/mK], λ 2 is thermal conductivity of permanent refractory [W/mK], λ 3 is thermal conductivity of back insulation [W/mK], l 1 is wear refractory The thickness of the object [mm], l2 is the thickness of the permanent refractory [mm], and l3 is the thickness of the back refractory [mm].

温度測定は、例えば特許文献5(特開2010-281515号公報)および特許文献6(特開2013-147714号公報)を参考に、冷却等の影響による温度ばらつきを抑制するために、処理終了後、ある程度の時間が経過してから測定を実施する。また、プロフィール測定によって求めたウェア耐火物の残寸と温度測定から算出したウェア耐火物残寸(予測残寸)との間に相違がある場合、2つの残寸の差を補正値として記録する。プロフィール測定の度に補正値を記録し、例えば地金付着の影響でプロフィール測定が困難な場合、予測残寸に直近のプロフィール測定のときに算出された補正値を加減することで、予測残寸の精度を向上させることが可能となる。 For temperature measurement, for example, referring to Patent Document 5 (Japanese Patent Application Laid-Open No. 2010-281515) and Patent Document 6 (Japanese Patent Application Laid-Open No. 2013-147714), in order to suppress temperature variations due to the influence of cooling, etc. , the measurement is performed after a certain amount of time has passed. In addition, if there is a difference between the residual dimension of the wear refractory obtained by profile measurement and the residual dimension of the wear refractory calculated from temperature measurement (predicted residual dimension), the difference between the two residual dimensions is recorded as a correction value. . The correction value is recorded each time the profile is measured. For example, if the profile measurement is difficult due to the influence of bare metal adhesion, the correction value calculated at the time of the most recent profile measurement is added or subtracted to the predicted residual dimension to obtain the predicted residual dimension. It is possible to improve the accuracy of

以下に真空脱ガス設備(RH)で本発明を適用した結果について説明する。図2に示す本実施例に係るRH設備の下部槽8は、図1に示したような鉄皮2、断熱材3、永久耐火物4Aおよびウェア耐火物4Bからなる壁構造を有する。RH設備では溶鋼鍋1基あたり20~40分間精錬処理を実施し、それを1ch(チャージ)とすると下部槽8の耐火物寿命は平均して400ch程度である。 The results of applying the present invention to a vacuum degassing facility (RH) will be described below. The lower tank 8 of the RH equipment according to this embodiment shown in FIG. 2 has a wall structure composed of the steel shell 2, the heat insulating material 3, the permanent refractory 4A and the wear refractory 4B as shown in FIG. In the RH facility, one molten steel ladle is subjected to refining for 20 to 40 minutes, which is 1 ch (charge).

上記のようなRH設備において、図2に示すように、天蓋6のOBランス装入孔5の上部にレーザープロフィールメーター11を設置し、10チャージごとに、処理終了の3分後に下部槽8の耐火物プロフィールを測定し残寸を求めた。ただし、図2に示すように上部槽7内に地金10が付着すると下部槽8の耐火物が死角に位置し、プロフィール測定はできない。 In the RH equipment as described above, as shown in FIG. The refractory profile was measured to determine the residual dimension. However, as shown in FIG. 2, if the base metal 10 adheres to the upper tank 7, the refractory material in the lower tank 8 is positioned in a blind spot, making profile measurement impossible.

その一方で、図2に示すように、プロフィール測定と同時に放射温度計12(A&D製AD5616)を用いて下部槽8の鉄皮温度およびウェア耐火物の稼働面温度の測定を、処理終了の3分後、すなわちプロフィール測定と同じタイミングで毎チャージ実施した。測温部位に関しては、下部槽8の側壁耐火物の3段目~5段目で溶鋼環流時の湯面高さに位置する部位が最も耐火物残寸が少ないので、当該部位の鉄皮温度を測定した。また、ウェア耐火物の稼働面温度は、浸漬管9から目視可能な範囲の側壁耐火物を放射温度計を用いて測温し、式1に代入した。なお、耐火物稼働面温度の測定が出来ない場合は、測定タイミングを統一することで稼働面温度に直近に測定した結果を当てはめることで、鉄皮温度測定のみで精度を維持しつつ耐火物残寸を算出することができる。ウェア耐火物、永久耐火物、断熱材それぞれの熱伝導率に実測値(ウェア耐火物:12[W/mK] 永久耐火物:1.2[M/mK] 断熱材:0.03[W/mK])を代入して、永久耐火物および断熱材の厚みは施工時から不変とした。大気温度は外気温の実測値を代入して、式1を用いてウェア残寸を算出した。また、10チャージごとのプロフィール測定が実施されたときは、算出した予測残寸の結果とプロフィール測定結果との差分を補正値として記録した。 On the other hand, as shown in FIG. 2, at the same time as the profile measurement, the temperature of the iron shell in the lower tank 8 and the temperature of the working surface of the wear refractory were measured using a radiation thermometer 12 (AD5616 manufactured by A&D). Minutes later, ie, at the same timing as the profile measurement, each charge was performed. Regarding the temperature measurement part, since the part located at the level of the molten steel recirculation in the third to fifth stages of the side wall refractory of the lower tank 8 has the smallest remaining refractory, was measured. In addition, the operating surface temperature of the wear refractory was measured by using a radiation thermometer on the side wall refractory within a range visible from the immersion tube 9 and substituted into Equation (1). If it is not possible to measure the temperature of the working surface of the refractory, by unifying the measurement timing and applying the result of the most recent measurement to the temperature of the working surface, it is possible to measure the refractory residue while maintaining accuracy only by measuring the temperature of the steel shell. dimensions can be calculated. Measured values for thermal conductivity of wear refractory, permanent refractory, and heat insulating material (wear refractory: 12 [W/mK] permanent refractory: 1.2 [M/mK] heat insulating material: 0.03 [W/ mK]) was substituted, and the thickness of the permanent refractory and insulation was assumed unchanged from the time of construction. For the atmospheric temperature, the actual measurement value of the outside air temperature was substituted, and the remaining size of the wear was calculated using Equation 1. Further, when the profile measurement was performed every 10 charges, the difference between the calculated predicted residual dimension and the profile measurement result was recorded as a correction value.

図3に使用回数と耐火物残寸の推移を示す。プロフィール測定寸法を残寸A、測温からの予測残寸を残寸Bとする。残寸はプロフィール測定寸法の初期値を100として指数化した。残寸A、残寸Bとも、使用回数を重ねるごとに耐火物の残寸が減少している状況を示している。上述のようにレーザープロフィールメーター11を炉外に設置することで、測定時間が短縮でき、生産ロスなく従来よりも大幅に短い間隔での測定が可能となった。しかし、90ch・100ch・190ch・200ch・310ch・320ch・390chの測定では、図2に示したように上部槽7内に地金10が付着して死角が生じたことによって、測定値が異常値(直前の測定値から大きく外れた値)になり、プロフィールが測定できなかった。 Figure 3 shows changes in the number of times of use and remaining refractory size. Let residual dimension A be the profile measurement dimension, and residual dimension B be the predicted residual dimension from the temperature measurement. The remaining dimensions were indexed with 100 as the initial value of the profile measurement dimensions. Both the remaining dimension A and the remaining dimension B show a situation in which the remaining dimension of the refractory decreases as the number of uses increases. By installing the laser profile meter 11 outside the furnace as described above, the measurement time can be shortened, and measurement can be performed at much shorter intervals than before without production loss. However, in the measurements of 90ch, 100ch, 190ch, 200ch, 310ch, 320ch, and 390ch, as shown in FIG. (a value greatly deviating from the previous measured value), and the profile could not be measured.

一方、温度測定の結果から算出した残寸Bは、上記のようにプロフィール測定ができなかった場合にも算出可能であるものの、プロフィール測定による残寸Aと比較してズレが大きい。これは、残寸Bは定常伝熱計算から算出しているが、温度計測時の耐火物の物性値が必ずしも事前に測定した実測値と一致するわけではなく、また物性値自体が使用を重ねて熱負荷を受ける毎に変化していくためと考えられる。 On the other hand, the residual dimension B calculated from the temperature measurement result can be calculated even if the profile measurement cannot be performed as described above, but the deviation is large compared to the residual dimension A calculated from the profile measurement. This is because the remaining dimension B is calculated from the steady-state heat transfer calculation, but the physical property values of the refractory at the time of temperature measurement do not necessarily match the actual values measured in advance, and the physical property values themselves have been repeatedly used. This is thought to be due to the fact that it changes each time it receives a heat load.

そこで本実施例では、上述のように、プロフィール測定による残寸Aを内張り耐火物の残寸の基本的な管理値とする一方で、プロフィール測定による残寸Aと温度測定による残寸Bの両方が得られた場合に、その差分(残寸A-残寸B)を補正値として記録し、プロフィールが測定可能ではなく、従って残寸Aが得られない場合には、残寸Bを直近の補正値を用いて補正する、即ち(残寸B+直近の補正値)を内張り耐火物の残寸の管理値とする。具体的には、図3において、例えば80chでは、プロフィール測定が可能であり、指数で表される補正値は11であった。その次の90chでは地金付着によってプロフィール測定が可能ではなかったが、温度測定は問題なく実施できたので、(90chの残寸A)=(80chの残寸B)+(80chの補正値11)とした。 Therefore, in this embodiment, as described above, the residual dimension A obtained by profile measurement is used as a basic control value for the residual dimension of the lining refractory, while both the residual dimension A obtained by profile measurement and the residual dimension B obtained by temperature measurement are used. is obtained, the difference (residual dimension A - residual dimension B) is recorded as a correction value, and if the profile is not measurable and therefore residual dimension A cannot be obtained, residual dimension B is the most recent Correction is performed using the correction value, that is, (remaining size B + most recent correction value) is set as the control value for the remaining size of the refractory lining. Specifically, in FIG. 3, profile measurement was possible with 80 ch, for example, and the correction value represented by the index was 11. In the next 90ch, profile measurement was not possible due to metal adhesion, but temperature measurement could be performed without problems, so (90ch remaining dimension A) = (80ch remaining dimension B) + (80ch correction value 11 ).

連続してプロフィール測定ができなかった場合には、直近の、すなわち以前に得られた補正値の中で最後に得られたものを引き続き利用する。例えば図3では、90chに続いて100chも残寸Aを計測できなかったが、温度測定は問題なく実施できたので、(100chの残寸A)=(90chの残寸B)+(80chの補正値11)とした。槽内に付着した地金を除去するなどしてプロフィール測定が可能になった場合(例えば110ch)は、上記のような補正は行わずにプロフィール測定による残寸Aを内張り耐火物の残寸の管理値とするとともに、残寸Aと温度測定による残寸Bとの差分(残寸A-残寸B)を新たな補正値として記録する。 If consecutive profile measurements are not possible, the most recent or previously obtained correction value is continued to be used. For example, in FIG. 3, the remaining dimension A of 100ch could not be measured following 90ch, but the temperature measurement could be performed without any problem, so (100ch remaining dimension A) = (90ch remaining dimension B) + (80ch remaining dimension B) Correction value 11). If the profile measurement becomes possible by removing the bare metal adhering to the inside of the tank (for example, 110ch), the residual dimension A obtained by the profile measurement is used as the residual dimension of the lining refractory without performing the above correction. In addition to setting it as a control value, the difference between the remaining dimension A and the remaining dimension B obtained by temperature measurement (remaining dimension A - remaining dimension B) is recorded as a new correction value.

比較例として、実施例と同じRH設備において従来技術である浸漬管からプロフィールメーターを挿入する方法で耐火物残寸を測定し、実施例による結果と比較した。図4に、比較例における使用回数と耐火物残寸の推移を示す。比較例の場合、測定をするためにはプロフィールメーターを槽直下に移動させる時間が必要になるが、この間は操業が中断されるため、実施例と同等の生産量を確保するためには実施例(10チャージごと)に比べて低頻度でしか測定を実施できない。また、プロフィールメーターを多くの駆動装置を用いて槽内に挿入・測定する過程でプロフィールメーターの位置把握精度が低下し、結果として測定結果の精度も低下する。 As a comparative example, the residual dimension of the refractory was measured by a conventional method of inserting a profile meter from a dip tube in the same RH facility as that of the example, and the results were compared with the results of the example. FIG. 4 shows changes in the number of times of use and remaining dimensions of the refractory in the comparative example. In the case of the comparative example, it takes time to move the profile meter directly under the tank for measurement, and the operation is interrupted during this time. Measurements can be performed less frequently than (every 10 charges). In addition, in the process of inserting and measuring the profile meter into the tank using many driving devices, the positional accuracy of the profile meter is degraded, and as a result, the accuracy of the measurement results is also degraded.

上記のような実施例および比較例で、実際に複数の下部槽を対象に残寸精度を検証した結果を表1に示す。いずれの例でも、処理終了後の熱間での測定値と、その後に炉内で測定した実測値との誤差を算出したところ、比較例(従来技術)では実測値との誤差が25%~40%程度あるのに対し、本発明では4%以下に抑えられ、大幅に精度が向上した。 Table 1 shows the result of verifying the remaining dimension accuracy for a plurality of lower tanks in the examples and comparative examples as described above. In each example, when calculating the error between the hot measurement value after the treatment and the actual measurement value measured in the furnace after that, the error from the actual measurement value is 25% or more in the comparative example (conventional technology). While there is about 40%, in the present invention, it is suppressed to 4% or less, and accuracy is greatly improved.

Figure 0007277744000002
Figure 0007277744000002

本発明適用により、槽内の耐火物残寸を正確に把握し、下部槽耐火物の鉄皮穴あきトラブルを4回/年→0回/年に減少させることができた。また、耐火物を安全に使い切った上で槽交換をすることができ、耐火物コストを低減させることもできた。 By applying the present invention, the residual size of the refractory in the tank was accurately grasped, and the trouble of perforation of the refractory in the lower tank was reduced from 4 times/year to 0 times/year. In addition, the tank can be replaced after the refractories have been safely used up, and the cost of the refractories can be reduced.

1…容器、2…鉄皮、3…背面断熱材、4A…永久耐火物、4B…ウェア耐火物、5…OBランス装入孔、6…天蓋、7…上部槽、8…下部槽、9…浸漬管、10…地金、11…レーザープロフィールメーター、12…放射温度計。 DESCRIPTION OF SYMBOLS 1... Container, 2... Steel skin, 3... Back heat insulating material, 4A... Permanent refractory material, 4B... Wear refractory material, 5... OB lance insertion hole, 6... Canopy, 7... Upper tank, 8... Lower tank, 9 ... immersion tube, 10 ... base metal, 11 ... laser profile meter, 12 ... radiation thermometer.

Claims (3)

鉄皮の内面に耐火物が内張りされた容器の外部に設置される一つ以上のレーザープロフィールメーターを用いて、前記容器内にレーザーを照射して前記耐火物のプロフィールを測定し、前記プロフィールに基づいて前記耐火物の残寸Aを算出する工程と、
前記プロフィールの測定と同時に前記容器の外部から少なくとも前記鉄皮の表面温度を測定し、前記表面温度に基づいて前記耐火物の残寸Bを算出する工程と、を含み、
前記プロフィールが測定可能であった場合には前記残寸Aを前記耐火物の残寸とし、
前記プロフィールおよび前記表面温度がいずれも測定可能であった場合には、それぞれに基づいて算出された前記残寸Aと前記残寸Bとの差分を補正値として記録し、
前記プロフィールが測定可能ではなく前記表面温度が測定可能であった場合には前記残寸Bを直近の前記補正値を用いて補正することによって前記耐火物の残寸を算出する
ことを特徴とする、耐火物の熱間診断方法。
Using one or more laser profile meters installed on the outside of a container lined with a refractory on the inner surface of a steel shell, a laser is irradiated into the container to measure the profile of the refractory, and the profile is measured. a step of calculating the remaining dimension A of the refractory based on
At the same time as measuring the profile, measuring the surface temperature of at least the steel shell from the outside of the container, and calculating the residual dimension B of the refractory based on the surface temperature,
If the profile is measurable, the remaining dimension A is the remaining dimension of the refractory;
When both the profile and the surface temperature are measurable, the difference between the residual dimension A and the residual dimension B calculated based on each is recorded as a correction value,
When the profile is not measurable and the surface temperature is measurable, the remaining dimension of the refractory is calculated by correcting the remaining dimension B using the most recent correction value. , Hot Diagnosis Method for Refractories.
前記残寸Bを算出する工程では、前記鉄皮の表面温度に加えて前記耐火物の表面温度を測定する
ことを特徴とする、請求項1に記載の耐火物の熱間診断方法。
The method for hot diagnosis of a refractory according to claim 1, wherein in the step of calculating the remaining dimension B, the surface temperature of the refractory is measured in addition to the surface temperature of the steel shell.
前記容器は、鉄鋼精錬で用いられる真空脱ガス装置であり、
前記レーザープロフィールメーターは、前記真空脱ガス装置の炉外上方に設置されて炉頂開口部から前記真空脱ガス装置の内部に向けてレーザーを照射する
ことを特徴とする、請求項1または請求項2に記載の耐火物の熱間診断方法。
The vessel is a vacuum degassing device used in steel smelting,
The laser profile meter is installed above the furnace outside the vacuum degassing device and irradiates a laser from a furnace top opening toward the inside of the vacuum degassing device. 2. The hot diagnosis method for the refractory according to 2.
JP2019127400A 2019-07-09 2019-07-09 Hot Diagnosis Method for Refractories Active JP7277744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019127400A JP7277744B2 (en) 2019-07-09 2019-07-09 Hot Diagnosis Method for Refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019127400A JP7277744B2 (en) 2019-07-09 2019-07-09 Hot Diagnosis Method for Refractories

Publications (2)

Publication Number Publication Date
JP2021011993A JP2021011993A (en) 2021-02-04
JP7277744B2 true JP7277744B2 (en) 2023-05-19

Family

ID=74227264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019127400A Active JP7277744B2 (en) 2019-07-09 2019-07-09 Hot Diagnosis Method for Refractories

Country Status (1)

Country Link
JP (1) JP7277744B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127619A (en) 2006-11-20 2008-06-05 Kobe Steel Ltd Method for deciding whether repair of refractory in molten iron ladle is needed or not
JP2010281515A (en) 2009-06-05 2010-12-16 Nippon Steel Corp Method of predicting life of refractory and method of estimating remaining thickness of refractory
JP2014142152A (en) 2013-01-25 2014-08-07 Nisshin Steel Co Ltd Residual thickness measurement method of wear layer
JP2018185253A (en) 2017-04-27 2018-11-22 新日鐵住金株式会社 Device and method for measuring converter refractory profile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310407U (en) * 1986-07-08 1988-01-23

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127619A (en) 2006-11-20 2008-06-05 Kobe Steel Ltd Method for deciding whether repair of refractory in molten iron ladle is needed or not
JP2010281515A (en) 2009-06-05 2010-12-16 Nippon Steel Corp Method of predicting life of refractory and method of estimating remaining thickness of refractory
JP2014142152A (en) 2013-01-25 2014-08-07 Nisshin Steel Co Ltd Residual thickness measurement method of wear layer
JP2018185253A (en) 2017-04-27 2018-11-22 新日鐵住金株式会社 Device and method for measuring converter refractory profile

Also Published As

Publication number Publication date
JP2021011993A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
RU2678549C2 (en) Method and device for measuring levels of cast-iron and slag in blast furnace
JP2023145627A (en) Method for determining state of refractory lining of metallurgy container for molten metal in particular
JP5114666B2 (en) Refractory layer residual dimension measurement method for molten metal containers
BR112014011750B1 (en) configured apparatus, system, and method for monitoring the integrity of a container
BR112015013573B1 (en) test method of a austenitic steel reformer tube.
JP5487730B2 (en) Refractory life prediction method and refractory residual thickness estimation method
JP7277744B2 (en) Hot Diagnosis Method for Refractories
JP5068559B2 (en) Container wall state management method, apparatus, and computer program
JP5906945B2 (en) How to prevent ladle leakage
Braun et al. Tap-hole monitoring technologies
JP2007332382A (en) Method for diagnosing coke oven carbonization chamber
JP5299032B2 (en) Continuous temperature measurement method for molten steel
JP2008127619A (en) Method for deciding whether repair of refractory in molten iron ladle is needed or not
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
JP2014142152A (en) Residual thickness measurement method of wear layer
JP2010230564A (en) Method, device and program for estimation of heat flux on container inner surface
JP4142333B2 (en) Coke oven coking chamber diagnostic method
US3277716A (en) Hot metal ladle continuous temperature measuring device
Belford et al. Development, installation, and operation of a full-copper, deep-cooled slag tap-block for a six-in-line copper slag-cleaning electric furnace
JP2019126834A (en) Apparatus and method for equipment monitoring and program
JP5073269B2 (en) Method of cooling the iron shell of RH equipment
EP4242768A1 (en) System and method for prediction of operational safety of metallurgical vessels
RU51208U1 (en) DEVICE FOR MEASURING TEMPERATURE AND OXIDATION OF METAL IN STEEL SINES
Aripova et al. Assessment of Reliability and Technical Risks in the Operation of Heat Engineering Units
JP2003194706A (en) Method for evaluating degree of erosion of refractory material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R151 Written notification of patent or utility model registration

Ref document number: 7277744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151